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S u m m a r y . - - T h e  general equations of the steady motion of a non-viscous fluid are given in tensor notation. It  is then 
assumed that one family of co-ordinate surfaces, x" = constant, are chalacteristic surfaces, i.e., surfaces on which the 
transverse derivatives of the flow-variables are not determined by their values on the surface itself. The condition for 
this is given by the relation (u~) z = a~g ~ which can be interpreted to give the well-known result that tee velocity normal 
to the surface is sonic. The relation which must then hold between the variables on the surface itself is also 
determined (characteristic equation). 

The special cases of axisymmetric and two-dimensional flow are also considered and the results interpreted to give the 
well-known relationships. As an example, the flow in a simple wave, i.e., a flow in which one fatuity of characteristic 
lines are straight, is treated in detail. 

While no new results have been obtained, the authors feel that the extra simplicity resulting from the use of quite 
general co-ordinates gives a deeper insight into the behaviour of such flows. 

I#~troductio~c.--In Ref. 1 Dr. Meyer gives a novel method of developing the fundamental  
properties of the ' characteristics ' of the equations of motion of a gas in steady two-dimensional 
supersonic flow. He refers the equations to generM orthogonal co-ordinates, one set of which 
are afterwards identified with one system of characteristic lines ; he then bases his definition of 
a characteristic on the fundamental property tha t  the conditions on the curve fail to determine 
the rate of change of velocity and density in passing away from the curve. This property leads 
directly to the condition tha t  the component velocity normal to the curve is sonic and also 
establishes a differential equation which must be satisfied along a characteristic. 

In R. & M. 2615 ~ Mr. C. K. Thornhill develops the theory of the general quasi-linear second 
order partial differential equation in three variables and derives the characteristic equations and 
curves, together with the partial differential equations holding on them. These results are then 
applied to steady supersonic flow in three dimensions and unsteady flow in two dimensions. 

I t  seemed to the authors that  the use of orthogonal co-ordinates was not sufficiently far-reaching, 
and tha t  it might be more informative to use quite general curvilinear co-ordinates so that  
when one family of characteristics is made a co-ordinate family, the other co-ordinate family is 
left to the discretion of the user. The work of Mr. Thornhill encouraged us to apply the results to 
three-dimensional flow, and this was done without any serious increase of complexity and with 
some refinement of technique. Once the notation of the tensor calculus hag been mastered, and 
it is hoped tha t  Appendix I may be of some use to this end, then the whole development is very 
simple and gives considerable insight into the nature of the flow. 

* Published with the permission of the Director, National Physical Laboratory. 
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2. Reduction of the Equatioras.--The reader unfamiliar with tensor notation is referred directly 
to Appendix 1 where the  notation as used in this paper is explained in as simple a manner as 
possible. The majority of the results are there stated without proof. Where proof is necessary 
reference should be made to Refs. 3, 4 and 5. 

A distinction is made between Greek and Roman suffixes. Greek suffixes c~, /3 and y are held 
to have fixed values, i.e., they each refer to one of the three co-ordinate families (in three 
dimensions) and once they have been assigned to one family their meaning is unaltered. They 
do not obey the summation convention (see Appendix 1). Roman suffixes, on the other hand, 
are the usual dummy suffixes of tensor notation and obey the summation convention. 

The further convention will also be adopted that  the suffixes l, m and n refer only to fi and y, 
and never to e. Thus 

go~u "~ = g ~ J  + &#~.  

We shall consider steady rotational flow (so that the entropy S may vary from one streamline 
to another) but without shock-waves or other discontinuities of the physical variables. The 
pressure is assumed to be a known function of the density and entropy, thus p =/5(p, S). The 
velocity of sound is defined as usual as a, where 

a s _ a p  
ap" 

We shall assume that  all the variables are known on a co-ordinate surface x = = constant, and 
hence also their derivatives with respect to x ~ and x r. We shall then consider the equations of 
motion as equations to determine the derivatives with respect to x =. 

The equations of motion may be written in terms of co-variant velocity components, as 
follows : - -  

1 ap 
u%,~ + p a x ~ - - O  

¢4 b a p 
bc 0 g ub,~ + p a x  b -  

and the equation of state is 

u~ a S  

. .  (1) to(3) 

. .  (4)  

. . . . . . . . . . . .  (s) 

/5 - - / 5 ( p ,  s) 
ap a~ ap ap as 
ax --b = ~ + aS ax ~" (6) 

Multiplying equation (6) by u b and using equation (5), we get 

& a/5 2 ~ ap 
7x-x b = a u . . . . . . . . . . .  ( 7 )  

ap 
Substituting for ~ in equation (4), we get 

a~_b%t u ~ 3/5 
g p a x  . . . . . . . . . . . . .  ( 8 )  

It  should be noted that  equation (5) determines aS/ax ~ in terms of the values of S and its 
derivatives in the plane x = =  constant, while equation (6) determines ap/ax ~ in terms of the 
derivatives of t5 and S. 
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W e  shal l  n o w  wr i te  e q u a t i o n s  (1) to  (3) a n d  (8) as s i m u l t a n e o u s  l inear  e q u a t i o n s  in  t h e  four  
va r i ab les  u~,~ ue,~ u~,~, 3 p / O x  ~. T h u s  

1 ~ 
. . . . . . . . . .  (9)  

p ~& . . . . . . . .  (10), (11) 

a ~ 
I g== u ~'*= u } -~ 

a~a @ t~ ~ja 
) 

u ~ a p  
u= aP - -  - -  a =-~''-" . . . . . .  (12) 

w h e r e  m,  n can  o n l y  t a k e  t h e  va lues  ~ and  y. E q u a t i o n s  (10), (11) are suff ic ient  to  d e t e r m i n e  
ue,= a n d  u,,= in  t e r m s  of c o n d i t i o n s  on  t h e  p l a n e  p r o v i d e d  t h a t  u = does  n o t  van i sh .  

M u l t i p l y i n g  e q u a t i o n s  (10) a n d  (11) b y  a2g ~ and  e q u a t i o n  (12) b y  u ° a n d  s u b t r a c t i n g  gives 

a= ° °u°u  (u=) ~ a p  o~(,,~,,,~,.,~. . i , . uo  u ~ (a=g~o _ u~u,,) 1 a p  
g " o,~ + p ~x ~ - -  -- ,o -- ---,,--- s ~''J + p ~x'---'" ' "  (13) 

E q u a t i o n s  (9) a n d  (13) are t h e n  suff ic ient  to  d e t e r m i n e  u=,~ a n d  a f l / a x  ~ unless  

e i the r  u ° = 0 . . . . . . . . . . . .  (14) 

or a2g = ° =  (u=) 2 . . . . . . . . . . . . .  (15) 

I f  n e i t h e r  of t hese  e x c e p t i o n a l  cases occur ,  all t h e  t r a n s v e r s e  de r i va t i ve s  can  be  d e t e r m i n e d  f r o m  
c o n d i t i o n s  on t he  sur face  itself.  I f  e q u a t i o n  (14) is t rue ,  t h e  sur face  x = = c o n s t a n t  is a s t r e a m  
sur face  a n d  th is  poss ib i l i ty  is cons ide red  in de t a i l  l a t e r  on.  I f  e q u a t i o n  (15) is t rue ,  t h e  su r face  
x = = c o n s t a n t  is k n o w n  as a cha rac t e r i s t i c  surface .  On  s u c h  a su r face  t h e  d e r i v a t i v e s  of u s ,  p 
a n d  p are  i n d e t e r m i n a t e .  I n  th i s  l a t t e r  case e q u a t i o n s  (13) a n d  (9) are o n l y  cons i s t en t  if 

(u=l=u,. u a=[.~,,u,,,~.~ ,.b,,,uO u ~ (a=gno 1 ap 
, , ~,,. + ,~. ...... - -  s ~'~ + - -  u~u~) p a x "  - -  0 

or, u s ing  e q u a t i o n  (15), 

u~(g~bu " -  " ~ " u < u  g ~ u " )  1 ~p 
s j ~,,. + ( g ' ° u  ° - -p ax~ - 0 . . . . . . . .  (16)  

o r  

u ~ l u " u  ° - -  u~u  ' '  ~ (g '~u  ~ -  g~°u") 1 ~p 
' "~ "°~ + p a x "  - -  0 . . . . . . . . .  ( 1 6 a )  

This  e q u a t i o n  m u s t  h o l d  on  t h e  c h a r a c t e r i s t i c  su r face  a n d  is k n o w n  as t h e  ' c h a r a c t e r i s t i c  
e q u a t i o n  '. 

W e  h a v e  n o w  es t ab l i shed  t he  fo l lowing  p r o p e r t i e s  of a cha rac t e r i s t i c  surface .  

(a) I f  t h e  su r face  x ~ - -  c o n s t a n t  is a cha rac t e r i s t i c  sur face  t h e n  a k n o w l e d g e  of va lues  of t h e  
d e p e n d e n t  va r i ab les  a n d  the i r /~  a n d  r d e r i v a t i v e s  in  t he  sur face  does  n o t  d e t e r m i n e  t h e  va lues  of 
u,  p a n d  p on  a n e i g h b o u r i n g  su r face  and  in  p a r t i c u l a r  t he i r  de r i va t i ve s  m a y  c h a n g e  dis- 
c o n t i n u o u s l y  a t  t h e  sur face  in  a m a n n e r  c o n s i s t e n t  w i t h  t h e  d e t e r m i n a t e  va lues  of ue,~, uv,~. 
S ince  a d i s c o n t i n u i t y  oi  a d e r i v a t i v e  m a y  be  cons ide red  as an  in f in i t e s imal  d i s t u r b a n c e  in  t h e  flow, 
th i s  will  m e a n  t h a t  s u c h  d i s t u r b a n c e s  can  exis t  a n d  will  be  p r o p a g a t e d  a long  a n d  o n l y  a long  
cha rac t e r i s t i c  surfaces .  
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(b) (g=)~/~ a = :k  u ~ . . . . . . . .  (17) 

at  all points of the  surface. I t  is proved in Appendix  2 tha t  this relation is equiva!ent  to 

V ,~ a ~ -  -~_ a , 

where v,, is the  component  velocity normal  to the  surface. 

I t  follows from geometrical  considerations tha t  the  characteristic surfaces passing through 
a given point  P, envelope a conical surface (conoid) and in particular tha t  they  touch a right-cone 
with ver tex at P and semi-angle/z where 

sin ~ - -  a/w. 

(c) u°(u"u~,. - u~u ~,~,~ + (g"°u ° - g =u~) 

at all points of the  characteristic surface. 

1 ~p - o  
p 8x,, 

3. T w o - d i m e n s i o n a l  F l o w s . - - F o r  two-dimensional  flow we let x y : constant  be a plane on 
which 

g ~ . - - - - g a ~ = O  ] (18) 
a n d  . . . . . . . . . .  

g~ = 1 

u~,u  ~ and all derivatives wi th  respect to x ~ also vanish. 

The equat ions of mot ion  then  have  the  same form as before, but  the  suffixes can now only 
take  one of the two values c~ or/~. I t  will also be convenient  to use the  suffixes r, s and t as holding 
over these two values, only, and we shall write 

G = g=gs~ - -  g~2 • 

Then the equations of mot ion  are 

q/br~s,r - ~  - -  0 . . . . . . . . . . . .  ( 1 9 ,  2 0 )  
p ~X ~ 

~ ~P . . . .  (21) ~ ' u  + - -  --  0 . . . . . .  ~, s,~, p ~ X ~  • ' '  

The equat ion of state remains 
p ---- f(p, S) . . . . . . . . . . .  (22) 

The condit ion tha t  the  curve x" = constant,  should be a characteristic curve remains 

a2g°° = (~°)~ l (23) o r  . . . . . . . . . .  

Vna ~ .  :iX a l 

and the  characteristic equat ion becomes 

u~(uau~ a -  uauS,a ) + (gS~u° - -  ga~uS) p ~x a - -  0 

o r  

u~(uau~,s __ uOuS,a ) + ( g ~ g ~  __ g~gSS) us  ~P 
p Ox ~ - 0  

o r  

u~(u~u~,e _ _  u~u%) __ u s op  (24) 
' p G  Ox s - -  0 . . . . . . . . .  

4 



I t  is shown in A p p e n d i x  2 t h a t  

and  t h a t  when  equa t ion  (23) holds  

oo 

ue = = gee(w ~ - a=) . 

T h u s  the  charac~:eristic equa t ion  becomes  

oo g~ /~ (w  ~ - a~)~/~ ap 
u~w~ Ox # pG ~/2 Ox# 

P u t t i n g  u ~ = ± (g~°)~/~ a 

an d  r e m e m b e r i n g  t h a t  g~  = (g##/G) 

we get  

g-~ ~ pa Oxe - o . 

This  is t he  wel l -known form of the  character is t ic  equat ion .  

- - 0 .  

(25) 

(26) 

(27) 

4. S y m m e t r y  about  a~ A x i s . - - I n  th is  case one can t ake  x ~ to  be t he  angula r  co-ord ina te  abou t  
t he  axis, so t h a t  if r is t he  d is tance  f rom the  axis t he  f u n d a m e n t a l  me t r i c  becomes  

so t h a t  
ds 2 = g,., dx '  dx '  + r~(dx') 2 . . . . . . . .  (28) 

As in two-d imens iona l  flow u , ,  u ~ and  all scalar  der iva t ives  wi th  respect  to  x v are zero. 
covar ian t  der iva t ives  wi th  respect  to x ' are no t  zero, however ,  for 

In spec t ion  t h e n  shows t h a t  

go, = g ~ , -  0 / . . . . . .  (29) 
gr~ = 72 ] . . . . .  

All 

Since g~ = r ~, we m a y  wri te  

0 q ~  
u~,~ - 0x ,  _r~ u~ . . . . . . . . .  (30) 

F~, ub --= ½gb~ + 0x~ a x ° 

1 0grv 
u,,v --  2 a x c 

q/~r,y - - -  0 

m ~ c  

0 r  
~v,~ ~ r - -  ~c  0X c 

Or 
= r ~ - - - - - r V  

where. I7 is t he  ve loc i ty  c o m p o n e n t  n o r m a l  to the  axis. 

U b .  

(31) 

(32) 

T h u s  the  equa t ions  of m o t i o n  m a y  be wr i t t en  

1 ap 
p OX~ 

17 1 0p 
' , ~ + r  q p o x '  

m _ O  

- - 0 .  

5 
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The condit ion for a character is t ic  is unal tered,  and the  character is t ic  equat ion  becomes 

~0 (w 2 - -  a~) 1/~ Dp g ~ I /2 a V  
w ~ :k  4-  - -  0 . . . .  (36) 

- ~  pa ~ x ~ r . . . . .  

In t roduc ing  sin/* = a /w  . . . . . . . . . . . . . . . . . .  (37) 

0 for two-dimensional  flow 

and j = 1 for ax isymmetr ic  f low,  

this m a y  be wr i t ten  

a 0 1 ap sin 0 dr 0 . . .  (38) 
w ~ 4- cot/ ,  ~ ~ x  ~ 4- j sin,, s-~(b-t-/*) r . . . .  

since 
g e y  ~" dx  ~ sin (0 4-/*) = d r .  

5. S t r e a m l i n e s . - - I f  u ~ -~ O, so t ha t  the  surfaces x ~ - -  constant  are s t ream surfaces, some 
simplification is in t roduced  into the  equat ions of motion.  I t  is more  convenient ,  however,  to 
deal  wi th  s treamlines ra ther  t han  surfaces, and  we shall consider the  case where  the  ),-lines are 
streamlines,  so t ha t  

and  
w ~ = g , , ( u ' )  ~ . 

We shall also use the  convent ion t ha t  the  suffixes r, s and t refer to ~ and ~ only. The last two 
equat ions  of motion,  equat ions  (4) and  (5), express the  fact t ha t  the  en t ropy  and  the  mass-flow 
are constant  along s t ream-tubes  and consequent ly  no new informat ion can be expected f rom 
pu t t ing  u ~ = u a = 0. The two equat ions become in fact 

OS . . . . . .  (39) u~ - - - -  0 . . . . . .  

~X------ ? (pgl/'~U?) = 0 ,  • . . . . . . . . . . .  (40) 

where  equat ion  (40) is obta ined  by  expressing equat ion (4) in its simplest form (Appendix 1). 

Equat ions  (1) to (3) m a y  be wr i t ten  

1 op 
- -  - -  --~- 0 gb~u~uC,~ + p 3x b 

For  equat ion  (3), b = ), and  this becomes 

1 ~p 
g~#Vu~,~ + p ~x ~ - -  0 .  

Now 

(w2) - ~ (g~oubu ~) = u%ub + u % ,  
~ x  r ~ X  ~ , . , 

- -  2 & ~ u b u ° .  

(41) 

Since u ° = u a = 0, equat ion  (41) becomes 

1 ~(w ~) I ap 
2 ax, ÷ ~ ~x--~ = 0 . .  

which is Bernouill i 's  equat ion  for flow along streamlines.  

(42) 
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When b ~ 7, equations (1) and (2) become 

g~'uru~'~ + p ~x" i 0 

o r  

~Ou ~ ] 1 ~p 
g,A,t" L g~x ~ +/-;v~tr -~ o Ox,,-  0 . . . . . . . . . . . . .  (43) 

Now it is shown in Appendix 2 that  if R is a vector representing in magnitude and direction the 
curvature of the streamline dx  ~ = dx  ~ = O,  

1 O(grv) ~/2 (44) then F~'r = g~R~ + g~ (g~)~l~ 3 x  r . . . . . .  

so tha t  equation (43) may now be written 

o r  

Our 1 
g , v u r - ~  + gr~(ur)~R,, + g,r(ur) ~ ( g r r ) a / 2  - -  

~X r p ~X r 

o x ,  + g,r(u ) + 
1 op 

0 . . . . .  (45) 

Finally, let K, be the actual component of geodesic curvature of the streamline in the x ~ direction, 
so tha t  

(g,~)112K~ : R 

Remembering that  

and 

(g,g~r)~l~ --= cos ~0,~, 

where %b is the angle between the a and b axes,the equation (45) reduces to 

w ~w 1 ~p 
(g~v)ll20x, cos %v + w~K, + p(g,,)l/~ Ox" - -  0 . . . . .  (46) 

The first term (which vanishes when the r-axis is orthogonal to the streamlines) gives the 
component of the stream acceleration in the direction of the r-axis, whilst the second term gives 
a measure of the centripetal acceleration. 

6. Sim2ble W a v e . - - A s  an example of the application of the tensor notation we shall apply it to 
tile case of a ' simple wave ', in which one family of characteristics are straight lines. This family 
will be represented by the ~3-1ines, the streamlines by the c~-lines, and we consider the case in which 

It follows from the previous analysis that 

¢t ~ = 0 (47) 

72) 2 
~0 

(u°) = gooa  . . . . . .  

ap ~x ~ = 0 . . . . . .  

(48) 

(49) 
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a nd  the  equa t ions  of m o t i o n  are 

1 ~ ( ~ )  1 ~p (50) 
2 Ox ~ @ p Ox ~ --  0 . . . . . . . . . . . .  

1 ~p . . .  (51) 
- ~ 0 
g~ ,~ -[- p ~x ~ . . . . . . . . . .  

( 5 2 )  
~x-- ~ (pg~/~u~) = 0 . . . . . . . . . . . .  

o s  _ o . . . . . . . . . . . . .  (53) 

We shall  m a k e  the  fu r the r  a s s u m p t i o n  t h a t  t he  to ta l  energy  and  the  e n t r o p y  are the  same on all 
s t reaml ines  and we sl~all l imi t  t he  discussion to the  case of a per fec t  gas for which  the  equa t ion  
of s ta te  m a y  be wr i t t en  

where  = exp ( S i c k )  " . . . . . . . . .  

and  G is cons tan t .  ~, is cons t an t  t h r o u g h o u t  the  fluid, and  t he  same is t rue  oI S and  K.  F r o m  
equa t ions  (50) and  (54), and  wr i t ing  

P- . . . .  (55) 
E = ½w ~ + r - 1 p . . . .  

for the  to ta l  energy  we have  
~E 

- -  0 . . . . . . . . . . . .  (56) 

along a s t reamline ,  and  so E is cons t an t  t h r o u g h o u t  the  fluid. 
wh ich  a character is t ic  makes  wi th  a s t reaml ine  at  any  point ,  

F r o m  the  def ini t ion of ~, t he  angle 

w ~ sin s/~ _ Yfl . . . . . . . . . . . .  (57) 
p 

Dif ferent ia t ing equa t ions  (54) and  (57) wi th  respect  to  x a 

2 aw a# 1 ~p 1 3p 
w ~x B .+ 2 cot  ~ g)3 --  p ~x ~ p ~x ~ 

a n d  1 ~p ;" ~ o .  
p ~x ~ - - p  ~x a 

(58) 

Hence,  
3E ~w 1 ~p 
~xa - w ~ + )- ~x--~ 

- (1 + ½(s - 1) c o s e c  ~ s } - - -  

~ 0 . . . .  . • • 

1 ~p _ w~ cot/* ~# 
p ~x ~ 

(59) 

We also no te  t h a t  equa t ion  (49) m a y  be wr i t t en  

1 ~p w ~ t an  # ~ 0 
p ~x ~ - -  g)d~" 

8 
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Eliminating Off/ax e from equations (59) and (60) 

( 1 + , - - 1  ) 0 0  Off 
2 c°sec2 ff ~ - -coP, f f .g -~  = 0  . . . . .  (61) 

But since the fi characteristic is straight 

o r  

o 
ox- ~ (o - ~)  = o 

00 off 
a x e -  a x e -  0 . . . . . . . . . . . . . . . . .  (62) 

Equations (61) and (62) are only compatible if O0/Ox~ and aff/Ox e both vanish, and hence (in 
view of equations (49) and (58)) on a straight characteristic 

aP  
Ox e -- 0 . . . . . . . . . . . . . . . .  (63) 

for P = p, p, w, a, # and O, i.e., all the flow variables are constant along the characteristic. 

Since 
o 0 

_ g,/3 (u~u e e - -  u~u",e) = 0 Ox e w ' 

and u e = O, it follows that  

~'~*~ = 0 . . . . . . . . .  ( 6 4 )  Ne,5 = . .  ~ f l  . . . . . .  

In order to find a relation between 0 and # which holds along the streamlines we shall eliminate 
Ou=/Ox ~ between the two equations of motion (51) and (52). 

From (51), 

and from (52) 

Oq/U 

g~e  Ox~ - -  

0¢4 ° 

O X,~ - -  _ _  

g~eF~ u s 

[ p _g_._x~ O p i,~,~ ] u~ " 

For these to be compatible we must have 

goe ~ Ox--~ + rL  
o r  

using equation (64). 

1 0 p  

g o ~ p a x ~ - - g ~  . .  

and since 

equations (65) and (66) 

1 

P 

= ge~rL 

Again, equations (25), with ~ and/~ interchanged, and (47) give 

~o 
w ~ -  = gl/2u~F~ou~ 

~ X ~  
O 

gae = g~,~l/2ge~l/~ cos 

give 

ap 1 • oo  

~x~ sin # cos ff Ox ~ " 

(65) 

( 6 6 )  

(67) 
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Finally,  using equat ion  (56) and  differentiat ing equat ions (54) and (57) wi th  respect  to x ° 

so tha t  

1 Op cot ff Off 
p Ox" ½(), - -  1) + sin~ff 0x ~ 

0 cos 2 # Off 
° 

e x  ~ ½(~, - -  1) + sin~ff ex ~ 

(6s) 

(69) 

In tegra t ing  we find tha t  the following condit ion is satisfied along a s t reamline 

0 --  - - f  + z/Z -t- cons tant  . . . . . .  
wi th  

t a n  z = (1/~) t a n ~ ,  ~ =  (~ - 1)/(~ + 1 ) .  . .  

(70) 

(71) 

This is the  fundamen ta l  equat ion  for a simple wave.  

The other  quant i t ies  w, p and  p m a y  be de te rmined  by  subst i tu t ion in equat ions (54), (55), (57) 
in the  form 

w = (2E) 1/2 cos Z see f f  

p _ 2E 
A2 sin~ Z 

P Y . . . . . . . .  (72) 
1 ~ '--1 

= K ~ p  

= K p ~  -1. 

To complete  the  geometr ical  de te rmina t ion  of the  a rb i t ra ry  s t reamline  in te rms of a s t anda rd  
s t reamline it is necessary to derive an equat ion  for the  var ia t ion  of gaa along a streamline.  Pu t t i ng  
~p = ff in equat ion  (52), and  using (70), (71) and (72) 

g~1/2 = c o n s t a n t / p w  sin ff 

= constant  (sin z) 1 / ~ 2  . . . . . . . . . .  (73) 

along a streamline.  Let  dr be the  e lement  of length along a s t ra ight  characterist ic,  t h e n  

dr  - -  g~ :/2 d x  ~ " 

But  x ¢ = cons tant  along a streamline,  and so if r is measured  from a s t andard  s t reamline as d a t u m  
we have  

r = constant  (sin z )  -1/a2 • 

Writ ing  

¢ ---- 0 --  ff . . . . . . . . . . . . . .  (74) 

for the  incl inat ion of the s t ra ight  character is t ic  to a fixed direction, r and ¢ m a y  be considered 
as quasi-polar  co-ordinates of an a rb i t ra ry  s t reamline referred to a fixed s t reamline as d a t u m  
and are de te rmined  b y  equat ions (70), (71) and (74) as functions of the  single pa rame te r  ff along 
the  fixed streamline.  Since we have not  s t ipula ted the significance of x °, and ¢'(----- 0 - - i f )  is 
cons tan t  along the  character is t ic  we might  wri te  x ~ = ¢. In  the  case of a cent red  simple wave 
the  d a t u m  s t reamline  m a y  be t aken  as a fixed point  (the centre), and  r a n d  ¢ become t rue  polar 
co-ordinates satisfying the same relations as for the  general  s imple  wave.  

10 



A P P E N D I X  I 

F u n d a m e u t a l  R e s u l t s . - - F o r  simplicity we shall consider only the  two-dimensional  case. We 
use a perfectly arbi t rary set of oblique curvilinear co-ordinates x ~, x ~. Let  P be an arbi t rary 
point  (x °, x a) and let PQ be an arbi t rary infinitesimal vector A. Let the  co-ordinate lines through 

\ 
\ 

\ 
\ 

\ 

\ 
\ 

\ 
\ 

\ 

A 
P 

A 

Ra 

I 
I 

I 
P 

FIG. 1. 

P and Q form the  curvilinear quadri lateral  PR~QRa (Fig. 1) which is to the  first order a 
paral lelogram and is such tha t  x ° has the  constant  values 

x ~ and x ~ + d x ~ = x ~ + A ~  

on PR,;and R~Q respectively, while x a has the  constant  vaIues.x a and x a + ~x ~ = x a + A a on PR~ 
and RaQ respectively. A and A ~ will be described as the  contra-variant  components  of the  vector  
A . .  We shall write 

PRa = g~l/~A°, P R  a = gaal/~Aa, 

and if w is the  angle between the  co-ordinate lines R~PRa . . . . . .  (A1.1) 

g~  = ga~ = g~ ~12g~y2 cos ~f , 

where g~o, goa and ga~ are all functions of position depending only on the  co-ordinates, and 
completely define the  axes of co-ordinates in the  neighbourhood of P. 

Let  Na and N~ be the  feet of the  perpendiculars from Q on to PR~ and PR.  respectively. Then 

Ao ~- g~a :/2 PN~ and A~ ~ g~:/2 PN~ . . . . . .  (A1.2) 

will be described as the  co-variant components  of the  vector A. 

The following results help to just ify these apparent ly  arbi t rary definitions and ilIustrate fur ther  
the necessity for the  two types of component  of a vector  when the  co-ordinates are oblique. 

IA I ~ = g~,(A") ~ + 2g~aA'~A ~ + gaa(Aa) ~ 

=  ..go A A . 
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B y  t h e  ' s u m m a t i o n  c o n v e n t i o n  
as a lower  a n d  once  as an  u p p e r  
t h e  sign of s u m m a t i o n  becomes  unneces sa ry .  

] A  ]~ = g ~ A ~ A  ~ . . .  

Again,  

a n d  

' : - - A n y  L a t i n  suffix r e p e a t e d  in a g iven  t e r m  occurs  a lways  once  
suffix, a n d  is t h e n  u n d e r s t o o d  to  be s u m m e d  for ~ a n d  fi so t h a t  

A ~  = g ~ A  ° + goaA ~ 

- -  g ~ A  ~ 

T h u s  we wr i t e  

. . . . . . . .  (A1.3) 

A a  = g a l A  b, 

w h e r e  t h e  L a t i n  suffices o b e y  t h e  s u m m a t i o n  conven t ion .  T h e  two equa t ions  will be  w r i t t e n  as 
t h e  single e q u a t i o n  

A ~  = g~bA ~ . . . . . . . . . . . . .  . .  (A1.4) 

This  i l lus t ra tes  t h e  c o n v e n t i o n  t h a t  a ' f loat ing ' (unrepea ted)  L a t i n  suffix m u s t  occur  in t h e  s a m e  
pos i t ion  in e v e r y  t e r m  of an  e q u a t i o n  a n d  is u n d e r s t o o d  to be r ep laced  b y  ~ a n d  3 in tu rn .  

g ~ gag 

g.t~ 

] = g, agZ  - -  • . . . . . . .  (A1.5) 
ge l 

a n d  

. . . . . . . .  (AL ) 

W e  shall  wr i t e  

ga~ _ _  G a b / g  . . . . . . .  

where  G~ is t h e  co- fac tor  of  g,b in t h e  d e t e r m i n a n t  g. T h u s  

g~  g ~  _ gee , gee _ g ~  a n d  g~  - -  - -  
g g g 

Then, 

and 

I n  a genera l  c h a n g e  of axes  in w h i c h  t h e  co-ord ina tes  x'L x '~ are  a n y  func t ions  of x ~, x ~ t h e  c o m -  
p o n e n t s  of a v e c t o r  are  t r a n s f o r m e d  accord ing  to  t h e  re la t ion  

~X '~ 
A '~ - -  - -  A b (A1.9) 

- -  ~ X  b . . . . . . . . . . . . . .  , 

g~bA~ . . . . . . . . . . . . . .  (A1.7) 

OX b 

A:  - -  ax'" A~ 

T h e  c o m p o n e n t s  of a v e c t o r  a re  a special  first  o rde r  case of ' t ensors  ' wh ich  m a y  be  of a n y  order .  
T h u s  a t enso r  T of t he  second  o rde r  has  c o n t r a - v a r i a n t  c o m p o n e n t s  T ~, co -va r i an t  c o m p o n e n t s  
Tab or  m i x e d  c o m p o n e n t s  T~, each  of wh ich  s t a n d s  for four  n u m b e r s  o b t a i n e d  b y  p u t t i n g  a a n d  b 
equa l  to  ~, fi in tu rn .  Such  a s y s t e m  of n u m b e r s  of a n y  o rde r  is sa id  to  be a t enso r  if i t  obeys  t h e  
fol lowing l aw of t r a n s f o r m a t i o n  f rom the  set  of co -ord ina tes  Xl, x2, xa . . . xN to  t he  n e w  set  
Yl . . . .  YN 

Dy ~ 0y ~ 0x* ~x---~ T ~ .... . .  . .  . .  (A1 10) 
T'~-::::~ - -  ~x ~ . . . ~x---; ~y---~ " " " ~y~ . . . . . . . . . .  

g,~, g~ a re  special  cases of t ensors  of t h e  second  o rder  wh ich  are  func t ions  of t he  co -o rd ina te  s y s t e m  
only.  The  m i x e d  t enso r  

g~_-- = g gc~ 

is o f t en  w r i t t e n  ~ a n d  has  t h e  p r o p e r t y  of c h a n g i n g  a suffix, s ince ~ = d~ = 1 a n d  
~ -----~ = 0. F o r  example ,  

A ~ = ~ A  b . 
12 



D e r i v a t i v e  o f  a S c a l a r . - - T h e  change  OS in a scalar field cor respond ing  to a smal l  d i sp l acemen t  
f rom a po in t  P to a po in t  Q cons idered  as a vec tor  dx w i th  c o m p o n e n t s  Sx ~ is g iven  by  the  n o r m a l  
t y p e  of fo rmula  

a S  
a S  - -  S0  - -  S~  = ax-~ a x "  • . . . . . . . . . . .  ( A I . l l )  

a 6 / a x  ~ is t h e  co-var ian t  c o m p o n e n t  of t he  ' g rad ien t  ' of t he  scalar. 

D e r i v a t i v e  o f  a V e c t o r . - - I f  A is a vec tor  field, we require  a f o rmu la  for ~A in t e rms  of t he  smal l  
d i sp lacemen t  dx. I n  curvi l inear  co-ordinates  it  is no t  t r ue  t h a t  

~ A  ~ -  Ox b Ox ~ 

and  OA~/Dx b is no t  a tensor.  I t  is possible, however ,  to  define a m ixed  tensor  of t he  second order  
whose c o m p o n e n t s  are d e n o t e d  b y  A~b such  t h a t  

OA ~ = A~b Ox b . . . . . . . . . . . . . . .  (Al.12) 

I t  m a y  be shown t h a t  

OA ~ 
A",~ - Ox b + / , ~ c A  ~ , 

= - ~ , r  . ( a l . l a )  where /'be 6 i ,  b e  . . . . . . . . . . . . .  

t and  ri,b~ --  2 ~ -t ~x~ ax~ 

A~,b is k n o w n  as the  co-var ian t  de r iva t ive  of the  con t r a -va r i an t  c o m p o n e n t  A a of t he  vec to r  A. 

The  co-var ian t  de r iva t ive  of the  co-var ian t  c o m p o n e n t  of _A m a y  s imilar ly  be defined such  t h a t  

~A~ = A~,bOx b . . . . . . . . . . . . . .  (Al.14) 
and,  

aA~ 
A~,b --  ax b --  /,~bA~ . . . . . . . . . . . . .  (Al.15) 

Co-var ian t  der iva t ives  of tensors  of h igher  orders m a y  be s imi lar ly  defined. I n  pa r t i cu l a r  for 
a m i x e d  tensor  of second order  we have  

aA~ 
= r j ~ -  . .  . . . .  (A1 16) YbcAi . . . . . .  Ab,~ 0x c + ~ ~ ~ 

The  der iva t ives  of t he  f u n d a m e n t a l  tensors  are all zero 

g~,c=g~ =g~ = 0  
~ C  b j C  " * " " " 

. .  (Al.17) 

The  usua l  d i s t r ibu t ive  law of d i f ferent ia t ion is obeyed  b y  the  co-var ian t  de r iva t ive  ; for example  

0 
ax0 (AoB~) = (A°eo,b) 

= A'~,bBa + A~B~,b . . . . . . . . . . . . .  (AI. lS)  

I n  this  last  equa t ion  i t  has been found  conven ien t  to wri te  the  co-var ian t  de r iva t ive  of a scalar  
in two  forms.  T h u s  

0S 
(S ) ,~ -  ax ~ . . . . . . . . . . . . . .  (A1.19) 
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Equat ions  of  M o t i o n . - - A c c e l e r a t i o n . - - T h e  contra-variant components f~ of the acceleration f 
which is the rate of change of the velocity vector u_ following the motion of the fluid may b~ 
obtained as follows. In time at the displacement PQ of a particle of fluid is given by 

(~X ~ : ~ a t .  

The total  change of the velocity u ~ of the particle of fluid originally at P is 

f~ at = -~- at + u~,b ~x b 

and so 

aq/~ a 

- - -  u , b u  at at a t +  ~ b 

(" D u  y a ~  ~ 
f~ k-D-?- / -  at + " ~ . . . . .  (A1.20) U ,b ~ . . . . . .  

The general formula 

D A  ~= + A ~ &  (A1.21) 
-D7  at . . . . . . . . . .  

will give the rate of change following the motion of the fluid of any vector field A.A_, while a similar 
formula applies to a scalar field 

D4,D~_ 2q,at ~-g-~a~'b & . . . . . . . . . . . . . .  (A1.22) 

In steady mot ion the acceleration becomes 

f~ = u~b& 

and the rate of change of entropy following the motion of the fluid becomes 

aS 
aX~ • 

The divergence of a vector can, by analogy with the more familiar orthogonal case, be seen to be 
A%. 

Using these results, a straightforward application of the fundamental physical laws yields the 
equations of motion of a fluid. 

For steady, non-viscous flow we have 

1. Constant entropy along streamline 

aS 
ax~U ~ = O. 

2 and 3. Equations of momentum 

1 ap 
g UaUC . . . .  b~ ,~ p aXb 

a ~ ap  

- -  p a x  ° 

1 ~p aS 
p ~S Ox b' 

b = cc or fl . 
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4. Equation of continuity 

div (pw) - 0 u ° ) . ~  = u~  ~P u ° ~ - ~ + p  , o = 0 .  

But 

p u  F~b - -  ~x  ~ p u  F ~  ax o ( P u 0 +  ~ ~ 0 u  ° ) +  ~ 

1 ~g 
- ~x ~ (pw) + pu~2g ~x~ 

= g-1/~ (pgl/~uo) 
~X~ 

Thus equation (4) is equivalent to ~-~ (pgl/~ u ~) = 0.  

Since the notation of the tensor calculus remains unaltered however many variables are 
involved, all results in this appendix that  are expressed purely in tensor notation will be found to 
apply equally well to three dimensions as in two. Such results are the expression for the square 
of the interval ds,  the co-variant derivative and all the equations of motion (1) to (4). Proofs of 
these and the foregoing results can be found in Refs. 3, 4 and 5 or are immediate results of work 
found there. 
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A2.1. v.~ = U~/(g~a)  1/2 • 

A P P E N D I X .  I I  

Proof of Some Results used in the Text 

Write  w ~ = g~bu,~ 

1 
g a s  (q/~a)9, ~[_ ' ff¢, . .  . .  

where  h is a tensor  der ived from g, and  l, m # cc 

L e t ,  now U component  of veloci ty  normal  to the  ~, y-plane, 

V component  of veloci ty  parallel  to the  ~, 7-plane 

so tha t  
w ~ : U ~ + V ~ , 

V " :  0, hence u ~ : U", 

U a :  U~ : 0, hence ua : Va, ~ ,  ~ V~, • 

Thus  we m a y  wri te  equat ion  (A2.1) 

1 hl'~V V 

We obtain  v~ the  normal  component  of w, by  pu t t ing  V -~ 0 in equat ion (A2.2), whence 

1 (u°) 
v . 3  - go-~ ( U ° )  ~ - g =  • 

An al ternat ive,  more geometr ical  proof of this, is as follows. 

M~ ' ~ M ~ ~ ,  ~ 

(6) (b) 

FIG. 2. 

(A2.1) 

(A2.2) 

(All dimensions ill Fig. 2 m a y  be considered as infinitesimal and  so all lines and  surfaces m a y  
be considered as s t raight  lines and planes.) 
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L e t  PQ (Fig. 2a) be the  vec tor  ve loc i ty  u, let PM:  be its p ro jec t ion  on the  n o r m a l  to  the  e-surface 
and  let  t he  e-surface t h r o u g h  Q cu t  t he  e-line at  R~. T h e n  

PM~ = v,~ 

and  if PM~ is cons idered  as a Vector A, 

PR~ = (g~)l/2~t~ 1 

= (~<,<<)"A ° l 

Since A is n o r m a l  to  the  c~-surface 

Af~ --  A 7 = 0 
and  so 

A ~ = g " " A o .  

(1) 

(2) 

If  x~ is t he  angle RoPM, and  N~ is the  foot  of t he  pe rpend icu la r  f rom M~ on PR~, (Fig. 2b) ,  

PN~ = ( g o ~ ) - l l 2 A ,  

= PM~ cos z , ,  

= PR~ cos~ Z~ 
and  so b y  equa t ion  (2) 

sec 2 z o = go<,g~ 
t hence  

v,,o = (goo)~/~u= c o s  z ~  

= ( g o o ) = , / ~ u o .  

A2.2. 
8O 

w ~ ~ = GII~(unu",# - -  u"u#,#) ,  ( i n  t w o  d i m e n s i o n s )  . 

Let  t5 a nd  q be any  two vectors ,  t h e n  i t  m a y  be shown t h a t  ( f f q ~  - -  f f q ~ )  is an  inva r i an t  wi th  
respect  to  different  sets of axes. If  we t ake  axes along p,  q so t h a t  f f  = q~ = 0, t h e n  

-- g o o . % . ~  IPl Iql 

= - I ~ 1  tq l  s i n O '  

where  0' is t he  angle be tween  the  two vectors .  

Now, let 
p = U/~ 

and  
q~ = u ~ - /  Ou ~ = u ~ + u~, 6 x  ~ 

so t h a t  q~ is t he  ve loc i ty  vec to r  at  a po in t  d isplaced a d is tance  dx ~ 

80 
0' = a0 and  sin 0' -- dx ~ T h e n  8x~ • 

GW2(paq " -  p"q#)  = Gll2(unu#,~ - -  u%t#,b) d x  ~ 

~0 
= _ w~ ~ x  ~ a x  ~ 

an d  
O0 

G1/~(u#ua,# - -  u.u#a), = w 2 8x# o 

17 
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A2.3. u ,  2 =ga ,  (w ~ - -  a~), a long a charac ter i s t i c  l ine  i n  two d i m e n s i o n s  

ua ~ = gaa~(ua) ~ + 2ga~ga, u °u  ~ + g,~2(u°) ~ 

= g,,  { g,a(u~) ~ + 2go,~°~ ~ + g~o(u°) ~} + (go,~ - go~g,~)(~°)~ 

= g ~ w  ~ - G(u~) ~ 

= g ~ ( ~ -  a s) s i n c e  G(~,~) ~ = g ; a  ~. 

A2.4. F~,v =- gv~,R ~ + g~, (g~,~)~/~ ~x ~, 

:The geodesic curvature of a curve is given in magnitude and direction by the relation 

o r  

R~ d~(x~) dx  ~ dx,~ 
- -  ds ~ + l ~  ds  ds  " 

Thus the geodesic curvature of the line dx  ~ = dx  ~ = 0 will be given by 

whence 

1 (1)1 
, ~ 1 ~(g~)~/~ 

r ~  = g ~ R  ~ ÷ g~ (g~)~/~ ~x~ 
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