C.P. No. 305
$(17,755)$
A.RC Technical Report
C.P. No. 305
$(17,755)$
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Note on the Effect of Size and Position of End Plates on the Lift of a Rectangular Wing in a Wind Tunnel

By
A. S. Halliday, Ph.D., B.Sc., D.I.C., and Miss D. K . Cox, B.Sc., of the Aerodynamics Division, N.P.L

LIBRA
 ROYAL AIRCRA:-T ESTABLISHMENT BEDFORD EEDFORD.

Note on the Bffect of Size and Position of End Plates on
the Lift of a Rectangulnr Wing in a Wind Tunnel.

- By -
A. S. Halliday, Ph.D. B.Sc., D.I.C.
and Miss D. K. Cox, B.Sc. of the Licrodynanics Division, N.P.I.

16th July 1955

SUMMARY

Experiments have been made in a wand tunnel to determine the minumum size of end plate which would be effective in producing approximately two-dimensional flow conditions past on aerofoll at low incidence.

It is concluded that the IIft distribution at the centre section as obtanned wathin 10% if
(1) the end plates are at least $\frac{1}{3} \mathrm{c}$ an chordwise extent,
(2) the height of the end plates is at least $2 c$ above and below the centre line.

Find plates on the pressure surface only are ineffective, but on the suction surface only they may over-correct so as to give lift in excess of the two-dimensional value.

Experiments wath inboard plates showed that two-dimensional conditions could only be obtained if they were placod on both surfaces. There was no reduction in the height of plate for which 90% of the two-dinensional luft was obtalned.

The variation of effectave aspect ratio wath size of plate is considercd. Theoretical and rough experimental aspect ratio factors are confirmatory.

1. Introduction

The end plates uscd for earlier Whirling Arm experaments on a rectangular wing of 48 in . span and 18 in . chord verc 12 in . high and 27 in. long in a chordwisc durection.

It was found that two-dimensional flow could not be simulated under the conditions of steady pitching. This conclusion was supported by the theory of Ref. 1 (Ktuchemam and Kettlc, 1951), which suggested that the effect of these end platos would be to incroase the aspect ratio by a factor of $1 \cdot 47$, that is from 2.67 to 3.92 .

In order to decide the size of end plates, effective in producing approximatcly two-dimensional flow conditions at the centre scetion of the wing, experiments wore made in the N.P.I. 7 ft N .3 wind tunnel.

Publashed with permission of the Director, National Physical Laboratory

2. Dotails of Model and Tosts

The model used for the wind tunnel experiments was the one on which the Whirling Arm experiments had been made; it had a chord (c) of 18 in . and a span (b) of 48 in . In order to have a standard $w 2$ th whach to compare the results obtanned by varyong the size of end plates, the span was made up to the full broadth of the 7 ft tunnel and the pressure plottod contre section taken to represent two-dimensional condıtions.

The end plates were made in scctions so that the height could be varied in steps of 6 in. above or below the centre line of the wing section. Ingtially the plates wore 36 in. wide projecting 6 in. forvard of the leading edge and 12 in. behind the trailing edge. The length was subscquently reduced to 24 In. With projections of 3 In. forward and bohlna. The spanvise position of the platos was elso varied from the end positions, 48 ln . apart, to symmetrical inboard positions 2_{4} in. apart.

The model wis assumed to be at zero angle of incidence when its attitude to wind was such that the pressures on the upper and lower surfoces at $0.10 c$ from the leading edge were equal. As thero was limitod iame available, the experiments were confined to an ancadence of $a=2^{\circ}$. Complete pressure plotting of the section was done for particular cases only; for the remainder, pressure dafferences between upper and lower surfaces were taken at the two stations at 0.10 c and 0.65 c . Table 1 gives a list of the experiments mado, except for the pressuce measurement at 0.65 c , the rosults of which have been omitted as they confurmed those at C.10c.

3.1 Results

Flg. 1 shows the pressure plotting results for 2° incidence in the two-dimensional and three-dimensional cases without end plates. The integrated lift cocificients $\left(C_{L}\right)$ arc 0.218 and $0.1 \psi_{4}$ respectively.

End plates 36 In . Wide cxteniing from roof to floor of the wand tunnel wore then placod an position at the tips of the 48 in. span model; Fig. 2 gives the pressure distribution curve which is integratod to give $C_{L}=0.208$ being just over 95% of the value obtoined from the two-dimensional model.

Fig. 3 shows the distribution when the end plates are moved to symmetrical inboard positions 24 in. apart. The value for $\hat{\delta}_{L_{1}}=0.212$ was close to the two-dimensional one of 0.218 .

Removing the plates from the lower or pressure surface of the wing gave a distribution shown in Fig. 4 and a value of $\mathrm{C}_{\mathrm{L}}=0.198$, a relatively small reduction from $C_{I}=0.212$ for the complete plates. These results suggest that plates placed on the suction surface of the wing have more effect than those on the pressure surface.

4.1 Effect of Width of End Plates

For practical reasons it is desurable to keep the size of end plates as small as possible and the effect of reducing the vidth is seen by comparing the results show in Fig. 2 with those of Fige5, the width of the plates having been rouuced from 36 in to 24 in. This reduction in wadth resultad in only a small drop in O_{L} from 0.208 to 0.202 vhich is 93% of the tro-dimensional value.

4.2 End Platos of Vorzablo Hoight

As it would have taken too long to investigate the effect of varying the height of the end platos by corplete pressure plotting,
it was thought sufficient for a rough indication to take pressure differences between top and bottom surfaces at a distance $0.1 c$ from the leading edgc. The results are plotted against height of and plate in Figs. 6 and 7 for ond platcs of 36 jn . and 24 in. chord respectively.

It is not claymed that these curves give more than a very approximate indication of the effect of end plates. From Figs. 6 and 7 it appears that plates at the wing tips on the upper surface only over-correct, having more effect than the complete end plates. This unexpected result is supported by the fact that end plates on the lower surface only produce a slight loss of lift.

4.3 Effect of Spanwise Position

Fig. 8, when compared with Fig. 6, shows the effect of moving the plates inboard so that they are spaced 24 in. apart or 12 in. from each wing tip. It will be seen that complete plates produce approximately the same effect as when they are placed at the tips of the wing. Howcyer, when the holf plates are moved inwards, the upper plates have less effoct and the lower ones much more, so that the upper and lowen plates become of approximately the same mportance.

5. Comparison with Theory

Kuchomann and Kottle ${ }^{1}$ give theoretzcal curves to show the influence on affective aspect ratio (A / K) of variation of height of and plates.

The following rough procedure was used to compare the experimental rosults with calculations of Ref.1. Nig. 9 was first draw by plotting the pressuro differences at 0.10 for infinite aspect ratio and for the three-dimensional wing without and plates ($A=\frac{8}{3}$), and by supposinc ($p_{u}-p_{l}$) to be linoar in $1 / A_{e}$, where A_{e} is the effective aspect ratio. The prossure differences in Figs. 6-8 were thus related to an effective $1 / A_{0}=k / A=3 k / 8$ and the quantity k was plotted to give the full curves in Pigs. 10-12.

It is poınted out that Ref. 1 predicts identicel curves for upper plates and for lower plates alone. With plates at the tips of the wing the prosent experimentel results cast some doubt on this simplifying assumption as will be seen from the curves of Figs. 10 and 11. However, the results with complete end plates are of the order prodicted and support the theoretical trends. Closer numerical agreement could have been obtained, had a more preciso procedure been uscd to deduce the factor k.

The theoretical curves for anboard plates have been obtained from Ref. 2 (Mangler and Rotta, 1947), from which the curves of Fig. 1 of Ref. 1 were taken. The aspect ratio factor (k) is given for values of $\mathrm{ab}_{\mathrm{y}} / \mathrm{b}_{2}$ up to 0.5 for completc plates and 1.0 for half plates. The value of $2 \mathrm{~b}_{1} / \mathrm{b}_{2}$ for the tunnel experiments was 1.0 ; the theoretical curve for complete plates shown in Fig. 12 was therefore obtanned by extrapolation and that for half plates was taken direct from $F \perp g .12$ of Ref.2.

6. Conclusions

The experiments indicate that the end plates of chordwise extont $4 \mathrm{c} / 3$ arc satisfactory. If the plates are placed at the tips of the wing on the suction surface only, it appears that they will have slightly more effect than completc end plates. If, hovever, they are moved inboard the half platos arc only partially effective. In order to obtain a lift coofficient of at loast 90% of the two-dinensional value, the helght of the tip plates need not excecd $3 \mathrm{~b} / 4$ on the suction
surface and $3 \mathrm{~b} / 4$ on each surface in the case of the inboard plates. These results apply when the aspect ratio $A=\frac{8}{3}$. In general, the minimum ratio h / b will decrease rapidly with increasing aspect ratio, while the ratio h / c will decrease $\hat{\text { Iejrly }}$ slowly. As a general criterion it is deduced that the desired laft is obtained within 10,5 , provided that the total height of end plate exceeds $h=A_{-}^{3} C=4 \mathrm{c}$.

REFHRTHMCES

No	Author	Tatie, etc.
1	Küchemann D. and Kettle D. J.	The effect of end plates on swept wings. C.P.10L. June, 1951.
2	Nancler W. and Rotta J.	Aerofoils with tip plates. AVA Monograph F, 1.6, M.A.P. R.\& T.1023, 1947, GDC/2533T. A.R.C. 11,553.

TABTE I

Summary of Experiments

Case	Pressure Measurcment	Chord of Plato	Vertacal Span of Plate	Distance Between Platos	$\mathrm{C}_{\text {L }}$	Fig.
$\stackrel{1}{(2-\mathrm{dim})}$	Complete	-	-	-	0.218	1
$\stackrel{2}{(3 \text {-dim) }}$	Complete	-	-	-	0.124	1
3	Complete	36 in.	-42inctoterinn.	46 m.	0.208	2
4	Complete	36 in.	-42in. to +42in.	$24.2 n$.	0.212	3
5	Complete	$36 \mathrm{nm}$.	0 to 4 2in.	$24 . \mathrm{in}$.	0.198	4
6	Complete	$243 n$.	-42n. to +42 in .	48 in .	0.202	5
7	0.1 c	36 nn .	-z to $+z$	48 in.	-	6
8	0.10	36 m	0 to $+z$	48 mm	-	6
9	0.10	36 mm	-42nn. to +z	48 in .	-	6
10	0.1 c	36 in.	-z to 0	48 mm	-	6
11	0.10	4 min .	$-z$ to $+z$	48 in.	-	7
12	0.10	$24^{4} \mathrm{in}$.	0 to $+z$	48 in.	-	7
13	0.10	$2{ }_{4} \mathrm{In}$.	-2 ln . to $+z$	48 mm.	-	7
14.	0.10	24 in .	-z to 0	48 mm	! -	7
15	0.10	36 mm .	-z to $+z$	24 in .	-	8
16	0.10	36 in .	0 to $+z$	24 in .	-	8
17	0.10	36 in.	-42in. to 0	$2+3$.	-	8

NOTE - -2 denotos that half plates have been built progressively from 0 to 42 in. below the lover (prossure) surface. $+z$ denotes that half plates have been built progressivoly from 0 to 4 ? $1 n$. above the upper (suction) surface.
Fig 1.
$\frac{\text { Pressure ploting } 18 \text { in chord RAE } 102}{\text { Angle of incidence } 2 \text { deg }}$

Fig. 2

FIG 3.
Pressure plotting RAE 102
$\frac{36 \text { in wide }}{\text { Plates from roof }}$
to floor 12 in inboard from wing tips
$\underline{C}_{1}=0.212, \alpha=2^{\circ}$

FIG 4

Fig 5

$$
\begin{aligned}
& \text { Pressure plotting RA E } 102 \\
& 24 \text { in wide plates from roof to } \\
& \text { floor at ends of wing } \\
& C_{L}=0.202, \alpha=2^{\circ} .
\end{aligned}
$$

Figs $6 \& 7$.
Fig 6.
Height of end plates above and/or below chord line (in).

Effect of varying height of end plates on pressure differences

$$
\text { at } 0.1 \mathrm{c}, \alpha=2 \mathrm{deg}
$$

FIG. 8.

Height of end plates above and/or below chord line (in)

Effect of varying height of end plates on pressure differences at $0.1 \mathrm{c}, \alpha=2 \mathrm{deg}$.

Fig 9

Aspect ratio factor.

Aspect ratio factor.

-
\square

C.P. No. 305
 $(17,755)$

A.R C. Technical Report

Crown copynight reserved
Prnted and published by Her Majesty's Stationery Office
To be purchased from
York House, Kıngsway, London w.c. 2 423 Oxford Street, London w. 1 P O. Box 569, London s.e.i 13A Castle Street, Edınburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol i
2 Edmund Street, Birmingham 3
8o Chichester Street, Belfast
or through any bookseller

Proted in Great Brtan

