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Summary.--The design of two-dimensional converging channels is considered, with special reference to (i) the lengths 
of the channels and (it) the occurrence or absence of unfa,7ourable velocity gradients at the walls. It  is shown that 
i t  is not possible to have a short channel unless the velocity at the wall decreases at the beginning (the upstream end) 
of the channel ; and it is further shown how a series of channels may be designed of decreasing lengths with increasingly 
unfavourable velocity gradients at the walls. 

Introduction.--In recent publications 1'2''~ it has been shown that  it is possible to design 
numerically straight contracting passages of circular section, such as may occur immediately 
upstream of the ' working section ' of a wind-tunnel, in such a way that  the ve]ocity along the 
wall is continually increasing, or a negative velocity gradient, if one occurs, does not exceed a 
certain specified amount. The aim of the designs is to avoid boundary-layer separation ; the 
calculations are carried out on potential theory, and, if the design aim is achieved, such a theory 
should provide a good guide, the only modification necessary in the theoretical results being 
a comparatively small allowance :[or the displacement thickness of the boundary layer. 

Contractions so designed, however, are all rather long. It is clearly desirable to be able to 
design as short a contraction as possible. Three-dimensional motion, even potential motiort 
symmetrical about an axis, does not lend itself readily to general mathematical analysis, and 
the authors who have considered -these designs have all resorted to the computation of special 
cases at an early stage in tt~eir work. If, however, we wish to gain any insight into 'the reasons 
for the considerable length of these contractions, and into the possibiiities of shortening them 
without too great a danger of boundary-layer separation, it is clear that some quite general 
mathematical analysis would be more valuable than arithmetical solutions for a number of 
special cases. Such general analysis is easily carried otlt by standard methods ~ for the case of 
two-dimensional flow, and the general analysis of the two-dimensional case nlay provide at 
least valuable hints on the points to be considered in the design of actual three-dimensional 
contractions. Whether it can provide more, in the sense that  in practice there can be devised 
some simple rule for an approximate connection between the two- and three-dimensional cases, 
at any rate sufficiently far upstream and sufficiently far downstream, remains to be considered. 
It  should be borne in mind that  in actual wind-tunnels the sections of the contracting passages. 
are, in many cases, more likely to be square, rectangular or octagonal, than circular ; in some 
cases, at any rate, calculations carried out for the case of axial symmetry would have to be applied 
with considerable caution; and there will probably even be cases, for example where the con- 
traction is carried out in one direction only from a square to a narrow rectangular section, where 
two-dimensional calculations would be at least as applicable as calculations for the axially- 
symmetrical case. 
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A n a l y s i s  f o r  the T w o - D i m e n s i o n a l  C a s e . - - W e  are concerned 0n!y With a symmetr ical  Channel. 
Wi th  a usual notat ion 

a ¢  a v, a ¢  a,~o - 
u -  a x  - a y '  v - -  a y -  a x '  

dw 
w = ¢ + iv ,  -dz - -  u - -  iv = q e - ~  

dw 
g2 = log 7)- = log q - - .  i0  

The plane of the  mot ion is taken  as the z-plane, which is shown.in Fig. 1, where a, b, V,  U are 
defined ; clearly 

a V  = bU 

Take ~0 -- 0 on A 'B 'C ' ,  W = a V  on ABC. Along the middle  line of the channel  W = _1_ aV .  

¢ goes from -oo at  A and A'  to +oo at C and C'. In  the z-plane the middle  line of the channel  
is t aken  as axis of x, and the  origin at the  point  0 on tha t  line where ¢ --  0. In  Fig. 1, 13, B '  
are the points on the  channel  walls where ¢ = 0. The corresponding, region in" "&e w-plane is" 
the  infinite strip shown in Fig. 2, which is conformally t ransformed into the  upper  half of the  
t-plane by the t ransformation 

t = exp (~w/aV)  

the  boundaries corresponding as shown in Fig. 3. The middle  line of the  channel  corresponds 
with the  posit ive imaginary axis in the  t-plane, and B 'OB (¢ --  0) with the  upper  half of the 
uni t  circle I t  ] - - 1 .  

The upper  half of the  t-plane is t ransformed into the  inside of unit  circle, with the origin at  
the  centre, in the  C-plane, by the  t ransformat ion 

t - - i  
t + i  

( ~+q'~ 
• s o t h a t  t = i l _  C) '  

t he  boundaries corresponding as shown (Fig. 4). The origins in the  z- and  C-planes correspond;  
the middle  line of the  channel  corresponds with the d iameter  AOC (or A'OC') along the  real 
axis in the  C-plane and BOB'  (6 = 0) with the d iameter  along the imaginary  axis. Then 

But  

dw = a V  dt 2 a V  d¢ 

dz = e -~ dw. 

Hence 

dz - -  2 a V  e -~ 
1 - - -  ¢ ~ d ¢ '  . .  . .  . . . . . . . . . . . .  (1) 

and for the  point  on the boundary  corresponding with ~ --  exp (i0) 

z -- 2aIZ fo~v(~o) e-n 
g J0 1 - -  ¢~d¢ . . . . . . . . . . . . . . .  (2) 
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We thus have  a formula  for t h e c o - o r d i n a t e s  of. t h e  points-of  t h e  channel  b o u n d a r y  for any  
assumed relation between ~c2 and ¢. Actual  computat ions  near the  middle  of t h e  channel  are 
most  easily carried out bv  the  me thod  used  by Lighthill,  by  integrat ing from B a l o n g t h e  circie. 
In the  in tegrand in equati0n (2) put  ¢ = exp i (½~ --  ~.), so 

de d~ 
' . 1  --  ¢~ 2cosc~ 

and 

dz - -  

• . X ,  - -  N B - -  

aV exp (ie) d~ 
J 

q cos 

./2-o cos O dc~ y ---YB = a V  sin v~ d~. 
~c ~o q COS ~ ao  q COS O~ 

where log q and ---v~ are the real and imaginary Farts of the  function 9 of ~ for c --= exp ({-zi---cd), 
and v~ is negat ive along ABC. 

For t h e  present,  howeverl we are more concerned With the rapidi ty  of tile approach of y to 
its final values a and b, i.e., with asymptot ic  expressions for y in terms of x as ~ tends to 1 and  
- - 1  along the  circle. 

To join computed  values With these a sympt0t ic  expressions, it may  be  useful to note  tha t  

2 a V  J C i sin ~ d~ 2 a V  ;1 cos v~ d~ 
X~ - -  , y e  - :  'o 

where !og q and - -~  are the  real and imaginary parts of. X2 for ¢ = iv. 

We remark  tha t  v~ -= 0 along the  middle  line of the channel, which corresponds with the  real 
axis in the  C-plane, so ~q is real for real ¢. 

When  ¢ 1, at  C and c '  --  = ' = V, = , , . , q  U,v~ 0, sg -= iog  U;  when ¢ = - - 1 ,  at A a n d A , q  
v~ = 0, 9 = log V. Along  ABC v~ is negat ive and the  imaginary par t of s9 is  positive. Hence 
if we write 

£2 --  ½ log U V  --: K Z ,  . . . . . . . . . . . . . .  (3) 

• ~here " " • 
u a . . . . . .  (4) 

K = ~ log-v  = -0} log -b- . . . . . . . .  

a n d  
- _ - _ f  . . . . . . . . . . . . . . . . . . .  . 

then f is a I eal function, 

f ( 1 ) = l ,  f ( - - 1 ) = - - l ,  . .  . .  _. . . . . . . . . . . .  (6) 

and  the  curate in the Z-plane which corresponds with the  uni t  circle in the  g-plane passes through 
Z = -t- 1, and  is symmetr ical  about  the  real  axis of Z. If the  velocity q is continually to increase 
along the  walls, this,curve, which has tangents  parallel to the  imaginary axis at  Z = -¢-1, must  
have  such ' vertical  tangents  at no other points : the real par t  of Z is a m a x i m u m  at 1 a n d a  
m i n i m u m  at - - t ,  and must  have no other  s ta t ionary values on the  curve (Fig. 5). 

I t  will usually be advisab!e to restrict ! v~ I to be not  greater- than =/2" if largei: values occur 
we have a re-entrant  channel, which, wi thout  suction, seems undesirable not  on ly  on the  grounds 
of difficulty of manufacture  but  because in such a channel  boundary- layer  effects near  t ke 
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re-entrant  portion are difficult to predict, and m a y  cause an appreciable departure from potential 
flow in the sense that ,  if the re~entrant portion lies ~ entirely in the boundary layer (Fig. 6), the 
effective shape of the channel will 1)e very different from the design shape. " 

- ,  ,-, 

When we substitute the value of ~ from equation (3) into equation (2), we find tha t  

( 
, z - - -  \ - ~ , /  1' ~ ! 

7 ~  ~ 0  " - - -  

2 (ab) ''2 ( °~p('°' exp [-- K f (~)] de 
. . . . .  (7 )  

Suppose now that  0 < 0 . ~/2, so that  equatmn (7) gives the co-ordir~ates of a n y  point on BC. 
For the point on AB corresponding with ¢ = exp I! (~ - 0)] = - exp ( - i o ) ,  we have, b y  
changing the sign of ~ in the integral, that  

where 

2 (ab) '~ r°~p(-'°) exp [K F (¢)] d~ 
7/" ~ 0  l . - -  

F ( ¢ )  = - f ( -  ¢). O B  D B  0 0 ~ Q  I ~  Q O  

. .  ( s )  

. .  ( 9 )  

If .f is an odd function of g, i.e., if the curve in the Z-plane is symmetrical about the imaginary 
axis as well as about the real axis, f and P a r e  the same function. In  such a case, the expression 
for 2/(gb) 112 a t  the point on AB corresponding with (= - -0 )  is minus the conjugate of the expression 
for z/(ab) ~12 at the point on BC corresponding With 0, w i t h  the sign of K changed; i.e., the 
expressions for x/(ab) ~f2, y/(ab)'f 2 on AB are obtained from the corresponding expressions on 
BC by changing the sign of K (and changing the sign of x). If .f, is not an odd function of g we 
must also change f in'co-F, Where F is given by equation (9). ~i ~ 

These results may also be obtained from physical reasoning, since the potential motion along 
. the channel is reversible. " 

The Simplest example in which q increases contin'uallv along the Walls is that  worked out by 
Cheers, in  which the curve in the Z-plane is a circle, so that  

f (¢)  --- ¢ . . . . . . . . . . . . . . . . . . . . .  (10) 

In this case .the maximum value of Iv ~ ] is K, and if: this maximum value is not to exceed 
~/2, the contraction ratio a/b ( =  e 2~) must not exceed 23.14. -On the other hand, for values 
of K less than =/2, shorter channels may be obtained by increasing the maximum value of ] v~ ] . 
Thus for K < ~/2 we want to be able to take, as the curves in the Z-plane, a series of ovals with 
maximum ordinates greater  than 1, and for K > ~/2 a series of ovals with maximum ordinates 
less than 1. (This latter series will necessarily lead to longer channels than the circle does, 
but not to re-entrant channels, such as will be obtained from the circle.) A suitable trans- 
formation for the former series is . . . .  

t a n  -* ~ 
Z - f ( Q  := tan_ ~ c~ 

where a is real and 0 ~< ~ < 1. Since 

1 1 + i ~ g  
2i" 1 log ran-  ~ 1 - - . i ~ ¢  0 I . .  ( 1 1 )  

f ' ( Q - - t a n  - l e  1 + c ~  ~' 

f*(¢) has n o  zeros or singularities inside the Unit circle l 
con{ormal. On Lhe boundary ~ = d °, 
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~ i :  , , . . . .  K '  " 2 ~ c o s 0  - : 

' q 2 ' t an- , .  , ! ; log - ~ - l o g U V +  tan  - ~  1 - - ~  . . . .  
' I '  L [  , .. ' - - -  ' 

K 10g 1 -4- 2 ~ sin 0 + cd 
: - - ~  --=- .4 {an --1 c{ 1 = 2 c~ sin 0-4- ~ "  

q continually increases along ABC. The oval in the  Z-planeis ,  in fact, symmetr icai  about  both  
axes. The m a x i m u m  valuta of Iv ~ [is 

K 1 + ~ tanh  -~ c~ 
), t an  -~ c~ 10g 1 - -  ~ -- K tan_~ c~ 

and so, by  a proper choice of e, ma y  have any value greater  than  K (corresponding with ~ ---- 0). 
I f  we abandon the restriction I zgl ~< =, we see tha t  as ~:-+1 - - 0 ,  I v~I, .... -+*~ ; as ~ . - + 1 -  0, 
the  relevant  regio n in the Z-plane becomes an infinite strip b o u n d e d  by the  parallels to the  
imaginary axis thro~agh Z = ~ 1 (Fig.. 7) ; the  velocity on AB becomes constant  and equal to V, 
and  on BC becomes constant  and  equal to U. We thus recover the  case considered (as a n  
expanding channel) by  Hughes  ~. For  ~ = 0 we have  again the  case of the  circle, and as ~ increases 
from 0 t o  1 we have a sequence of ovals be tween the  circle and  the infinite strip. 

I t  is unlikely tha t  contract ion ratios greater  than  23.14 will be required, so the second series of 
ovals ment ioned  above wi l lp robab ly  not  be needed .  If it is, it can be obta ined from 

tanh-lc~$ ~,~,1 _ ~ l o g  1 +c~  $ 
f ( ~ ) - -  t anh  -~c{ - - 2 t a  1 - - a ~ '  " . . . . . . .  "" 

(12) 

wi th  e real and  0 < ~ < 1. 

Here , too ,  f '  ($ )hasno  zeros 6r singularities for [ $ L ~< 1, a n d  the  t ransformat ion is conformal. 
c~ =-- 0 again corresponds with a circle in the Z-plane. On the  boundary  $ = e ~°, 

K l + 2 c { c o s 0  +c~ ~ 
log q = .  ½ log UV + 4 tanh  -~ ~ log ~ 2 ~. cos 0 - " 

K 2 c~ sin 0 .  
- -~  _ tan  -1 2 t anh  -1 ~ 1 - -  ~2 

The oval in the Z-plane is again symmetr ica l  about  both  its axes ; q continual ly increases along 
ABC and the  m a x i n m m  value oi l  e t is 

tan  -I c~ 
K t a n h - '  

and so, by  a proper choice of a, ma y  have any value less than  K .  

Simpler t ransformations than  equations (11) and  (12) may, of course, be found in speciaicases,  
but  they  are all subject to somewhat  narrow restrictions and are not  by  any  means as general 
as equations (11) and (12). For example, symmetrical:ovals with m a x i m u m  ordinates greater  than  
1 may  be obtained by  pu t t ing  

¢ _ ~.¢3 
f ( $ )  = 1 - -{z  ' 

wi th  ~ positive, but  ~ <  ½ is necessary if the  t ransformat ion is to be conformal, and c~< ~ if q is 
cont inual ly to increas e along ABC. The m a x i m u m  value qf [~  ] is 

: K I + c ~  . 
1 - - 0 ~ "  • 
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W i t h  

Similarly, asymmetr ical  ovals with m a x i m a m  ordinates g rea te r  than 1 are obtained by  put t ing  

f ( 8 )  = ~ --- ½ , . ( 1 - -  ~) 

with c~ posit ive.  The t ransformat ion is conformal for  ~. <' 1-, but  c,. ~ ½ is necessary if q is 
continually to increase along ABC. For  c~ = ½, the m a x i m u m  value of. '1 # I is 1. 101K. 

Asymptotic Expressions for v for Large Values of I x [ . - -To s tudy t h e a p p r o a c h  of the ordinate 
y of a point on the channel waft to its 'finai values as x-+~o we write equation (7) in the fol!owing 
form for x > 0 .  

(ab)l/2 I fexp(/0) 2 . e x p . [ _ . K f ( 8 ) ] _ e - K  (1+8)  } 
z - -  ~ - e - "  log (1-e  '°) + -o 1 -- ¢= d8 

/ "°xp ( ' ° , !  2 exp {K[1 - - f  (8)] }-- 1--8 d¢  ] 
.b_ I "  10g (1--e'°) -t-- 

' - - ~  ' ~ o  " 1 - - ¢  ~ d 

we have 

f 

where 

z) f o  Sexp{ . ) ] } - - 1 - - t & . .  , I 

• I (1,3) 

, . =z ~ ~xp (,o/ 2 exp {K[1 - - f  (8)]}-- 1 --  8 
b - - - - l ° g ( 1 - - e  ~°) + D +  .~ -1--¢~ dS, 

Similarly, for x < o, " 

~z log ( 1 - e  -'°) " E r exp'-'°' 2 e x p f - - K [ 1 + / ( 7 - ¢ ) ] } - - 1 £ . 8  
,. " a. --  ---1 1--, C ~ 

E = J ~ o  2 e x p f - - K [ 1 , + f ( - - t ) ] . } l  .... t ~ --1--__tdt 
J O O 

04) 

( i s )  

(16) 

[See the remarks  following equation (9).] ~. 

The logari thms are defined by  

. . . .  p(~0/ de log (1--e  -'° ~P '(~ 01~ d~ 
log ( i - . e  ~°) = -o 1 - - ¢ '  ) = .  1-b¢ 

so on ABC 
, 1 1 ' log (1--e  '°) --  log (2 sin..½ 0)  C- i ( ~ - - ~ 0 ) ,  

, .10g. (1 --e-i°). --  log (2 sin ½ 0) + .i: (½~,7{0). 

:Now" suppose to s tar t  .with ~.that near  ¢ = :~ I, f (.¢) is expansible in the forms 

f ( 8 ) = l + a l ( 8 - 1 ) + a s ( ¢ - 1 )  ~ + . . . ,  

f ( ; )  = - 1  + b ~ ( ¢ + l )  + b~ (~.+1) ~ + . . . ,  

1 .f;, 1 f , ,  . . ,  w h e r e a ~ - - f ' ( 1 ) , a ~ - - 2 !  " ( i ) , ' ~ . . . , " b ~ - ' . f ' ( - - t ) , b 2 - - ~  (--1), ' 

the dashes denoting derivat ives.  ._. --~. 
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: I n t h e  in tegrand in equat ion (14)for  large values of x, i.e., for small values of O, write 

: ~ == e i~ 

so 

d e  d e  
1 - -  ¢~ --  2 sin ~ '  

1 - = - i + 

1 - f ( ¢ )  = - -  ( 1 - ¢ )  + . . .  - . . . .  i a l  + 

2 exp {K[1--f(¢)]} --  1 --  ¢ . . . .  i ~ - - 2 i K a ~  + O(ot"), 

and the  integral  in equat ion  (14) is 
0 io 

[½ + i K a~ + O(c~)] o --  2 + iKa~O + 0(02). dot 

The te rm in 0 "~ is, in fact, real and  

Ozx _ D = --  log (2 sin 10) -~- 0(0 ~) = --  log 0 + 0(0~), 
b 

.~Y Oz . . . .  20 + ~-0 + K alO + 0(03). 
b-  2 " " 

Hence 0 --  e ~ e -~*/b + O(e -3='/b) 

and y --  {b _ K b  f ,  (1) e D e -~*/b + O(e --3=/~) . . . . . . . . . . . . . . . .  (17) 
OZ 

In  exactly the  same way from equat ion (15), or by  the remarks following equat ion (9), for large 
nega t ive  values of x, 

1 a - y - - K a  f ,  (__ 1) e E e -~ I, l/~ + O(e-a~ I, I/~) . . . . . . . . . .  (18) 
~ OZ 

T h e  approach o fy  to its final value is, therefore, as was to be expected, exponential"  but  whereas 
• y ½b becomes very  small downst ream as soon as =x is fairly large compared wi th  5, 1 
does n o t  become very small ups t ream unti l  = I x-1 is fa i r ]y  large compared with a, and  a is 
.large compared wi th  b, the  ratio a/b being the contract ion ratio. We see that ,  if there is to be 
no reverse velocity gradient  a t  the wails, t_he beginning of the  contract ion will appear to be very  
gradual compared with those designed by  current  practice. MeasUred- from the  section where, 
say, the  velocity on the  axis is the geometric mean of the exit  and  ent ry  velocities, or from any 
section near  tha t  one, the ups t ream length will be-greater  t han  t h e  downst ream length roughly 
in the  ratio of the  en t ry  to the. exit  width% the exact circumstances depending slightly on the 
constants  in equations (17) and (18), whose values will be considered later for a few typical  
cases. 

The only way in which these conclusions m a y b e  modified is i f f  ' ( - -  1) = 0. I f f  ' ( - -  1) = 0, 
we may  suppose that ,  near  ¢ - -  --  1, 

Z - - f ( ¢ ) = - - I  + ( 1 + ¢ ) ~ + "  p(¢), # a > 0 ,  p ( - - 1 ) # 0 .  

Near ¢ = - - 1 ,  a r g [ f ( ¢ ) q -  l ] = ( l + m )  arg ~ (1-,a ¢) (/5(-- 1) is real), and  as arg(1  + ¢ )  
changes by = as we go round ¢ = --  1 along the inside of the  circle in the  z-plane, arg (1 + Z) 
changes by =(1 q- m). The curve in the  Z-plane is therefore re-entrant ,  as shown in Fig. 8. 
If f (¢) is analytic at  ~ = --  1, with m = 1, we have  a re-ent rant  cusp, but  in any case we see 
tha t  we cannot have a rapid approach of y to its f inal value upstream u~¢less the velocity at the wall 

decreases at the beginning of ~he cha.t~nel. 
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We shall, therefore, consider the  approach, of y .to.its final, value ups t ream in. some~¢~tsesr in 
w h i c h  q decreases at t h e  beginning, as in Fig. 8. Before passing to the case of a re-entrant  qusp 
(m = 1), We may  briefly set out the circumstances for a fractional value 0I m. We therei0re 'put ,  
n e a r ¢  = - -  1, f ( ¢ ) - - - -  1 + (1 + ~)'+"~ {bt+b=(1 + ¢ ) +  . .~}. (0 < m  < 1 ,  blv~0) .  
In  the in tegrand of the integral  in equat ion (15)we now put  ~ = e -~ , and expand the integrancl 
in powers of ~., as before. I t  will be found tha t  

d¢ . dc~ .,, 
1 - -  ¢'~ 2 sin c~ 

and 

whence 

so tha t  

and 

SO 

2 e x p  { - - K [ 1 - + f  (-- ¢) ]}--  1 --  
2 sin c~ 

i 2 - -  i K b ,  e ~-'=i c~" + ~ + O(~t+'), 

=z __ log (2 sin ~ 0) + i(½~ --  ½0) -- e 4- ~iO 

 Ixl = l o g  0 - E + O(0t+~),  
g 

0 ~ i K b, e~,,,=, 0t+, . q_ .+  0(02+,~) ' 
l + m  -g 

0 ----- e ~ e - =  I~ I/~ @ 0 (e  -(2 + ") ~ I .  /~)), 

= y _ . =  K bt 
a 2 l + m  

- -  cos + + o(0 +=), 
! ,  

- y :  
g a  " 

!~ a --  y = = (1 + m) bt cos (½m =)e Ct +")~ e -It +'~) = I, r/~ +. O(e-I2+,q;;l, i 1~)). . .  (19) 

The approach of y to its final value ~a ~ is certainly, more rapid tfian before, because of the  factor 
1 + m in the  exponential .  The gain, however,  is not  very  large. Thus if m --  ½, the  exponent ia l  
t e rm is now as small as tha t  in equat ion (18) when Ixl has two-thirds of its previous value. 
Thus, a l though such cases ma y  be fairly simply worked ou t  in detail, for example by pu t t ing  

2- (1 + . . . . . . .  

we shall proceed at  once to the  case of a re-entrant  cusp. 

This case is s tudied in the  same way by pu~ting near  ¢ = - -  1, 

f ( ¢ )  = - -  1 -}- b2 (1 + ¢ ) 2  + ba (1 + ¢)3 + . . . .  

Proceeding in exactly~the same way, we find tha t  

whence 

1 

° • (20) 

7~Z 
" 0~ (! -q- 4 K b2) -- log (2 sin $. 0) q- i(½= --. ½0) --  E + ~ i 0 q- g 

" i K O  ~ 
3 (b~--  ba)-~ 0(04),  

0 = e ~ e -= I,i/~ _}_ O(e-a= I* I1~), 

½a = - y  - -  K a  (b= -= b~) e ~ e -~= t*l/°) q- O(e-5~ I;1'/~) 
3= 

Q 9 J 6 (21) 
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T h e  approach of the exponent ial  factor ,to .zero is n o w  three t imes as rapid. :~ 

'1 :The  mmplest  example of this case  is b}~tained b y  pu t t ing  b~ --  ~ ba = b~-~ @ 

I ' 

f ( ¢ )  = ½ ¢ ~ +  ¢ ~, . . . . . . . . . . . . . . .  r 

for which 
log q - ½  log UV + K(½ cos 20 + cos 0 -- ½), 

- -  e = K(½ sin 2 0 + sin 0). 

[~1 is a m a x i m u m  when 0 = 

__--'-z 0 ~  

. .  (22) 

-~" the m a x i m u m  value is 3.V/3 K, which does not  exceed ~= if 
g ' 4 

The m i n i m u m  value of log q is now log V -- 0" 18 log (U/V) and occurs when 0 is about  98 deg, 
so the  unfavourable  veloci ty gradient  persists further  along the channel, than  in the  previous 
case, as was to be expected. The m i m i m u m  value Of ] v~ 1, which occurs when cos 0 -- 2/3, is 
(50.~/5/81)K, and does not  e i ceed  ~-~ ~ if 

K ~< 81 o~ 1 14, a U - -  - -  • _ ~ 9 . 7 4 .  
100V5 b V 

When  the  connections between 
are all easily found from 

[ x ] and 0 have been found, the  preceding expressions for y 

dy .._ tan  #;  
dx 

when Ix[ is large, va is small and dy/dx is approximately  equal to va; and --~/K is the  imaginary 
par t  of f (¢). If f (¢) is analytic at  ¢ = --  1, d"O/dO '~ vanishes at  ¢ = --  1 when u is even. 
f ' ( - -  1) -= 0 is the  condit ion tl~at d~/dO should vanish at  0 -- = ; when this condit ion is satisfied, 
b2 = ba is the  condit ion tha t  da~/dO 3 should vanish;  when both  these conditions are satisfied, 

9 

K ( s i n 3 0 - , 4 s i n P 0 + 5 s i n 0 ) .  - - ~  = - g  

K ~< 2 ~  - -  1 " 2 0 8 ,  a _ U ~ 1 1 - 2 .  
aVa b v 

The min imum value of log q, namely  log V --  ½ log (U/V), occurs when 0 = 2~/3. For large 
valuer of Ix I, i.e., for values of 0 near  to =, 

iog q -- log V - -  _~i ep~ e - ~  t~ l/~ _+_ O ( e - 4 ~  t~ M/~), 

but  this formula will no t  provide a good approximat ion all the  way to 0 .... 2~/3, and numerical  
computa t ion  will be necessary to determine the  adverse gradient  of q. 

We note  next  tha t  the coefficient of y in equat ion  (21) vanishes if b~ = ba. If we carry out 
Lhe analysis with this condit ion we find tha t  

½a - -  v - -  K a (b2 - -  2 b~ + bd) e 5e e -5~ I~ t/~ -t- O / e  - '~  J, I/~), . . . . . .  (23)  
5 ~  

and the approach of the exponential  factor to zero is now five times as rapid as before. 
I 

The  simplest example of this case is obtained by  put t ing  b2 --  ba --, -~, b4 --  b5 . . . . .  0, 

f ( ¢ ) = ~  ( ~ + 4 ¢  ~ + 5 ¢ - - 4 ) ,  . . . . . . . . . . . . . .  (24)  

for which 

l o g q - - { l o g  u v + K  ( c o s 3 0 + 4 c o s 2 0 + 5 c o s O  4), 
K 



the vanishing of the coefficient on the right in equation (23), namely b~.--2b~ + b5-- 0, is the 
condition tha t  dSa/'dO 5 should vanish at 0 -- x. At ~ -- 0, the expansion of v~ in powers:of 0 
therefore-begins generally with a term i n 0  : if the first condition ( f ' ( - -  1) -= 0)is  Satisfied, 
the expansion,begins, with a term in 0~: if t he  first tw,o Conditionsare satisfied, with a term in 
05, and so on. By making more and more of the odd derivatives of v~ vanish at 0 ---- :r, we thus 
obtain a series of channels, which, for practical purposes, become shorter and shorter at  the 
expense of increasingly unfavourable velocity gradients at the walls. 

If we were really designing a two-dimensional channel, the answer to the  question which, if 
any, of the channels so far considered we would choose would depend on the purposes for which 
it (or rather the wind tunnel of which it may be presumed ~cobe a part) was to be used, a n d  on 
the space and facilities available for construction. I t  might, therefore, be of interest to work 
out details of channels designed, not only according to equation (10) as Cheers has done, but 
also according to equation (11) with a suitable ~, and to equation (22). 

Some Numerical Results.--Some rough numerical resul ts  are g iven  in  the table 15el0w. The 
values of D and E were found by numerical integration from equations (13) and (16). 

No. . f (¢) 

1 

2 

3 

4 

5 

t a n - l a  
t a n - l ~  , ~ = 0 . 6 2 0 0 ,  t a n - l ~ = 0 . 5 5 5 0  

~ = t a n  -1 

½~2+ ¢_½ 

(¢3 + 4¢2 + 5¢- -4) /6  

K = 1.2, a/b = 11.02 

1"2 

1'  568 

oo 

1 : 559 

1" 656 
(> ~-) 

D 

3"114 

2"91 s 

2"706 

6" 068 

7-933 

E 

--0 .541 

--0"452 

- -0 .356  

+ 0 "  29 s 

+0.455 

K ~ t .5 ,  a/b= 20.09 

GO 

1.5  4"06s 

not  calcuJated. 

3"48s ' 

8 "830 

not  calculated.  

I I 

1" 949 
(> ½,~) 

E 

- -0"  753 

--0" 539 

+0"215 

All the channels so far considered are theoretically of infinite length, though practically the 
exponentially small slopes and differences of the ordinates from their final values become com- 
pletely negligible for finite values of I x]. There is natural ly a choice of definitions of the 
' l e n g t h '  of each channel;  for purposes of illustration we shall find the lengths between the 
nearest sections where the slopes do not exceed ~, when (1) ~ = 0.003 (2) ~ --- 0.03. [For Other 
values of 8, the ' l engths '  are linear functions of log ~.] 

The results are set out below, with the lengths 1 as multiples of the downstream breadth, b. 

Values of 1/b 

No. d = 0.003, K = 1.2  c~ = 0.003, K = 1.5  ~ = 0.03,  K = 1.2 6 -=  0.03,  K 1 - 5  

1 ! 22"02 38-20 
2 21"45 
3. 20 '80  36-94 
4 12 '02 18-88 
5 10 '02 

13..21 
12.64 
12.00 
8 : 6 0  
7~67, 

22.74 

21.48 
13.25.  
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The only la rge  saving in length clearly comes between channels numbers  3 and  4; The saving 
is all in the ' ups t ream ' length,  arid, a l though the  choice of section :from which these lengths are 
measured  is pure ly  one of ma thema t i ca l  convenience,  the results m a y  be of some interest ,  and the  
' ups t ream ' and  ' downs t ream ' lengths (11 and L, respeceively) are given as mult iples of b in the  
table below. (For the  first three channels,  the  lengths are measured  from the section at  which 
the  velocity on the  axis is the geometr ic  mean  of the en t ry  and exit  veloci t ies ;  in channels  
numbers  4 and  5, from the  sections at which the  veloci ty  on the  axis is [ 71[4 V 8]~ and U ~/~ V 5/6, 
respectively.) 

=0"003 ,  K =  1.2 ~ = 0 - 0 0 3  K = l ' 5  ~ = 0 . 0 3 ,  K =  1"2 d : - 0 . 0 3 ,  K =  1.5 

:No. 

Zl/b Z2/b ll/b ~2/b ll/b ~2/b Zl/b 12/b 

1 
2 
3 
4 
5 

19"12 
18'68 
18'18 
7"23 
4"54 

2"90 
2"77 
2"62 
4"79 
5"48 

34-93 

34"00 
13"14 

3:27 

2.94 
5.74 

11.04 
10-60 
10.11 
4.54 
2.93 

2.17 
2 '04 
1 "89 
4-06 
4.74 

20.20 

19" 27 
8.24 

2"54 

2"21 
5"01 

Channels of Finite Length.--As we have  remarked ,  all the channels  so far considered are 
theoret ical ly  ( though no~ practically) of infinite length.  Channels which are theoret ical ly  of 
finite length m a y  be designed by  assuming tha t  v~ = 0 over finite intervals  of 0 near  0 = 0 and  
0 = ~ (or near  0 = ~ only if we seek only a finite length in one direction). F r o m  any  assumed 
of e on the  uni t  circle 1¢ l --  1, the  imaginary  par t  off(C) is known on t ha t  circle, so f (~)  m a y  be 
found at  all points in and  on the circle by  Poisson's integral.  (Even if the analysis cannot  easily 
be carried out, the real par t  off(C) on the  uni t  circle, and hence log q, m a y  be found numerical ly ,  
and the  values of the co-ordinates of points on the channel  walls computed  from the  general  
formulae for x --  xB, y --  y~.) Channels so designed will be shorter,  and  will have greater  
nnfavourabte  vetoci ty gradients  a t  the walls, t han  others considered in these notes.  

The  connect ion between x and 0, for large values of I x 1, will be simlar  in such cases to those 
previously found, bu t  since the  imaginary  par t  off(C) will vanish near  0 = 0 and  near  0 --  ~, the  
asympto t ic  expressions for y --  ½b, ½a --  y will be ident ical ly zero. 

As an example,  let us take  - ~ / K  to be an odd funct ion of O, zero for 0 ~<0 ~01 and fo r~  --  01 
~<0~< ~, and  propor t ional  to Sill 0 -  Sill 01 for 0t~<0~< ~ -  0~, So t ha t  it is continuous.  The 
factor  of propor t ional i ty  is found from the  condit ions tha t  f(¢), whose imaginary  par t  is - -  O/K, 
is + 1 when  ¢ = 1 and --  1 when  ¢ = --  1. F rom Poisson's integral  it is found t h a t  

1 C ~ f C s in  201 
{ ~ 201 + 2 sin 01 log tan ~ 0~} f (¢) (,, / __ 1 --  tan-1 1 ~co-s20~/  ¢ 

+ s i n 0 1 1 o g l - - 2 ¢ c ° s 0 1 +  ~ 
1 + 2~  cos 01 + C ~ + (~ --  201) ¢, 

and  the first t e rm on the r ight  is the  same as 

1 - -  ~ 1 - -  C ~ e x p  ( - -2 i01 )  
2 i ~  log  1 - - ~ 2 e x p ( 2 i 0 1 )  

11 
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The arguments  of the various factors i ~ ¢ exp .(_+iG) are all determined at  all points inside and  
on the circle [¢1 - 1, except at  ¢ = + exp (q-iOd, by  taking them zero at the  origin ¢ -= 0. 

Then 

log q --  ½log UV = K ( 
--  201 -~- 2 sin 01 log tan  -~- 01 (~ --  201) cos 0 

+ s i n 0 1 1 o g ] t a n ~ 0 1 - - 0 t a  n 012 + 0 1  -q - s in0 !og  sin1(02 + V1)]] 
sin ~ ( 0 - -  01) . I 

- . v ~ , = O f o r O G  0 ~< 01and for ~ --  01~< 0 < ~ ,  

~K 
---- ~ -- 201 .-q- 2 sin 01 log t a n  ½01 {sin 0 -- sin 01} for 01 ~< 0 ~< ~ -- 01. 

The nnfavourable  veloci ty gradient  is logari thmical ly infinite at the point  corresponding with 
0 = 01. This logari thmic infini ty does not  appear  in the veloci ty  gradient  if de~dO is cont inuous ; 
if de~dO is contim~ous and  d~#/dO ~ discontinuous, the second derivat ive of q is logar i thmical ly  
infinite, and so on. Enough  has, however, been said to show how finite channels m a y  be 
considered. 
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