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Turbulent diffuser flow 

- lJy - 

E. s. Stratford 

Exact solutions of theequatlons of inotion z-e possible for varlo~ 

types of diffuser. Application is restricted to that part of each difl'user 
in which the velocity profile has attamed a constant shape. The solutlors 
are expressed in tens of the distrzbution or the rmxmi: length, which 
effectively is the length of t:he mean free path of the turbulmce. 

In particular the solutions yield the value of the critical eagle of 
a diffuser for just avoidi,q flow separetlon; time value IS proportional to 
the square of the turbulence levei. If on the other hand the orltical an&e 
1s lmom, use of the solutions in reverse allows an accurate assessment of 
the turbulenoe level. Thus if for the clrccJ.ar coile diffuser the critical 
total angle is IO0 the tilrbulence estmated would be j0 per cent geater 
thm that exls-tiog in the flow through a parallel pipe. 

A deetall of the solutions is that, If the nixmg length close to the 
wall increases linearly with y the distance from the wall, the velocity pro- 
file in the separation condition apProaches the form ur oc y;. 

Even in a flow which is diffusing rapidly a narrow wake becones atten- 
tuated by the turbulence it produces. A large central wake, as from the 
bullet of a fan or tuxbxxe, as attentuatcd if the flow is of moderate tiff%- 

slon a&e. However the solutions suggest that a central wake, especially 
if produced by a hi& turbulence &rid, could be used to advantage - for 
preventiri& flow separation in diffusers of very large angle. 

If si& Jets are used for flow control at large d&;user a&es and 
if the Jets are required to persist a long distmce downstream t!le Jet 
velocity at any axial station would need to exceed twice the mean velocity 

for the cross-section. 
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FREFACE -- 

Much of the work reported in this paper ~1s carrxd out xn the 
Aeronautxs Depcli-tment of Imperial College. 

1.0 ____---- - Introduction 

In the past little attention has been pad to the tneoretlcal aero- 
dynamws of the fully turbulent flow xn dQ'f'uners, partly because simple 
emplrxal data - co.xernin:: for example the 6' cone - has proved atiequate 
in many practxs;l ap+.cations. A fuller understanding of the iTow, 
however, might lead to suggestions 
merit 6. 

for satx3fyi.n;: more exacting rerpujre- 
One theoretIcal investigation has been wde by Gourzhienko but. 

being restrxcted to flows of moderate ?ilffusion rates, this investlgatlon 
did ilot approach the con&ltlon of separation or stalling of the diffuser. 
'Ike preseat paper obtains exact solutions of tile equations of motson for 
flow which everywhere is gust at the coadltlon of sepsratlon. Application 
is lmlted to that part of a dtifuser I A which the velocity profile has 
reached a colstad snape. 

Sta?xlard mx:~~ lenkt,? t;heory* as developed mostly by El-andtl is the 
basis of tne solutixw. The phlosophy of this theory 1s to explam the 
tme-mean flo?i pattern by mea:= of tne rnzxrg length iustrlbution for the 
turbulence. The mixing length 1s &lot fudamcntal tilt :t does !2ave a 
physical interpretation, ~12. the me& free patn of the turbuleilt notion, 
and thereby 1'6 can contribute to an uxderstandln& of the flow. Accurate 
predlctlon is possible wnei. the vallle of the mixxn; l.eq$h IS knolw, and 
for Ljarallel f%l.ows m pxpes and ducts this value has bee.1 wll est?XLshed, 
a slllgle dxtrlbutlon :;ol&ng uulverxally pronded the I?eyllolds number 
exceeds a cert3m mmlmum; for aUYuslr1C; ifloris hovrcver no standard data is 
avadable and the subJect IS stdl controversial. DGch3 and Nlkuradse4 
conciu&ed fYom analyses of diffuser e::.x?rmeds that ELif2x31011 greatly 
increased the rnzrany length, but, in contr,sst, Lu&relc; z&i l5llman.n~ found 
no such effect for a boundary layer dlen the pressure gra8.leds were 
mode-ate. 03 the other hand Squire6 shows that , grlor to the establishment 
of a stea&y profile shspe m a conical cufYuser, the chmg;e ol' profxle 1s 
such 3s to sug&est an lxreaslng tudbuleilce level, t,ic fixit level probably 
exceeding that of flow 111 a pipe. As pointed oui by Squu-rc tbls c@lltatlve 
result seems rcasoneble. If' the turbulence 1s represented ~~o~~-d~me~ls~onally 
by the ratio of the eddy veloclt y to the local malnstreaii vcloclty, clxYu- 
sxon will decrease the latter while not inltially affecting the former; thus 
the ratio Increases until, as wdl be exmined in the present paper, a new 
equllibnum 1s estd~lished, The polxy adopted ln the present paper 1s 
therefore to use the little xnformation wiilch 1s available for the circular 
cone dd'fuser III order to re-estate the effect of dlffwlon on the turbu- 
lence level, and then to apply the results to the asscsswnt of other con- 
figurations. 

One detaIled point from the solutions IS tila: In the velocity profile 
the &ratiefit at the wall 1s ltilnlte eyen al; the separation condltlon, the 
proflle z.ympbotlng to the form ur oc ~2. This proflle &ape is 111 contrast 
to that for the correspoildlng larmnar flow, where the @adlent is zero and 
tne usyFptot10 for-rr. 1s u oc 32, but It &es ncvershelcss reflect experimental 
exporlence of ti.xiLcnt ilow under t!lese condltzons. Despite vlscoslty 
havlng been neglected the prof'dc 1s realxst~ In being able to have a zero 
velocity at the wall. 

The initial derlvatxon uses a generdiscd form of the turbulent stress 
but the stadard simpler form 1s adopted M the xw.11 sxdysls. IJs1r?g either 



2.0 The full form for the stresces m turbulent flow - -.- ..-___-._.__^_I _.--_ .-._-_- -_--- 

The formula for shear stress coiwentlonally used ~tl mlxillg leii&th 
theory OA the basis of the momcntw~~ trazfer hxootkesx2 ~.a 

.  .  .  .  .  .  a .  .  .  .  .  .  (la) 

7 = ()L2 (.?? j2 .*..".._ . . . . . (lb) 

the transverse ;,radie;lt of vclxhy, p the Clcnslty, axl L a 
len@h related io t:c mean fre e psth of the tw?>ulc.A ,rotxa It LS also 
sssu~ed co3vcntionally tmt the ,~ormal ;?ressuro i^orccs at a pomt are 
mnaepenaent of all-ec laon, 1. e. 

pJ.& = %!f = -p .I......" . ...(2) 
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Pn = -P + pL2 J exe 

Prr = -p + pL3 J eyy . . . . . . . . . . . . (3.) 

where J, an mnvariaxt in transfonnatlon, Is 

/ 
J = 1 ( $e=' + eJxF + ;eITa ‘)F 1 '1 

, 
; . . . . . . . . . . . . (3) 

z-z 

In these equations e&= -en) 1s equal to the dtiferewe of the rates of 
tens&3 stram end en 1s the sum of the rates of alear stram, I.e., 

aux ay, ay exx = zxT = -a - -E 

a% _ “5 ““x ’ eyy = 2 ay _ --- - --- kz -e 
a-L a:: xx “ . . . . . . . . . . ..(3c) 

j 

aU, aik 
em = e?z = -aT + -7&x 1 

t au 
YX "i .- 

ax = - av' for an iaxmppressd3le flux? 
! 

Eautaon (3) is a &erxcr~llsed ~'orm of E~xatuxi (1) aGi represniks a 
consxxt&t system for t3e 'curbdeat or Qeyaolds stresses' pi-0vGkd orllg 
that the length L ~3 taken a3 ~.liicpcdeat of the dlrectlon of the 3~es. 
ThlS generalx3a~;on has bee.; ;mt TOY -.zmi 5y Frandtl and 1s o_uoted in 
Refcrexc 7; It seems almost certaxiLy to be a closer representation of ieal 
flow than 3.s the conventload form rePresented by Equatuxi.5 (I) ad (2). 
However the conventlond form 1s much sllnl>ler and for flows wxth hx.gh sl~ear, 
that is where ]eYl>>/ez/,t;le nuzerxx%L dzfferencc IS small. Co.lsequfd3.y 
in tlie Present pn er whereas the full form 1s used m &eerlvlng the mlti1a.l 
equations m orcler to show that the resultant flow still ha sud.a.r 
velocity profiles, thereaft,-r only the su.?Pler lorm is used, a subsequent 



---- .----.- -_.-.-_- _-_.-- .-.--.---L-.re.~E?z Derivation usm.~ the full form for the -t . 

%c 
-fix- 

hi 
Tt- = 

1 ap i c. = 1 a.+, - -2-1. + - . -2 
p ax par ! 

!- . . . . . ~. . . . . . (4) 
1 a+ I 

= -..& 
1 aLIvy. 

P ay +T;-=- 

while the eqmtlon of contsulty 1s 

au,, .'I auI- 
__. L I- -_ 
as ay = 0 .". . . . . . . . . . . (5) 

. . . . . . . . . . ...(7) 
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% I 0 . . . . . . . . . . . (8) 

Eqmtlom (7) and (8) gxve 

a(r.u,) 
ar =O 

and therefore (r.12~) 1s a fmctjon of Q only, g.ven by say 

ur= k$d . . . . . . . . . . . (9) 

au 1 a@.-+.,) u -2 = -- 4 ap 
p----z---+- -A ' r ar pr a+ 

' . ...(a) 
-F p,P# ' 

r . . . . . . . . . (IO) . ...(b) 
Equatloa (3) glvlq the full form of the twmitent stress tram;orms m full 
to 

P = rr -p c pL"errJ 

P# = -P + pL2egsJ 

prQ 
= p$r = pL%g 

! . . . . . . . . . . . (11 a ) 

,i 
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\ 

J = 1 &,$,e$+&e 

i 
. . . . . . . . . . . . (Ilb) 

= lie = 
! rr i 

For flow 111 pE.?.-allel p.Lpe.5 01' ducts It 1s aa accepted relation that 
the nnxm~ length L IS proportmnal to the duct mdth or &.ameter8. Thxs 
in radxd flow the mimng length my be cxpectcd to be proportmml to the 
local mdth or &&neter of the flow, mii theref'ole pro;~ortloxiL to the 
radius measurwd from the apex or 'zouroe' of the flow. Hence It may be 
expressed 

L = r * t; ($1 . . . . . . . . . . ..(12) 

Equations (11~) mth Equatlons (8), (3) md (12) become 

au 34 
e = 2 rr -2 = -~ 

ar 

2u 
-.2 

34 
e++ = r = yg 

, 
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thus, from (lib), 

and fmally, from (lla), 

rzhich integrates to 

psk+J = l&(r) 

. . . . . . . . . . ..(l>a) 

. . . . . . . . . . . .(13ib) 

. . . .I... . . . . (13.2) 

. . . . . . . . . . . . (14) 

. . . . . . . . . . . . (15) 

1.e. 
Pd4 

IS a function of r independent of (1. 

Simlarly Equauation (IOa) reduces to 

I- 

1 

-7 
. . . . . . . . . . . (16) 

- 

whxh integrates to 

i- 

(P, -p) = -,& 1% (gyI(;& + g+/ji + g.-! 

L 
. . . . . . . . . . ..(17) 
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P = m -p$b~ 
. . . . . .,.. . ..(18) 

Therefore, Cxn %quatlon (lj), P, is a consimt, m~ependent of $. Now 

Equatlom (17) and (1%) give 

9 (1; + p@) = 
i 

~(W4z + e+r) + g - 4 p& 1 (Lfy + @)‘i 1 

. . . . . . . . . . . . (6) 

Ix this eqmtloil the left hmc! side 325 mdepcndeL?t of +5 mcl the right hati 
side 1s mdependent of r. Hexe both s~dzs 
say B2. 

l,uct be equal to a constant, 

Equatlw the left had side to Y", 

and therefore, from Ecpatlon (12%)) 

. . . . . . . *.... (20) 

.~ . . . . . . . . . . (21) 

gp (f&1 I&g2 + & ,“)“,) + s” - &3& 1 (Lgl + p”)$ 1 = 3” ...... (22) 
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=P P P o3 - -$$ * (function of $) 

Ths compl.etes m prlnclple t?., 1% s01ut10n for two-dJ.mcnslonal raa1al 
flow using the fkill turbulent stresses; an-qnmnetric three-d~wensxmal from 
slrmla~ly yields 0. solution. Tile remauder of the paper 7111 base its cal- 
culatrons on the simpler form for the turbulent stresees, although a check 
ml1 be made on the errors that this involves. 

3.0 The two-d~mensxral. and a.x~etrlc colic ~?~ffusels and free txo- -_--____-_.- -.. ..--_---. A_--.w- -.-- -- 
&Lmenslonll flow 

Fcr completeness the solutions ~~11 start cq,a~ almost from the 
begxurq. 

In terms of cylmdrxal polar co-orduxies the s~npler assumptloz 
for the turbulent stresses m two-dme,wlonal flow as quote2 1.~1 Equations 
(lb) and (2) Decome 

and 

*r-r = P,# = -p 

. . . . . . . . . . . . (23) 

. . . . . . . . . . . . (24) 

The eqmtlons of motion are 

ana the eo_uatlon of cont:nulty 1s 

a (r.yJ 
3r +&o . . . . . . . ..(71bLS 



. . . . . . . . . (a& 

u = g&Q 
1‘ 1‘ . . . . . . ...(9)bls 

:> . . . . . . . . . ..(26) 

i 

.J 



- -j:+ - 

and Nhere y = .$! 

If the d1fCuser sem-ar,:,le 3s a 

&la 

h = ra I 
. . . . . . . . . . . (27) 

Y' fJ - d, 
y = -iT=---cI-- i 

Hence y and therefore f (y) are fu.nci;C~om of $ ideperide,lt Of r. jxqua t lolls 
(26) aid (27) glue the rmjcmg k&h L in the form: 

L = r cr, K f (Yj ; f 
; . . . . . . . . . . .(2S) 

= raKf / 

. . . . . . . . . . . (29) 

Substltutxng Equatmn (23) the ECuatioxs of notion (25) fmt‘r.er rcilme to 

, . . . . . . (a) 
I 

. . . . . . . . . . . . . (30) 

I 

i 
. . . ...(b) 

Since ur -to as r +m (see Eqmtlon (y)bls) Equation (3k) Integrates to 
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1.e. from i%pat10n (9)bis _ 

.&t. (p/p) = 2 + CL" K2 3 (fa g") 
P 

. . . . . . . . . . . (31) 

h Eqwhon (31) the left hand s1d.e 1s u3epeniierk of $5 siixe tiquatlo,~ (Job) 
gives 3 = 0, while the right hand sde 1s udepedent oi' T. Heace both 

sitfles must be equal to a constant, say go'. Thus 

'P 
P goa 

co -P = -F@- 
\ 

j 
. . . . . . (a) 

> . . . . . . . . . . (32) ! 

$ + c,* 12 a a6, (f2 e+) = go2 

Equu;lon (3%) is a ample dlfferentuA equatlofl for the velocity profIle, 
the latter beu@ represented by g ($), 
(precedmg Eqwtwn (25)). 

whxh is defmed u? Equation (9)bls 
The solv~.~lg of this equatxon requwes that the 

rmxzulg length dlstrlbutuxi L = K h f shallll be Imown. Equatun (32a 
the form of the pressure dlsx~butloa. 
lCqmtmn (32a) may be vrdten 

By analogy Tnth Equation (9 

p + $puo" = P, . . . . . . . . . ..(33) 

Equation (3.2%) 1.3 convemently l,-kegrated a5 ~olloms. 

The variables are changed from 6 to y, where, from Equation (27) 

g= a . . . . . . . . . . . (34) 

and from g to q, where 

cl = e/go . . . . . . . . . ..(35) 
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Using dashes to denote d.~ffferentx';mn mlth respect to y, the equrrtron 
becomes 

6 (fa 9f2) = $ (1 - q”) .  .  .  .  .  .  . . I . .  (36) 

i 
The left had sxle of this equation has derlveii from tile term g, while 

._ 

the right hand 

New the value of a which has greatest prpractxal interest 1s tnat for 
whxh the flow 1s JUSt at the pomt of sepsmtlon, 1.e. for nhlch the frx- 
tlon at the w&l IS (everyvhere) JUSt zero. The boundary codltions for the 
mtegratlon are therefore taken as 

and 

u = 0 : / 
r 

, at y' = 0 

i 

j ( 
'X = 0 

0 
a.d.aty = 2h 

1.e. 

q=o, :at y = 0 

< 
and p q'a = 0 j i adat y = 2 

It 1s nore coiwenmlt, ho-,vever, to replace the condltlons at y' = 2h by the 
condit~om for sy?rmeixy about the centre line y' = h. me bourdaqy cod.rtlon.? 
then become 

q = 0 nt Y = 0) 
, 

fa 9’2 = 0 at y = 0 i. . . . . . ..(37) 

I 
p q+ = 0 at Y = 1 ,I 

Of these three boundary conclxtlons two are requirea because the dzfferentlal 
eqmt1on 1s 0; the second or&r, ui'.xlst the thud 1s required because the 
vnlue of a 1s m1t1ally lmknolvm. 
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((I-,-)* = 0 
'0, 

i . . . * . . , I., . . (36) 

1 
i‘ 

1.e. \ q” ay = 1 
! 

. . . . . . . . . . . . (b) 

bi 

(on the basis of the representat2on follomng Equatmn (3C) Eq,uatlon (3%) 
may be re~,arCied RS the overall mn~eni;m cor.cil’~;o~~, t111s tak’J1g a paitmdmly 
simple form I&en, as hex, the skm frxtlon 1s cont2nwusly em-o. Also, 

u 
dlnce q = $ 

0 
,miLt~pl~cation of Equahon (j&b) by Uo” show that U,, 

orlgmally clef~ncd by Equat~~.o~l (3j), 1s I;hc root mx.n square value ior the 
velocity yroflie : - 

Y 
i I- 

.Y 

j-y-\ cay 
- .;. 

, j 
q = -;f ! 1 w--o --.- ---. 

f 
ay . . . . . . . . . (39) 

0 

It is rcquured to solve Equation (j?) using tne (mltmlly unknovn 
of o such thal- tile resultant solutro,l for 0. sai;l,i’;ee Equntlon 



- 13 - 

rapdly comergent solutmn by successxve approxmat~on IS obtamed -JJ &tins 

I= $l . . . . . . . . . . . . (40) 

The valu& of a 1s given, from Equation (j8b), by 

rc”= i,’ 
CL \ I" a.y 

I : 
0 

. . . . . . . . ..(41) 

while I is g2.veil by 

Y 

I- 1 i I =,j --_._._._ ----. J -7 4/ [y - ifi- I2 7 *f 

f 

........... (42) 

\ 

-0 -0 

The nth The nth th th approxmatlon to I, from Equatlo,l (ig), gzves the n approxmatlon to I, from Equatlo,l (ig), gzves the n approxlmat loll a~proxmat~on 
to 01, by substitution into Ewatlon (41); these values substituted Into tile to 01, by substitution into Ewatlon (41); these values substituted Into tile 
right hand side of Equatmn (42) gives the (n + l)th approxmatlon to I. A right hand side of Equatmn (42) gives the (n + l)th approxmatlon to I. A 
s~table first approxmatlon to I is sUtable first approxmatlon to I is 

11 = zy-J . . . . . . . . . . . . (43) 

which 1s the value obtained by taking only the down,.& term for small y 
on the right hand side of Equation (Q), 1.e. by omttw& the tern 

and replacmg f by y (see Equation (26)). 

The method Just used for fmndmng the first approxmatxon demonstrates 
also that thu asmptotzc behaviour near the wall is 

1 z 23 asy+O . . . . . . . . . . . . (44) 
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L. ?. 
u za+ 

2 
2az , y’ ;’ 

uO 
--T 

y& 
=y(r-i . . . . . h3 y’ -PO . . . . . . . . . (4%) 

Thus the velocity becomes as:mptotxdly proport~.ond to the square root of 
the dmtance y' from the wall. From mpitlon (&55n) the dynamrc head behaves 
linearly vnth &dxmce from the wall:- 

&Pu,” - g (&pu,“) ($) . . . . . as y’ -+ 0 . . ..I.... (45.b) 

+P’i-2 - $7 2 y’ . . . . . as y’ +o . . . . . . . . . (45c) 

This expression 1s tha same as that obtained m Reference 9 for the turbu- 
lent xiii-layer of a tmbiiLed boundary layer at separation. Beth flows 
s;ltlsfy the asy!nptot1c law 

T - Y' g . . . . . a3 y' -to . . . . . . . . . (45d) 

Equntlon (L&a) allows t!:at tlie valua of -2 at me we.11 is mfmlte and not 
aY 

zero, despite the KiLl shear ntre;s irf31111g zero. (23 a conflp.rratlo~l for 
Wkilch the i'10~ does &efuutely separate ~IXXII the ~12.1 and a part of It 
reverse, as opposed to there bxng contmuously zero dun frxtlon as for 
the present malys~s, there would be a ied.emy for the value of .$to 
change dxcontinuously, from inkuty posz,tlvc to nA.m.ty neg~~t~ve. 
lissocmted mth thu there noulil be sudden chaxqzs m velocity across the 
sqnrntion position u t‘ne reg:lon close to the wall. Suden changes sum 
as these are a well known feature of turbulent flow se?arat~on. IL1 practice 
the dsscodimuty would be softened by t!le presence of viscous stresses; m 
nJalt1on, as discussed 1ri Keferellce y, a new type of turbuleilce appears to 
be set up,after the con&tlons represcnkd by Equatmn (Lb:) lxwe been 
reached - but prloor to actual separation, md t:?en a wro vduc for 
( au \ 
'\ ay ly = 0 

does seem possxblc.) 
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Befwe discussing further the results oL * tne mtepatm~ the coire- 
sponillng equations ml1 bc quoted for the .%a-symetrxc corn d~:'fuscr as 
there the value of a can readily be conpared with expermentzl results. 

Proceeding by the same method as for the tm-dme~~sional Lffwer 
the al-symmetric diffuser yxelds the I'ollomng equations. 

Correspondlilg to Bpmtl0n (328):- 

a repetltmc of Gquat~on (33):- 

p + &pU," = Fm 

. . . . . I. . . . . . (46) 

. . . . . . . . *. . . (b.7) 

A& [(I - y) f2 9'21 = $. (1 - y) (1 - q") . . . . . . . >.... (4.8) 

corresponUng to Eqmtlon. (38):- 

i.e. 

1 
I~ 

I 

\ 
1 

(1 - y) (1 - q") ay = 0 

'I% 

1 I -\ 

\ 
! 

(1 - y) qz dy = -& 

<b 

m-d, correspxxkn& to Equation (39):- 

7 *\3 
2-$ 
-7 

I Y (1 
q=-- L.- 

- .$ ) ;iY(, - y) q” iJy ‘j” 

I--.-o-y ay 

K f (1 - y)F 

\$ . . . . . . . . . . ..(50) 



SO t11ut a 1s &lw%l by 

.;I 
i“ 

& = 
\ 

(1 - y) l” rly 

. . . , . . . . . . . . (51) 

. . . . . . . . . . .” (52) 

I J 

i ty 
\ [y (1 - 5) - g i (1 - y) Ia cq2 

I= \ 6 _.__ . . . __--. _. .__.- I--- -‘-.yb-o-.--. . 
I 

1. ' 
I' (1 - x)c 

----- - I$7 . . . . . *. . . . . (!dj 

0 



4 

i 

. . . . . . . .,. (34.: 
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turbulence level over that of parallel flow can be explained as follows. 

In the fully developed parallel,~,!low the absolute value of the --. _" 
turbulence as represented by (u'x ufy)' remains constant, Its level beang 
determined by the equilibrium between the production and thy decay of the 
turbulence. In the fully developed difi2ser flow (u'r u'e)F must decrease 
lli proportzon $0 the mainstream speed, represented by say IJ,, in order 

\u r ' --G-)F 
that -- u shall remain constant and tnc whole flow display slmil- 

0 

arity. Thus the rate of decay must exceed the rate of production of 
turbulence. This disturbing of the previous balance requires the nev 
steady state to be established at a higher level, as then tie higher 
twbulence would give an increased decay rate and hence tne requved excess 
of decay over production. Comparison of flow at one particular cross- 
section of a &&Y'user with a parallel flopr of the same mean velocity as at 
that cross-section should therefore show the diffuser to have the higher 
turbulence*. 

As corollaries to the preceding argument it is to be expected firstly 
that all diffusing flows would have a somewhat higher turbulence than 
parallel flow - because the balance between decay and proaucklon has been 
disturbed - and secondly that the more rapid the diffusion the greater the 
increase in the turbulence level. '%ese corollaries arc needed when ' 
assessmg the calculatlom m the rel~i~~dcr of the paper since, a.11 most 
mstances, use is made of the knovon nixing length distribution for parallel 
flow. The practical conclusion is conve,?iently simple. It mill have been 
noticed. that the lizzitlng angle predicted for the circular cone when using 
this distribution characteristic of parallel flow ~~15 equal to the value 
found suitable in practice for provlda satisfactorily stable d~Yu.sion. 
This correlataon - between the theoretical prediction and the ~act~~~l 
requlrcment - should hold in general for those types of dii-fuser where the 
diffusion rate is about equal to that for the circular cone. Cn the other 
hand for configurations achieving very rapid diffusion the prediction would 
be expected to represent only a lower limit to the true practical 
possibilities. 

As may have been seen from the Figures the shape of the velocity 
profile predicted on the basis of Lo is correct in its general form but it 
probably is not very accurate as regards detail (the actual experimental 
profile is not known); for example LL N is better in shcr,ring the stra&t 
middle portion usually found 1~1 expe&c&ntal prof~lcs for turb:Aent flows 
near separation. Thus diffusing flow, besides having a higher general level 
of turbulence compared with parallel flow, has also a somewhat modified 
shape for its turbulence distributaon. 

Figure 2 curve (c) represents an additional example for the circular 
cone diffuser illustrating the influence of the assumption concerning mixing 
length. The distribution shown by the curve would lead to a lirmting cone 
angle of 6O and a velocity profile almost the same as given by $.N, 

*This does not mean that when fully developed pipe flor enters a 
diffuser the absolute value of the turbulence - ---_- 1 say (u7E.Q~ - 3.ncrease.s; 

(u' U'$ 
the non-dimensional value --5-- would increase initially due to the 

0 

decrease 3.3 Uo, as ;?ointed out in Reference 6, and it is presumably in 
this way that the neir steaay state vouJ.d be reached. 
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Retwcmng now to the tm-&menm.onal tkffuser the dlstrlbutmn Lo 
lea& to a = 3.9p” giving therefore a lmtzng total angle of 8'; the 
velocity profxle 1s. shorn m l?iLme 4 as curve (a). The value for the total 
m&e obtained expermentally by NGmrad~e'~ was betmen 9.6' and 10.2'. 
Exact comar~son vxth experiment mxi~d. be prevented by effects from the end 
wall boun&-y layers, unless special precautmns wwe taken m the expen- 
merit . 

3.1 A specml "exact" solutmn __I- 

In the method used so far the equatmns o: motmn have been shown to 
transform and reduce exactljj to a smple tiffe;e,ltml equatmn, but this 
equatmn has had to be mtegrated. mmerxally. 7ere the mixxn~ length 
tistrlbutmn a dmposable functxm It would be possible to find exact solu- 
tmns to the dlfferentlal equation - merely by postulatmg the velocity 
dlstrlbutmn In some algebraic form and substltutmg to fxd the mzxmg 
length required to satisfy the equatmn. It so happens that one of these 
mixmng length drrstrlbutmm 1s qrute a reasonable approxmatmn to the 
actual practxal one and has a partxularly smple form; it 1s such as to 
gave the velocity exactly proportmnal to the square root of the ddxmce 
from the wall. Tnls 'specmll dxtrlbutmon, denoted Ls, is g=ven by 

1.e. 

ana 

I 
iJ s 

= Khy (1 -y)& 

i 

. . . . . . . . . . . . (55) 

It 1s shorn m Fi,me 2 as curve (a). The solutx.ons to the dlfferen- 
teal equatxms are as follows. 

For the two-d.mensmnal tiffuser 

1 
3 (= q) = (2 y)ik = ( f-g ; i 
0 

‘, . . . . . . . . . . . . (56) 
ana ..a_ = 3 F 

I 

Usmg K = C.408 the diffuser total angle becomes 2 a = 9.5', (as compared 
mth 8.0° obtalnea from the nuxmg length tistrlbutmn for parallel flow). 

For the axl-symetrw cone dk??user 
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ma 

3 (= q) = (3 7); = i-5;1 j 
i3y’ $ 

0 

a 
s- = -- il 

. . . . . . . . . . . (57) 

Using I: = O.&O8 the d~fIk5er total angle is 2 CL = 7.15O, 
compared mxth 6.0’ for the pxcaliel flow alstnbut~on. 

The malil error in the form 02 tnx mxnn~ lengtii dxtnbutlon 1s 
the centltre of t!le dlfi'user; thx retion is not wporta& in detern~nng 
lmlting tiffuser an@0 a3 the stress t!lere falls to zero. The rcs;lts 
therefore useful when some sl;&e axlylzcal representation 1s requwed 
the flow, arid might be consxlered analogous to the standard power law 
approxunatxons for the turbulent boundary ia,yer on a flat plate. 

3.2 ibee twbule~~ce in two-d~mens~on3.l iYow --.------_-l^l-___-.--__"- 

at 

the 
are 
fOl- 

Consideratlo,l 1s ,IOW given to a two&z.mens%oxJ purely radial flow 
in whxh the velocx.ty 1s an oscillatory fwctxon of the an,&Lar posltloil 6, 
as for exwple 3.11 Frgui-e Ta. There are 110 kJ.1 boundaries preseilt to requze 
a zero velocity or to restrict the turbule,ze and consequently It vnll be 
referred to as 'free.-two-dlr,leilslonal flow'. The wrrespondlng staildard 
parallel flow is that somotnes called "The turbulent iwke behxd a row 01" 
parallel r0ds"~1. As in the stainda& tiicoly tnc nxnn& le,?gth IS assumed 
pr-oportlonal to the wavelen,:th of the velocxty d~sir;b~Aon bur; ndepeM.e;lt 
of the posltlon on the waveform. 

The equztlons of motion are ldentlcal rnth 'chow for the two-L!xmel~s~oA~sJ 
diffuser and only the bov.nd~y conditions axl -the m2.xi.ng length are ciia:lged. 
The d.SPerential equation for the velocity profile, corresponding to 
Equation (36) for the tTo-dlmeznonal dxf'fuser, 1s 

-$$ (ql”) = .&. (1 - q”) . . . . . . . . . . . (58) 

where now 

2b = the linear wavelength of the velocity IrofiLe 

The botiary coxlitlons are 
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i.e. ! when y = 0 
and 

when y = 1 

The equation could be integrated direct (numenoally) but for simpllclty it 
is linearx3ed. It then becomes slrmlar to the llLxzarzed equation for the 
standard parallel flow. Putting 

q = (1 + t) . . . . . . . . . . . . (60) 

Mnth the maximum value of t equal to tM, xltegratloa of the llnearlsed 
equation gives that the &mar -wavelength h is 

, . . . . . . . . . . . . (61) 

Detaik of the mathematxs of the llnearzsed soldlon and of the 
corresponding velocity profde are as for the stadsrd flow". 

A tentative comparxon between tne results from tke llnearlsed 
equation and those whxh would be obtained ~frorom the XL1 eqdatlon is given 
in Appendz I. Ths oomparxson suggests that when tne value of tl,{ is say 
20 per cent, none of the effects of lmearumtion exceed about j per meat, 
while 13' suitable mean values are used (e.g. if in Equation (61) the mean 
of tmax. ana (-thax. is used lil place of &;J the effect 0~1 h is less 
thm 1 per cent when tN is 20 per cent. 

The next SectIon 3.2.1, which consGiers ihe stability of the periodic 
velocity rofile, vdl consder also the value to be expected m practice 
for 'd- 

( 7 
, and. ~111 mentron an example on thx type 0; flow, 

The result Just obtained for turbulent flow may be compared vvlth that 
for free two-dimensional lambar flow, which elves, for the velccxty profxle:- 



ad therefore, for the wavclen@h:- < . . . . . . . (52) 

A = 211 
F ,(rU 

2 l- u. -s 

i J 

0 
z c01nst. = c 

*0 1 

u 
! 

3.2.1 (i) The value of ( 2 j; 
~- 

~).-%~-+b~llty o-f the zer:lodx veloc~~~@~le - _ .._- -_ _____ A- 

(1) The above a;taigszu shoves that ir drffusm~ flow 1s I)osslble 
havmg a const3nt percentage ve1oc1ty varlatloli, of magdltucie pr0p0rt10ns.l 
to tne angdar wavelength of the flow profile. iWom Equdxon (61) the 
amplitude ttld is 

A 
tM = &(' a . 

\b > 

For tile corresponding parallel flow Schlxhtug foti the value of 
L L gto be i; = 0.293. (Reference 2 bu'; p.169). oil the other had d somewhat 
shilar factor obtauxd for Jet mixng at Gijttugen has a value 0.096. 
(Reference 2 but p.173). For the Jet mxung the flovf geometrj- tiifers from 
that for the w&es and a lower vs.lue of the factor rmdcl be c.xpcted. IIence 

for wake muting it 1s probably conservative to assume say that k = 0.20. 
(The value in practice would be expected to depend somewhat 0~1 the total 
nmer of wakes as evechmlly the wake flow ml1 be bouniied by e low thou- 
lence mainstream or a sold bound.sq). Thus usxng say 2 = 0.20, '$1 becomes 

If A is to be expressed ia degreus, It. 1s convenxnt to write the flnal 
result as 

%I = 0.019 A . (de!pss -1) . . . . . . . . . . ..(63) 

(11) Whereas the awlysis so Par gives the solution for the flow 
in dnch the velocity proflle remus SYNL~;LC ut all cross sections, a. flow 
for vrhuh the lnrtisl value of thi dzffered from that E;lven by Equation (63) 
could not mamtain a co.%tant tl,f ad It mlbht be c:uest:oned whetixr tl; 
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would tend towards the steady value or diverge from it. By considers the 
fcrces on say a half wavelength rvadth of fluad for which I+. <U, an&by 
supposing that t,M exceeds the value from Equation (63), but tnat otherrmse 
the profile shape as samalar to that for slrmlar solutions, at is readily 
shown that the value of $1 ml1 tend towards the steady value. In this 
sense, therefore, the flow 1s stable. It seems likely that i2?e flon 1s 
stable more ge,lerally, so that any two-damenszonal radlnl flow L? uhlch the 
velocity 1s a periodic fu;lctlon of t'fie angular poslti 
until the veiocxty varlataon saaasfaeg Equation (63) 

equation using tine actual values of $ 1. 
P 

il vil.1 ad&t xtself 
dr the correspondmg 

A two-dimensional diffuser has boundary layer control m order to 
allow the use of a l+Oo total angle. It is reqclred to fand the behaviour 
of the maan flow when thas oontamm wakes of a wavelength eq.zKt to a tenth 
of the ?xHuser vndth. 

The value of h is 4o" 
-1E- 

= 40 

u -U 
from Equataon (63) the steady value for tLfbi' = z~.--" t 1s 

0 

t&f = 0.019 x 4 F 8 per cent 

On the argument gxven above the flow profile as 'stable', hence 
the velocaty varlatlon would tend to ?8 per cent of the 
local cross section mean velocity. 

3.2.2 The behaviouLf an isolated wake In dlff'ususmf, fiicz ----- 

In the diffuser of a ~2nd tunnel only a sr@e vake 1s Ilkely to be 
present. This smngle v&e ~~11 tend to spread across the flow at the ssme 
tame as It adjusts itself to a certain value for tLP EVsntuiitly, If the 
dd'fuser wre very long, end the wake losses large compared wath the losses 
at the wall, the wake would spread across the &ffuser and the flow would 
become similar to that allustrated 111 FL-me 5b. Thu flow wxll be discussed 
in Section 4.2, For the early flow, however, wlule the wake as still remote 
from the walls, It seems probable that the arguments developed above for the 
perlO&Lc velocity prOfile w0d.d roughly apply. The example JUSt given 
therefore showJ that even xf a wind tunnel employed very rapid daffusao>l a 
narrow -tie should stall become attenuated by the tur'oulence it produces, 
provided It were not sufficiently close to a solad boundary for this turbu- 
lence to be ampeded. 

4.0 Wide angle +zxo-damenslonal dCf'users mth sx%? Jets or central fakes - -_- 

'Pm types of wkle angle d~ffiser irzth sade jets n%ll be examaned, 
that when the sde Jets are a&ended only to prevent sepai-nzlon of the flow 
from the wall, and that UI a wxx3 tunnel xhxh J.S ;o:~reii b;r a.ljection. 
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x = 2 .(I-&) 

3 i (I-02)h 

/ 
I 

: . . . . . . . . . . . . (65) 

Thus Equatml (61) Seconcs 

i.e. 
II.35 (1 - as) L 1" a = --.~~- ~~jl' - i; ! 

i 
,.. . . . . . . . ..(&j 

kl.2 The mrt of the -goJ:ic bet-men 1;:~ jet -;-c;ic ax! IAc --- .A_ .---.-._--_. --...- ..-. _ .-._. --_ _-- . ___. ‘ ._ ---_- . --. 
velocity mmllcin .----__.-_ ._. 
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au Smce in this region of the flov the velcclty gradvat F 1s negatim 
the basic eqmtmn for shear stress 

. . . . . . . . . (la)bis 

now becomes 

7 = - pa" i, g )", for (;$) < 0 ,..,..... (67) 

The nlotlon bemng two-dmensmnal and radxit frorr the vertex the equations 
of motion must reduce to the smple dlfCerentx1 equation of Scctmn j.0, 
except fol a change of s?gp. Thus 

-5 (fa 9'2) = - + (1 - $) . . . . . . . . . . . . (6C) 

u Y’ 
q = $yYZT 

0 

L = IC h f; f = f (y) 

In order to be able to obtain a result algebraically IC 1s assumed that tho 
axing Pa-&h 1s proportional to the distance from the wall. Then 

ana 

L = Ky'=IChy 

i. . . . . . . . ..I.. (69) 
f = y 

i 

For convenience the variable y 1s replaced by 11 given by 

. . . . . . . . . . . . (70) 
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end theil Xqtitloil (68) reduces to 

. . . . . . . . . . . (71) 

where q' now represents 29 SUlOe !?I. 9 
W' drl 

1s zero at q = F and az q = 1 inte- 
gration of Equation (71) gives that the overall condltxm to be satisfied 
is:- 

1 

i (I-q2)d?J = 0 

6’ 
F 

. . . . . . . . . . . (72) 

The solution to (71) maybe found reasonably conveniently as f'ollows:- 
Let y be the root of the associated equation 

2% (q-y) = ^ kg? (1 - #&2) . . . . . . . . . ..(73) 

shere the varmble tern q" on the m&t :hand sde of Equation (71) has been 
replaced by Q', the value at q = 1. Successive mtegratlon between the 
llrmts q am3 I (these lmdts are chosen as Equation (73) tn.11 not peyt 
3 berg zero at q = 5 
a7, b ' 

li‘ a real solutions 3.3 postdated between q = 
6- 

and q = 1 havm~ $$ = 0 at q = 1) gives 

y=sa+ I -+j$ 
;( 

(1 - Qa) ]’ \ v dq . . . . . . . . . . . (74) 
1-j rl 

1-e. 

Y=%+ I ’ L+ (1 - &“) j’ 12 se&-’ $ _ 2 (1 _ $] 

. . . . . . . . . . . (75) 

or, putt1y qs2 = (1 - c&2) . . . ..a..... (76) 

Y = 92 + 2% (g f [sech" $ - (1 - q)'] . . . . . . . . ..(77) 



. 

It may then be shown that the ongird Eqmtmn (71) has an approxmate , 
solution: 

q = y+& 

where E 2. 5 -(l+d+ F(v) 

and 

............ (7%) 

.......... ..(78b) 

t j [sech-' $ - (1 - ?$] ~511 

F (d = , _ ___ _-__--__-- . I- -----.---.--- 
-q (1 - rl).i 

all . . . . . . . . (78~) 

! 
\.I 
?-I 

The Cilfferentlal of this solution is not su.Wx~e~tly accurate for determining 
!h 
62 

, l.c. the value of q at whicil- '2 - 0 but substltutlon of the Xquatlon a-r)- ' 
(78) mto the idepal coilalt1on (72) aoes prov1ae adequate nccui-acy. ^ 
Havmg thus detemned the vdue of n = '1, the value of Q at this posltlon 

c, 
x3 om3tnmed, though not so accurately, by Zlyect svbstltutlon m-lo Erjuatlod 
(78). 

Eixms& - 

The exmple taken for the core of the flow 1s contmued thmugh tins 
ree;lon. The aRta 1s: 
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61 
n=z= 0.034 into mquatlon (78) gives cii = 1. y 

as accurate as that for 2 j. 

(whx.h value ml1 not be 

as, 
As-p7 decreases 4 , -g decreases to zero and Q xncreases to infmty. 

There 1s a m~lilm value of k;z for whxh + IS real. By oonsd.erm~ the 
a 

1 
value of ,i (1 -~)d~itmayb e shovm that when Q = 0.6 thm im.nimum 

0 

value 1s certamly greater than 0.3!+7 rad; for Ii = 0.498 the value of (a &) 
must therefore exceed j.3O. 

4.1.j Ihe ,~et %o~~~W~layer" rebox of the profile -----. ---- - .-I- 
TYy < 61 

.-L 
_- - ----- 

The simple dlfferentml equation for the velocity profile 1s solved 
as LO the pre'evlous section to give: 

where q = g, at $ = 1, 

q4a = %2-1 . . . . . . . . . . . (8Oa) 

is the same function, but mth 
in place of q, as in Equation (78d), 
sixi where T ( -$- ) 1s the bracketed fYmtlon in 
Equation (77):-l 

'p ($) = I‘&,-~ ($f- 1 & "- 
i 

(, ----;I . . . . . . . . . . . (80b) 

If the wall skin fliotio,l is po;xl~ve t>e velocity profile must 
asynptote at the wall to the sem-emplrlcal form: 

. . . . . . . . . . . (81) 
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It 1s found that this condition 1s satxfxd provided the followmg relation 
holds between the velocity at the Jet peak and the distance of the Jet peak 
from the wall. 

I?Ro 
AK + log -y- , 

..a . . . . . . . . (82) 

where 
hU 

Rc 
= I-0 

" . . . . . . . . . . . (82~~) 

Fqqt-e 6 expresses ths relation as a series of curves of cJ agamst a 81 
7, 

for various values of R, (.&Yom IO’ to IO'), when n and I< sre given the 
Values 200 and O.&O8 respectively. Since a ocmrs only m the variable 
a 6, Ii3 :& 
T;~- ad m the parsmeter ----, solutzone for otkw values of a may be 
&tamed from the curves by factormg the value c'hosen for P*. The curves 
are not exact as gw&~ca!. mterpolatmn has been used m their derlvatlon 
from Eqmtlon (82). 

I< = 0.$08 i CL = 20.3~ (e zoo); 

s, = 0.015 ; +;A = 0.031; 

also the previous solutloh reqmed q, = 1.9. 

i?que 6 shows that Q = l.9 an3 r = 0.031 we compatrble pronded the 
Re)Tolds numb$IJ, LS 3 x I-$. -For other Reynolds numbers these values 
would be i.&ofip&ble a& tbg:fiCofile ncrosdthc IShole section wmiLd have 
to &Just i&~$f~-tuit~l a~cd$&&blo syr;tem were &tamed. Thus It 1s not 
possible to postulate enttieiy arbitr&lly the tit121 values say of & 
and Q. 
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4.1.4 The stabdl.t:J the Jet ---- _ -._--_ .--_-- 

Supposir& the jet suffers a slrLht ilxstwbancc sub t:mt Its non- 
almens10nal velo~lty q ana lir. w~LLar Tvltith (somethin& greater t&,1 a 6,) 
are affected, but Its volume flow 33 unaffected. If It may be assumed that 
the volume flow is proportion& to the produot of q and 6,, then thx 
product would remax~ sensibly co.nstan'~. The Jet 1,my be consiilered as stable 
if, after the disturbance, l'c teds 1.0 reI;urr. to I&S former an.giLar mldth 
and non-drmenslonal velocxty, siti unstable if It coxtxxes 'I;*> change lil the 
same sense as the dxdxrbance. In cxCLys~sy the Jet stabxllty It is assuQec1 
permxslble to neglect tl,e change 1x1 ;:Tessure gxdzent that would resdt 
from the Jet dxturbanoe having dfected the main flow. It may then be 
argued. - at some lcn&h - that the Jet still be Stable O&y If the pOSltlOn 

a s, of operation on the curve of q against -.- I? ' for the appropriate Reieyilolds 

number, I.S above (m tne sease of a lar,eA 

( 

c - value of q) tie poslt.~on Phere 
q . "iif ~\1samlnimum. , The locus of pox&s of mxnzxm q - "2 1s 

shown in FL&S.-~ 6 as a broken lmc, this represcds the stabllrty limit. 
It roll be seen tht for stable operation the peak jet velooxty must exceed. 
approrxnately tdce the velocity U,, where p + &Uo2 = T,, almost inaepen- 
dedly of Xeynolds number. 

4.1.5 TJGwer expended ill the jet- -- 

I'or a urd'orm velocity Jet the poxr exyen&ed in the i.nJectlon LS 
equal to the product of the Jet'veloclty, the slot wdth, and the excess of 
the Jet total head over the ddfuser statx pressure at inflmty. Ir the 
velocity profile i&at has been calculated above the d.3.stance of the Jet 
peak from the wall 1s equalto:-&, but tne pull equivalent jet ndth IS 
several trmer, larger than this, as much oi' the ilow between 6, and 6, would 
be x-gectlon air. Suppose that the eqi'rAvalent Jet mdth 1s say n h 4, 
n 3elng o_iute large ITHen $2 1s as SIC&. as O.OJ+ as m the example calculated. 
The "power factor of ~~~ect.~o,?l", If i;xb is Ceeflr.ed as the ratlo of the power 
e,xperdeCI 0,~ 1rJectlon to the porre, '- regalned. 33 the G.dfSer m.31~1 i+J.ow, 
(exclubin~ lL3~eot.10n air) tile‘? becomes; 

.  .  .  .  . I . .  .  .  .  .  (83) 

(In derlvkg ths expression the total volume 11o~ !xw beei put equal to 
2h u,.) 

For the value 91 = 2.0, the rmx.mum value for stabdlty, 

ana for 6, = 0.015, ac, m ihe e:c&:$e calculated 
above, 
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It is cstlmateii that n is about four for this value of 6,. Thus 
the power e~~eilded oa lnJeCtlOn IS d3OUi; 43 per Cent Of t'ls pOT:er 
regained in the man flow in that lec&l of the cl?XfWer betmen the posItron 
of mjection and. mnfmty. 

In practical appllcatmns a ~mlc angle diWuser 1s likely to be short, 
and it may not be necessary to maxdam a stable jet. If dcsu-able, the 
Vdue of g, used for the Jet 'velocity could probably be much less than the 
stablllty lunlt of 2.0, (although the Jet wxith would then probably need to 
be larger then 1~1 the example caloulated). xxeover, Zquatxon (I>jj show 
that the power expmaea is very sensxtive to Q. 
the product Q (a" - 

For example the value of 
1) changes from 6.0 to 1.875 when Q changes from 2.0 

to 1.5. It seems quite likely therefore that a power expenditure on mJec- 
tmn more m the regmn of 20 per cent, rather than of l& per cent, of the 
power regalned in the mam flow of the tiffuser, would be suffxlent for a 
short vrxde an&le diffuser for whxh the velocity profde has already 
"deteriorated". 

4.2 Two-dmenslona.1 &ffusers of mnd tunnels powwe& by x_nJection;. 
diffusers mth central wake~~stab~l~sed dzffusers - .-I---- ---_ I_-- 

For this type of' d&?user the veioczty profile 1s of the type shown 
in lh&u-e 5b, mth a nmmmm at y = S ad a mnmum at the ceiltre at y = 1. 

Consuiering tins very briefly, the cedral region defined by 
6 b y < 1 may be treated by the free turbulexe theory of Section 3.2, Just 
as for the core of the flow m the previous section. 
Equation (66), 

Thus, follorruy 

. . . . . . . . . . ..(84) 

The reglon between the wall and the Jet pealc could be treated 
accurately by the m&ho& of SectIon 3.0, for a gl;ILven mucus, length ilztrlbu- 
tlon, but for convenience it ~'1111 be compared with a half of a slmplc tw- 
dmenslonal diffuser. As the Jet flow is close to t!le wall the rnxcxl:: 
length L ~~11 be almost as great as the value L = Ky. Coxeqwntly the 
mixing length for a half of a sxnple cliftiser will urderestlmate L, ana It 
w.11 therefore underestimate the lirmtlng angle,between the wall and the 
velocity peak,at vvhlch the Jet 1s in the separatmn condltlon. Smce the 
simple diffuser serm-angle is 4O the Jet will not separate if (a 6) < 4". 
(The "exact" solution of Section 3.1 would probably still underestlmnte the 
angle so that the jet should not separate lf (u, 6) < 4.75O.) 

The stability criterion of the previous section 1s not readily applied 
to this type of flow as c-es in the Jet would be likely to sffect the 
pressure gradlent slgntiicantly. 

-22.TEPk 
l?or 6 = o.2ma$l,,=~ 

L lQpre 2 curve (a) sqSests t; = 0.10 

Equation (84) sves zc: = 8.60 tuti (CL . 6) = 0.86~ 
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The above analysis applies also to daffusers havmg central wakes 
instead of sxle Jets, as has been Smcussed m tne fmst paragraph of Section 
4.0. Thas type of profile would be obtamed 1~1 a diffuser If the wake 
losses were comparable mth the l.osses at the wall. An apslxatxm of such 
a flow would be to the stabalmmg of a very wade angle diffuser by means 
of a gauze, or a turbulexe grxd, at entry - across only the central portmil 
or the flow. ,The follomw e,;ample ~n~~cntes that thas should. be more 
effective thm a gauze across the whde cross section. 

Ehullg --_- 

IIn other to stabllase a tiffuser m whach space IS more ar@ortant 
than maxLm3 effaclency a gauze, or grid, 1s placed across the central. 
portmu of the entry flow. The arrmge~~~ent IS such that the charactermtacs 
of the resulting profale are roughly equavalent to 

Fqm-e 2 curve (a) suggests ( 4 \ = 0.11. Equatmil (84) then 
g,~ves that the total angle\ @the d~ffuscr 1.9 (2 CL) = 31.2'. 
The diffusion is therefore about four tmes as rapid as for 
the sk-ple two-dmensmnal diffuser. 

&me 6 = 0.3 the value of (CL . 6) as 4.7"; tne flovi vrhach 
passes between the gauze and the ml1 1s thus approachmg 
the separataon combtim. 

Use of a simple central gauze would damp the turbulence below the 
value assumed above. On the other hand saxe the daffusion 1s very rapid 
the steady state turbulence level should be very hagh, as dxcussed s.n 
sectmn 3.0. Thus If d special hagh turbulence grad were used an order to 
convert main strewn velocaty in the centtiportaon of the flow mto hqh 
turbulence, the twbulence muld be expected to persist at a hqh level 
and the consequent cone angle could be very large - sagmafacmtly larger 
than predacted above - provided care cmiLd be taken at entry. 

5.0 Dzscussion --. ". .- --_. 

of the 
The dmcuss~on 1s coccemed mth certaan largely theoretmal aspects 
subject. 

5.1 The absolute level of twbuleme am3 its ilet rate of decay -_ . _---._ __-_--__-^ -. ._-.-- - ___-__-_-_L. 

Since a lcmwleledge of the maxwg length amounts almost to a knwledge 
of the turbulence at 1s not surpraslng that t!le foregoang calculations allow 
estimation of the turbulence level an a diffuser. Math the relataon 

_.-- 
T = - P ulr U'$ = P L" . . . . . . . . . ..(a51 



f 

L - - - p u r I,, i,, = " UC" C<f --I-. ‘-7 (1 - q2) d.y ,... z . . . . . . . (SC) 
.J 
0 

--u u’ -7. - .-.- 
1‘ 6 

= u *: a y (1 - y) . . . . . . . . . ., . (87) 

j;p’;,\ j i,= 0. I?. uo. .._,........ (YC? 

..-I.-- 
- u’ 11’ = 

I‘ & 2 ‘L2 c.Y (1 -Y) .*. .I~. . . . . . (91) 

I-l_~ 7’; 
br u $I- n,z* = 0.16 UC’ . . . . . . . . . . . . (92) 
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. . . . . . . . . ( la)bls 

l33 Ps.( = Pi-f = - P ~. . . . . . . . (2jblS 
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3x = *-2$5 = a% auy - - --- 
ax ay . 

“5 % aux t 
eYY = 2ay 

= 2?- - “ZvT = - ea ‘- 
I 

. . . . . . . . . (3C)bls 

%a = Yx aux ayi =aY+x- 

The change in the shear stress IS to replace J by $$; the change in the 
normal stress is to ormt the terms such as pL2 e;x J, thereby uqlymng t&t 
the normal stresses are each equal to m~.nu the statu pressure. The 

aUX simplificatron.3 emount to assunung that the rates of tensde stran - 3X 
a"y 

am3 ay' m-d the rate of cross shearing strain % 
ax are small compared with 

3 the lon~i'twlinal shearing strain ay. 

Most turbulent flows have become turbulent because of the ustabillty 
of a large shcermg velocity 111 tne I!annar flow from whloh they derive. A 
loge shearub Velocliy 1s still present after the transltLon has taken 
place so that ~;eilerally txrbule:d flo xs are flows with hq$ shear. Smce 
the axes are convc.dltlomlly chose,1 so that the hlfih shear 1s rapreseded by 

% aur \ 
ap' ( Or-!, thu becomes the donunant term and the slmplifzcatlons are 
reasonably JustdYed. Some of the effects of the simplifxatlon ~1.11 be 
investl@ted for the two-dlmenslonal du'ftiser. 

In the two-duxsxxonal rabe.l flows consdered the stutlc pressure 
predxtei: by the simpler theory has been constant at any given radus. The 
result using the more exact theory 1s that the normal stress p+fi Is constant, 
ns given by Equation (14). On the latter theory the varlatlon of static 
pressure across the section would be, (from Equation (II)), 

6p = -sp 
#Q + 6 (pLa etid J) . . . . . . . . . . . . (95) 

= 0 + 6 (pLa eti6 J) 

i.e. 

. . . . . . . . . . . . (94) 
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Xakxng use of the special solutzon of Section 3.1 the maxumun vdue of tlus 
static pressure variation 1s 

16 K= (6~)~. = apUoa 27 . .--.a 

i 
. , . , . . . . . . . (95) 

c 0.007 (@Jo”) 

Thus, for the separation flow, the varlntlo,l of static pressure across aqf 
sectwn J.S gwen as zero by the approxlnate theory, but as Just under 1 per 
cent of tiie section mean clynamc head by the more accurate theory. 

Sirmlarly the ratio of the shear stress, prP of t!le more accurate 
theory, to the shear stress 7 of the simpler theory, for a given value of 
the mutq length L, 1s 

r 1 h j2 l+ 
i 

+k = , + -ET5 \ 

it 1 

. . . . . . . . . . . (96) 
-2 

\ ag i 

At the peaks of velocity this ratlo locally tends to mnfl~ty. Vhereas, 
u.cang 7, the profile asymptotes to a J/2 power law at the peak, using pr+ 
the asymptotxc form IS B square lam (l.e. If (Sur) and (Sy) are the 
departures from the values at the peak, the profiles correspondwg to the 
two assumpi~ons satisfy respectively: (Su$ cE (hy)3/2, ad (6ur) oc (6~)'). 
For free turbulence the mean value of & 

t 
is about IQ per ted. higher than 

tnat of 7, Thxs could presumably be abs rbed into the empu‘ical value for 
t‘ne mixug length. In diffusers the difference 1s less than this 10 per 
cent. 

5.3 ----..Y Slmxlarlt Mth viscous ad. turbulent stresses ---__.---- - -- -_----- 

If XI any ~low the stresses are mde up of both tux+ule,lt and ylscous 
componedcs t:len for =i: to be possiole for the velocity profiles to be 
strictly sunilar nt say all radial stations there must be W.menslonal corn- 
patlblllty" between the turbulent and viscous components. In particular the 
ratlo of the two components at any pomt on the proflle must be the sue at 
all ratisl statlons, i.e., the ratLo must be mndependent of the ratiun. The 
di*ens;ons of the ratlo of the turbulent to the viscous shear stress are 
g1vei-l by: 

turbulent stress I-.-- --- = 
vlsoous stress 



L = Khf = Xraf 

. . . . . . . . . . (9:) 

Thus the ratio is indenenkmt of the radlms only if li = 1, 2.e., only for 
Yne two-hne~~siondt flow ati not for the ai-symmetrx flov, Thhls dzffxtilty 
has aot appeared 1x1 the presmt paper as m the mm.n analysis only turbulent 
stresses have beea conoulered, a procedure which has been possiule oecause 
the analysm has been restricted to flow at ixne separation co2dltlon. FOl- 
that cor51tloil It happens that a reallstx solution can be obtazkled indepen- 
dently of vizoslty, even at the wall, because IA the reElon where vxcosity 
is usually mpcrtant, 1.e. m the viscous sub-,-l~ye~ close to the mll, the 
stress 1s eltller r,ero OL' wry sx,all. 

The above suggests that the sepuatm,~ co,~titlo,~ for the c.xl-synunetr~c 
cone 1s partxu!~rly suzted to mvesti~,atxons mto turbulent f'lorv, qute 
apart f'lom the pm&-~cal mterest assocmte3 mth i;?e limtlilg rate of flow 
dlf'fusion. For flows other than at separation axl-symmmtrlc ilov does not 
have strxt szmA2.rlty and thus analysx 1s diffxult; for tr~o-&.mus~oim.l 
i'lom the end ml1 bouldcuy layers vould elthw oor@lcate the e:Qermexzt or 
complicate com~arxon wLth theory. 

5.4 Some imitations on the flow --.. ----. 

5.4.1 The pressure &m&eat and the root XC.L square velocltx ._.-_I- . . - - - .--. _ -. . . .._I. -..-- ---- I. . .._. __-. - - ..____. -_ 

In the analyser of the weceC2n:: sectkolx t:he wlocxt;~ U, izs -been 
defliied by the Bernou3.11 eym.tion t;;>e of relatxns:up: 
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P + &puo" = const. = "6, . . . . . . . . . (23) blS 

\ &J rlk = - pur dur CIA . . . . . . . . . . . , (98) 

‘A ‘A 

where &A 1s an element of the sectlonel area d. Sxlce the pres%dre IS con- 
stant across the se&Ion 

Onutegxttlcln t:hx becomes 

. . . . . . ~. . . . . (?!I) 

1.. .  .  .  .  .  .  .  .  (100) 
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In adddltum to hem;: true of d~fiuscr flow at se3)amtmn this relation 
holds for the flow m <any strem tde whxh represeds a surface of zero 
shear stress. A further exmple 1s the flow betreen the posltlom of 
maxl~llwn and nu-um velocity m. the free two-dmensmml flow of Section 3.2. 

If the skin fi-~ci~on 1s not zero the fmal pressure rise 1s reduced 
and the value of U, as &eflne& by 

p + &puo2 = const. = P, . . . . . . . . . (331bis 

wo-dd be less than the root mean square velocity .XL‘OSS the sectlo~x, 

Considerat~or~ 1s agun &ven to the vdde iT = IJo defined bg 
Equation (33):- 

p + SpU," = con&. = P, . ~. . . . . . . (33& 

and nttentlon 15 still restricted to radial flows mt!l sml1a.r velocity 
profiles at all radii. Most of the argments are concerned wi?;h the 'free 
tmo-dmens~oix3.l flow' of Section 3.2. 

IAl dlffusmg flow the pessure T.-LX inat ?dl occur between station 
r and 3d?iiilty is equal. to the va;uc of +pU," at stallon I‘, from the above 
Ccpatlon (33), ad 221 accclerdt2,l~ 2m the pressme fall timt h2s 2lready 
taken glace betveeil milnlty and station L‘ 13 equal,to &pIJo'. Thus flux?. 
whxh has zero net shear i'orce act]ng upon. it (l.c. w!lere go 1s locally 
zero) ancl whxh IVJS~ therefore bcixve accorc?l~~~ to I;he 15ernoul.ll eqmtlon, 
i.e. mth constant total head, must hve a velocltj- equal to U,. Hence 2.n 
ckdTus-mg flov tile net slk2a.r force on 3 pwtide o'L^ fluid of velocltj greater 
than U, mst be neg:atrvc, as Its total heed 1s decreasmg, mcl the local 
profde curvature ml1 be coxbve do;mi~~?Ls, i.e. coxave tomxm3s Uo. (This 
1s nssmnng that the mxmg length 1 s eliher comknt, or til2t lt mes not 

vaxy sufr'lcleltly for tne clifferentlal of shear force to be of dx?f'ereilY 
slm from the second drfferentml of vcloclty; It thereCore excludes my 
region very close to a wdl.) Smilarly the net shcm- force on a pzrtmle 
of fluid of velocity less than U,, but still posztlve, ml1 be posztlve, the 
velocity profde being concave upvmds and tonards U,. Tnus the velocltjj 
profxle m dlfi'usmg flew must be an osc~llalory f'ctlm of $ oscdlatmg 
zbout the value of IJ = U,. (Ths is cgnslstent mth the root mem square 
result of the prevxous Sectdon 5.1k.l.) 

In acceleratmg i'low the net &xr iorce 00 a particle of velocity 
pester than U, must be pozitlve and the proTIle concave upmzds and array 
from u,. 3enco the profde cannot bc an osc~.lla~ory Amctlon of $ but the 
vcloclty must increase co~d.nuously, to xxfmity, or to a boundary, on 
eltheer side of a posltlon of rmnimurn velocity. For a parkxle of velocity 
leas than Uo, vat stll? posxtive, the net shear force ixust be negative and 
the proflle concave downwards aad away; from U,. Iiencc the velocity still 
caiiot be a (pos3.tlve) oscillatory function of $ -bout must decrease at least 
to zero, or to a bdudary, oa elthcr .~Idc of a posltlon ol" rwxxnum velocity. 



Thus, vinile d~M~~sieg flo;is have velocity profiles which are oscilla- 
tory fmctlons of $, oscillatmg about the value U,, as in Figure 7a, 
accelerating flows have velocity profiles which cannot oscillate if 
entirely pocitive, but must consist either of a semi-infinite loop entirely 
above u,, or a loop going to zero, or ko a boundary, entirely below IJo, as 
ln n.$gLm yb. 

Diffusing and accelerntmng flows combine when the amplitude of the 
oscillation in diffusing flow is such that the velocity locally becomes 
negative, and therefore accelerating, or when the arms of the lower loop 
of the ncceleratug flow are co,d.inued to become negative, and therefore 
diffusing. In the latter flow the negative velocity, now a drifusz.n@ flow, 
will continue negative until it exceeds Uo, as only whex It exceeds lJ, may 
it reach a numerical maximum (as argued for &f?Js:ulg flows above). After 
the maximum tne profile velocity will then decrease, nune:.ically. It has 
thus become an oscillatory funotioa and one and the s&-e thiiig as the 
oscillatory diffusing ilow in which the amplitude io such that the velocity 
has locally become negative. Such a profile 1s illustrated in Figure Sa. 
If the amplitude of this ilow profile mcreases further until the accelera- 
ting peak velocity reaches Uo, and. tends to exceed it, the accelerating 
peek Nlll '%ursC", since the positive accelerating flow wo3uld not be able 
to have a maxlTmM above U,. Hence the profile vnll consist of a semi- 
&finite 100~ pnth the peak as a diffusing velocity exceeding U, and the 
talls bemg idkrute and accelerctu&, as in Figure 6-o. 

Thus a rmxed flow profile can either be an oscillatory function of $ 
vnth the c?JA?L%~L~~ peak velocity exceeding U and the acceleratmp, peak 
velooity numerically less tha,l U, (Fzgure EaT, or It cm consist of a semi- 
iahnite loop crossing both velccities U. and bcz.Ali: infinite OCI the 
accelerating side (FQJ.X 8~). 

The above co~lclusior~~ may be conf'lmed from the simple differential 
equation for the free two-dimensional flow of Section 3.2. Taking diffusing 
velocities as positive the different&t equation is 

& (q’“) = &- (I - q2) . . . . . . . ..(5qbls 

Futting, vnthout linearisation, 

q = (1 + t) . . . . . . . . . (60)bis 

the equationbecomes 

2 t’ t” = - & (2 t c t") . ..*....... (‘0’) 

Multiplying by t1 and integrating, 

2t'" -._.-- = 
3 - -$y (ts + $-) + constant . . . . . ..(102) 
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Therefore points of manmum ud rmnunm velocity satisfy the cubic equation: 

f (t) = t3 + 3t2 + a = 0 

Smce 

f' (t) = 3t2 + 6t 

fc' (t) = 0 either 

Or 

also f (t) = a 

and f (t) = 4 + a 

while f + - 00 

and f++CO 

when 

when 

When 

W!TS n 

when 

when 

. . . . . . . . . . . (103) 

. . . . . . . . . . . (lOi) 

t = -2 j 
t=o 1 
t = -2 ; 

(See Figure 9) 
. . . . . . . . . . (105) 

t + -c-3 

t -+ +m 

i 

The equation IS simplest whe;l a = o. There 1s then a double root 
at t = 0, 1.e. nt ur = u,. This coizespo,~ds to a riCfusl,~ flow of uniform 
velocity, ati zt also repesents the luwz of the oscillatory prcflle vkre 
the amplitude oi' the osclllatlox -has become zero. The large ilegatlve root, 
:hen a = 0, cor;esponils to trie peak ol" a seJu-mflrute acceleratmg loop. 
The remamder of the charectenstx~ ., ~:e;ltloned abovs may readily be obtained 
by tracug the behavlow of the roots of the equation from Flgwe 7 as the 
parameter 'a' is vaned. 'The tw larger roots, when real, nust ,.epcesent 
the -pie&s of an osclllstory proi'lle (by an ar@;ument of 'co,~tlnulty' from 
a = 0); d value for t > - I corresponds to I+ > 0 and. therefore to locally 
bffusmg rad.lal floiv, while t < - 1 corresponds to ur < 0 and to locally 
acceleratug ra&al flow. 

6.0 conclusions -- -_-.-_ - 

(1) Exact solutlofls of the equation of motion are posstile for 
various types of diffuser. Application is restrxted to that part of each 
dU.Ybser m whvfch the velocxty profile has attauecl a constant shape. 

(2) It; 1s possible to predxt the crltlcal angle oi' a diffuser 
for just avodiug flow separat3.on provided. tile mz.xulL leq$h dlstrlbutlon 
is known; the value of the crltxal angle 1s proportional to '&he square of 
the mxxmg leqth. 

(3) It is deduced that the cwculw cone diffuser Just at 
separatxon hss a twbulence level at least 30 ps.- cent h&er tlmn that of 
flow in a parallel pope. l'lovs havmi; more rqld tiffuion than the sxnple 
clrcuhr cone would be expected to reach an even hqher turbulence level, 
while slower dli'fuslon would corres~L~din,$y &ive a squaller increase in 

turbulence. 
(u' -qJ2 

The Ifl~xmum value of -ST----- for the crrcular cone tiffuser 
0 2 

at separation 1s at least 20 per cent. 
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(4) If the n&ung leJlgt.h close to the wall increases l~early rmth 
y the &stance from the wall, the,velocity p~oflle ~1 the separation con- 
&tlon approaches the form L+ cc yy. 

(5) The solutions suggest that, as an alternatlve to side Jets, a 

central wake may be used for mcrenslng the maximum rate of dlffuslon. For 
a two-dlmenslonal diffuser a total. angle consderably in excess of jO" 
should be attanable by either means rvlthout flow separation - provided 
precautions cal be taken al; the tiffuser entry. 

(6) For a side let to persist a long dlstsnce d.oVVdtream Its 
velocity at any sxlal station must exceed twice the mean velocity at that 
station, The relative power requrred for the jet 1s high, belny about 40 
per cent of the power ~II the mala. part of the flow - tnls dppiles to a 
diffhser which has a fully developed profile at entry. If the iilffuser 1s 
short so that persistence of the Jet 1s not so lXIi~OJ?tant the power reqiXre& 
for the Jet should be much less. 

(7) Even in a flow wh-hlch 1s dlffusulg rappldly a narrow wake rrould 
be attenuated by Its own turbulence. Stilsrly a large ce‘ltral wake, as 
from the bullet of a fan or turbme, 1s stte,luated If the flow 1s of moderate 
JiffUslon angle. However, as mentloneil m (5) above, a central wake, 
especially If produced by a high iurbul.ellce grid, could probably be used 50 
advantage - for Frcventlng flow separation 111 ddfusers of very large angle. 

(8) A two-dimensional radial flow -ath "free turbulence" has 
certain liitatlons on the shape of its velocity profile. As an exanlple the 
profile cannot be perlodlc If the maxmum chffusmng velocity exceeds 2Uo, 
where Uo 1s defined by p + &pU,’ = const. 

(9) Althollgh the sl.i$de form for the tmbulent shear strezs as 
conventionally assuinecl m rnlxlng le%th theor?, 1.e. z = pLa au 

( ) E , is 
not consistent on t;a,lsformatlon of axes, the errors compared rmth a more 
general form are small. In prlnclple ths latter form ~511 permits solutXons 
of the ecjuatlons of motion, but the solutions using the simpler form are much 
more tractable. 
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L&T OF SYx3OLS - II ---- 

S’/h , or Y’/b 

cortesinn co-ora1n;tes 



p = Co 

T = 

u. = 

g = 

g' = 

go = 

OL = 

t = 

%l = 

t = 
m 

h = 

6, = 

6 = 

-0 = 

P = 

P = 

v = fluid kinematic viscosity = P/p 
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Symbols defmed by I?quatmns (3) and (11) and the corresponds 
text 

constant defmed by Equatmn (20) 

parameter defined by Eqmtlon ($0) 

function deflnad by Equation (73); y’ = $; 

difference defmed by EQwtion (783.) 

values of q at y = 6, a-d y = 6, 

quakltles defmed by L’quations (76) and (80) 

factor such that (II h 6,) = equlw.kilt Jet width 

mean value of the product u' u' 
1^ ti 

-As-e u r 3. IS the eddy 
velocity m du-ectmn i 

cross sec~onal area of the flow 
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~gF!msEFCE3 (cant 'd) 



. . . . . . . . . (lo2)b,1s 

-g=--J& 3, .- 3x it2 +g)-‘, +const -; . i 

and therefore 

The value of the constani in Xquatmn (106) is such that I;ile demnr~~x+ior 
becomes rero at tile maxmw~ ad rfum.mu~~ values of 't', as showa by ikpatlon 
(102) and the subseqwnt Jlscussion of Sectlo 5.4.2. 

Vhcn the eqmtron 1s lme,wmed the Jc term IS outted IL-ox the de,iom- 

nator of Ikpxt1on (106). Some textatlve results for the aon-luwarxed 

theory suggested by a labowed esturute of the ei'r"ects of the 2: term are as 

follcws. The resdts are ,g.vea XI tcixls of' th:: fuctioi: 'A' ?..efued by 

n_ u =H 
r r . . . . . . . . . (?& 
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Let the nnxirmun and rmlumwn vslues of .g be % and gm respectively. 
Defmlng 'G' by 

. . . . . . . . . . . (107) 

h :: 23.1 G (1 + 0.12 G') 

whle the root man square value of 8, i.e. go, wkch defogs the pressure 
rise , may be found as 

e, = + ; ‘#I (1 + 0.17 G’) 

The mximum amI mn~rmm values of t, l.e., the K&ES def,,x?d by 

and 

become 

tm = - (’ - %Lil . ) = - %+” 

%f * G (, -z-$-) 

( G G= t,, + - G 1 + -j - -_ 
6 1 

The angular vmvelelyth in terms of say (-t,) 1s suaested as 
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FIG.7a. DIFFUSING RADIAL FLOW 

\\ 
J/-i/” t------L , 

/ 

FlG.7b.. / ACCELERATING RADIAL FLOW 
,_ 

T&?&, OF VELOCITY PROFILES IN FREE -La+.,1 * . .-, X.a..“--zw._ 
TWO-DIMENSiONAL FLOW DlFiUSlNG FLOW 

8, ACCELERATING FLOW 



FIG. 8 

FI C. 8 a PROFI LE PERIODIC. \ I */- ~~-‘.M- ,<\ ,..O.*R..R ‘, n. . . -.._ ;-, I ‘1 “\. \ / 
- I--/----\-L “. / 
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