C.P. No. 307
 $(18,351)$

C.P. No. 307
$(18,351)$
A.R.C. Technical Report

MINISTRY OF SUPPLY
\section*{AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS}
Turbulent Diffuser Flow
By
B. S. Stratford
LIBRARY
WYAL AIRCRAFT ESTABLISHMENf BEDFORD.

NATIONAL GAS TURBTINE ESTABLISHANNT

Turbulent diffuser flow
- by -
E. S. Stratford

SUMMARY

Exact solutions of the.equations of motion are possible $\hat{\text { for }}$ various typos of diffuser. Application is restricted to that part of each difruser In which the velocity profile has attamed a constant shape. The solutions are expressed in terms of the distribution of the maxing length, which effectively is the length of the mean free path of the turbulence.

In particular the solutions ypeld the value of the critical aigle of a diffuser for Just avolding flow separation; this value is proportional to the square of the turbulence level. If on the other hand the critical angle is known, use of the solutions in revense allows an accurate assessment of the turbulence level. Thus if for the circular cone diffuser the oritical total angle is 10° the turbuleace estimated would ive 30 per cent greater tinan that existing in tho flow through o parallel pape.

A detail of the solutions is that, if the mixing length close to the wall increases linearly with y the distance from the wall, the velocity profile in the separation condztion approaches the form $u_{r} \propto y^{-\frac{1}{2}}$.

Even in a flow which is dirfusing rapidly a narrow wake becones attentuated by the turbulence it produces. A large central wake, as from the bullet of a fan or tw'bze, is attentuatcd if the flow is of moderate daffusion angle. However the solutzons sugsest that a central wake, especially if produced by a high turbulence grid, could be used to advantage - for preventing flow separation in diffusers of very large angle.

If side jets are used for flow control at large dafiuser angles and if the jets are required to persist a long distance downstream the jet velocity at any axial station would nead to oxceed twice the mean volocity for the cross-section.

CONPETSS

		Page
Preface		4
1.0	Introduction	4
2.0	The full form for the stresses in turbulent flow	5
	2.1 Derivation using the fuil form for the stresses	7
3.0	The two-dimensional and axi-symmetric cone diffusers ard free two-dimensional ilow	12
	3.1 A special "exact" solution	24
	3.2 Free turbulence in two-armensional flow	25
	3.2 .1 (i) The value of $\left(\frac{I_{1}}{b}\right)$;	27
	(ii) the stabulity of the periodic velocuty profile.	27
	3.2.2 The behavzour of an isolated wale in dafîusing flow	28
4.0	Wade angle two-dimensional diffusers whth side jets or ceniral wakes	28
	4.1 Two-dunensional dufusers wh th suce jets to prevent flow soparalion	29
	4.1.1 The central core of flow $\delta_{2} \leqslant y \leqslant 1.0$	29
	4.1.2 The part of the prof 10 between the jet peak and the velocity monimum	30
	4.1.3 The jet "boundary layer" region, $0 \leqslant y \leqslant \delta_{1}$	34
	4.1.4 The stabulaty of the jet	36
	4.1.5 The power expended in the jet	36
	4.2 Two-dimensional diffusers of wand tunnels powered by anjection; duffusers wath central wakes - stabilısed diffusers	37
5.0	Discussion	38
	5.1 The absolute level of turbulence ond its net rate of decay	38
	5.2 The magratude of the errors involved in using the sampler form for the turbulent stresses	40
	5.j Sumilaraty wath vascous and turbulent stresses	42
	5.4 Some limitations on the flow	43
	5.4.1 The pressure gradient and the root mean square velocity	43
	5.4.2 Types of velocity profzle	45

CONTMTIS (Cont: 2.$)$

ILEUSTRATIONS

FIg. No.
1 The stresses on a small wodge of tluid
2 Varbous mizing longth distributions
3 Various velocty profzles for the wi-symmetric diffuser at separation

4 Various velocity prosles for the two-dimensional duffuser at separation

5 Types of velocity profiles for dinfusers with side jets or central wakes

6 The solution for the "boundary layer" of the jet
7 Types of velocity profiles in free two-dimensional radual flow - duffusing flow and accelerating flow

8 Types of velocıty prosiles in free two-dinensional radial flow - mixcd duriusing and accelerating flow

9 The cubic equation for frce two-dimensional radzal flow

FPETACE

Much of the work reported in this paper was carried out in the Aeronautics Department of Imperial College.

1.0 Introduction

In the past little attention has been pasd to the theoretical aerodynamics of the fully turbulent flow an dif'fusers, partly because sample empirical data - conceming for example the 6° cone - has proved adequate in many practical apnlucations. A fuller understanding of the flow, however, might lead to suggestions for satisfying more exacting reçujrements. One theoretical investigation has been made by Gourzhienko but. beang restricted to flows of moderate daffusion rates, this investrcation did not approach the condition of separation or stalling of the diffuser. The present paper obtains exact solutions of the equations of motion for flov which everywhere is just at the condition of separation. Application is Immated to that part of a duffuser ha which the velocity profile has reached a co.stant snape.

Standard muans lensta theory2 as developed mostly by Erandtl is the basis of the solutions. The philosophy of this tinoory is to explain the tame-mean flow pattern by means of the maxang length anstrabution for the turbulence. The mixing length is not fundamental but it does have a physzical interpretation, vis. the mean free patn of the turbulent motion, and thereby at can contribute to an understanding of the flow. Accurate preduction is possible wher the value of the mixing lemeth is know, and for parallel flows in papes and ducts this value has been wrell estajlinshed, a single distribution holding unversally provided the Reynolds number exceeds a certain manmura; for diffusing flows hovrover no standard data is avanlable and the subject is still controversial. Dönch ${ }^{3}$ and Nukuradse 4 conclucied from analyses of diffuser exeriments that dif?usion greatly increased the mexing length, but, in contrist, Ludreas and rillmann ${ }^{5}$ found no such effect for a boundary layer when the pressure gradients were moderate. On the other hand Squire ${ }^{6}$ shows that, prior to the establishment of a steady profile shape in a conical aninuser, the change or profale is such as to suggest an increasing turbulence level, thic final level probably exceeding that of flow in a pipe. As pounted out by íquire thas qualutative result seems reasonable. If the turbulence is represented non-dimensionally by the ratio of the eddy velocity to the local manstrean volocity, dirnusion will decrease the latter whale not inctially affecting the former; thus the ratio increases until, as will be exanined in the present paper, a new equilibrium is established. The policy adopted in the present paper is therefore to use the little anformation which is available for the circular cone diffuser in order to re-estimate the effect of diffusion on the turbulence level, and then to apply the results to the assessment of other configurations.

One detailed point from the solutions is tinat in the velocity profile the gradient at the wall is infinite eyen at the separation condition, the profile asymptotang to the form $u_{r} \propto y$. This profile shape is in contrast to that for the correspondins laminer flow, where the gradient is zero and the asymptotic form is $u \propto y^{2}$, but it does nevercheless reflect experimental experience of turioulont ilow unior these conditions. Despite viscosity having been neglected the profile as realistic in being able to have a eero velocity at the wall.

The initial derivation uses a generalised form of the turbulent stress but the standard simpler form is adopted in the mann analysis. Using either
form the equations for the time-mean motion reduce to a simple difierential equation whicn in pranciple 15 readily solved.

2.0 The full form for the stresses in turbulent flow

The formula for shear stress conventionally used an maxine length theory on the basis of the momentum transier hypothesis ${ }^{2}$ as

$$
\begin{equation*}
\tau=\rho T^{3}\left(\frac{\partial u}{\partial Y}\right)\left|\frac{\partial u}{\partial T}\right| \tag{1a}
\end{equation*}
$$

whach, for nositive values of $\frac{\partial u}{\partial X}$, becomes

$$
\tau=\rho I^{2}\left(\frac{\partial u}{\partial Y}\right)^{2}
$$

where $\left(\frac{\partial u}{\partial Y}\right)$ Is the transverse gradient of volsosty, ρ the donsity, and $L a$ length related to tio mean free path of the turbulcat rotion. It is also assuned conventionally that the normal pressure forcos at a point are undependent of drection, $2 . e$.

$$
\begin{equation*}
p_{X X}=p_{X Y}=-p \tag{2}
\end{equation*}
$$

The ajove two rolations are used for all the main calculations of the present paper, but $i 6$ may be seen from a consideration of j'isure 1 that strictly they are not anlernally consustont af'ler trandformation of axes. The stresses at a point if transplanted to act on a fingte wedge of iluad would have to be in equilibrium; otherwase (following the standard proof used for showngg that the pressure in an inviscid fluad is the sarc in all durections) for an anfinitesmal wedge of fluzd the ratio of recultont force to wedge mass would be proportional to

$$
\frac{p_{X X}\left(\delta_{n}^{r}\right)}{p\left(\delta_{A}\right)^{r}}
$$

and honce the furd acceleration would tead to anfzit ty as tho wolvo size aroroachec zero.

For incompressible flow one ayston which would be internally consistent as recaydu transformation of axes is:

$$
\begin{align*}
& -6- \\
& p_{X X}=-p+p L^{2} J e_{X X} \\
& p_{Y Y}=-p+p L^{2} J e_{Y Y} \\
& p_{X Y}=p_{Y Y}=p L^{2} J e_{X Y}
\end{align*} \quad \cdots \ldots \ldots \ldots(j a)
$$

where J, an invariant in transformation, is

$$
\begin{align*}
J & =\left|\left(\frac{1}{2} e_{X X}^{2}+e_{X Y}^{2}+\frac{1}{2} e_{Y Y}^{2}\right)^{\frac{1}{2}}\right| \\
& =\left|\left(e_{X X}^{2}+e_{X Y}^{2}\right)^{\frac{1}{2}}\right| \tag{30}
\end{align*}
$$

In these equations $e_{X X}\left(=-e_{Y I}\right)$ is equal to the dufference of the rates of tensile strain and $e_{X Y}$ is the sum of the rates of suear strain, i.e.,

$$
\begin{aligned}
& e_{X X}=2 \frac{\partial u_{X}}{\partial X}=\frac{\partial u_{X}}{\partial X}-\frac{\partial u_{Y}}{\partial Y} \\
& e_{Y Y}=2 \frac{\partial u_{Y}}{\partial Y}=\frac{\partial u_{Y}}{\partial Y}-\frac{\partial u_{X}}{\partial X}=-e_{X X} \\
& e_{X Y}=e_{Y X}=\frac{\partial u_{X}}{\partial Y}+\frac{\partial u_{Y}}{\partial X} \\
& \left(\frac{\partial u_{X}}{\partial X}=-\frac{\partial u_{Y}}{\partial Y} \text { for an incompressible fluid}\right)
\end{aligned}
$$

Equation (3) is a cencralised sorm of Fquatıon (1) and represents a consisteat system for tae turbulent or 'Reynolds stresses' provided only that the length is is takon as madependent on the durection of the dxes. This generalisabion has beea put Formard by Prandil and is quoted in Reforence 7; 2t seems almost certanily to be a closer representation of ieal flow than is the conventional form represented by Iquations (1) and (2). However the conventional form is much sumiler and for flows whth high shear, that is where $\left|e_{X Y}\right| \gg\left|e_{X x}\right|$, the numerical diziferenco is small. Consequently in the present paper whereas the full form is used in derıving the anitial equations in order to show that the resultant rlow still has similar velocity profiles, thereafter only the smpler form is used, a subsequent
check bejng made in order to estimate the magntude of the effects caused by the shmplification. The main derivation using the sampler form starts, almost from the beginning again, in Section 3.0 .

2.1 Deruvation using the full form for the stresses

The equations of motzon for 'stecdy' turoulent two-dmensional. incompressiblo flow may ve iratten an toms or tho Reynolde stresses and the local time-mean velocztios as

$$
\begin{align*}
& \frac{D u_{X}}{D t}=u_{X} \frac{\partial u_{Y}}{\partial X}+u_{Y} \frac{\partial u_{Y}}{\partial Y}=\frac{1}{\rho} \frac{\partial P_{X X}}{\partial X}+\frac{1}{\partial p_{Y X}} \frac{\partial p_{Y}}{\partial Y} \tag{4}\\
& \frac{D u_{Y}}{D t}=u_{X} \frac{\partial u_{Y}}{\partial X}+u_{Y} \frac{\partial u_{Y}}{\partial Y}=\frac{1}{\rho} \frac{\partial P_{Y Y}}{\rho} \frac{1}{\partial Y}+\frac{\partial P_{Y}}{\rho} \frac{}{\partial X}
\end{align*}
$$

while the equation of continuity is

$$
\begin{equation*}
\frac{\partial u_{Y}}{\partial \bar{X}}+\frac{\partial u_{Y}}{\partial \bar{Y}}=0 \tag{5}
\end{equation*}
$$

On transformation to cylindincal polar co-ordatates the se equations become

$$
\begin{align*}
& u_{r} \cdot \frac{\partial v_{r}}{\partial r}+\frac{u_{\phi}}{r} \frac{\partial r}{\partial \gamma^{r}}-\frac{u^{2}}{r}=\frac{1}{p r}-\frac{\partial\left(r \cdot p_{r r}\right)}{\partial r}+\frac{1}{\rho r} \frac{\partial p_{\phi r}}{\partial \varphi^{2}}-\frac{1}{\rho r} p_{\phi \varphi} \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial\left(r \cdot u_{r}\right)}{\partial r}+\frac{\partial u_{\phi}}{\partial \phi}=0 \tag{7}
\end{equation*}
$$

Considerataon as lun.ecd to pure rada al flow; thus the whel velocaty is sero, i.e.

$$
\begin{equation*}
u_{\phi}=0 \tag{8}
\end{equation*}
$$

Equations (7) and (8) give

$$
\frac{\partial\left(r \cdot u_{r}\right)}{\partial r}=0
$$

and therefore $\left(r, u_{r}\right)$ is a function of ϕ oniy, given by say

$$
\begin{equation*}
u_{r}=\frac{g(\phi)}{r} \tag{9}
\end{equation*}
$$

An example of such a flow would bo flow whth simalar velocity profilus in a two-dimensional daffuser.

With Equations (3) and (9) Equations (6) reduce to

$$
\left.\begin{array}{rl}
u_{r} \frac{\partial u_{r}}{\partial r} & =\frac{1}{\rho r} \frac{\partial\left(r \cdot p_{r r}\right)}{\partial r}+\frac{1}{p r} \frac{\partial p_{\phi r}}{\partial \phi}-\frac{1}{p r} p_{\phi \phi} \\
0 & =\frac{\partial p_{\phi \phi}}{\partial \phi}+\frac{\partial\left(r \cdot p_{r \phi}\right)}{\partial r}+p_{\phi r}
\end{array}\right\}\left\{\begin{array}{l}
\cdots \ldots(10) \\
\ldots \ldots(b)
\end{array}\right.
$$

Equation (3) glving the full form of the turioulent stross transiorms in full to

$$
\begin{align*}
& \mathrm{p}_{\mathrm{rr}}=-\mathrm{p}+\rho \mathrm{L}^{2} \mathrm{c}_{r r} J \\
& \mathrm{p}_{\phi \dot{\prime}}=-\mathrm{p}+\rho \mathcal{L}^{2} \mathrm{e}_{\phi \varphi} J \tag{11a}\\
& \mathrm{p}_{\mathrm{r} \phi}=\mathrm{p}_{\phi \mathrm{r}}=\mathrm{L}_{L^{2}} \mathrm{e}_{\phi r^{U}}
\end{align*}
$$

wath

$$
\begin{align*}
J & =\left|\left(\frac{1}{2} e_{r r}^{2}+{c_{r \phi}}^{3}+\frac{1}{2} e_{\phi \phi}^{2}\right)^{\frac{1}{2}}\right| \tag{11~b}\\
& =\left|\left(e_{r r}^{2}+e_{r \phi}^{3}\right)^{\frac{1}{2}}\right|
\end{align*}
$$

and

$$
\left.\begin{array}{l}
e_{r r}=2 \frac{\partial u_{r}}{\partial r}=\frac{\partial u_{r}}{\partial r}-\left(\frac{1}{r} \frac{\partial u_{\phi}}{\partial \phi}+\frac{u_{r}}{r}\right) \\
e_{\phi \phi}=\frac{2}{r} \frac{\partial u_{\phi}}{\partial \phi}+\frac{2 u_{r}}{r}=\left(\frac{1}{r} \frac{\partial u_{\phi}}{\partial \dot{\phi}}+\frac{u_{r}}{r}\right)-\frac{\partial u_{r}}{\partial r} \\
e_{r \phi}=\frac{1}{r} \frac{\partial u_{r}}{\partial \phi}+\frac{\partial u_{\phi}}{\partial r}-\frac{u_{\phi}}{r}
\end{array}\right\}
$$

For flow in parallel phpes or ducts it is ain accepted relation that the mixing length L is proportional to the duct width or diameter ${ }^{8}$. Thus in radaal flow the mixung length may be expected to be proportional to the local wath or duaneter of the thow, and therefole proportional to the radius measurud from the aper or 'source' of the f'low. Hence it may be expressed

$$
\begin{equation*}
I=r \cdot \xi(\phi) \tag{12}
\end{equation*}
$$

Equations (11c) with Equations (8), (9) and (12) become

$$
\begin{aligned}
& e_{r r}=2 \frac{\partial u_{r}}{\partial r}=-\frac{2 g}{r^{3}} \\
& e_{\phi \phi}=\frac{2 u_{r}}{r}=\frac{2 g}{r^{2}} \\
& e_{r \phi}=e_{\text {irr }}=\frac{1 \partial u_{r}}{r} \frac{\varepsilon^{\prime}}{\partial \phi}=\frac{r^{3}}{r^{3}}
\end{aligned}
$$

thus, from (11b),

$$
J=\frac{1}{r^{2}}\left|\left(4 g^{2}+g^{2}\right)^{\frac{1}{2}}\right|
$$

and finally, from (11a),

$$
\begin{align*}
& p_{r r}=-p-\frac{2 \rho \xi^{2} g}{r^{2}}\left|\left(4 g^{2}+g^{\prime 2}\right)^{\frac{1}{2}}\right| \tag{13a}\\
& p_{\phi \phi}=-p+\frac{2 \rho \xi^{2} g}{r^{2} g}\left|\left(4 g^{2}+g^{\prime 2}\right)^{\frac{1}{2}}\right| \tag{130}\\
& p_{r \phi}=p_{\phi r}=\frac{\rho \xi^{2} g^{\prime}}{r^{3}}\left|\left(4 g^{2}+g^{\prime 2}\right)^{\frac{1}{2}}\right| \tag{13c}
\end{align*}
$$

With Equation (13c), Equation (10b) simplifies to

$$
\begin{equation*}
\frac{\partial p_{\phi \phi}}{\partial \phi}=0 \tag{14}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
p_{\phi \phi}=p_{\phi \phi}(r) \tag{15}
\end{equation*}
$$

1.e. $\quad p_{\phi \phi}$ Is a function of r independent of ϕ.

Similarly Equation (10a) reduces to

$$
\begin{equation*}
\frac{\partial p}{\partial r}=\frac{\rho}{r^{s}}\left[\frac{\partial}{\partial \phi}\left(\xi^{2} g^{\prime}\left|\left(4 r^{2}+g^{2}\right)^{\frac{1}{2}}\right|\right)+g^{2}\right] . \tag{16}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
\left(p_{\infty}-p\right)=\frac{\rho}{2 r^{2}}\left[\frac{\partial}{\partial \phi}\left(\zeta^{2} g^{1} \left\lvert\,\left(4, g^{2}+g^{\prime 2}\right)^{\frac{1}{2}}\right.\right)+g^{2}\right] \tag{17}
\end{equation*}
$$

where P_{∞} is the Imiting static pressure as r tends to infinaty. Equation (120) shows that

$$
\begin{equation*}
p_{\infty}=-p_{\phi \phi, \infty} \tag{18}
\end{equation*}
$$

Therefore, from Equation (15), P_{∞} is a consiant, incependent of ϕ. Now Equations (17) and (13b) grve
$\frac{2 r^{2}}{\rho}\left(\mathrm{P}_{\infty}+\mathrm{p}_{\phi \phi}\right)=\left[\frac{\partial}{\partial \phi}\left(\xi^{2} g^{\prime}\left|\left(4 \xi^{2}+g^{\prime 2}\right)^{\prime}\right|\right)+g^{2}-4 \xi^{2} \xi\left|\left(4 \xi^{2}+g^{t^{2}}\right)^{\frac{1}{2}}\right|\right]$.(19)

In this equation the left hand side as independent of ϕ and the right hand side is andependent of r. Heace both sidos hust be equal to a constant, say B^{2}.

Equating the lert haud side to ξ^{2},

$$
\begin{equation*}
p_{\phi \phi}=-\left[P_{\infty}-\frac{\rho B^{2}}{2 r^{3}}\right] \tag{20}
\end{equation*}
$$

and therofore, from Equation (150),

$$
\begin{equation*}
p=P_{\infty}-\frac{\rho B^{3}}{2^{2}}+\frac{2 \rho \tilde{E}_{2}^{2}}{r^{2}}\left|\left(4 r_{0}^{2}+g^{2}\right)^{\frac{1}{2}}\right| \tag{21}
\end{equation*}
$$

Equating the raght hand sude to B^{2},

$$
\begin{equation*}
\frac{d}{d \varphi}\left(\xi^{2} \xi^{\prime}\left|\left(4 \xi^{2}+\xi^{12}\right)^{\frac{1}{2}}\right|\right)+\xi^{2}-4 \xi^{2} \xi\left|\left(4 \xi^{2}+g^{12}\right)^{\frac{1}{2}}\right|=B^{2} \tag{22}
\end{equation*}
$$

Equation (22) is a sample durferential equation which, if the maxing length distrioution as represented by ξ is know, may be integrated for any specific boundary conditions to give $g(\phi)$ and nence the velocaty distribution. Substitiztion of the result anto Equations (20) and (21) would jield the pressure dustrioution. Equathon (21) snows time the form of the pressure distiributioñ is

$$
p=P_{\infty}-\frac{p}{2 r^{2}} \cdot(\text { function of } \phi)
$$

This completes in principle the solution for two-dimensional radial flow using the full turbulent stresses; axi-symmetric three-dunensional filow smalarly yzelds a solution. The remaznder of the paper will base 1 ts calculations on the simpler form for the turbulent stresses, although a check whll be made on the errors that thas involves.

3.0 The two-dimensional and axy-symmetric cone diffusens and free twodimensional flow

Fer completeness the solutions wall staxt acanil almost from the beganning.

In tems of cylındrical polar co-ordinates the simoler assumptions for the turbulent stresses in two-dmensional flow as quoted in Equations (1b) and (2) Decome

$$
\begin{equation*}
p_{r \phi}=p_{\phi r}=\tau=\rho L^{2} \cdot\left(\frac{1}{r} \frac{\partial u}{\partial \underline{\varphi}}\right)^{2} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{r r}=p_{\phi \phi}=-p \tag{24}
\end{equation*}
$$

The equations of motion are

$$
\begin{array}{r}
\frac{\partial u_{r}}{u_{r}} \frac{u_{\phi} \partial u_{r}}{\partial r}+\frac{u_{\phi}^{2}}{r} \frac{1}{\partial \phi}-\frac{1}{r}=\frac{\partial\left(r \cdot p_{r r}\right)}{\partial r}+\frac{1}{\partial r}-\frac{\partial p_{\phi r}}{\partial \dot{\phi}}-\frac{1}{\rho r} p_{\phi \phi} \\
u_{r} \frac{\partial u_{\phi}}{\partial r}+\frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi}+\frac{u_{r} u_{\phi}}{r}=\frac{1}{\rho r} \frac{\partial p_{\phi \phi}}{\partial \phi}+\frac{1}{\rho r} \frac{\partial\left(r \cdot p_{r \phi}\right)}{\partial r}+\frac{1}{\rho r} p_{\phi r} \\
\ldots \ldots \ldots(6)_{b 1 s}
\end{array}
$$

and the equation of continuzty is

$$
\begin{equation*}
\frac{\partial\left(r \cdot u_{r}\right)}{\partial r}+\frac{\partial u_{p}}{\partial \psi}=0 \tag{7}
\end{equation*}
$$

If all the streamlines are radial

$$
u_{\dot{\phi}} \equiv 0
$$

$$
\ldots . . .(8)_{b_{1 s}}
$$

so thut Equations (7) bis and (8) ois glve

$$
\frac{\partial\left(r \cdot u_{r}\right)}{\partial r}=0
$$

Thos integrates to give that the product (r.ur) is a function of ϕ only, guven by say

$$
u_{r}=\frac{g(\phi)}{r} \quad \ldots \ldots \ldots(9)_{b_{1 s}}
$$

With Equations (24) and (8) bis the Equations of motion (6) bis reduce to

For fully turbulent illow an a pipo or duct of diametor or wath 2 h it is lnow ${ }^{8}$ that, above a cortan Reynolds number, the ratio $\frac{\mathrm{J}}{\mathrm{h}}$ is a specific function oin $\frac{y^{\prime}}{h}$ where y^{\prime} is the distance from the wall. It whll be assumed that the sane is true of diffuser flow, y^{\prime} becoming the aistance as measured along an arc from the wall. The function wall for convonacace be written

$$
\begin{array}{rlrl}
& \frac{L}{h} & =K^{\prime} f\left(\frac{y^{\prime}}{h}\right)=K I(Y) \\
\text { where } & & K & =\left(\frac{\partial L_{1}}{\partial y^{\prime}}, y^{\prime}=0\right. \tag{26}
\end{array}
$$

$$
\begin{align*}
& u_{r} \frac{\partial u_{r}}{\partial r}=-\frac{1}{\rho} \frac{\partial p}{\partial r}+\frac{1}{\rho r} \frac{\partial p}{\partial \dot{\partial}} \tag{25}
\end{align*}
$$

and where

$$
y=\frac{y^{\prime}}{h}
$$

If the diffuser semi-ancle 3 s a

$$
\begin{align*}
& h=r a \tag{27}\\
& y=\frac{y^{\prime}}{h_{2}}=-\frac{\phi-\phi_{0}}{c_{0}}
\end{align*}
$$

and

$$
\begin{align*}
L & =r a K f(y) \tag{28}\\
& =r a K f
\end{align*}
$$

With Equations (28), (23) and (9) bis the shear stress beconos

$$
\begin{equation*}
p_{r \phi}=p_{\phi r}=\tau=\rho \alpha^{2} \frac{K^{2}}{r^{2}} f^{2} \rho^{t^{2}} \tag{29}
\end{equation*}
$$

Substituting Equation (29) the Equations of notion (25) furtrer roduce to

$$
\begin{align*}
\frac{\partial}{\partial r}\left(p+\frac{1}{2} p u_{r}^{2}\right) & =\frac{p a^{2}}{r^{3}} K^{2} \frac{\partial}{\partial \phi}\left(f^{2} g^{1^{2}}\right) ; \tag{a}\\
& \ldots \ldots(a) \tag{30}\\
0 & =-\frac{\partial p}{\partial \dot{\phi}} \quad
\end{align*}
$$

Since $u_{r} \rightarrow 0$ as $r \rightarrow \infty$ (see Equation (9) bas) Equation (30a) Integrates to

$$
\left(p+\frac{1}{2} p u_{r}^{2}-p_{\infty}\right)=-\frac{p a^{2} r^{2}}{2} \frac{\partial}{r^{2}}\left(f^{2} g^{1^{2}}\right)
$$

1.e. from Equation (9) bis

$$
\frac{2 r^{3}}{\rho} \cdot\left(P_{\infty}-p\right)=g^{2}+a^{2} K^{2} \frac{\partial}{\partial \phi}\left(f^{2} g^{t^{2}}\right)
$$

In Equation (31) the left hand side is indepenucrt of ϕ since Equation (30b) gives $\frac{\partial p}{\partial \phi}=0$, while the rught hand sude us independent of r. Fence both sides must be equal to a constant, say $g_{0}{ }^{2}$. Thus

$$
\begin{align*}
\cdot P_{\infty}-p & =\frac{\rho g_{0}^{2}}{2 r^{2}} \tag{32}\\
g^{2}+\alpha^{3} K^{2} \frac{\partial}{\partial \phi}\left(\mathrm{I}^{2} g^{2}\right) & ={g_{0}^{2}}^{2} \tag{b}
\end{align*}
$$

Equailon (32b) is a simple dufferential equation for the veloctty profile, the latter belng reprosented by $g(\phi)$, which is def uned in Equation (9) bis (preceding Equation (25)). The solving of this equation requares that the maxang length distrubution $\mathrm{L}=\mathrm{K} \mathrm{h} f$ shall be known. Equation (32a) gives the form of the uressure disuribution. By analogy wath Equation (9) bis Equation (32a) may be vrictten

$$
\begin{equation*}
\mathrm{p}+\frac{1}{2} \rho U_{0}^{2}=P_{\infty} \tag{33}
\end{equation*}
$$

Equation (32b) is conveniently integrated as follows.
The variables are changed from ϕ to y, where, from Equaiton (27)

$$
\begin{equation*}
\frac{d \phi}{d y}=a \tag{34}
\end{equation*}
$$

and from g to q, where

$$
\begin{equation*}
q=g / \mathrm{go} \tag{35}
\end{equation*}
$$

Using dashes to denote differentiation wath respect to y, the equation becomes

$$
\frac{d}{d y}\left(f^{0} q^{\prime 2}\right)=\frac{a}{K^{2}}\left(1-q^{2}\right)
$$

T. The left hand side of this equation has derived from the term $\frac{\partial \tau}{\partial y}$, while the right hand side represents $\frac{\partial}{\partial r}\left(p+\frac{1}{2} p u_{r}{ }^{2}\right)-$ as $p=P_{\infty}-\frac{1}{2} p U_{0}{ }^{2}$, and $\frac{\partial}{\partial r}\left(-U_{0}^{2}+u_{r}^{2}\right)$ is proportional to $\left(U_{0}^{2}-u_{r}^{2}\right)$, or to $\left(1-\frac{u_{r}^{2}}{U_{0}^{2}}\right)$,
I.e. to $\left(1-q^{2}\right)$.

Now the value of a which has greatest practical interest is that for which the flow is just at the point of separation, l.e. for which the friction at the wall is (everywhere) juat zero. The boundary conditions for the integration are therefore taken as

1.e.

$$
\begin{aligned}
q & =0 ; \text { at } \quad y=0 \\
\text { and } \quad f^{2} q^{\prime 2} & =0 ; \text { and at } y
\end{aligned}
$$

It is more convennent, however, to replace the conditions at $y^{\prime}=2 \mathrm{~h}$ by the conditions for symetry about the centre line $y^{\prime}=h$. The boundary condations then become

$$
\left.\left.\begin{array}{rlrl}
q & =0 & \text { at } & y \tag{37}
\end{array}\right)=0\right\}
$$

Of these three boundary conditions two are required because the differential equation is of the second order, whist the thard as required because the value of a as antially unknown.

Integration of Equation (36) between $y=0$ and $y=1$ and substitution from Equations (37) of the to boundary conditions concerning shear stress wal be seen to give the useful alternative condition:-

(On the basis of the representation following Equation (36) Equation (38a) may be regarded as the overall momentum condition, this taking a particularly sample form when, as here, the skin fraction is continuously zero. Also, since $q=\frac{u_{r}}{U_{0}}$, multiplication of Equation ($38 b$) Dy U_{0}^{2} shows that U_{0}, originally defined by Equation (33), is the root moan square value for the velocity nroíule:-

$$
\begin{equation*}
U_{0}^{2}=\vdots_{0}^{1} u_{r}^{2} d y \tag{38c}
\end{equation*}
$$

These relations are investigated further in the discussion of Section 5.4.)
Successive Integration of Equation (36) and Incorporation of the boundary conditions at $y=0$, from Equation (37), gives

$$
\begin{align*}
& f^{2} q^{\prime 2}=\frac{a}{K^{2}}\left[J-\underset{\gamma}{y} q^{2} d y\right] \\
& q=\frac{a^{2}}{K} \int_{-}^{y} \frac{\left[y-1 q^{2} d y\right]^{\frac{1}{2}}}{y^{y}} d y \tag{39}
\end{align*}
$$

It is required to solve Equation (39) using the (initially unknown) value of a such that tine resultant solution for a satisfies Equation (38). A
rapadly convergent solution by successive approxination is obtained jy putting

$$
\begin{equation*}
I=\frac{K}{a_{2}^{\frac{T}{2}}} q \tag{40}
\end{equation*}
$$

The value of a lis given, from Equation (30b), by

$$
\begin{equation*}
\frac{K^{2}}{a}=\int_{0}^{1} I^{2} d y \tag{41}
\end{equation*}
$$

while I is grven by

$$
\begin{equation*}
I=\int_{i}^{y} \frac{\left[y-\frac{a}{1^{2}} \int_{0}^{y} I^{2} d y\right]^{-\frac{1}{\sqrt{2}_{2}^{2}}}}{2} d y \tag{42}
\end{equation*}
$$

The $n^{\text {th }}$ approxamation to I, from Equation (42), gaves the $n^{\text {th }}$ approxamation to c, by substitution into Equation (41); these values substituted into the right hand side of Equation (42) gives the $(n+1)^{\text {th }}$ approxumation to I. A surtable furst approzimation to I is

$$
I_{1}=2 \mathrm{y}^{\frac{1}{2}}
$$

which is the value obtained by taking only the domanat terms for small y on the right hand side of Equation (42), $1 . e$. by omittans the term

and replacing f by y (see Equation (26)).
The method just used for finding the first approximation demonstrates also that the asymptotic behaviour near the wall is

$$
\begin{equation*}
I \sim 2 y^{2} \quad \text { as } y \rightarrow 0 \tag{4,4}
\end{equation*}
$$

The integration for small values of y is therefore performed algebralcally an order to avold numerical work near this smgularaty at $y=0$.

From Equation (4ip) and earlicr equatzoas the form of the velocity proỉlle near the wall 2 s given by

$$
\frac{u^{\prime}}{\mathrm{U}_{0}} \sim \frac{2 \alpha^{\frac{1}{2}}}{\mathrm{~K}} y^{\frac{1}{2}}=\frac{2 \alpha^{\frac{1}{2}}}{\mathrm{~K}}\left(\frac{y^{\prime}}{h}\right)^{\frac{1}{2}} \quad \ldots \ldots \quad \text { as } y^{\prime} \rightarrow 0 \ldots \ldots \ldots(45 \mathrm{a})
$$

Thus the velocity becomes asymptotically proportional to the square root of the distance y^{\prime} from the wall. From Equation (45a) the dynamic head behaves linearly wath distance from the wall:-

$$
\begin{equation*}
\frac{1}{2} p u_{r}^{2} \sim \frac{4 a}{K^{2}}\left(\frac{1}{2} p U_{0}^{2}\right)\left(\frac{y^{1}}{h}\right) \quad \cdots \cdot \quad \text { as } y^{:} \rightarrow 0 \tag{45b}
\end{equation*}
$$

Thas may be re-expressed as

$$
\begin{equation*}
\frac{1}{2} p u_{r}^{2} \sim \frac{2}{\Gamma^{3}} \frac{d p}{d r} y^{\prime} \quad \ldots \ldots \quad \text { as } y^{\prime} \rightarrow 0 \tag{45c}
\end{equation*}
$$

This expression is tho same as that obtained in Reference 9 for the turbulent sub-layer of a twrbulent boundary layer at separation. Both flows satisfy the asymptotic law

$$
\begin{equation*}
\tau \sim y^{\prime} \frac{d p}{d r} \quad \ldots \ldots \quad \text { as } y^{\prime} \rightarrow 0 \tag{45d}
\end{equation*}
$$

Equation ($45 a$) slows that the value of $\frac{\partial u_{1}}{\partial y}$ at we wall is lirinate and not zero, despite the wall shear stress veng zero. (In a configuration for which the f'low does definitely separate from the wall and a part of it reverse, as opposed to there being continuously zero skin fraction as for the present analysis, there would be a lendency for the value of $\frac{\partial u}{\partial y}$ to change discontinuously, from infinnty positive to infunzty nergative. fissociated with this there would be sudden chances in velocity across the separation position in the reglon close to the wall. Sudden changes sucn as these are a well knom feature of turbulent flow separation. In practice the discontinuaty would be softened by tle presence of viscous stresses; an aidition, as discussed in Reference 9, a new type of turbulence appears to be set up, after the conditions represonted by Equation (4.5) have been reached - but prior to actual separation, and then a zoro value for $\left(\frac{\partial u}{\partial y}\right)_{y=0}$ does seem possiblc.)

Before discussing further the results of tne anterration, the correspondung equations will be quoted for the axi-symmetric cone dutifuser as there the value of a can readily be compared with experimental results.

Proceeding by the same method as for the two-dimensional daffuser the axi-symmetric diffuser yzelds the followng equations.

Corresponding to Equation (32a):-

$$
P_{c o}-p=\frac{\rho g_{0}^{2}}{2 r^{4}}
$$

a repetition of Equation (33):-

$$
\begin{equation*}
p+\frac{1}{2} \rho U_{0}^{2}=P_{\infty} \tag{47}
\end{equation*}
$$

corresponding to Equation (36):-

$$
\begin{equation*}
\frac{d}{d y}\left[(1-y) f^{2} q^{\prime 2}\right]=\frac{2 a}{K^{2}}(1-y)\left(1-q^{3}\right) \tag{48}
\end{equation*}
$$

corresponding to Equation (38):-

$$
\int_{0}^{1}(1-y)\left(1-q^{2}\right) d y=0
$$

i.e.

$$
\begin{equation*}
\int_{6}^{1}(1-y) q^{2} d y=\frac{1}{2} \tag{49}
\end{equation*}
$$

and, correspondine to Equation (39):-

$$
q=\frac{2^{-2} w^{\frac{1}{2}}}{K} \int_{0}^{y} \frac{\left[y\left(1-\frac{y}{2}\right)-e_{i}^{y}(1-y) q^{2} d y\right]^{\frac{1}{2}}}{f(1-y)^{\frac{1}{2}}} \ldots \ldots(50)
$$

Equation (50) is roaduly solved by puiting

$$
\begin{equation*}
I=\frac{K}{2_{c}^{\frac{1}{2}}} \tag{51}
\end{equation*}
$$

so that a is edven by

$$
\begin{equation*}
\frac{K^{2}}{4 a}=\int_{0}^{1}(1-y) I^{3} d y \tag{5,2}
\end{equation*}
$$

whulc I as civen by

A suatable furst apprownetion is agoin

$$
I_{I}=2 \frac{1}{y^{2}}
$$

and the pronedure or succesezve aproxiration follows as berore.

$$
I \sim 2 y^{\frac{1}{3}} \quad \cdots \cdot \quad \text { us } y \rightarrow 0
$$

Thus the arrantotac folm of the veloczer juofle rear the wall satisfios

The above consintutes a method whereby the lingong cone ancle and the velocity profile for the separation condition of ine flow ray be calculated for any inven mamig lensth azstrabution. Altermabively tie solution ray be used an reverse so that of the lamating value of the diffucer angie is know the level oi the turbulence could be calculated. (This procedure woula nave a crood accuracy sance in the theory the turbuzenco level vailes according to only the sunuro roqu oí whe lanting cone anisle - Ior exarmle Equation (48) shows that K oc $c^{\frac{1}{2}}$.)

The furst calculation is made for the circular cone assumne tint the raving length dusirabutzon is the sume as thet charactoristice of parallel flow in pipes. This dustribution 0°, denoted I_{0}, and show in Figure 2 as curve (a), gaves successive values of ${ }^{2}$ (in tinc alcebraic process of successive approximation lieveloped above) to be $0.375,0.328$, 0.3195 and 0.3175 , so thot the end value may jo ta'con as 0.317 . with $K=0.408$ as for parallel flow thes gives $c_{1}=3.040$ so hat the total cone angle 2 a is 6.08°. The velocity grofile is shown an ingure 3 as curve (a).

For corparison the calculatacn was repeated uang tho wing lencth dustrabution succiesteä by Dönch and aikuralse't after analyses on exporzmonts on cwo-dmensional duffusers. The discrinumon has been denoted ID. in and is show in ligure 2 as curve (b). It fields a total ande of 19.30 foi the carcular cone at separaizon. The corrospondny volocity profile is shom in Figurc 3 as curve (b).

How whale an practice the total angle surtable for providang a stakle flow not over-scnsitave to anlet conditions is found to be 60 , the lanating angle fer just avoidzig ilow scparation is whom to be at leust 10°, as show in Reference 6. Since the lumeang angle a as proporizonal to K^{2}, comparison of the eancmmoinal $: 0^{\circ}$ result, wiath the 6.08° resuli obtaned above, andacates that the furbulonce level for flovi in the 10° ciroular cone must be at least $j 0$ per cent harher iran foi parailel flow, but ferhaps not so h+ch as tize

 cxpermant at is not finly conclusive as, his adation to recunang the differentainon of an expermantal velocity rrofile, ticir analysis unvolves a small duffexence of larce cuantitice. The dufieneace is partaculorly small
 the larce curnu ries ney "ee afrectec by the non-itro-dmensionalaty it the flow resultaris fori the 'end wall' Doundary layer.
turbulence level over that of parallel Mow can be explanned as follovs.
In the fully developed parallel, flow the absolute value of the turbulence as represented by ($\left.\bar{u}^{\prime} \times \mathrm{u}^{\prime}{ }^{\prime}\right)^{\bar{\Sigma}}$ remains constant, its level beang determined by the equilibrium between the production and the decay of the turbulence. In the fully developed diffuser flow $\left.\left(\overline{u^{\prime} r u^{\prime}}\right)^{\prime}\right)^{\frac{1}{2}}$ must decrease in proportz on to the mainstream speed, represented by say U_{0}, in order that $\frac{\left(\overline{u^{\prime}} r^{u^{\prime}} \theta\right)^{\frac{1}{2}}}{U_{0}}$ shall remain constant and the whole flow unsplay sumilarity. Thus the rate of decay must exceed the rate of production of turbulence. This disturbing of the previous balance requires the new steady state to be established at a higher level, as then the higher turbulence would gave an increased decay rate and hence the required excess of decay over production. Comparison of flow at one particular crosssection of a diffuser with a parallel flow of the same mean velocity as at that cross-section should therefore show the diffuscr to have the higher turbulence*.

As corollaries to the preceding argument it is to be expected iarstiy that all daffusing flows would have a somewhat higher turbulence than parallel filcw - because the balance between decay and producision has been disturbed - and secondiy that the more rapid the diffiusion the greater the increase in the turbulenco level. These corollarics are nooded when assessing the calculations in the remander of the paper since, in most instances, use is nade of the known maxing lenth dastribuilon for parallel flow. The practical conclusion is convenzently simple. It will have been noticed that the limiting angle predicted for the carcular cone when using this distribution characteristio of parallel flow was equal to the value found suitable in practice for providing satisfactor"ly stable drifusion. This correlation - between the theoretical prediction and the practical requirenent - should hold in general for those types of dinfuser whene the diffusion rate as about equal to that for the carcular cone. On the other hand for configurations achieving very rapid diffusion the prediction would be expected to represent only a lower limat to the true practical possibilaties.

As may have been seen from the Figures the shape of the velocity profile predicted on the basis of L_{0} is correct in its general form but it probably is not very accurate as regards detall (the actual experamental profile is not known); for example ID.N. is better in showing the strought middle portion usually found in experimental profiles for turbulent flows near separation. Thus diffusing flow, besides havang a higher general level of turbulence compared whth parallel flow, has also a somewhat modified shape for its turbulence distribution.

Figure 2 curve (c) represents an additional example for the carcular cone diffuser illustrating the influence of the assumption concerning maxing length. The distribution shown by the curve would lead to a limsting cone angle of 6° and a velocity profile almost the same as given by ID.N.
"This does not mean that when fully developed pipe flow enters a daffuser the absolute value of the turbulence - say $\left(\overline{u^{\prime} r} u^{\prime} \theta\right)^{\frac{1}{2}}$ - ancreases; the non-dimensional value $\frac{\left(\bar{u}^{i} r^{u_{\theta}^{T}}\right)^{\frac{1}{2}}}{U_{0}}$ would increase anıtially due to the decrease $21 U_{0}$, as pointed out in Reference 6, and it is presumably in this way that the new steady state vould be reached.

Returning now to the two-dumensional duffuser the dastribution I_{0} leads to $a=3.99^{\circ}$ glving therefore a lumitung total angle of 8°; the velocity profile is shom in Figure 4 as curve (a). The value for the total angle obtained expermentally by Nakuradse ${ }^{10}$ was between 9.6° and 10.2°. Exact comparison with experiment would be prevented by effects from the end wall boundary layers, unless special precautions were taken in the experiment.

3.1 A special "exact" solution

In the method used so far the equations of motion have been shown to transform and reduce exactly to a simple differential equation, but thas equation has had to be antegrated numerically. Jere the mixing length distribution a disposable function it would be possible to find exact solutions to the differential equation - merely by postulating the velocity distribution in some algebraic form and substituting to find the mixing length required to satisfy the equation. It so happens that one of these mixing length distributions is quite a reasonable approximation to the actual practical one and has a particularly sumple form; it is such as to gave the velocity exactly proportional to the square root of the distance from the wall. This 'special' dastributinn, denoted L_{S}, is given by

L_{S}	$=K y^{\prime}\left(1-\frac{x_{-}^{1}}{h}\right)^{\frac{1}{2}}$
I.e.	
and	$L_{S}=K h y(1-y)^{\frac{1}{2}}$

It is shown in Figure 2 as curve (d). The solutions to the dafferentual equations are as follows.

For the two-dımensional diffuser

Using $K=0.408$ the difiuser total angle becomes $2 a=9.5^{\circ}$, (as compared with 8.0° obtainea from the maxing length distribution for parallel flow).

For the axi-symnetric cone diffuser
and $\quad \frac{a}{K^{2}}=\frac{3}{8}$

Using $K=0.108$ the anfruser total angle is $2 a=7.15^{\circ}$, compared with 6.0° for the parallel flow distribution.

The velocity distributions are shom in Ingure 4 as curve (b) and an figure 3 as curve (c).

The maln exior in the form of thas maning length distribution is at the centre of the defruser; this reecion is not arportant an determaming the limiting diffuser anglo as the stress there falls to zero. The results are therefore useful when sone smple analyincal representation is requaced for the flow, and might be considered analogous to the standard power lav approximations for the turbulent boundary layer on a flat plate.

3.2 Tree tuxulence in two-chmensional Ilow

Consideration 13 now given to a two damensional purely radial flow in which the velocity is an oscillatory function of the angular position ϕ, as for example in Figure $7 a$. There are no wall boundaries present to requare a zero velocity or to restrict the turbulence and consequently it whll be referred to as 'free-two-danensional flow'. The curresponding standard parallel flow is that sonetries called "lhe turbulent wake behind a row of parallel rods"11. As in the standard theory the mixane length is assumed proportional to the wavelength of the velocaty disiribution but independent of the position on the traveform.

The equations of motion are identical wh those for the two-dimensional diffuser and only the boundary conditions and the maxing length are changed. The darferential equation for the velocity profile, correspondung to Equation (j6) for the two-dinensional diffuser, is

$$
\begin{align*}
\begin{aligned}
& \frac{d}{d y}\left(q^{\prime 2}\right)=\frac{\lambda}{2 c^{2}}\left(1-q^{2}\right) \\
& \text { where now } \quad y=\frac{y^{\prime}}{b} \\
& 2 b=\ldots . .(58 \\
& \text { and the linear ravelength of the velocaty proinle } \\
& \text { and }
\end{aligned} & =\frac{I}{b} . \tag{58}
\end{align*}
$$

The equation could be integrated direct (numerically) but for simplicity it is linearised. It then becomes simplar to the linearised equation for the standard parallel flow. Putting

$$
\begin{equation*}
q=(1+t) \tag{60}
\end{equation*}
$$

With the maximun value of t equal to $t_{\text {Mi }}$, integration of the linearised equation glves that the angular wavelength λ is

$$
\begin{align*}
& \lambda=23.1 t_{M} c^{2} \\
& \lambda=23.1 t_{M}\left(\frac{L}{b}\right)^{2} \tag{61}
\end{align*}
$$

or

Details of the mathematics of the Inearased solution and of the corresponding veloczty profile are as for the standard flow ${ }^{11}$.

A tentative comparison between the results fron the linearnsed equation and those which would be obtained from the full equation is given in Appendax I. Thas comparison suggests that when the value of $t_{\text {l }}$ is say 20 per cent, none of the effects of linearisation exceed about 3 per cent, while if suitable mean values are used (e.g. if in Equation (61) the mean of $t_{\max }$, and ($\left.-t\right)_{\max }$. is used an place of $t_{\text {main. }}$) the elfect on λ is less than 1 per cent when t_{M} is 20 per cent.

The next Section 3.2.1, which considers the stabilaty of the perıodic velocity profile, will consider also the value to be expected in practice for $\binom{L}{\stackrel{b}{L}}$, and will mention an example on this type of flow.

The result just obtained for turbulent flow may be compared with that for free two-dimensional laminar flow, which gives, for the velocity profile:-

$$
\frac{t}{t_{M}}=\sin \left(\left[\frac{2 \dot{r} u_{0}}{v}\right]^{\frac{1}{2}} \cdot \phi\right)
$$

and therefore, for the wavelength:-

$$
\begin{equation*}
\lambda=\frac{2 \Pi}{\left[\frac{2 r U_{0}}{\nu}\right]^{\frac{T}{2}}},\left(r U_{0}=\text { const. }=s_{0}\right) \tag{62}
\end{equation*}
$$

3.2 .1 (i) The value of $\left(\frac{\mathrm{L}}{\mathrm{b}}\right)$;
(11) the stability of the perioduc velocity prorale
(1) The above analysis shows that a duffusing flow is possible having a constant percentage velocity variation, of magutude proportional to the angular wavelength of the flow profile. ifrom Equation (61) the amplitude $\pm \mathrm{t}_{\mathrm{M}}$ is

$$
t_{M}=\frac{\lambda}{23.1\left(\frac{L}{D}\right)^{2}}
$$

For the corresponding parallel flow Schlichting found the value of $\frac{L_{1}}{\mathrm{~b}}$ to be $\frac{\mathrm{L}}{\mathrm{b}}=0.293$. (Reference 2 but p.169). On the other haind a somewhat similar factor obtanned for jet mixung at Göttingen has a value 0.096 . (Reference 2 but p.173). For the jet maxing the flow geometry differs from that for the wakes and a lower value of the factor mould be oxpected. Hence for wake maing it is probably conservative to assume say that $\frac{L}{b}=0.20$. (The value in practice would be expected to depena somewhat on the to tal numer of wakes as eventually the wake fllow will be bounded by a low turbulence mainstream or a solld boundary). Thus using say $\frac{L}{b}=0.20$, t_{M} becomes

$$
t_{M}=1.08 \lambda
$$

If λ is to be expressed in degreus, it is convenzent to write the final result as

$$
\begin{equation*}
t_{M}=0.019 \lambda \cdot\left(\text { degrees }^{-1}\right) \tag{63}
\end{equation*}
$$

(11) Whereas the anolysis so far gaves the solution for the flow in which the velocity profile remans sumilor at all cross sections, a flow for which the inytial value of t_{M} darfered from that given by Equation (63) could not maintain a constant t_{M} and it mibht be questioned whe cher t_{r} i
would tend towards the steady value or diverge from it. By considering the forces on say a half wavelength wath of fluzd for which $u_{r}<U_{o}$ and by supposing that t_{M} exceeds the value from Equation (63), but that otherwase the profile shape is simalar to that for samiar solutions, at is readily show that the value of $t_{M} w 11$ tend towards the steady value. In thas sense, therefore, the flow is stable. It seems lakely that the flow is stable more generally, so that any two-cimensional radial f'low 20 which the velocity is a periodic function of the aigular position will adjust itself until the velocity variation samisfies Equation (63) (or the coryesponding equation using the actual values of $\frac{\mathrm{L}}{\mathrm{b}}$).

Example

A two-dimensional diffuser has boundary layer control in order to allow the use of a 40° total angle. It is requared to fand the behaviour of the main flow when this contains wakes of a wavelength equal to a tenth of the diffuser wadh.

The value of λ is

$$
\frac{40^{\circ}}{10}=4^{\circ}
$$

From Equation (63) the steady value for $t_{M}, \frac{u_{r}-U_{0}}{U_{0}}$, is

$$
t_{M}=0.019 \times 4=8 \text { per cent }
$$

On the argument given above the flow profille is 'stable', hence the velocity varatation would tend to ± 8 per cent of the local cross section mean velocsty.

3.2.2 The behaviour of ari isolated wake in anffusize ricti

In the diffuser of a wind turnel only a sligle wake lis likely to be present. Thas single waike wall tend to spread across the flow at the same time as it adjusts itself to a certain value for $t_{p, f}$ Eventually, if the duffuser were very long, and the wake losses \perp arge compared with the losses at the wall, the wake would spread across the diffuser and the flow would become simalar to that illustrated in Figgure 5b. This flow will be discussed in Section 4.2. For the early flow, however, while the wake as stall remote from the walls, at seems probable that the arguments developed above for the perioduc velocity profile would roughly apply. The exanmle just given therefore show that even if a wind tunnel employed very rapid diffusion a narrow wake should still become attenuated by the turbulence it produces, provided it were not sufficiently close to a solid boundary for this turbulence to be mpeded.
4.0 Wade angle two-dimensional duffusers with side jets or contral wakes

Two types of wide angle diffuser with side jets wall be examined, that when the sıde jets are intended only to prevent separation of the flow from the wall, and that $2 n$ a wand tunnel whech is nowcred by anjectson.

The two types of profinle are illusinaida in fryues ba ain jo respecively'. A diffuser iail a central waice would have the iype or proiale snown in Figure ju. Such a flow would occur downstroun or the roulet' of a fain or turbine, and domstrean of a bluff model in a wa. tunnel working secizon. As wall bo sukeeted later it could also be made to occur intentionally, in order to stabilise the flow in a wide amyle diffuser. Fractacal applications would be likely to have ari-symmetile flow but for simpleaty the theory whll be only for tro-dumensional. diffusels.

Pure radial flow is again assumed, so that the velocsty piofiles are smmar at all radii.

4.1 Two-dunensional diffusers min sude jets to preven flow separation

Let the co-ordinates of the velocaty profile satisiy the various purameters shown in wirme 5a, 2.e. the values of $q=\frac{u_{r}}{U_{0}}$ axe: $q=q_{1}$ at the jet pak, which is at a diotance $y=\frac{y^{\prime}}{h}=\delta_{1}$ from the wall, and $q=c_{2}$ at $y=\delta_{2}$, which $2 s$ where the velocity $2 s$ a munumu, The tiree parts of the velocity profile separated by the lines $y=\delta_{1}$ and $y=\delta_{2}$ will eacil be treated indivaually.

The dirfuser difle may bo relatod to tho parameters quoted above and the slainlatj and power on bie , et examned.

$$
\text { 4.1.1 Tie cointral coie of } 1 \text { lov } \delta_{2} \leqslant y \leqslant 1.0
$$

This portion of tie fiom is womote from the valls ond the mutans length wall be almost constint acrosis it. Thus the free turbulence thoory of the previous Scciion 3.2 may be applied provided a surtable value is
 Section 3.2 Is

$$
\left.\Lambda=2 j .1 t_{n}: \frac{I}{\square}\right)^{2} \quad \ldots(\dot{b 1})_{\text {izs }}
$$

and the maxnmum values of it and ($-t$) fron the linas theory ne conal. ferce

$$
t_{x_{I}}=-t_{r_{1}}=\left(1-q_{2}\right)
$$

Aso, from the geomotry of the filow
 "determorated" beiore the Slow-reacned tie miection position. If the injection air weine apaliedibetoredeterionation of the profale, i.e. mon the protilo cuns? ted of constide velonty mains ircam and than bounuary laycrs, then considerations of bounary liajer control would be more apmopriate, rather as considonod, for emarple, in Refercsces 12,15 and 1 r.

```
                            - jo -
\lambda=2.(1-\delta ( )
an\alpha}\quadb=(1-\mp@subsup{o}{2}{}) i
```

Thus Equation (61) becomes

$$
\begin{align*}
2 a\left(1-\delta_{2}\right) & =\frac{23.1\left(1-q_{2}\right)}{\left(1-\delta_{2}\right)^{2}}\left(\frac{I_{1}}{1_{1}}\right)^{2} \\
\text { I.e. } & a=\frac{11.35\left(1-q_{2}\right)}{\left(1-\delta_{2}\right)^{3}}\left(\frac{L}{h}\right)^{2} \tag{06}
\end{align*}
$$

The diffuser angle is therefore debemped given δ_{2} and q_{2} only, for a subvent value of the maxing length.

Example

$$
\text { Suppose } \quad q_{2}=0.6 ; \quad \delta_{2}=0.4 j
$$

The maxing length distribution for parallel flow show an figure 2 curve (a) suggests a value for $\frac{I}{\text { in }}$ of 0.12 . Equation (66) then gives

$$
a=(11.55)(0.4) \cdot(0.12)^{2}=0.359 \mathrm{rad}
$$

The comparison of Appendix I which estimates the enroot of Inieninsation suggests that the value of a $1 \mathrm{f}^{7}$ calculated whatnot lineainsution would be with an a few per cont of:-

$$
a=0.3514 \mathrm{rad},=20.3^{\circ} ; \text { I.e. } 2 c=40.6^{\circ}
$$

This is to be compared with the value of 80 for the simple two-dinensional diffuser of section 3.0. A proportion of the 40.60 as ooupuca by the flow from the control jet. The proportion so occupied as estimated later to be just over 5 per cent.

4.1.2 The part of the proinle between the jet peat and the velocity minimum

This region is defied by $\delta_{1} \leqslant y \leqslant \delta_{2}$. Relacions are required in order to determine δ_{1} and g_{1} given δ_{2} and d_{2}.

Since in this region of the flow the velocity gradient $\frac{\partial u}{\partial y}$ is negative the basic equation for shear stress

$$
\begin{equation*}
\tau=\rho L^{2}\left(\frac{\partial u}{\partial Y}\right)\left|\frac{\partial u}{\partial Y}\right| \tag{1a}
\end{equation*}
$$

now becomes

$$
\begin{equation*}
\tau=-\rho L^{2}\left(\frac{\partial u}{\partial \bar{Y}}\right)^{2}, \text { for }\left(\frac{\partial u}{\partial Y}\right)<0 \tag{67}
\end{equation*}
$$

The motion beang two-dimensional and radial from the vertex the equations of motion must reduce to the simple difcerential equation of Section j.0, except f'o a change of sign. Thus

$$
\begin{equation*}
\frac{d}{d y}\left(f^{2} q^{\prime 2}\right)=-\frac{a}{K^{2}}\left(1-q^{3}\right) \tag{68}
\end{equation*}
$$

where

$$
q=\frac{u^{u}}{U_{0}}, y=\frac{y^{t}}{h}
$$

and the maxing length is

$$
L=K h f ; f=f(y)
$$

In order to be able to obtain a result algebrazcally at is assumed that tho maxing length is proportional to the distance from the wall. Then
and

$$
\begin{aligned}
& L=K y^{:}=K h y \\
& f=y
\end{aligned}
$$

For convenzence the variable y is replaced by η given by

$$
\begin{equation*}
\eta=\frac{y}{\delta_{2}} \tag{70}
\end{equation*}
$$

and then equation (68) reduces to

$$
\begin{equation*}
\frac{d}{d \eta}\left(\eta^{2} q^{1^{2}}\right)=-\frac{\alpha \delta_{3}^{2}}{K^{2}}\left(1-q^{2}\right) \tag{71}
\end{equation*}
$$

where q^{\prime} now represents $\frac{d q}{d \eta}$. Since $\frac{d q}{d \eta}$ is zero at $\eta=\frac{\delta_{1}}{\delta^{2}}$ and at $\eta=1$ integration of Equation (71) gives that the overall condition to be satisfied is:-

$$
\begin{equation*}
\vdots_{\frac{\delta_{1}}{\delta_{2}}}^{1}\left(1-q^{2}\right) d \eta=0 \tag{72}
\end{equation*}
$$

The solution to (71) may be found reasonably conveniently as follows:Let γ be the root of the associated equation

$$
\begin{equation*}
\frac{d}{d \eta}\left(\eta^{2} \gamma^{\prime^{2}}\right)=-\frac{\alpha \delta_{3}}{K^{2}}\left(1-q_{3}^{2}\right) \tag{73}
\end{equation*}
$$

where the variable term q^{2} on the right hand side of Equation (71) has been replaced by $q_{2}{ }^{2}$, the value at $\eta=1$. Successive integration between the limits η and 1 (these limits are chosen as Equation (73) will not permit $\frac{d \gamma}{d \eta}$ being zero at $\eta=\frac{\delta_{1}}{\delta_{2}}$, ir a real solution is postulated between $\eta=\frac{\delta_{1}}{\delta_{2}}$ and $\eta=1$ having $\frac{d_{y}}{d_{\eta}}=0$ at $\eta=1$) gives

$$
\begin{equation*}
\gamma=q_{2}+\left[\frac{a \delta_{2}}{K^{2}}\left(1-q_{n}{ }^{a}\right)\right]^{\frac{1}{2}} \int_{\eta}^{1} \frac{(1-\eta)^{\frac{1}{2}}}{\eta} d \eta \tag{74}
\end{equation*}
$$

1.e.

$$
\begin{equation*}
r=q_{2}+\left[\frac{a \delta_{2}}{K^{2}}\left(1-q_{\partial}^{2}\right)\right]^{-\frac{1}{2}}\left[2 \operatorname{sech}^{-1} \eta^{\frac{1}{2}}-2(1-\eta)^{\frac{1}{2}}\right] \tag{75}
\end{equation*}
$$

or, putting $\mathrm{q}_{3}{ }^{2}=\left(1-\mathrm{q}_{3}{ }^{2}\right)$

$$
\begin{equation*}
\gamma=q_{2}+2 q_{3}\left(\frac{0, \delta_{2}}{K^{2}}\right)^{\frac{1}{2}}\left[\operatorname{sech}^{-1} \eta^{\frac{1}{2}}-(1-\eta)^{\frac{1}{2}}\right] \tag{77}
\end{equation*}
$$

It may then be shown that the oraginal Equation (71) has an approximate, solution:

$$
\begin{equation*}
q=\gamma+\varepsilon \tag{73a}
\end{equation*}
$$

where $\quad \varepsilon \div-\left(1+q_{2}\right) \frac{a \delta_{2}}{\mathrm{~K}^{2}} \mathrm{~F}(\eta)$
and

The differential of this solution is not sufinczently accurate for determining δ_{1}, 2.c. the value of η at whicn $\frac{d g}{d \eta}=0$, but substitution of the Equation (78) into the integral condztion (72) does provide adequate accuracy. Having thus determined the value of $\eta=\frac{\hat{\delta}_{1}}{\hat{\delta}_{2}}$, the value of q_{1} at this position is ojtanned, though not so accurately, by direct substatution anto Equation (78).

Example

The example taken for the core of the flow is continued through thas region. The data is:

$$
\begin{aligned}
\mathrm{K}=0.408 ; & g_{2}=0.6 \\
\delta_{2}=0.43 ; & G_{K^{2}}=0.910
\end{aligned}
$$

Numerical intecration of fquation (72), after substitution of the dala into Equation (78), gives $\frac{\delta_{1}}{-\delta_{2}}=0.0$, $+\delta_{1}=0.01 \mathrm{~b}$. Substitution of
$\eta=\frac{\delta_{1}}{\delta_{2}}=0.034$ into Equation (78) gives $G_{1}=1.9$ (which value will not be as accurate as that for $\frac{\delta_{1}}{\delta_{2}}$).

As $\frac{a \delta_{2}}{K^{2}}$ decreases, $\frac{\delta_{1}}{\delta_{z}}$ decreases to zero and q_{1} increases to infinity. There is a minnum value of $\frac{a \delta_{2}}{\mathrm{~K}^{2}}$ for which $\frac{\delta_{1}}{\delta_{2}}$ is real. By considering the value of $\sigma^{\prime}\left(1-\gamma^{2}\right) d \eta$ it may be shown that when $g_{2}=0.6$ this manimum value is certannly greater than 0.347 rad ; for $\mathrm{K}=0.408$ the value of ($a \delta_{2}$) must therefore exceed 3.3°.

$$
\text { 4.1.3 } \frac{\text { The jet "boundary layer" region of the profile }}{0 \leqslant y \leqslant \delta_{1}}
$$

The simple dafferential equation for the velocaty profile is solved as in the previous section to gave:

$$
\begin{equation*}
q \div q_{1}-2 q_{A}\left(\frac{a \delta_{1}}{\bar{K}^{2}}\right)^{\frac{1}{2}} T\left(\frac{y}{\delta_{1}}\right)+2 q_{1} \frac{a \delta_{q}}{K^{2}} F\left(\frac{y}{\delta_{1}}\right) \tag{79}
\end{equation*}
$$

where $q=q_{2}$ at $\frac{y}{\delta_{1}}=1$,

$$
\begin{equation*}
q_{4}{ }^{2}=q_{1}{ }^{2}-1 \tag{80a}
\end{equation*}
$$

where $F\left(\frac{y}{\delta_{1}}\right)$ is the same function, but with $\left(\frac{y}{\delta_{1}}\right)$ in place of η, as in Equation (78d), and where $T\left(\frac{y}{\delta_{1}}\right)$ is the bracketed function in Equation (77):-

$$
\begin{equation*}
T\left(\frac{y}{\delta_{1}}\right)=\left[\operatorname{sech}^{-1}\left(\frac{y}{\delta_{1}}\right)^{\frac{1}{2}}-\left(1-\frac{y}{\delta_{1}}\right)^{\frac{1}{2}}\right] \tag{80b}
\end{equation*}
$$

If the wall skim ficction is poinlive the velocity profile must asymptote at the wail to the semi-emparical form:

$$
\begin{equation*}
\frac{q}{q_{\tau}}=\frac{u}{u_{\tau}} \sim A+\frac{1}{K} \log \frac{y^{i} u_{\tau}}{\nu} \tag{81}
\end{equation*}
$$

It is found that this condition is satisfied provided the followng relation holds between the velocity at the jet peak and the dustance of the jet peak from the wall.

$$
\begin{align*}
& \frac{1+2(1-\log 2)\left(1-\frac{1}{q_{1}^{2}}\right)^{\frac{1}{2}}\left(\frac{a \delta_{1}}{K^{2}}\right)^{\frac{1}{2}}-4\left(\log c-\frac{1}{U}\right)\left(\frac{a \delta_{1}}{K^{2}}\right)}{\left(1-\frac{1}{q_{1}^{2}}\right)^{\frac{1}{2}}\left(\frac{a \delta_{1}}{K^{2}}\right)^{\frac{1}{2}}-\frac{2}{3}\left(\frac{a \delta_{1}}{K^{2}}\right)}= \\
& \text { AK+log }\left[\frac{K^{3} R_{0}}{a} q_{1}\left(\frac{a \delta_{1}}{K^{2}}\right)\left(1-\frac{1}{q_{1}^{2}}\right)^{\frac{1}{2}}\left(\frac{a \delta_{1}}{K^{2}}\right)^{\frac{1}{2}}-\frac{2 a \delta_{1}}{3} \frac{K^{2}}{\vdots}\right] \\
& \text { where } \quad R_{0}=\frac{h U_{0}}{v} \tag{82a}
\end{align*}
$$

Figure 6 expresses this relation as a series of curves of G_{1} against $\frac{a \delta_{1}}{K^{2}}$, for various values of R_{0} (from 10^{4} to 10°), when a and K are given the values 200 and 0,408 respectively. Since a occurs only in the variable $\frac{a \delta_{1}}{K^{2}}$ and in the parameter $\frac{K^{3} 2_{0}}{a}$, solutions for olher values of a may be obtanned from the curves by factoring the value chosen for P_{0}. The curves are not exact as graphacal. anterpolation has been used in their derivation from Equation (32).

Example

Further coibinuang the previous example, the data is:

$$
\left.\begin{array}{rl}
\mathrm{K} & =0.1+08 \quad ; \quad a
\end{array}\right)=20.3^{\circ}\left(\div 20^{\circ}\right) ;
$$

also the previous solution requared $q_{1}=1.9$.

Figure 6 shows that $q_{2}=1.9$ and $\frac{a \delta_{1}}{K^{2}}=0.031$ are compatible provided the Reynolds number R_{0} is 3×10^{5}. For other Reynolds numbers these values would be incopatible and the profile across the wole section would have to adjust itselfuntil a compatible system were obtained. Thus it is not possible to postulate entirely arbitrarily the inntial values say of $\hat{\delta}_{2}$ and q_{2}.

4.1.4 The stabulity of the jet

Supposing the jet suffers a slicht disturbance such that its nondumensional velocity q and its ancular waith (something greater than a δ_{1}) are affected, but its volume flow is unaffected. If it may be assumed that the volume flow is proportional to the product of q and δ_{1}, then this product would remain sensibly constani. The jet may be considered as stable if, after the disturbance, it tencs to recurc to its former ancular wath and non-dimensional velocity, and unstable if it continues to change in the same sense as the disturbance. In aralysing the jet stability it is assumed permissible to neglect the change in pressure gradient that would result from the jot disturbance having ar'ected the mann flow. It may then be argued - at sone loneth - that the jet villi be stable only if the posation of operation on the curve of q against $\frac{a \delta_{1}}{J^{2}}$, for the appropriate Reynolds number, is above (an the sense of a larcer value of q) the position where $\left(q \cdot \frac{a_{i}}{K_{1}^{2}}\right)$ is a minimum. The locus of points of minimum $q \cdot a \underset{K^{2}}{\delta_{1}}$ is shown in Figure 6 as a broken linc, this represents the stability limyt. It will be seen that for stable operation the peak jet velocity must exceed apprommately twice the velocity U_{0}, where $p+\frac{1}{2} p U_{0}{ }^{3}=P_{\infty}$, almost independently of Reynolas number.

4. 1.5 The power expended in the jet

For a uninorm velocity jet the pomer expended in the injection is equal to the product of the jet'velocity, the slot wadth, and the excess of the jet total head over the diffuser static pressure at infanity. Ir the velocity profile that has been calculated aivove the distance of the jet peak from the wall is equal to $\therefore \delta_{1}$, but the full equavalent jet wath is several tames larger than this, as nuch of the flow between $\mathcal{\delta}_{1}$ and δ_{2} would be injection air. Suppose that the equivalent jet wath is say $n h \delta_{1}$, in beang ourte large when $\frac{\delta_{1}}{\delta_{2}}$ is as smali as 0.034 as in the exarple calculated. The "power factor of injection", if this is defined as the ratio of the power expended on injection to the pover reganned in the dinfuser man flow, (excludin; injection air) tnen becomes;

$$
\begin{equation*}
\text { Power Factor }=\frac{q_{1}\left(n \delta_{1}\right)\left(q_{1}^{2}-1\right)}{\left(1-1 n \delta_{1}\right)} \tag{83}
\end{equation*}
$$

(In deriving this expression the total volume ilor, has been put equal to 2h U_{O}.)

Equat,..on (83) gives

$$
\text { Power Factor }=\frac{0.09}{(1-0.03 n)}
$$

It is estamated that n is about four for this value of δ_{1}. Thus the power expended on injection as about 40 ner cent of the pover regained in the mann flow in that length of the duffuser between the position of injection and infunzty.

In practical applications a wade angle diffuser is likely to be short, and it may not be necessary to maintain a stable jet. If desmable, the value of q_{1} used for the jet velocity could probably be much less than the stabilaty limat of 2.0 , (although the jet wath would then provaily need to be larger than in the example calculated). Moreover, Equation (83) showi that the power expended is very sensutive to q_{1}. For example the value of the product $q_{1}\left(q_{1}{ }^{2}-1\right)$ changes from 6.0 to 1.875 when q_{1} changes from 2.0 to 1.5. It seems quite likely therefore that a power expenditure on injection more in the region of 20 per cent, rather than of 40 per cent, of the power regamed in the main flow of the daffuser, would be sufficient for a short wade angle daffuser for which the velocity profile has already "deteriorated".

4.2 Two-dumensional diffusers of wind tunnels powered by injection; diffusers with central wakes - stabilised daffusers

For this type of difiruser the velocity profale is of the type shown in Fagure $5 b$, wath a maximum at $y=\delta$ and a manamum at the centre at $y=1$.

Considering thas very briefly, the central region defined by
$\delta \leqslant y<1$ may be treated by the free iurbulence theory of Section 3.2, just as for the core of the flow in the previous section. Thus, followng Equation (66),

$$
\begin{equation*}
a=\frac{11.55\left(1-q_{\operatorname{mn}}\right)}{(1-\delta)^{3}}\left(\frac{L}{h}\right)^{2} \tag{84}
\end{equation*}
$$

The region between the wall and the jet peak could be treated accurately by the method of Section 3.0 , for a given maxing length distribution, but for convenience it wall be compared with a half of a simple trodumensional duffuser. As the jet flow is close to the wall the maxang length I will be almost as great as the value $L=K y$. Consequently the mixing length for a half of a sumple diffuser will underestumate L, and it wall therefore underestimate the limitang angle, between the wall and the velocity peak, at which the jet is in the separation condition. Since the simple diffuser semı-angle is 4° the jet will not separate if (a δ) $<4^{\circ}$. (The "exact" solution of Section 3.1 would probably stall underestimate the angle so that the jet should not separate if $(a \delta)<4.75^{\circ}$.)

The stabality craterion of the previous section as not readaly applied to thas type of flow as changes in the jet would be likely to affect the pressure gradzent slgnaficantly.

Example

For

$$
\delta=0.2 \text { and } q_{\operatorname{man}}=\frac{2}{3}
$$

Higure 2 curve (a) suggests $\frac{L}{h}=0.10$
Equation (84) gives $\quad 2 c_{i}=8.6^{\circ}$ and $(\alpha \cdot \delta)=0.86^{\circ}$

The above analysis applies also to dirfusers having central wakes instead of side jets, as has been discussed in the forst paragraph of Section 4.0. This type of proinle would be obtained in a diffuser if the wake losses were comparable with the losses at the wall. An apolication of such a flow would ive to the stabilisung of a very wide angle diffuser by means of a gauze, or a turbulence grad, at entry - across only the central portion of the flow. The following example ancicates that this should be more effective than a gauze across the whole cross section.

Example

In orcier to stabilise a duffuser in which space is more important than maximuri efficiency a gauze, or grid, is placed across the central portion of the entry flow. The arrangenent is such that the characteristics of the resulting profile are roughly equavalent to

$$
\delta=0.3, q_{m+n}=\frac{1}{3}
$$

Figure 2 curve (a) suggests $\left(\frac{I}{h}\right)=0.11$. Equation (84) then gaves that the total angle of the diffuscr is $(2 a)=31.2^{\circ}$. The dıffusion is therefore about four tines as rapad as for the simple two-dimensional diffuser.

Sance $\delta=0.3$ the value of ($\alpha \cdot \delta$) $1 s 4.70$; the flow viach passes between the gauze and the wall is thus approaching the separation condition.

Use of a simple central gauze would damp the turbulence below the value assumed above. On the other hand since the duffusion is very rapid the steady state turbulence level should be very hagh, as discussed in Section 3.0. Thus if a special high turbulence grid were used in order to convert main stream velocity in the central portion of the flow into high turbulence, the turibulence would be expected to persist at a high level and the consequent cone angle could be very large - signaficantly larger than predicted above - provided care could be taken at entry.

5.0 Discussion

The discussion is concerned with certaln largely theoretical aspects of the subject.
5.1 The absolute level of turbulence and its net rate of decay

Since a knowledge of the maxang length amounts almost to a knowledge of the turbulence at is not surprising that the foregoang calculations allow estimation of the turioulence level an a daffuser. With the relation

$$
\tau=-\rho \bar{u}_{r}^{T} u_{\phi}^{T}=\rho L^{2}\left(\frac{\partial u_{r}}{\partial y^{t}}\right)^{2}
$$

the value of $\bar{u}_{r}{ }^{\prime} u^{\top} \phi$ could bo calculated dircotly by differentiatang the velocity profile and suostatutang the value of the muxasg length, Under some carcumstances at woulc be mene accurabe however to zatomate the equations of molion and obtarn, for the two-dinensuonal dirnuer,

$$
\begin{equation*}
i=-\rho \bar{u}_{r}^{\prime} \bar{u}_{q}^{2}=n U_{o}^{2} c_{y}^{i}\left(1-q^{2}\right) d y \tag{SE}
\end{equation*}
$$

thus employang an antegral of the volocziy profile. Sunsurutaon 0.1 $\therefore=\left(2 J^{-\frac{1}{2}}\right.$, as obtained in Section 3.1, Is wlequate for shownth tho main ivehaviour. Thas gives

$$
\begin{equation*}
-\bar{u}_{2} \bar{u}_{\phi}=U_{0}^{2} a y(1-y) \tag{87}
\end{equation*}
$$

so that the maximun value of $\left|\overrightarrow{u_{r}^{\prime}} \bar{u}_{i}^{\prime}\right|$ across the section is at the position $\mathrm{y}=\frac{1}{2}$, incre

$$
\begin{equation*}
\left|u_{1}^{\prime} u_{\phi}^{1}\right|_{\text {man. }}=\vec{f} U_{v}^{2} u \tag{C8}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|u_{x}^{1} u_{\phi}^{T}\right|_{\operatorname{rax}}^{\frac{1}{2}}=\frac{U_{0}}{2} a^{\frac{1}{2}} \tag{80}
\end{equation*}
$$

If, for ewamble, $2 a$ wore 8°, as obtamed in fectıon 3.0 when using the inxing leagth distrum tion for parallel flow, Equation (89) would give

$$
\begin{equation*}
\left|u_{r}^{\prime} \bar{u}_{p}^{\prime}\right|_{\max }^{\prime}=0.14 \cdot v_{0} . \tag{90}
\end{equation*}
$$

For tae axi-symmetric diffuser

$$
\begin{equation*}
-\widetilde{u}_{x}^{T} u_{\phi}^{i}=2 U_{0}^{2} c y(1-y) \tag{21}
\end{equation*}
$$

and for $2 a=6^{\circ}$ as obtaned in Section 3.0 (again minh the parallel flow rixumg Iensth),

$$
\begin{equation*}
\left|\bar{u}_{r}^{\prime} u_{\phi}^{1}\right|_{\max }^{t}=0.16 U_{0} . \tag{92}
\end{equation*}
$$

 would be approxinately 15 per cent of the root mean square velocity U_{0} at that socilon. That would becone 20 for cont af the achul cratical ande

Is 10° for the axi-symetric direuser, and say 14° sor the tro-dimensional unfluser.

As discusced earlien not only tie absoluce level of turbulence but also the net raie of decay may be calculated orce the limptang core angle us known. The darierence from pipe flow is that in the latter tare net rate of decay for any section as a whole is sero. From the derivation above, or morely by postulatine, samplurity betweon the turbulent eddy velouities and the main radial velocity, tho turbulesce level deciedses an proportaon with
 tro-dimensional dinfuser and to $\frac{1}{f^{2}}$ for the axz-symatime difirser. Thus for any porizon of the $f l u n d$ preancon could be rake for the not rate of

This net rate of decay afdects the balance bedmon the decay and the procuction ori turbulence and honce influences the turbulence livel in the steady sta'ce, as inscussed in Section j. O.
5.2 The magnitude of the ermors movolved in usin one sari ler foit for the turbutent stresses

In using the simpler form for the turbulent o. 'Reynolds stresses', ュ.e.,

$$
\tau_{X Y}=\rho I^{2}\left|\frac{\partial u}{\partial \Psi}\right|\left(\frac{\partial u}{\partial \Psi}\right)
$$

$$
\cdots \cdots \cdots(1 a)_{b i s}
$$

and

$$
p_{X X}=p_{Y Y}=-p
$$

$$
\cdots, \ldots . .(2)_{\text {2.15 }}
$$

two chanes have beer have from the proposed more accurate rorm, which was as follows:-

$$
\begin{aligned}
& p_{M}=-p+p_{i}^{2} J e_{\alpha L^{\prime}} \\
& P_{Y Y}=-2+\mu^{2} I e_{-Y} \\
& p_{X Y}=p_{Y I}=p_{I} A_{X} \\
& \left.J=\left\lvert\,\left(\frac{1}{2} \mathrm{e}_{X X}{ }^{2}+e_{X Y}^{2}+\frac{1}{2} \mathrm{e}_{Y Y}\right)^{2}\right.\right) \left.^{\frac{1}{2}} \right\rvert\, \\
& =\left|\left(e_{X X X}^{2}+e_{X Y}^{2}\right)^{\frac{1}{2}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& e_{X X}=2 \frac{\partial u_{X}}{\partial X}=\frac{\partial u_{X}}{\partial X}-\frac{\partial u_{Y}}{\partial Y} \\
& e_{Y Y}=2 \frac{\partial u_{Y}}{\partial Y}=\frac{\partial u_{Y}}{\partial Y}-\frac{\partial u_{X}}{\partial X}=-e_{X X} \\
& e_{X Y}=e_{Y X}=\frac{\partial u_{X}}{\partial Y}+\frac{\partial u_{Y}}{\partial X}
\end{aligned}
$$

The change in the shear stress is to replace J by $\frac{\partial u}{\partial Y}$; the change in the normal stress is to omit the terms such as $\mathrm{LI}^{2} \mathrm{e}_{\mathrm{yX}} \mathrm{J}$, thereby umplying that the normal stresses are each cqual to minus the static pressure. The simplifications amount to assumang that the rates of tensile $\operatorname{strazn} \frac{\partial u_{u}}{\partial X}$ and $\frac{\partial u_{Y}}{\partial \Psi}$, and the rate of cross shearing strann $\frac{\partial u_{Y}}{\partial X}$, are small compared with the lonsítuainal shearang strain $\frac{\partial u x}{\partial Y}$.

Most turibulent flows have become turbulent because of the instabilaty of a large shoaring velocity in the lamanar flows from which they derive. A large shearing veloch oy 1 a sicall present after the transition has taken place so that generally turbulent flows are flows with high shear. Since the axes are convontionally chosen so that the high shear is represented by $\frac{\partial u_{X}}{\partial Y}$, (or $\frac{\partial u_{r}}{\partial \phi}$), this becomes the dommant term and the simplifications are reasonably justifıed. Some of the effects of the simplification inll be investagated for the two-damensional diffuser.

In the two-dmensional radial flows considered the static pressure predicted by the simpler theory has been constant at any given radaus. The result using the more exact theory is that the normal stress $p_{\phi \rho}$ is constant, as gaven by Equation (14). On the latter theory the variation of static pressure across the section would be, (from Equation (11)),

$$
\begin{align*}
\delta p & =-\delta p_{\phi \phi}+\delta\left(\rho L^{2} e_{\phi \phi} J\right) \tag{93}\\
& =0+\delta\left(\rho L^{a} e_{\phi \phi} J\right) \\
& =\delta\left(\rho L^{2} e_{\phi \phi} e_{r \phi}\right)
\end{align*}
$$

i.e.

$$
\begin{equation*}
\delta p \lll\left(2-\rho L^{2} \frac{u_{r}}{r^{2}} \frac{\partial u r}{\partial \phi}\right) \tag{94}
\end{equation*}
$$

Making use of the special solution of Section 3.1 the maximum value of this static pressure variation is

$$
\begin{align*}
(\delta p)_{\max .} & \div \frac{1}{2} \rho U_{0}^{2} \cdot \frac{16}{2} \frac{K^{2}}{2 j}- \\
& \div 0.007\left(\frac{1}{2} \rho U_{0}^{2}\right) \tag{95}
\end{align*}
$$

Thus, for the separation flow, the variation of static pressure across any section is given as zero by the approximate theory, but as just under 1 per cent of the section mean dynamic head by the more accurate theory.

Similarly the ratio of the shear stress, $p_{r \phi}$, of the more accurate theory, to the shear stress τ of the sampler theory, for a given value of the maxing length L, is

$$
\begin{equation*}
\frac{p_{r \phi}}{\tau}=\left[1+\left(\frac{2 r \frac{\partial u_{r}}{\partial r}}{-\frac{\partial u_{r}}{\partial \underline{\varphi}}}\right)^{2}\right]^{\frac{1}{2}} \tag{96}
\end{equation*}
$$

At the peaks of velocity this ratio locally tends to infinity. Whereas, using τ, the profile asymptotes to a $3 / 2$ power law at the peak, using pro the asymptotic form is a square law (1.e. If (δu_{p}) and ($\delta \mathrm{y}$) are the departures from the values at the peak, the profiles corresponding to the two assumptions satisfy respectively: $\left(\delta u_{r}\right) \propto(\delta y)^{3 / 2}$, and $\left.\left(\delta u_{r}\right) \propto(\delta y)^{2}\right)$. For fire e turbulence the mail value of $p_{r \phi}$ is about 10 per cent higher than that of τ. This could presumably be absorbed into the empirical value for the mixing length. In diffusers the difference is less than this 10 per cent.

5.3 Similarity wi viscous and turbulent stresses

If in any 17 ow the stresses are made up of both turbulent and viscous components then for it to be possible for the velocity profiles to be strictly similar at say all radial stations there must be "dimensional cormpatibility" between the turbulent and viscous components. In particular the ratio of the two components at any point on the profile must be the same at all radial stations, i.e., the ratio must be independent of the radius. The distensions of the ratio of the turbulent to the viscous shear stress are given by:

$$
\begin{aligned}
\frac{\text { turbulent stress }}{\text { viscous stress }} & =\frac{\rho L^{2}\left(\frac{\partial u_{r}}{\partial y^{\prime}}\right)^{2}}{\mu\left(\frac{\partial u_{r}}{\partial y^{1}}\right)} \\
& =\frac{L^{2}}{\nu} \frac{\partial u_{r}}{\partial y^{i}}
\end{aligned}
$$

For radial flow wh similarıty

$$
u_{r}=\frac{\mathcal{S}(\phi)}{r^{1}}
$$

> where $n=1$ for two-dmensional flow
> and $n=2$ for axu-symetric ilow.

Also

$$
y^{\prime}=r \phi, \text { 2.e. } \frac{\partial}{\partial y^{i}}=\frac{1}{r} \frac{\partial}{\partial \phi}
$$

and

$$
L=K h r=K r a f
$$

hence
$\frac{\text { turbulent stress }}{\text { viscous } \operatorname{stress}}=\left(\frac{K^{2} \alpha^{2} f^{2} g^{1}}{\nu}\right) r^{1-n}$

Thus the ratio is indevendent of the radius only if $n=1,1, e$, only for the two-dimensional flow and not for the axi-symmetric flow. This dufficulty has not appeared in the present paper as in the main analysis only turbulent stresses have been considered, a piocedure which has been possible vecause the analysis has been restracted to flow at tne separation condition. For that cordition it happens that a realistic solution can be obtained independently of viscosity, even at the wall, because in the region where viscosity is usually ampertant, $1 . e$. In the viscous sub-layer close to the wall, the stress is eather semo of very small.

Fox condztions othos than wath the ilow just at sepuration the usurl logarathenc behaviour would occur at the wall. Beang a function of jeynolds number tins would give similarity only for two-dumensicnal floor. It is possible as in Keference 1 to obtain approximate suralarity in axi-3ymmetric flow if the Reynolds mumber variation is not excessive; the keynolas number along the difruser is inversely proportional to the radius.

The above suggests that the separation condation for the axu-symmetric cone is particularly suited to investigations into turbulent filow, quite apart fiom the practical interest associated whth ine limiting rate of flovk diffusion. For flows other than at separation ax.-symnetric rilow does not have strict similarity and thus analysis is difficult; for tro-dimensional flow the end wall boundary layers would either complacate the expermment or complicate comparison with theory.

5.4 Some 1umitations on the flow

5.4.1 The pressure gradnent and the root rea sruare velocity

In the analyser of the preceinns sectrons the velocstor U_{0} has been defined by the Bernoulla equation type of relaliensinp:

$$
\mathrm{p}+\frac{1}{2} p U_{0}^{2}=\text { consi. }=\mathrm{P}_{\infty} \quad \ldots \ldots \ldots(33)_{\mathrm{bIs}}
$$

It is found (Equation (38c)) tatat for flows at the separation condition U_{0} becomes the section root mean square velocity.

Physucally the above 3 s because at the separation ooncition we skan frection and hence the externally djplied snoar iorce is zero, and so the momentum derivation of the Bernoulla equation, i.e.

$$
d p=-p u d u
$$

must apply, not locally, but if the quantiones are sumed across the section:-

$$
\begin{equation*}
\vdots_{A} \quad \partial \quad \lambda A=-\quad \vdots \quad \rho u_{r} d u_{x} \bar{A} A \tag{98}
\end{equation*}
$$

where $d A$ is an element of the sectional area A. Sance the pressure is constant across the section

$$
A d_{i}=-2 \beta \int_{A} d\left(u_{Y}^{2}\right) d A
$$

Assuming that the order of opuratious may be inverted, (intuatively because there are samplar profiles at all staucons),

$$
d p=-\therefore \rho d\left(\int_{\Lambda} v_{n}^{2} \frac{d A}{Z}\right)
$$

On lategration thas becomes

$$
\begin{equation*}
p+\left.\frac{1}{2} p\right|_{A} ^{1} u_{r}^{2} \frac{d A}{A}=p_{00} \tag{99}
\end{equation*}
$$

Theresore, by comparing Iquations (33) bis and (99)

$$
\begin{equation*}
U_{0}^{2}=u_{i}^{2} \frac{d A}{A} \tag{100}
\end{equation*}
$$

In adation to being true of diffuscr flow at separation thas relation holds for the flow in any stream tube which represents a surface of zero shear stress. A further example is the illow betreen the positions of maxamum and minumum velocaty in the frce two-dimenslonal flow of Section 3.2.

If the skin fracizon is not zero the final pressure rase $1 s$ reduced and the value of U_{0} as defined by

$$
p+\frac{1}{2} p U_{0}^{2}=\text { const. }=P_{\infty} \quad \ldots \ldots \ldots(33)_{\text {bis }}
$$

would be less than the root mean square velocily across the section.

5.4.2 Types of velocity proinle

Consideratıon is again given to the value $U=U_{0}$ defined by Equation (33):-

$$
\mathrm{p}+\frac{1}{2} \rho U_{0}^{2}=\text { const. }=P_{\infty} \quad \ldots \ldots \ldots(33)_{\text {bis }}
$$

and attention is still restricied to radial flows wath sumalar velocity profales at all radil. Most of the arguments are concerned with the 'free two-aımensional flow' of Section 3.2.

In alffusing flow che pressure rase inat vill occur between station r and wifinty is equal to the value of $\frac{1}{2} p U_{0}^{2}$ at station r, from the above Equation (33), and in accoleratus clow the pressume fall that has already taken place between mimpty and station r Is equal. to $\frac{1}{2} p U_{0}^{2}$. Thus fluza which has sero net shear sorce actuns upon it (1.c. where $\frac{\partial \tau}{\partial \dot{\varphi}}$ Is Iocally zero) and which must therefore behave according to the bernoulli equation, i.e. Whth constant total head, musi have a velocity equal to U_{0}. Hence in diffusing rlow the net slear force on a prrticle or fluid of velocity greater than U_{0} must be negative, as its total head is decreasing, and the local prorile curvature wall be concave downards, i.e. concave towards U_{0}. (This is assuming that the mixing length as either constant, or that at does not vary sufincieatly for the differential of shear force to be of differenv sign from the second differential of volocils; it therefore excludes any region very close to a wall.) Similarly the net shear force on a particle of fluid of velocity less than U_{0}, but still posative, will be posituve, the velocity profile being concave upvards and towards U_{0}. Thus the velocity profile zn daffusing flow must be an oscillatory function of ϕ oscillating about the value of $U=U_{0}$. (Thas is consistent $W 1$ th the root mean scriare result of the previous Section 5.4.1.)

In accelerating flow the net shoar force on a particle of velocity greater than U_{0} must be posituve and the proille concave upwards and array from U_{0}. Hence the profile cannot be an oscalla wory function of ϕ but the velocity must ancrease contanuously, to infinity, or to a boundary, on either side of a position of minimum velocity. For a pariticle of velocity less than U_{0}, but still positive, the net shear force musi be negative and the profile concave downords and away from U_{0}. Hence the velocity still camot be a (positive) oscillatory function of G but must decrease at least to zero, or to a boundary, on eather sudc of a position of maximum veloczty.

Thus, vinle duffusing flows have velocity profiles which are oscillatory functions of ϕ, oscillating about the value U_{0}, as in Figure $7 a$, accelerating flows have velocity profiles which cannot oscillate if entarely positive, but must consist either of a semz-infinite loop enturely above U_{0}, or a loop going to zero, or to a boundary, entarely below U_{0}, as 2in ligure 7 .

Diffusing and accelerating flows combine when the amplitude of the oscillation in daffusing flow is such that the velocity locally becomes negative, and thereroie accelerating, or when the arms of the lower loop of the accelerating flow are continued to become negative, and therefore diffusing. In the latter flow the negative velocity, now a diffusing flow, will contanue negatave until it exceeds U_{0}, as only when it exceeds U_{0} may it reach a numerical maximum (as argued for difinsug flow above). After the maximum tne profile velocity will then decrease, numeracally. It has thus become an oscillatory function and one and the same thing as the oscillatory diffusing flow in which the ampletude is such that the velocity has locally become nagative. Such a profile $2 s$ illustrated in Figure Ba. If the amplitude of this inow profile increases further until the accelerating peak velocity reaches U_{0}, and tends to exceed at, the accelerating peak whll "burst", since the positive accelerating flow would not be able to have a maxumum above U_{0}. Hence the profile wall consist of a semiinfinite loop, wath the peak as a diffuciag velocity exceeding U_{0} and the tails beang infiainte and acceleroturig, as in Figure 8b.

Thus a maxed flow proifile can either be an oscillatory function of ϕ whth the duffusing peak velocity exceeding U_{0} and the accelerating peak velocity numerncally less than U_{0} (Figure 8a), or it can consist of a semim infinite loop crossing both velocities U_{o} and beanc infinate on the acceleratins side (Figure 80).

The above conclusions may be confizmed firom the sumple dufferential equation for the free two-damensional flow of Secizon 3.2. Taking diffusing velocities as positive the differential equation is

$$
\begin{equation*}
\frac{d}{d y}\left(q^{2}\right)=\frac{\lambda}{2 c^{2}}\left(1-q^{2}\right) \tag{58}
\end{equation*}
$$

Putting, wathout Imearisation,

$$
q=(1+t) \quad \ldots \ldots \ldots(60)_{\text {bis }}
$$

the equation becomes

$$
\begin{equation*}
2 t^{\prime} t^{\prime \prime}=-\frac{\lambda}{2 c^{2}}\left(2 t+t^{2}\right) \tag{101}
\end{equation*}
$$

Multaplying by t' and integrating,

$$
\frac{2 t^{3}}{3}=-\frac{\lambda}{2 c^{2}}\left(t^{2}+\frac{t^{3}}{3}\right)+\text { constant } \ldots \ldots(102)
$$

Therefore points of maxamum and minumum velocity satisfy the cuibic equation:

$$
\begin{equation*}
f(t)=t^{3}+3 t^{2}+a=0 \tag{103}
\end{equation*}
$$

Since

The ecruation is simplest when $a=0$. There $1 s$ then a double root at $t=0$, 2.e. at $u_{r}=U_{0}$. Thas corresponds to a diffusing flow of unaform velocity, and at also rercesents the lumat of the oscillatory profile where the amplitude of the oscillation has become zerc. The large negative root, when $a=0$, corıesponds to tne pealk of a semi-infanite accelerating loop. The remainder of the characteristics mentioned above may readily be obtained by traciag the behaviour of the roots oi the equation from figure 9 as the parameter 'a' is varied. The tiro larger roots, when real, must represent the peaks of an oscillatory profile (by an argument of 'continuity' from $a=0$); a value for $t>-1$ coiresponds to $u_{r}>0$ and therefore to locally diffusing radial flow, while $t<-1$ corresponds to $u_{r}<0$ and to locally accelerating radial flow.

6.0 Conclusions

(1) Fkact solutions of the equation of motion are possible for varıous types of diffuser. Application is restricted to that part or each daffuser an which the velocaty profile has attanned a constant shape.
(2) It is possible to predict the critical angle of a diffuser for just avozding flow separation provided the maxine length distributzon is know; the value of the critical angle is proportional to the square of the maxing length.
(3) It is deduced that the carcular cone diffuser just at separation has a turbulence level at least 30 per cent hagher than that of flow in a parallel pipe. jlows having more rapıd daffusion than the simple carcular cone would be expected to reach an even higher turbulence level, whale slower diffusion would correspondincly give a smaller increase in turbulence. The maximum value of $\frac{\left(u_{r}^{\prime} u_{\theta}^{\prime}\right)^{\frac{2}{2}}}{U_{0}}$ for the carcular cone drfouser at separation is at least 20 per cent.
(4) If the mixang length close to the wall increases linearly wath y the dustance from the wall, the, velocity proifle in the separation condition approaches the form $u_{r} \propto y^{2}$.
(5) The solutions suggest that, as an alternative to slde jets, a central wake may be used for increasing the maximum rate of difriusion. For a tro-dimensional diffuser a total angle considerably in excess of 30° should be attannable by either means whthout flow separation - provided precautions can be taken at the duffuser entry.
(6) For a side jet to persist a long dastance downstream Its velocity at any axial station must exceed twice the mean velocity at that station. The relative power requared for the jet as hagh, belng about 40 per cent of the power in the main part of the flow - this dpulies to a diffuser which has a fully developed profile at entry. If the duffuser is short so that persistence of the jet is not so important the power required for the jet should be much less.
(7) Even in a flow which is duffusing rapıdly a narrow wake mould be attenuated by its own turbulence. Similarly a large central wake, as from the bullet of a fan or turbine, is attenuated if the flow is of moderate diffusion angle. However, as mentioned in (5) above, a central wake, especially if produced by a high turbulence grid, could probably be used to advantage - for preventing flow separation in diffusers of very large angle.
(8) A two-dimensional radıal flow whth "free turbulence" has certain limztations on the shape of its velocity orofile. As an example the profile cannot be periodic if the maxamum diffusing velocity exceeds $2 U_{0}$, where U_{0} is defined by $p+\frac{1}{2} \rho U_{0}{ }^{2}=$ const.
(9) Although the sample form for the turbulent shear stress as conventionally ascuned in maxing lencth theory, $1 . e . \tau=\rho L^{2}\left(\frac{\partial u}{\partial Y}\right)^{2}$, is not consistent on transformation of axes, the eriors compared whth a more general form are small. In pranciple the latter form still permits solutions of the equations of motion, but the solutions using the simpler form are much more tractable.

LIST OE SYMBOLS

```
    2c= diffuser total angle
    2h= daffuser total wath along an arc, or secizon duaneter along
        an arc for the axcmsmmetric doffuser
```



```
            minamum polnt on a velocity wroflle
    y= y'/h, or }\mp@subsup{y}{}{\prime}/\textrm{b
    X, Y = corteslon co-ordmnates
    r, \phi = polar co-ordinates; r = distauce from durfuser vertex or
    from centre of radial Llow
    L = mixang length
    G}=\frac{I}{r
    K}={\frac{\partial\mp@subsup{I}{1}{\prime}}{\partialy,}\mp@subsup{)}{\mp@subsup{y}{}{\prime}=0}{\prime}=0,\mp@code{the valuc usca in most of the calculations
    I}=\frac{T}{Th
        2b = Inncar "wavelengtr", alone an arc, of a velocity prof.lle in
        free two-duremslonal ilow
    \lambda = angular waveiencth (2 b = r \lambda)
    c= L
    u}\mp@subsup{X}{}{\prime},\mp@subsup{u}{Y,}{},\=velocity components i:l d_rections X,Y, r and o.. Th
```



```
    p = static pressure
        p\mp@code{j = stress in direction j on sumface whose nomal is in direction}
```

```
P
\tau = shear stress, sumpler form
U
g = r ur or r }\mp@subsup{r}{}{2}\mp@subsup{u}{r}{}\mathrm{ , accoving as bo whethor the flow &s tio-
dimensional or axi-symmetric
g' = dufferential of gwth respect to the appropriate independent
    varialle, \phi, y', y or n
g
q = J/go = ur / Jo
t = (q-1)
tM}=\mathrm{ maximum value of t
tm}=\mathrm{ mmnmum value of t, 1.e. (-tin ) is the maxamum value of (-t)
\mp@subsup{\delta}{1}{}= value of y at che polit of waik velocity in the jet, for the
    dyffuscer which has slac gots fou preventing flow separation
\delta
    and the mann flow, for the difinser which has sade jets for
    preventing flow separation
\delta = value of y at the point of peak velocity in the jet, for the
        difíuser powered by mnjeculon
\eta=Y/\delta2
\rho = fluzd de.ssity
\mu = fluid. viscosity
\nu = fluad kinematic viscosity }=\mu/
```

```
J, e}\mp@subsup{e}{XX =tc = Symbols defined by Equations (3) and (11) and the corresponding}{\mathrm{ text }
    B = constant defmned by Equation (20)
    I = parameter defined by Equation (40)
    \gamma function defmed by Equation (73); }\mp@subsup{\gamma}{}{\prime}=\frac{d}{d\eta
    \varepsilon = dufrerence defined by Equation (78a)
    q},\mp@subsup{q}{2}{}=\mathrm{ values of q at }y=\mp@subsup{\delta}{1}{}\mathrm{ and }y=\mp@subsup{\delta}{2}{
    q}\mp@subsup{q}{3}{},\mp@subsup{q}{4}{}=\mathrm{ quantities defined by Equations (76) and (80)
    n = factor such that (nh \delta ) = equzvalent jet width
\overline{u'}
    A = cross sectional area of the flow
    \mp@subsup{g}{M}{}}=\mathrm{ maximum value of g
    g
    G=
```

		REFERTENCDS
No:-	Author (s)	Tutye etc.
1	G. A. Gourzhienko (Translation)	"Formulae for velocaty mrofilos and pressure distributions for turbulent din'fusers of small angle". N.A.C.A. TM 1137, 1939 and 1947.
2	W. F. Durand (ed.)	Aerociynamic Theory Tol.III, Section $25, \mathrm{p}, 162$. (The momentum iransfer hypothesis). Edited from Calıforma. 1943 edition. See also Ref'erence 7 but pp. 206 to 8.
3	F. Dönch	Forschungsarbeaten cies Vor. deutsch. Ing. No. 282, 1926, p. 57.
4	J. Nivkuradse	Forscnungsarbecten des Ver, deutsch. Ing. No. 289, 1929, p. 42.
5	H. Ludwelg and W. Tillmann	"Investigations of the wall shearing stress in turbulent boundary layers". N.A.C.N. Thi 1235 (translation 1950).
6	H. B. Squire	"Erperimonts on conzcal diffusers".
7	S. Goldstein (ed.)	Nodern developments in fluad aynamics. Vol.I, Chapter 5, p. 208. (The generalised version by Prandtl). Oxford Universit.r Press, 1938.
8.	S. Goldstein (cd.)	Modorn developments in fluid dynamics. Vol. I, Chapter 5, p. 208. (The generalised version by Prandti). Oxford University Press, 1938.
9 9	B. S. Strutford	The turbulent boundary layer at separation. N.G.T.E. Noto INT. 238. April, 1956.
		An exporimontal flow with zero skin friction throughout its region of prossure rise. N.G.T.E. Note NT. 245. July, 1956.
10	S. Goldsteln (ed.)	As Ref'erence 7 but Vol.II, Chapter 8, p. 372. (Limiling angle for two-aimensional difiluser).
11	S. Goldstein (ed.)	As Reference 7 but Vol.II, Cnapter 13, pp. 586 to 8 . (The turoulent wake behand a row of parallel rods).
12	H. fiagedorn and P. Ruden	Windakanaluntersuchungen an ennem JunkersDoppelflügel mat Ausblaseschlitz am Iifeck des Hauptfligels. Report by the Instatut für Aeromechanik und I'Iugtechnik der Technischen Hockschule Hannover, Lilienthal Gesellschaft Berucht A. 6is, 1938. Also avallable as vie R.A. E. Library Translation No. 442, 1953.

REFEPENCES (Cont'd)

No. Author (s)

Tzitc, etc.

13	Ph. Pozsson-guinton	"Theoretical and cxrrermental researehes on bourdary-layer cortrol." Proc. Seventil Int. Congr. Appl. Mech. Val. 2, Purt II, 1948.
14	B. S. Stratford	Unpu'slashed work on boundary layer control by injection from aurcraft gas turbine erranes. N.G.T.F., July, 1955.

APGDMTI

A tentative estmate of the efiect of linearisation on the results for two-dnonsional ruani fion wh free turbugence

The derivation witnout lancaringation results an the Equation (102) of Section 5.42,

$$
\begin{aligned}
\frac{2 t^{3}}{3}=-\frac{\lambda}{2 c^{2}}\left(t^{2}+\frac{t^{3}}{3}\right)+ & \text { const. } \\
& \ldots \ldots \ldots(102)_{\mathrm{b} L \mathrm{~s}}
\end{aligned}
$$

1.e.

$$
\begin{aligned}
& \frac{d t}{d y}=\left[-\frac{3 \lambda}{4 c^{2}}\left(t^{2}+\frac{t^{3}}{2}\right)+\text { const. }\right]^{-1} \\
& t=t_{\max }
\end{aligned}
$$

and therefore

The value of the constant in Ifquation (100) is such that the denomator becomes wero at the maximun and minmum values of 't', as shown by liquation (102) and the subsequent discussion of Section 5.4.2.

When the equation is Inearised the $\frac{t^{3}}{3}$ torm is onntted from the denominator of Equation (106). Some tentative results for the non-Incarised theory suggested by a laboured estinate of the enfects of the $\frac{t^{3}}{3}$ term are as follows. The results are gaven an tomas of the function ' i ' cefined by

$$
\begin{equation*}
u_{r}=\frac{\Im}{r} \tag{9}
\end{equation*}
$$

Let the maximum and minimum values of g be g_{M} and g_{m} respectively.
' G ' by

$$
\begin{equation*}
G=\frac{g_{M}-g_{\mathrm{M}}}{g_{\mathrm{M}}+g_{\mathrm{M}}} \tag{107}
\end{equation*}
$$

the value suggested for the angular mavelengit of the velocity profile as

$$
\lambda \div 2 j .1\left(\frac{\mathrm{~L}}{\mathrm{D}} ; \mathrm{G}\left(1+0.12 G^{2}\right)\right.
$$

while the root mean square value of g, i.e. ε_{0}, which defines the pressure rise, may be found as

$$
g_{0} \div \frac{g_{M}+g_{m}}{2}\left(1+0.17 G^{2}\right)
$$

The maximum and minimum values of t, $1 . e$. , the values def n ned by

$$
t_{M}=\left(q_{\max }-1\right)=\frac{g_{M}-g_{0}}{g_{0}}
$$

and

$$
t_{m}=-\left(1-q_{m i n}\right)=-\frac{g_{0}-\varepsilon_{m i n}}{g_{0}}
$$

become

$$
\begin{aligned}
& t_{M}=G\left(1-\frac{G}{6}-\frac{G^{2}}{6}\right) \\
& t_{m}=-G\left(1+\frac{G}{\sigma}-\frac{G^{3}}{6}\right)
\end{aligned}
$$

The angular wavelength in terms of say $\left(-t_{m}\right)$ is suggested as

$$
\lambda=\frac{23.1\left(\frac{L}{b}\right)^{i} \cdot\left(-t_{m}\right)}{\left[1+0.17\left(-t_{m}\right)-0.32\left(-t_{m}\right)^{3}\right]}
$$

[CHANGE OF AXES FROM X, Y TO $\left.X^{\prime}, Y^{\prime}\right]$

THE STRESSES ON A SMALL WEDGE OF FLUID

FIG. 2

KEY CURVE a, UNIVERSAL MIXING LENGTH DISTRIBUTION L。 CURVE b; Lon=DISTRIBUTION ACCORDING TO DONCH \&NIKURADSE CURVE c, L_{1}
CURVE $d ; L_{s}=0408 \mathrm{hy}(1-y)^{\frac{1}{2}}$
$h=$ DIFFUSER SEMI-WIDTH OR SEMI-DIAMETER

FIG. 3

DISTANCE FROM WALL (NON-DIMENS.)
KEY CURVE a; PROFILE DERIVED FROM Lo $\left(2 \alpha=6.08^{\circ}\right)$ CURVE b_{i}^{\prime} - PROFILE DERIVED FROM Lan $\left(2 \alpha=133^{9}\right)$
CURVE C; PROFILE DERIVED FROM Ls ($2 \propto=7.15^{\circ}$)

$$
\text { PROFILE ' } C \text { ' IS } \frac{u_{T}}{u_{0}}=(3 y)^{\frac{1}{2}}
$$

\therefore VARIOUS VELOCHY PROFILES FOR THE
AXI-SYMMETRIC DIFFUSER AT SEPARATION

FIG. 4

DISTANCE FROM WALLL (NON-DIMENS)
KEY CURVE a; PROFILE DERIVED FROM L。 CURVE b; PROFILE DERIVED FROM Ls PROFILE 'b' is $\frac{u_{+}}{u_{0}}=(2 y)^{\frac{1}{2}}$

VARIOUS VELOCITY PROFILES FOR THE

TWO-DIMENSIONAL DIFFUSER AT SEPARATION

FIG. 5 a A DIFFUSER WITH CONTROL BY SIDE JETS

FIG.5b DIFFUSER OF A WIND TUNNEL POWERED BY INJECTION, OR, DIFFUSER WITH A CENTRAL WAKE

TYPES OF VELOCITY PROFILES FOR DIFFUSERS WITH SIDE JETS OR A CENTRAL WAKE.

FIG. 6

DISTANCE OF JET PEAK FROM WAL (NON-DIMENS.)

$$
R_{0}=\frac{h U_{0}}{v}
$$

THE SOUTION FOR THE ‘BOUNDARY LAYER' OF THE JET.

FIG. 7

FIG.7a. DIFFUSING RADIAL FLOW

FIG.7b. ACCELERATING RADIAL FLOW

TYPES OF VELOCITY PROFILES IN FREE

TWO-DIMENSIONAL FLOW DIFFUSING FLOW

\& ACCELERATING FLOW

FIG. 8

FIG.8a PROFILE PERIODIC.

FIG. 8b PROFILE NON-PERIODIC
TYPES OF VELOCITY PROFILE IN FREE TWO-DIMENSIONAL FLOW, MIXED DIFFUSING \& ACCELERATING FLOW.

FIG. 9

THE CUBIC EQUATION FOR FREE
TWO-DIMENSIONAL RADIAL FLOW. .

Crown copyrnght reserved
Printed and published by Her Majbsty's Stationery Opfice
To be purchased from York House, Kıngsway, London w.c. 2
423 Oxford Street, London W.I P.O. Box 569, London s.E.I
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Brmingham 3
8o Chichester Street, Belfast
or through any bookseller

Prosted in Great Brtann

