A.R.C. Technical Report
C.P. No. 308

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

The Development of an Improved Diffuser for a $3 \mathrm{ft} . \times 3 \mathrm{ft}$. Wind Tunnel

By

J. B. Scott-Wilson, and D. I. T. P. Llewelyn-Davies

U.D.C. No. 533.6.071.1:533.6.011.5

Teohnical. Note No. Aero 2446
July, 1956

ROYAL ATRCRAFT ESTABLISHMENT

The Development of an Improvod Diffuser for a
3 ft $\times 3$ ft Tunncl
by
J. B. Scott-Wilson
and
D. I. T. P. Llewelyn-Davies
of Royal Aircraft Establishment, Bedford

SUMMMRY

A summary is given of the significant results of diffuser development tests made in a $4^{\prime \prime} \times 4^{\prime \prime}$ supersonic tunnel at Mach numbers from 1.4 to 2.0. The application of these results to tha design of an improved first diffuscr stage for the $3 \mathrm{ft} \times 3 \mathrm{ft}$ supersonic tunnel, is described. The design incorporates a long single wedge controbody, which divides the diffuser into two approximatcly constant arca passages. Using this improved diffusor, the pressure ratio needod to mun the tunnel at its maximum Mach number of 2.0 , is reduced from 2.04 to 1.76 .

LIST OF CONTENTS

Fage
1 Introduction 3
2 Description of the 3 ft Tunnel 3
3 Diffuser Tests in the $4^{\prime \prime} \times 4^{\prime \prime}$ Tunnel 3
4 The Design of the Balancs Section with quadrant 4
5 Tunnel Performance Measurements 5
6 Conclusions 5
References 5

IIST OF IIDUSTRATIONS

Fig.
General arrangement of tunnel circuit and auxiliaries - 3 ft $\times 3 \mathrm{ft}$ supersonic wind tunnel 1
Diagrammatic layout of balance section with calibration gear 2
Details of centrebodies used for tests in the $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel 3
Effect of centrebodies on diffuser performance $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel 4
Effect of equivalent conical semi-angle on diffuser performance $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel 5
Diagrammatic layout of balance section with quadrant 6
Tunnel periormance measurements $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel 7

The $3 \mathrm{ft} \times 3 \mathrm{ft}$ transonic and supersonic tunnel at R.A.E. is a closed circuit pressurized tunnel capable of operation at Mach mumbers from about 0.7 to 2.0. Λ feature of the design of this tunnel is the use of two easily removable sections, the "balance section", containing the suppert goar for the model sting, and the "mowile dif'fuser", inmediately downstream of the working section. The rigging of models is greatly simplificd by this arrangcment, and altermative balance sections can be used. The available length of the movable soctions however imposes a limitation on the design of a diffuser for supersonic operation; it is not possible to install a simple adjustable flap system, for example. During the first four years that the tunncl was in service only one balance section, the one designed to hold the calibration gear for the tannel ${ }^{1}$, was available, and a tomporary model support system wras installed in this section. Recently a second balanco section, with a cuadrant type of modol support systom has been completod. The interior geometry of this soction was designed as a rosult of modol tests in a $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel, to give improved efficiency as a diffuser at supersonce speec.s. In this note the significant results of the diffuser development tests in the $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel are presented, and the performance of the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel with the second balance section is compared with its carlier performance to show the gain in efficiency achieved.

2

Description of the 3 ft $\times 3$ ft Tunnel

Fig. 1 shows the general arrangement of the tunnel, the driving plant and the auxiliary machinery. For supersonic operation the working section is 3 ft square, and the Mach mumer range is from 1.3 to 2.0 . Single-sided fixed block nozzlos are used to generate the flow; nozzles are available to give working soction Mach numbers of $1.32,1.42,1.61,1.82$ and 2.00. The pressure in the tunnel circuit is variable from $1 / 20 \mathrm{th} \mathrm{atm}$. to 2 atm . absolute. The air is circulatod by two doublo ontry single stage centrim fugal compressors, which ore set in series with an intercooler. With the Mach number 2.0 nozzle the pressure ratio available at the maximum perm missible specd of the driving plant is just over 2.0. An aftercooler, located in the settling chamber is uscd to control the stagnation tomperature.

The balance section with the calibrating goar that was used for all the early running of the tunnel, is showm diogrommatically in Fig. 2. The entry and exit areas of this section are fixed by the tunnel design, and give an overall expansion rate equivilont to that of a cone of scmi-angle $2^{\circ} 22^{\prime}$. The interior linors are, however, designed to mointain a constant area passage up to the end of the calibration saddle, and then to cxpand with an oquivalont conical somimangle of $3^{\circ} 13^{\prime}$ to the exit soction.

The design of the balance section with the quadrant is described in Section 4, aftor a sumnary of the diffuscr tests in the $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel has been given.

3 Diffuser Tests in the $4^{\prime \prime} \times 4^{\prime \prime}$ Ihnnel

A brief summary is given here of the significant results of the diffuser development tests, which provided the basis of the design of the internal layout of the second balanco section for the 3 ft tumnel. These tests were made in the $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel, which is one of two small supersonic tunnels powered by the 3 ft tunncl auxiliary plant. The settiling chamber, nozzlo and vorking soction of this tunncl aro $1 / 9$ th scalo modols of tho larger tunnel. Tho first diffuscr stage, which is romovable, and to which modia fications woro made during these tosts, is not to seale, and provides a
rather nore rapid expansion, the equivalent conical semi-angle being $2^{\circ}{ }_{4} 2^{\prime}$, than the 3 ft tunnel balance section. This diffuser stage has a length of 18', and basically four straight diverging walls. The modifications made, for the results given here, were as follows:
(a) the fitting of two-dinensional centrebodies,
(b) the reduction of the angle between the walls for the first 14" of the diffuser.

In the first series of tests four centrebodies, with dimensions as shown in Fig. 3, were fitted, each vertically spanning the diffuser. $\Lambda 11$ the centrebodies were set with their leading edges $2.5^{\prime \prime}$ from the end of the working section. The wedge angle of 7042^{2} was chosen by designing centrebody C so that the diffuser free aroa at its trailing edge was the some as that at its leading edge. Centrebody D was the longest centrebody that could be satisfactorily supported in the diffuser. The pressure ratios measured vith the four centrebodies are shom in Fig. 4. These measurements mere made at a Reynolds number, based on tunnol height of about 2.0×10^{6}. These results show that large gains in performance can be achieved by using a long single wedge centrebody forming a roughly constant area passage in the diffuser. The addition of a tail wedge appears to have no large erfect on the performance.

For the second series of tests the centrebody was removed and the angle between the walls was reduced over the first $14^{\prime \prime}$ of the diffuser. Diffusers were made with equivalent conical semi-angles of this entry length of 0°, $0^{\circ} 28^{\prime}, 0^{\circ} 56^{\prime}$ and $1^{\circ} 37^{\prime}$. It the end of the entry length all the diffusers expanded to the same exit cross-section area as the basic diffuser. A fixed converging entry was not considered practical. for a diffuser required to operate at low supersonic speeds because of the risk of choking. The effect of these modifications on the pressure ratio is shown in Fig, 5. These measurements vere also made at a Rcynolds number of 2.0×10^{6}. It appears from these results that decreasing the expansion rate over the entry length inproves the efficiency at Mach numbers of 1.8 and above, the naximum efficiency being achieved with a constant area entry. At lower Mach numbers there is an optimum expansion rate, dependent on Wach mumber, for minimum pressure ratio.

Comparing the results of the se two series of tests, the long single wedge centrebody modification gives a slightly better performance at the higher mach rumbers than the best modification to the diffuser walls only, and also avoids the penalty of a loss in cificiency at low Mach mmbers.

4 The Design of the Balance Section with Quadrant

The basic steel shell, and the model support quadrant for the second bolance section had been designed and were being manufactured at the time when the $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel diffuser tests were made, but the design was such that plywood walls were to be fitted to the shell to form the interior faces of the diffuser. As a result of the $4^{\prime \prime} \times 4^{\prime \prime}$ tunnel tests it was decided that this section should be fitted with a long single wedge centrebody with the quadrant forming its leading edge. To reduce the risk of a loss in efficiency at low Mach numbers due to choking, it was decided to provide a slightly expanding passage un to the quadrant. A diagrammatic layout of this balance section is show in Fig. 6. The top and botwom walls are straight, but the sidewalls are kinked out to make the ratio of the diffuscr free area at the shoulder of the quadrant to the working section area 1.05, the equivalent conical semi-angle being $0^{\circ} 43^{\prime}$ for this part of the diffuser. The wedge fairing provides the same free area at the downstream end of the section as at the leading edge of the quadrent, diviaing the diffuser into two app-oximately constant area passages.

The tunnel performance nas been measured with both balance sections, and the results are shown in Fig. 7 as the variation of pressure ratio with Mach number. The measuremonts were made at a Reynolds number, based on tunnel height of about 12×10^{6}. The pressure ratio shown is the minimum pressure ratio required to achieve or maintain fully supersonic flow in the worlang section. The minimum pressure ratio has been determined both with increasing and decreasing pressure ratio, and no evidence of hysteresis found. The pressure ratios shown for the balance seotion with quadrant were obtained with a conical fairing as shown in Fig.6, in place of a model and sting. A bricf check has shown that with a model and sting at zero incidence, the mininum pressure ratios are reduced by about 0.01 .

The results in Fig. 7 show that a reduction in pressure ratio of 0.28 has been achieved at a Mach number of 2.00 by the use of the balance section with quadrent. At the lowest Mach number, 1.42, at which both sections were tested, the balance section with quadrant required a pressure ratio 0.04 higher than the calibration section.

Some idea of the effective blockuge caused by the quadrant and wedge was obtained by measuring the choking Mach number when the tumnel was run empty with the flat subsonic nozzIe. Under these conditions choking occurred not in the diffuser, but upstream of the working section, presumably due to overcorrection of the nozzle blocks for boundary layer growth, and it was found possible to obtain a working section Mach rumber of 1.07 .

6 ConcIusions

From the results of tests in a $4^{\prime \prime} \times 4^{\prime \prime}$ supersonic tunnel it has been found that the efficiency of a straight walled divergent diffuser, operating at Mach numbers in the range 1.4 to 2.0 can be greatily improved by fitting a long single wedge centrebody to form a roughly constant area passage along the first diffuser stage. Slightly smaller gains in efficiency were achieved by reducing the angle between the walls at the diffuser entry.

A "balance section" (first diffuser stage) fitted with a quadrant type of model support system, and a long single wedge centrebody, has been designed for the 3 ft $\times 3$ ft supersonic tunnel. Using this improved diffuser the pressure ratio needed to run the tunnel at a Mach mumber of 2.0 is reduced from 2.04 , with the earlier balance section with calibration gear, to 1.76.

REFTRHINCE

No. Author

1 Morris, D. E. \quad| Calible, eto. |
| :--- |
| of the 3 ft $\times 3$ ft tunnel. National Aeronautical |
| Estanlishment. |
| C.P. 261, September 1954. |

FIG.7. TUNNEL PERFORMANCE MEASUREMENTS. 3 FT. X 3 FT. TUNNEL.

END ELEVATION

FIG.2. DIAGRAMMATIC LAYOUT OF BALANCE SECTION WITH CALIBRATION GEAR.

FIG.3. DETAILS OF CENTRE BODIES USED FOR TESTS IN $4^{\prime \prime} \times 4^{\prime \prime}$ TUNNEL.

FIG.4. EFFECT OF CENTREBODIES ON DIFFUSER PERFORMANCE 4" $\times 4$ " TUNNEL.

PLAN VIEW OF DIFFUSER WITH $1^{\circ} 37^{\prime}$ ENTRY ANGLE

FIG.5. EFFECT OF EQUIVALENT CONICAL SEMI-ANGLE ON DIFFUSER PERFORMANCE 4"×4" TUNNEL.

FIG.7. TUNNEL PERFORMANCE MEASUREMENTS. 3FT. X 3 FT. TUNNEL.

A.R.C. Technical Report

Crow copyngh resenal
Puhhshed by
Her Majfsty's Siationery Ofric.
Torbe purchased tion
York Housc, Kingsias, London w c 2 423 Oxfurd Surci. 1andon W. 1
PO Bov 500 , Loondon s.L 1
ria Castle Stiect, Edinburgh z
$10 y \mathrm{St}$ Mary Street, Carditt
39 King Strect, Manchester 2
Towe Lanc. Bristol 1
2 Edmund Stret, Birmingham 3
80 Chumester Street, Belfart
or through any bookselle:
PRINTED IN GREAT BRITAIN

