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Summary.--Theoretical investigations have been made of the flutter of an idealised trimming tab system having 
three degrees of freedom--normal translation of the main lifting surface, rotation of the control surface and rotation 
of the tab. All the structural parameters of the system have been varied except the out-of-balance moment of the 
control surface. The cases in which the system is free from flutter have been particularly investigated. 

From these investigations criteria for the avoidance of flutter have been derived. If the structural parameters of the 
system satisfy these criteria, flutter of the system with these three degrees of freedom should be impossible. 

The resutts are applicable to trimming tabs, servo-tabs with zero follow-up ratio, and generally to all systems in 
which the tab can be regarded as connected elastically only to the control surface. 

1. l•troduction.--In f lutter  invest igat ions of control  systems in which the  tab can be regarded 
as connected elastically to t h e  control  surface only~ it has been found desirable to consider the  
following degrees of f reedom:  

(a) Normal  t ransla t ion of main  lifting surface . . . . . .  (z) 

(b) Rota t ion  of main  lifting surface . . . . . . . .  (c¢) 

(c) Rota t ion  of control  surface . . . . . . . . . .  (/3) 

(d) Rota t ion  of tab . . . . . . . . . . . .  (7) 

and  essential to consider one of the  main  lifting surface freedoms (z or ~) in addi t ion to bo th  
control  surface rotat ions (/3 and  y) it° 5. 

Ini t ia l  German invest igations by  Leiss 1 (1939) which were restr ic ted to the  control  degrees of 
f reedom (/3 and  ~)) showed tha t  the  sys tem was free from flut ter  if the  tab centre  of g rav i ty  was 
s u c  y far forward,  bu t  subsequent  exper iments  b y  Voigt and  Wal te r  2 (1941) with  three  
(z,ffi/3ientlT)and and  four degrees of f reedom and  theoret ical  invest igat ions by  the au thor  3 (1941)with  
three  degrees (z, /3 and  7) showed tha t  wi th  more than  two degrees f lut ter  could occur wi th  a far 
forward position of the centre  of g rav i ty  of the  tab. These researches followed accident  investi-  
gat ions in Germany  during the period 1939-41.  The above facts were also discovered ill this 
coun t ry  in theoret ical  investigations by  Bnx ton  and  Sharpe ~, to explain all accident  to a Mosquito 

* R.A.E. Report Structures 19, received 7th January, 1949. 
t Spring tabs are excluded from this report. 

1 
(51320) A 



aircraft fitted with an experimental g-restrictor device (involving heavy mass over-balance of the 
elevator tab) and confirmed in experiments by Seruton, Ray and Dunsdon ~ in 1945. The former 
reporO brought out new important facts on the effect of the mass-balance of the main control. 

The present report is part  of a comprehensive consideration of the flutter of tabs* and is an 
extension of the previous work of the author 3 to cover the effect of the elastic connection between 
the main lifting surface and the main control and to present the resalts in the form of a criterion 
The method used is to compare systematically the results of flutter calculations~ and then to 
find rules of a non-dimensional form which the given results satisfy. From the mathematical  
point of view, this method is comparable with the well-known method of the approximation to 
a function given by a set of points by  a special kind of analytical function with a reasonable 
number of parameters available (e.g., a polynomial). 

The degrees of freedom covered in the present report are normal translation of the wing and 
rotation of the control surface and the tab. A wide range of variation of the plan-form, mass, 
and inertia parameters of the tab and of the frequency ratios of the tab, control and lifting 
surface have been investigated and criteria developed to cover a large part  of the practical 
variation of these design parameters. General principles for the avoidance of flutter are given 
and the criteria are presented in the form of frequency ratios of the three components and the 
mass-balance of the tab (in non-dimensional form). Values for the criteria are suggested based 
on the flutter calculations with a suitable safety margin. Comparisons are made with the existing 
Collar-Sharpe criterion for spring tabs as it might be applied to trimming tabs by putt ing the 
follow-up ratio equM to zero, and the relation between the new criteria and the current official 
requirements for trimming tabs is also considered. 

2. Description of the System and the Method of Investigation.--2.1. The System and its Degrees of 
Freedom.--The system investigated (Fig. 1) is a rectangular lifting surface (referred to in short as 
a wing) of chord c~ fitted with a rectangular control surface of the same span s and chord c~ = Elc~. 
On the trailing edge of the control surface there is a rectangular cut-out; and this space is filled 
with a tab of span qs and chord ct = E2c~. 

The system incorporates the following elastic constraints : 
(i) Constraint in respect of the normal translation of the wing. 

(ii) Constraint in respect of the rotation of the control surface relative to the wing. 

(iii) Constraint in respect of the rotation of the tab relative to the main control. 

The wing is fixed against rotation. 

There are three degrees of freedom: 
(i) Degree of freedom (z) normal translation of the wing. 

(ii) Degree of freedom (/~) rotation of the control surface relative to the wing. 

(iii) Degree of freedom (~,) rotation of the tab relative to the control surtace. 

The choice of the degrees of freedom was discussed in the previous report". 

2.2. The Structural Parameters Considered.--In the author's previous report 0, the same system 
with the same degrees of freedom was investigated in regard to the possibility of flutter when the 
following structural parameters are varied (the corresponding non-dimensional parameters are 
shown for each structural parameter in curly brackets for the new notation oI the present report 
and in square brackets for the notation of tile first Ieport*). 

* Spring tabs are excluded from this report. 
t The extensive flutter calculations which are turned to account in the present report were made under the direction 

of the author at the firm of Focke-Wulf by his collaborators Herren Korte, Mewes and Sch~fer. The results have not 
hitherto been published. 
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(A) (i) 

(ii) 

(iii) 

( iv)  

(v) 

(vi) 

0ut-of-balance moment of the t a b  ({p,}, [ y ~  ~21). 

Moment of inertia of the tab ({it}, [yv%l) . 

Ratio of  the uncoupled natural  frequency of tab rotation to that  of wing translation 
• 

Moment of inertia [yv~z] of a pair of masses kinematically coupled with the tab and the 
gear ratio [~] of this connection. 

Ratio of the tab span to the wing span ({q}, [x~]) • 

Damping of the tab ({d~}, [W~/~pl/bx~co]). 

In the present paper the effect of the following structural parameters is also investigated. 

(B) (i) Ratio of the uncoupled natural  frequency of control surface rotation to that  of wing 
translation ({fdf~}, [%dn~]) . 

(ii) Moment of inertia of the control surface ({i~}, [YG~) . 

(iii) Mass of the wing ({/,}, [#1). 

(iv) Ratios of the control surface chord and of the tab chord, respectively, to the wing chord 
({E~, G}, [ ~ 1 )  • 

The structural parameters mentioned under A have all been varied again in the present paper 
except A (iv) and A (vi). 

I t  should be noted tha t  the out-of-balance moment of the control surface has not been varied ; 
the control surface is supposed to be always statically balanced. This corresponds almost exactly 
to the former German requirements, and for this reason the author has not made calculations ioi 
control surfaces which are not mass-balanced. The investigations by Buxton and Shafpe ~, 
however, provide some information on the effect of control surface mass balance. 

2.3. Choice of Non-dimensional Structural Parameters.--It is clear tha t  the results must be 
presented in a non-dimensional form if they are to be as general as possible. In the a t tempt  to 
find suitable parameters the author at first made use of the parameters introduced by Kiissner, 
but  later changed these parameters in such a way that  the results were to a large extent inde- 
pendent of the values of the ratios El, E2 of the control surface chord and the tab chord to the 
wing chord. For this purpose the Ktissner parameters tq~l, v%, ~e2, v% were replaced by the 
parameters 

u1~1 41 # 2 ~  v~2 

pc= E?; it=E?; #'= 2; i'=K?" 

In the present paper two additional non-dimensionaI constants have been found to be appropriate 
and have been introduced into the presentation of the results. The non-dimensional mass coupling 
between the degrees of freedom control surface rotation (/3) and tab rotation (~) would be, in 
Kiissner's notation, v%-k 2 ( E 1 -  E2)/~2. I t  is to be noted tha t  of the above mentioned 
parameters the two introduced by the author in his report 6, viz., 

~b~ # ~  and i ~ -  G 
- -  E22 E2" 

have been proved to be expedient. This suggests the introduction of a new non-dimensional 
parameter 

~9~ @ 2(E1 -- E2)#2cr~ 
EIEd 

8 
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For the same reason the parameter q which has been used exclusively in the previous report 
has been replaced by q = jq, where j is a function of El, E2. For particulars of this, see section 11 
and Fig. 2b. 

The non-dimensional quantities which have been introduced by the author, though not very 
complicated, are nevertheless a little more so than those already existing. In order to demon- 
strate the advantages of the new parameters, the parameter Pt may be compared with the well 
known quanti ty x in the phrase " x  per cent over mass balance ". 

Let the out-of-balance moment  of the part aft of the hinge of a tab be Mtxt. If this tab is 
x per cent over mass balanced the out-of-balance moment  of the tab is Mt xt ---- --  M#t(x/lO0) 
and according to sect ion 11, 

8 Mtx~x 
~bt = -- ~.  100. PG. cdqs 

This means that  two tabs with the same geometric form (i.e., with equal values of G, ct, q, s) and 
with the same degree x of mass balance and the same air density p can haye different values of Pt 
if the values of M,x~ are different. These different values of Mtxt may arise from the different 
kind of structure of the tab, e.g., the surface of the first tab may be covered by a metal sheet of 
uniform thickness while the second tab may have a strong torsion-tube near the hinge line, the 
surface being fabric covered. Because of these different fie values one of the tabs may flutter 
and the other not, for fit is an essential parameter, as will be shown later. 

This means that  tabs with the same value of x need not  have the same safety against flutter. 
The value x in the phrase x per cent mass balanced is, therefore, not a suitable parameter for 
characterising the flutter safety of a tab. Similar considerations apply to the corresponding 
parameter for an aileron. It will be shown later that  the non-dimensional parameters introduced 

• in this paper are generally more appropriate for the purpose of describing the flutter characteristics 
of the system. 

Besides the qualification of the new non-dimensional parameters introduced above to 
characterise the flutter capacity of the system, there is another advantage to be gained by using 
them. The author has found by experience that  the values for the parameters io and it do not 
vary very much if control surfaces or tabs for aeroplanes with similar types of construction and 
similar load factors are considered. Therefore, the flutter specialist of a firm is able to guess at an 
early stage of the design the probable values of the parameters ic and it (and thence lc and It) if 
he has made a statistical survey of the values of i~ and it for former aeroplanes designed by this 
firm. It is clear that  these values will be higher for highly loaded aeroplanes than for others. 
This is one reason why the values of the parameters i, and it are often especially high for modern 
aeroplanes. 

2.4. Range of Values oJ the Parameters Considered.--The range of values of the parameters 
which have been varied are now given. For comparison, Table 1 gives both the ranges of values 
investigated in the previous ieport 6 and the ranges of values occurring in practice, as compiled 
mainly from Focke-Wulf machines. 

TABLE 1 

Paramete r  

Stat is t ical  . .  . . . .  
Previous Repor t  G . . . .  
Present Repor t  . . . .  

E1 

0-18 to 0" 50 
0-3  

0 .2  to 0 ' 4  

4 to 50 
5.718 

5-718 to 50 

2 t o 8  
7 . 7 7 8  

1 to 7 .78  

Pc f~ 
f~ 

0 t o 2  
0 

0 t o o o  

E 2 

E1 

0"15 
0-25 

O" 13 to O-25 
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TABLE 1--continued 

P a r a m e t e r  

3 ta t i s t i ca l  . .  . .  
P rev ious  R e p o r t  G . .  
P resen t  R e p o r t  . . . .  

. .  4 - to  8 

. .  3 . 9 3 t o 1 3 . 1  

. .  1-31 ~o 13.1 

b, 

2 t o 4  
- - 1 " 2 t o + 1 . 2  

- - 4  t o  + 4  

3., 
f. 

0 t o o o  
0 t o o o  
0 t o 5  

d. 

0 to  3 × 1 0  - 2  

0 

0 . 3  to  0 . 5  
0 . 3  to  1 .0  

0 . 0 8  to  1 .0  

I t  should be noticed that  with regard to the ranges of the values of the structural parameters of 
British aircraft the ranges of values of El. i.. it are greater than could have been investigated in 
the present report, using only the availabie flutter calculations made in Germany in 1941. 

2.5. The Hypotheses (including aerodynamic assumptions) used in Calculating the Critical Speed 
of the System.--The formulae used for calculating the critical speed of the system investigated 
have been established in former work by the author ~. In deriving these formulae the usual 
assumption was made that  the theory of small oscillations would be valid. The airforces were 
calculated by strip-theory using the values of Die tzJ  for the case of a thin aerofoil with two hinged 
flaps ill an incompressible medium. The simplification sometimes made in British work that  the 
damping and stiffness derivatives may be assumed independent of frequency parameter for the 
purpose of calculating the air forces has not been made. 

2.6. Presentation of the Results.--As was shown in the previous report G it is convenient to plot 
the results in terms of V,/f,c~ = v~ instead of V,, and in terms of the ratios f~/f,, f~/f, and f,/f, 
instead of the parameters fa, f~ and f~ themselves. These ratios are all non-dimensional if the 
same system of units is used for all parameters. However, to conform to practical requirements 
V~ will be expressed in m.p.h., c~ in ft and f, in c.p.s. Then v~ will have the dimension 
(m.p.h./sec -1 It). To obtain a value of Vc in m.p.h, we have only to multiply the value of v~ given 
in the diagrams by c~ in feet and f~ in c.p.s. This product can easily be determined from the 
ground resonance test. Its normal range is 20 to 40 ft/sec. 

Dependence upon three stiuctural variables will be shown in the following manner : along each 
curve only one parameter (e.g., Pt) will be varied, while a second (e.g., f~/f,) will vary from curve to 
curve and the third (e.g., fa/f,) from one family of curves to the next. A typical family of curves 
will be denoted by 

v ~ = f ( p t  ; f-~)f~/f .=constant.  

Several such families will be denoted by 

v°=:(:, .:..:.) 'T. 'Z " 

The first argument of tile function f will therefore always denote the independent variable 
which varies along each curve, the second the parameter which varies from one curve to another, 
and the third a parameter which varies from one family of curves to another. 

3. _Flutter Characteristics of the System.--3.1. The Dependence of the Variation of Critical Speed 
with Tab Out-of-balance Moment on the Remaining Parameters (except the chord ratios El, E~). 
3.1.1. The four branches of the curve vc ----f (p~).--Amongst all the functional dependences which 
it is possible to investigate, priority has been given to the critical speed (more exactly its non- 
dimensional equivalent vc) as a function of the out-of-balance moment of the tab (more exactly 
its non-dimensional equivalent Pt), the remaining non-dimensional parameters varying from 
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curve to curve, because this relationship is the most interesting in practice. In order to s tudy the 
variation of these curves v~ = f ( p , )  with the variation of the remaining parameters it is 
convenient to mark the paiticnlar branches of the curve suitably. Consideration will, however, 
be confined to those branches in which " lower  critical speeds" are plotted ; o!lly these parts of the 
curves are important  in practice, of course, since they represent the critical speeds at which the 
system begins to flutter if the speed is increasing. (The other critical speeds are called " upper 
critical speeds " :  the system stops fluttering if such a speed is exceeded.) 

As regards their behaviour, we distinguish four branches of lower critical speeds in the curves 
under consideration. In Figs. 3 to 8 they are marked by Roman figures. It  should first be 
explained why just four branches are distinguished. 

Branch I is the only one which lies principally in the region where the centre of gravity of the 
tab is forward of its hinge. The Branches II, I I I  and IV, on the other hand, lie principally in the 
region where the centre of gravity of the tab is aft of its hinge. Differentiation of three branches 
ill the under mass-balanced region would seem to be unnecessary if the natural  frequency of the 
tab is high relative to the natural  frequencies of control surface rotation and of wing translation. 
The curves in Figs. 3d, 5f and 6 (for f / f ,  = 5) are, for example, marked with II, I n  and IV 
respectively, ollly because they have developed from different types of curves marked in tha t  
way.  Otherwise we should not have been able to distinguish between them as regards their shape. 
But  it is quite another thing when the natural  frequency of the tab is low. Then Branch U 
exhibits a resonance phenomenon if the natural  frequencies of tab rotation and control surface 
rotation coincide (Fig. 4b) while Branches n I  and IV exhibit a resonance phenomenon if the 
natural  frequencies of  tab rotation and wing translation (Figs. 3c, 4d and 5c) coincide. A 
distinction between the Branches I I I  and IV is convenient because of their behaviour when the 
natnral  frequency of the control surface is increased: on increasing the value of f~ Branch I I I  
disappears upwards in the direction of the v~-axis (Figs. 7c, d) while Branch IV approaches a 
finite curve (Fig. 7f.). (Incidentally, Branch I I I  appears only in curves for whichfa/ f ,  <~ 0-5 and 
Branch IV only an curves for which fa/f, >~ 1). Under certain conditions (e.g., f~/fa <~ 1; 
O. 5 <~ f~/f, <~ 10 ; q ---- 1 ; see Figs. 4a, b ; 5a, b, c ; 7c, d, e) Branch I is connected with Branch II  
and then a boundary between these two branches will not be defined. In Fig. 1 of the previous 
report ~ it is shown that  Branch I is connected with Branch I I I  if the moment of inertia of the tab 
is high enough. The Branches n and n I  are sometimes indirectly connected via a b ranch  of 
upper critical speeds, as for example in Fig. 3a or Fig. 8c of the present report. A summary of 
the features of all four branches is given in Table 2. 

3.1.2. Flutter frequencies.--(a) Branch I. The ratio f~/f, for all the flutter cases belonging to 
Branch I increases with increase of fa/f, (Fig. 7) ; of f / f~  (Figs. 3 to 5) or of # (Fig. 10) and with 
decrease of ic (Fig. 9), is (R. & M. 24185, Fig. 1, where there is only a small influence) and 
q (Figs. 7a,  8a). The smallest value tha t  has appeared ill the calculations for Branch I is 
f J f ,  ~ O" 33 (Fig. 3a). If f / f ,  >~ 1 and f~/fz ~< 1 then fc/fz ~ 1 (Figs. 3d, 4d, 5d, e, f). For large 
values of fa/f, the value of fc/f, Call become far greater than unity. If, for example, f~/f, ---- 10 
and f / f ,  ---- O, fc/f~ lies on Branch I between 6.8 and 8 . 6  (Fig. 7c). With increasing values of 
fa/f~ and probably small values o f f / f , ,  the flutter frequencyf~ obviously tends to the frequency of 
control surface rotation. With appropriate values of the tab frequency, the f lut ter  frequency, 
thereiore, behaves in nearly the same way as a system with the two degrees of freedom wing 
translation (z) and control surface rotation (fl) for a sufficiently large out-of-balance moment of 
the control surface. 

(b) Branch I I .  It  may  be deduced from Figs. 3, 4, 5 an(t 7 that  for , 

f, 
~ <~1, f~-"-f~ 

and for 

>1, f o - L .  

6 



This means that  the flutter frequencies behave in nearly the same way as those of a system with 
the two degrees of freedom control surface rotation (/~) and tab rotation (r) which has a sufficiently 
large mass-coupling. Though it may not be important, it should be mentioned that  in the curves 
from which the above conclusions for f~/fa > 1 were derived, f~/fi < 1 always. 

For convenience of reference in a future report, it is opportune to state here that  if the critical 
speeds on Branch II  are low, the flutter frequency fc is higher than the natural  frequency of the 
tab, but  sometimes approaches very closely to it. The same statement is true for Branch I I I  
but not for Branches I and IV. 

(c) Bramh I I I .  

and for 

It may be deduced from the Figs. 3, 4 and 7 tha t  for 

L 
]<<,1, f~ ~-- fi  

L 
Z >1, fo - -L .  

This means tha t  the flutter frequencies behave in nearly the same way as those of a system with 
the two degrees of freedom wing translation (z) tab rotation (~) which has a sufficiently large 
mass coupling. 

(d) Bramh IV.  

and for 

It  may be deduced from Figs. 5 and 6 tha t  for 

f, 

f~ 2, Z > >  fo- L. 

This means tha t  the flutter frequencies behave just as for Branch I I I  in nearly the same way as 
those of a system with the two degrees of freedom wing translation (z), tab rotation (~,) which has 
a sufficiently large mass coupling. 

3.1.3. Resoname #henomena.--There are exceptionally low values of the non-dimensional 
critical speed on Branch I iff/L = 1 and if simultaneouslyfv/fi >~ 1.2 ; fv/fa >~ 1. The minimum 
moves to the left if f~/f, increases (Figs. 5c, d, e). I t  is noteworthy that  for Branch I the 
coincidence of the two frequencies f¢ and f, alone is not sufficient. The reason is tha t  the flutter 
motion, though consisting predominantly of wing translation (z) and control surface rotation ($), 
has to be steered by a (perhaps small) tab rotation. The above-mentioned auxiliary conditions 
provide the right phase for the tab rotation. 

Branch I I I  lies very low if fa = f~ (Figs. 3, 4, 5). 

Branches I I I  and IV lie low if f~ = f, (Figs. 3c, 4d, for Branch I I I  and Fig. 5c for Branch IV). 

3.1.4. Flutter modes.--Flutter modes have not been calculated for this report, but  we can in 
several cases refer to calculations of the previous report 6. In addition, reference can be made to 
the behavionr of the flutter frequencies as mentioned in section 3.1.2 and the resonance phenomena 
as mentioned in section 3.1.3. 

(a) Bramh I. One example of flutter modes for Branch I in which the degrees of freedom wing 
translation (z) and control surface rotation (/~) are predominantly engaged is shown in the previous 
r 6 " ~ r  , ~  . . . .  eport (Fig. 2, Flutter  modes for II  ). Considering also the behavlour of the flutter frequencies 
on this branch as well as the resonance phenomenon, this type of flutter mode seems to be typical 
for this branch. I t  should, however, be emphasised that  the tab rotation, small as it may be, is 
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essential for steering this flutter motion, for flutter is not possible if the tab is not sufficiently 
over mass-balanced, or if the tab is fixed. I t  may therefore be said tha t  on Branch I the flutter 
modes are similar to the modes of a wing with an under mass-balanced control surface. The 
behaviour similar to an under  mass-balanced control surface is produced by over mass-balancing 
the tab. (In this connectionff  is well to remember the fact found by Buxton and Sharpe4 that  
the effect of over mass-balancing the tab can be eliminated by over mass-balancing the contiol 
surface.) 

(b) Branch I I .  The flutter modes given in the previous report 6 [Fig. 7, nr~/n~ = 0.22~ show 
that,  especially near resonance (fa = f~) the modes for Branch n will consist predominantly of 
control surface rotation (/~) and tab rotation (~). The behaviour of the flutter frequencies and 
the nature of the resonance phenomenon on this branch support this statement. 

(c) Branch I I I .  In the same way as under (b), it may  be concluded from the previous report 6 
(flutter modes for I), tha t  especially near resonance (f, = f~) the modes for Branch I I I  will consist 
predominantly of wing translation (z) and tab rotation (~). 

(d) Branch IV.  The behaviour of the flutter frequencies, the nature of the resonance 
phenomena and the behaviour whenfa/f, tends to infinity make it probable tha t  the flutter modes 
corresponding to the Branch IV consist predominantly of wing translation (z) and tab rotation (?), 
particularly ill the case of resonance. There are, however, no calculations of flutter modes to 
support this statement. 

3.1.5. Existence of a region free from flu#er.-=It was shown 6 that  for the casefa ---- 0 there is a 
region free from f lu t te r  in the neighbourhood of p~ = 0 if the ~¢alues of i~ and q are small enough. 
Figs. 3 to 8 show that  these ranges become smaller and smaller with increasing fa, sometimes 
disappearing entirely. However, if the value offv is increased a gap appears between the branches 
on the right side and the left side when f~/f~ exceeds the figure 1.2 (Figs. 4c, 5d). For f~/fa >~ 2 
and f~/f, ~> 2 nearly the whole region between the asymptotes is free from flutter (Figs. 3d, 4d, 
5e, f). I t  would appear that  the conditionf~/fa >~ 2 ensures that  the Branches II  or n I  are shifted 
near or to the right of the right-hand asymptote whilst the condPcionfv/f, >~ 2 has a corresponding 
effect on Branch I on the left-hand side of thelb, range (Figs. 4d, 5c). In all curves which had been 
considered for getting these conditions for a region free from flutter the condition fa/f, ~< 1 was 
operative. Because of the lack of further curves with fa/fz > 1 and fv/f, >~ 2, it is not certain 
whether the condition fa/f, ~< 1 is really necessary or not. For reasons of caution this condition 
must, however, be kept in mind. 

For sufficiently high values of f¢/f, another statement will probably be true, viz. that  the region 
between the asymptotes for which the tab c.g. is forward of the hinge will be free from flutter. 
This may be conjectured from Figs. 8e, f, but a sufficient number of calculations does not exist 
to make any  quanti tat ive statement possible. 

In  any case it can be stated that  for sufficiently high values offa/f, there are only high critical 
speeds, if any, for over mass-balanced tabs, because for f~ -+  oo this range of p~ must become 
flutter-free. 

The above mentioned conditions f~/fa >~ 2; fv/f, >~ 2; fa/f, ~< 1 are, however, sufficient to 
ensure that  the region between the asymptotes is free from flutter. (Incidentally, the first of the 
three inequalities can be omitted if the third is added because the first follows from the second and 
the third). 

The conditions for the existence of these asymptotes, and where they lie, will be investigated 
in section 3.1.7. 

If in addition to the conditionfa/f, ~< 1 only the conditionf~/f~ >~ 2 is satisfied, Branch I always 
lies, for the examples investigated in the previous report. 6 and the present report, almost entirely 
in the region in which the tab c.g. is before its hinge. In this case it can therefore be stated that  
the range between p~ ~ 0" 1 and the right hand asymptote is free from flutter if for this asymptote 
we have p~ ~ 0. ~[. 
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3.1.6. Zero critical slbeeds.--It has been shown 6 that  the critical speed may become zero* in a 
certain p,-range iffa = f v  = 0 (see Fig. 7a, Branch II). I f, orfv or both are increased from the 
value zero these zero-critical speeds will disappear, but for small values offa andf~ Branch II  will 
lie near the above mentioned range of Pt. Therefore, a knowledge of the position of the zero 
critical speeds is essential for those cases for whichfa :# 0 andf~ ~- 0. We have investigated the 
dependence of the left-hand boundary of the range of zero critical speeds on t h e  structural 
parameters. The p, values of these ' zero limits ' are plotted in the curves in Figs. 12 and 13 as 
abscissae whilst the ordinates of the curves are the non-dimensional tab span q. I t  can be seen 
from these figures that  the zero limits mo;ce into a range of greater p~ if q or is decreases or i~ 
increases. The influence was already known for it and q from the previous report 6. The influence 
of these parameters is also apparent in the curves v~ = f(p,) : the influence of i~ may be seen in 
Fig. 9 and of q in Figs. 7 and 8. The (theoretically exact) independence of the position oi the 
zero limit of the value of ~ may be seen in Fig. 10. 

8.1.7. Asymptotes defi , ing the flutter-free region.--I t  was found in section 8.1.5 that  the 
asymptotes are the boundaries of the region free from flutter if f~/f~ >~ 2 and f~/f~ ~< 1. For this 
reason it is important to consider how the position of these asymptotes depends on all parameters 
under consideration except p,, that  is, on i ,  i~, q and ~,. The other parameters have no influence 
because the position of the asymptotes is independent of the stiffness parameters. 

In the interests of accuracy it is emphasized at this point that  there are generally more than 
two asymptotes to the curves v~ = f(p~). In this report, however, we are concerned only with 
the two asymptotes which lie nearest to the v0 axis and which approach each other if q increases. 
In Figs. 10c, 14 and 15 the values of q have been plotted against those values of p~ which are the 
abscissae of the asymptotes of the curve v~ = f ( p t )  for the above mentioned values of q. The 
results are bell-shaped curves (see for example; Fig. 15a for the parameter value it = 13.1). The 
region inside the bell is stable because no flutter can be excited if the parameters (q and ibm) for 
the system lie in this region and the system has suitable values of the natural  frequencies f~, fa 
and f~, as mentioned above. 

The branch to the left of a bell-shaped curve (apart from its right-hand boundary) hardly 
depends at all on the parameter it (Fig. 14). With increasing i~ or increasing/~ it moves to the 
left (Figs. 15 and 10). From the work of Buxton ~, it is known that  this branch also moves to the 
left if ~b~ decreases (by an over mass-balance of the control surface). 

The branch on the right of a bell-shaped curve moves a little to the right if # or i~ increases. 
With increasing i~ it moves, however, to the left. By  plotting the right-hand branch against the 
.parameter P~t of the mass-coupling between control surface rotation and tab rotation (Fig. 14e) it 
is seen tha t  the dependence of these curves on i, is much less than in the corresponding curves in 
Fig. 14a. The variable more appropriate to the right-hand branch is therefore the parameter ib,t 
whilst for the left-hand branch the variable p, is on all counts the more suitable one. 

The movement of the two branches of the bell-shaped curve as described above determines the 
position of the top of the bell. The effect is tha t  these tops have a very low value of q if it is large. 
That  means that  for such values of it there may be no asymptotes of the kind considered here, if 
q is moderately large. For such values of i, and q it is not possible to obtain a range of ~b~ free 
from flutter by  choosing the values of the natural  frequencies appropriately, although the critical 
speed can, of course, theoretically be increased as much as desired by increasing the natural  
frequencies. 

3.2. 7nfluence of the Chord Ratios E1 and E~.--Although the parameters ic, it and p~ have been 
introduced instead of Kiissner's parameters 01, 0~ and #2% it will be seen that  the results still 
depend on E1 and E2 (Figs. 13a, 16a), even if the more suitable variable pc~ has been introduced 

* The branch of upper critical speeds which meets the :#,-axis at the point where the range of zero ciitical speeds 
begins (Fig. 3a) should have a vertical tangent at that  point. This follows from the fact that  the curves for Vo 2 (see 
Fig. 13 in R. & M. 24185) do not touch the p,-axis. The author is indebted for this remark to Mr. G. H. L. Buxton, 
who noticed this when translating the report. 
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for the right-hand branch (Fig. 13b). To minimise this effect a new parameter ~ =- jq is introduced 
in place of q on the following principle. Let qs be the tab span, E~c,, the tab chord, s the span 
and Elc~ the chord of the control surface of the system considered. We now choose an equivalent 
system with the same co rltrol surface span as above but  the chord ratios E (  =- 0.3 and E (  =- O. 075 
irrespective of the values of E1 and E2. The tab span" ~s will be determined in such a way that  
for bo th  systems the following ratio is equal; aerodynamic moment about the control surface 
hinge per unit angle between the tab ~ind the control surface (b3 in aerodynamics notation) over 
the corresponding moment caused by an angle of 1 radian between the control surface and the 
wing (be ill aerodynamics notation). The value of q = jq found in this way will be used in the 
following investigations instead of q. 

With the help of Dietze's expression for co -= 0 the expression for j is easily iound to be 

2fs(E1) fl(E~) Av f~o(E1, E2) (E~ ) 
J 0.714 2fs(E~)f~(E~) +flo(E~) = F - i f ;  El , 

where the functions f~ have the same meaning as in Dietze's report 7. For an easier t reatment of 
this formula the function j = F(E2/E~ ; E~) with E~/Et as an independent variable and E~ as 
a parameter has been plotted in Fig. 2b. 

If the variable q is transformed into ~, Figs. 13a and 16a change into 13c and 16b respectively, 
and the curves for different values of E~ and E2 lie closer together than before the transformation. 
A still better coincidence of the right-hand branches of Figs. 16b or 13c is obtained if the variable 
fit is transformed into the variable Pet (Figs. 16c and 13d). The value of the introduction of the 
parameters it, p ,  c] instead of v%, #8, a~q and of the parameter ibc, for the right-hand branch can also 
be demonstrated for a curve representing the function vc ----f(p,). In each of the Figs. l l a  to e 
are plotted two curves vc = f(p,). For tile full lined E~ = 0.3  and E~ = 0.075 and for the 
dotted ones E1 = E (  = 0.3 and E~ = E~' = 0.04. (The parameters for the dotted curves will 
be distinguished by a dash.) In Fig. 1 la, the systems compared have the same values of v% and 
/z~.  The two curves are quite different. No improvement is obtained by transforming only 
the pa rame te r / z~  into fl, (Fig. l lb) ,  but if curves with the same values of p, and i, are compared 
(Fig. l ! c  ) they become more alike. The coincidence becomes still better if the curves compared 
have not the same value for q as in Fig. 1 lc but the same value for ~, as in Fig. 1 ld. In view of 
the benefit derived with the parameter p~, the right-hand branch of Fig. l l d  has finally been 
plotted against p~, in Fig. l le .  I t  is then seen that  the coincidence of the two curves near the 
asymptote and near the zero critical speed is better in Fig. l l e  than in Fig. l l d .  The two minima 
of/5~t for the full lined and the dotted curve in Fig. 1 l e are, however, more diverse than the 
corresponding values of p~ in the curves of Fig. 1 ld. The reason for this is probably that  to the 
branches concerned belong flutter modes which consist predominantly of wing translation (z) 
and tab rotation (9,) (Branch III,  see section 3.1.4). These flutter cases, therefore, will depend 
more on the coupling/St between these two degrees of freedom (z), (~) than on the coupling p~, 
between the two degrees of freedom control surface rotation (fl) and tab rotation (7,). I t  should 
be emphasized, however, that  this statement applies only to the arc of a curve for which 
fa - - fy  = 0. This statement does not contradict previous statements tha t  the best variable for 
the zero critical speeds and the right-hand asymptotes is the parameter ib~. 

Therelore, it can be said ' that  by introducing the non-dimensional parameters i ,  it, fit, q tile 
influence of the geometry of the system on curves becomes very small. Further, for characterising 
the situation of the right-hand asymptote and of the zero critical speeds of the curves vc = f (p,) 
a still greater improvement is obtained by introducing the parameter p~ instead of ibm. 

4. The Trimming Tab Criterion I .--4.1.  Derivation.--In order to establish a simple criterion 
for freedom from flutter of a tab of the type considered we use the fact stated in section 3.1.5 
tha t  the region between the asymptotes of the curves is free from flutter if the following conditions 
are satisfied : 

g> 2k  ; , . . . . . . . . . . . .  (1) 
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wherek~-----1 ( i = l  . . . 3) . . . . . . . . . . . . . . . . .  (2) 

If the  conditions (1) and  (2) are satisfied,, the  required criterion has only to have  the  addi t ional  
conditions for the structural  parameters  tha t  the  points corresponding to t hem ]ie in the interior 
of the bell-shaped curves in Figs. 14 and  15. In  order to represent  the  bell-shaped curves in 
Figs. 14 and 15 analyt ical ly it has been assumed tha t  they  are of the  form" 

q ~p, - a~ + a~ (as - q)l s a~ 

a s - -  q 
= 1 . . . . . . .  (3) 

The dependence of the  free constants  a~, a2, aa, a, on ic and  i, has been de te rmined  graphically in 
such a way tha t  the  curves in Figs. 14 and 15 are represented as well as possible by equation(3).  
Sufficient curves do not  exist to de termine  the  dependence of the  a~ on ~ and Pc. (No curves 
exist for determining the  dependence on pc). I t  should, therefore, be s ta ted tha t  the  following 
relations are derived under  some restrictions tor the  parameters,  i.e., for cases in which 

¢ = 5 . 7 1 8 ;  i ~ - = 1 - - 7 . 7 8 ;  p ~ = 0 ;  i ~ = 1 . 3 1 - - 1 3 . 1  

E ~ = 0 . 3 ;  E ~ = 0 . 0 7 5  . . . . . . . . . . . . . .  (4) 

The relations found are" 

a~ = 0.222 + 0.013i, + i , ( - 0 . 0 1 4 5  + 0.00149it) 

as = 1.12 --  0.0267it + i~(0.0365 --  0.001i,) . .  

as = --  O. 164 --  O. 0965it + i~(O. 0778 + O. 00489it) 

a~ = O. 448 + O. 277i~ --  O. 238i~ 

( s )  

The graphical significance of the  constants  as, as, a4 and d = 2~/[(2as - -  1)/ad is shown in Fig. 2a. 
From the  expression (3) we derive the  following inequal i ty  for Pt. 

J (  , . . . .  
a.  - -  a~(a~ - - . q )  - -  k~ a s -  q~ <~ p~ <~ as - -  a~(as - -  q) + 

alq 

with 

and  
q ~< as . . . . . . . . . . . . . . . . . .  (7) 

k , - - -  1, k~ ----- 1 . . . . . . . . . . . . . . . .  (8) 

In  order now, to include the  dependence of this approximate  formula on E1 and Es the  paramete r  
is in t roduced in place of q and, in the  r ight -hand par t  of the  ir~equality, the parameter  Pc~ = 

(Es/E~)it + 2pt(E~ --  Es)/E~ instead of /5, remember ing  from sections 3.1.7 and  3.2 tha t  the  
bel l -shaped curve is nearly independent  of the  values of El, Es if t hey  are p lo t ted  in terms of 
these new variables. In  this way we get for the r ight -hand branch ot the  bell-shaped curves the 
approximate  formula 
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and for the left-hand branch 

In order tha t  inequalities (9) and (10) may have a real sense, a condition corresponding to 
inequality (7) must be added, viz. 

The coefficients on the left-hand side and that  of the first element on the right-hand side of 
inequality (9) have been chosen in such a way that  for E~ = 0.3 and E. = 0.075 the inequality 
(9) becomes identical with the right-hand part  of inequality (6). 

The inequalities (9) and (10) indicate that  for safety against flutter the mass coupling /5~ 
between wing translation and tab rotation must not fall below a certain value and tha t  the 
dynamical mass coupling/5~ between control surface rotation and tab rotation must not exceed 
a certain value. 

4.2. Range of Validity.--The formulae (1), (2), (5), (8), (9), (10), (11) together form the new 
criterion with the help of which the structural parameters can be chosen in such a way tha t  
flutter is eliminated for the three degrees of freedom: wing translation, control surface rotation 
and tab rotation. In order to determine the range of validity of these formulae the hypotheses 
employed in deriving them will be stated here. 

The criterion was exactly satisfied by the curves corresponding to the parameters given ill 
Fig. 3. I t  was then assumed that  the asymptotes were also the boundaries of the region free from 
flutter for the range of paran~eters given in  equation (4) provided that  the frequencies satisfied 
the formulae (1), (2). " While this was a k indo f  extrapolation, the dependence of the position of 
tile asymptotes themselves on tile values of these parameters w a s f o u n d  from Fig. 14 by all 
interpolation. Tile introduction of the parameters it, is, Pt, P,~ and q enables us to enlarge tile 
range of validity of the formulae for the asymptote positions to the following range of chord ratios 

E~ ---- 0"2 to 0"4 ; E~ _ 0" 13 to 0.25 . . . . . . . . . .  (12) 
E1 

This has actually been shown to be true only for the values.of ~,/5~, it and i~ given in Fig. 16. 
Because this extension was largely based on physical considerations it was assumed that  it would 
be permissible not only for these special parameter values but also for the whole range of the 
parameters given by equations (4) and (12) together, this being of course an extrapolation. 

ReKarding the influence of # it could be shown by some examples that  if the value of # is 
greater than 5.718--as is usually the case- - the  range between the asymptotes of the curve 
v~ = f (ibm) is in any  case larger than it would be if the coefficients ki (i ~ 1, 2, . . . 5) were put  
equal to unity.  The range is enlarged particularly on the left-hand side, i.e., the side for which 
the tab c.g. lies forward of the hinge. 

The effect of ~ could, therefore, be taken into account by making the constants k~ and ks - -  
especially ks--greater than unity. For the moment however we cautiously refrain from doing 
this because no calculations have been made which prove that  the whole region between the 
asymptotes is also free flom flutter for great values of # if the frequencies satisfy the expressions 
(1), (2). From the example in Figs. 10a and 10b we notice only tha t  the range of/5~ has not 
become smaller if # has increased : but f~ = f~ = 0 in this example. I t  seems probable tha t  for 
values of fz, f~,f~ satisfying the conditions (1), (2) an increase in # will have a more favourable 
effect upon the flutter free range than it is seen to have in Figs. 10a and 10b, because the curves 
will then be pressed against their asymptotes and the greater the value of #, the greater the range 
between the asymptotes. 

12 



Altogether, it can be said that  the cr/terion has been found valid for the range of values given 
in Table 1, par t ly  by  interpolation and par t ly  by  extrapolation, starting from the values given ill 
Fig. 3. Therefore, the more the given parameters differ from those in Fig. 3, the more the con- 
stants k~, . . . k5 will differ from 1. An estimate of this difference must be kept for further 

• experience to decide, perhaps in the form of wind tunnel tests. 
For this reason it seems expedient to keep the constants k~, . . k5 in the criterion, so as to 

retain the possibility of modifying it in the light of further experience. 

By  giving those constants appropriate values we shalJ be able to allow for the inaccuracy o~ the 
formulae arising from the simplifications made in its derivation, and at  the same time allow for 
the influence of structural  damping and friction as welLas the fact tha t  the theoretical air forces 
are different from those occurring in practice. The last mentioned facts will probably mean that  
the values of k~, k4 and k5 are in practice greater than uni ty  or that  the constants k~, k~ are less 
than unity.  

4.3. Introduction of a Safety Margini--Up to the moment no safety margin has been introduced. 
In practice a certain safety margin would be provided by the friction and structural damping 
which have not been taken into account in the calculation; but  it is possible tha t  this margin 
is not large enough. I t  seems reasonable to introduce this margin by the requirement that  for 
all increase or decrease of p, by  certain amounts ~1, $~ the system shall still be free from flutter. 
That  is, we replace in equation (9) p~ by p, + $~ and in inequality (10) Pt by  p ~ -  6~. The 
values of ~, $~ are proposed arbitrarily as 0.5. 

With the safety margins included the criterion is given in full in the summary (section 8)as 
"Trimming Tab Criterion I " 

5. Simplified Forms of the Trimming Tab Criterion 1.--5.1. Derivation of Trimming Tab 
Criterion / / . - - T h e  second of conditions (1) of section 4.1 is sometimes inconvenient to satisfy. 
But it may  be avoided if we remember the last section in section 3.1.5 from which it may be deduced 
tha t  if f~/f, >~ 2 is not satisfied sufficient conditions for preventing flutter are still obtained if the 
condition (10) is replaced by 

p, ~> ko . . . . . . . . . .  (13) 
where 

ks -'- 0 . 1  . . . . . . . . . . .  (14)  

This simplified criterion is given in full in the summary (section 8) as Trimming Tab Criterion II. 
The range of validity of this criterion is the same as that  of the Trimming Tab Criterion I. 
However, it must be emphasised that  the condition (13) has not been proved by very many  
examples. 

5.2. Derivation of Trimming Tab Criterion I I I . - -To find a still more simplified criterion for 
use we start  from the Trimming Tab Criterion I and first simplify in it the condition (9). We write 
condition (9) in the abbreviated form 

pc, < ic, i .  pc, . . . . . . . . . . . . . . .  i15) 

Then the function ~ is determined anew from the right-hand branches in Fig. 14. Though 
trying to get a rather simpler approximation of the function ~ care is taken, however, that  the 
differences between approximat ionand  exact representation do not become too great and are in 
any  case on the safe side with regard to flutter prevention. In this way the requirement (9) 
becomes simplified to 

_ 1 .27")  - o. 14 + 0.2sio (0. 34 + 
i ~  ic / 

1 (0-751 + 0"69 ic 0"0435io) . .  . . . . . .  (16) " - ~  - 7  - -  

q ~t 
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in which the safety margin, added later to condition (9), is already present. The condition (7) 
which was necessary in order that  the expression (9) had a real meaning is for that  reason no 
longer necessary for the expression (16) derived from (9). The additional restriction (7) would, 
however, be necessary also for inequality (16) if our criterion should be right within just the rang.e 
of the parameters given in section 4.2 ; but normally the non-dimensional mass ~ of the wing is 
greater than the value ~ = 5. 718 for which the formula (9) has been derived. For such values 
of # the condition (7) will be too restrictive. To understand this it will be remembered that  a2 is 
the top value of ~ in the bell-shaped curves (see Fig. 2), and according to Fig. 1 a2 increases very 
much if # increases. Therefore, the value of as will be for the normal practical values of #, i.e., 
for values of ~ greater than 5. 718, greater than the value of a2 given by relations (5). For this 
reason it seems intelligible to omit the additional condition (7) when deriving here a criterion for 
practical use. 

Condition (16) can now be transposed into a form similar to that  of the Collar-Sharpe Criterion. 
Remembering tha t  

and (see the list of symbols, section 11) 

Pc,. q _ 
i 

with 

q = j q  . . . . . . . . . . . .  (17) 

L + Mtx,(E1 --  E~)c~, 

E~ . .  ( is)  
P -- E1 . . . . . .  

we finally derive from condition (16) 

I~ + M,x,( E1 --  

L 
with 

and 

{ o7 10 9 [ o14 C -- ~/p -- 0.0435 -t -¢- ~ + jq O. 25 - -  

] io i s  i~ 

. . . . . .  (19) 

1"27)1 1 (0. a4 + ,} (201 
~t 

/> 2 . . . . . . . . . . . . . .  (22) 

-fa~< 1" Pt~> k6 . . . . . . . . . .  (23) 
f ,  ' 

but it is still possible to make some further simplifications. The first of conditions (23) was only 
to be added in the criteria I and II  because the computed material was only available within this 
range. However, the necessity for this condition not having been proved it is considered tha t  it 
should be omitted in a criterion proposed for practical use. Further, the condition p~ >I k, may 
be written in the dimensional form 

M~xt >~ 0"4kspc~c~qs . . . . . . . . . . . . . . . . .  (24) 

The formulae (19), (20), (21), (22), (24) constitute a recommendation for practical use to 
prevent flutter which are summarised in a slightly generalised form in the Summary (section 8) 
as Trimming Tab Criterion III .  
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requirements 

j = ~//5 [0-93 + 1.28 (1-97 -- El) (0-745 --/5)1 . . . . . . . . . . .  (21) 

The set of formulae (19), (20) and (21) represent the simplified form of the requirement (9) we 
wished to derive. For a complete criterion like the Trimming Tab Criterion II  we should add the 



The range of validity of the Criterion I I I  just derived is with respect to all structural parameters 
except the non-dimensionM mass ~ the same as that  of Criterion II. With regard to .~, we have 
made the additional assumption that  # is normally greater than 5.718 in order that  the formula 
(19) would be valid without the restriction (7). This is an extrapolation in respect to ~ that  is 
only justified by some examples in Fig. 10. Because of this simplification and because we have 
omit ted  the first of conditions (23) the Criterion I12 is not so exact as the Criteria I and 2I. In 
this respect Criterion I I I  can therefore be regarded only as a " recommendation to prevent 
flutter ". Nevertheless, it has the advantage over Criteria I and I2 of greater simplicity. 
Furthermore it is to be expected that  by attaching correction factors to C in condition (19) and to 
the numerical value 2 in (22) (see Snmmary) it will be possible to adapt  the Criterion I I I  easily to 
practical experience even in a wider range of the values of the structural parameters than assumed 
until  now. 

6. Compariso~ Betzaee~ Criterion I I I  a~d the Collar-Sharpe Criterio~.--If the existing Collar- 
Sharpe criterion for spring tabs lo, 11 is applied to the case of a trimming tab by putting the follow-up 
ratio N equal to zero the criterion takes exactly the form (19) of Criterion I12 with K '  replacing 
C and K replacing C1. The important  difference is that  whereas C and CI ill Criterion I I I  are 
functions of i~, i~, p, q, and E1 the Collar-Sharpe criterion in its first form ~0 has K constant and in 
its second form 11 has K '  constant. These relationships obtained by Collar and Sharpe were, of 
course, admittedly approximate and were in any case obtained on a different basis. No at tempt  
was made, by means of frequency ratio requirements, to ensure that  the curve of flutter speed 
against tab out-of-balance moment lay wholly on the under-balance side of the asymptote, and 
the Collar-Sharpe relationships in fact define the position of the nose of the curve, not of the 
asymptote. I t  is, nevertheless, instructive to compare the criteria for the case of the t l imming 
tab, and in Table 3 val~es of C and C1 as given by conditions (19), (20) and 21) for a range of values 
of the relevant parameters are compared with the Collar-Sharpe values for K '  and K. For all 
cases except Case 1 the Sharpe (K') Criterion is more restrictive than that  of (19), (20) and (21). 
2n the extreme Case 1 the small value of C comes from high values of i,, i~ and small values of/5, 
q and E~. Following Cases 1 to 5 in Table 3 step by step we see that  C increases by decreasing 
i, and i / and  increasing/5 and E~. Comparing 1 and la  and 5 and 5a respectively it is seen that  
for small values of i~, i~ the value of C decreases if q increases, but for large values of i, and i~ the 
value of C increases if q increases. Inspection of the formulae (20), (21) confirms these conclusions 
drawn from Table 3 and shows in addition that  for small vMues of i~ and great values of q the 
value of C might increase if ~'t increases. Further, it should be noted that  the influence of i~ upon 
C is much greater than that  of it. This influence of i~ is in such a direction that  a large value of 
L is not so beneficial as it would be if C in formula (19) were a constant, as K '  is in the Sharpe 
criterion. Comparing finally the values of C and C1 in Table 3 it appears that  the constant K 
of the Collar-Sharpe Criterion varies much more than the constant K '  of the Sharpe Criterion, 
thus confirming that  the latter is at any rate an improvement on the former. 

The further requirements (22) and (24) of Criterion I I I  have no counterpart in the criteria of 
Collar and Sharpe. This means that  while conditions (19), (20) and (21) is normally less 
restrictive than the Sharpe (K') Criterion the requirements (22) and (24) provide additional 
restrictions. However, on the whole, Criterion I I I  will in practice give normally some relief 
compared with the Sharpe (K') Criterion with a zero follow-up ratio N and only prove more 
restrictive in exceptional cases of high (non-dimensional) moments of inertia of the control 
surface or unusually flexible tab connections. 

I t  is not proposed to pursue this comparison any further at the present stage as it will be 
considered again in the later report on spring tabs (N # 0) for which the Collar-Sharpe criterion is 
more directly applicable and comparison therefore more relevant. 

7. Practical Deductions a~d Applicatiorts.--7.1. Theoretical Deductior~s from the Criteria.--To 
draw deductions of a qualitative kind from the criteria we note that  the formulae (9) and (10) 
represent a synopsis of the curves of Figs. 14 and 15, considering also Fig. 16 for the influence of 
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the parameters E1 and E~. From these curves we derive the following guiding principles for 
obtaining a system as advantageous as possible. In order to obtain a range.of Pt which is as wide 
as possible and lies as far as possible in the region where the tab c.g. is aft of its hinge, we would 
have, besides satisfying the conditions (1), (2) for the natural frequencies, to make the value of 
i0 as high as possib!e and the values of #, it and E2/E1 as low as possible. 

7.2. Practical Interpretation of the Deductions.--The designer cannot simply comply with 
tile recommendations just given in section 7.1 because he has to consider other points of view 
as well. 

He will not make the value of i0 (non-dimensional moment of inertia of the control surface) 
exceptionally high because this would promote flutter with the two degrees of freedom wing 
rotation, control surface rotation, and besides this would involve additional weight. 

The value E1 of the ratio of the control surface chord to the lifting surface chord will be fixed 
by aerodynamic considerations for the aeroplane as a whole. 

With regard to the tab, the designer must primarily meet the desired requirement for aero- 
dynamic performance of the tab system. For our purposes it will be sufficient to define the 
performance of a trimming tab system in the following way. Two trimming tab systems will 
have by definition the same performance if their maximum tab deflections give the same lift 
to the system. If we compare only systems the planforms of which are identical except in 
regard to the tabs--as  is done h e r e - t h i s  definition can be simplified for our purposes if the tab 
chord has not exceptionally high or low values. Two trimming tab systems of this kind will 
have nearly the same aerodynamic performance if the ratio of the aerodynamic surface hinge 
moment due to the maximum tab angle to the corresponding moment due to a certain required 
control surface angle is the same for both systems. Remembering the definition of ~ in section 
3.2 we see that  for such equivalent trimming tab systems the following equation holds 

)'~0x 1 .  ~1 = y ~ . ~  5 .  ~ • 

The value of # is thus determined by the standard of aerodynamic performance required of the 
tab system and by the value of y~,~ adopted. 

Since from the flatter point of view the smaller ~ is the better, y~x should be chosen as high as 
possible compatible with aerodynamic considerations. 

I t  is possible to make the value of i, (non-dimensional moment of inertia of the tab) small by 
placing the load-bearing parts of the tab as far as possible in theneighbourhood of the hinge, and by. 
giving the balance arm of the tab a suitable length*. According to the author's experience h 
depends only slightly on E~ if different tabs with similar kinds of construction are compared for 
the same aircraft, viz., i~ increases slightly if E~ decreases. 

We can now regard the values of E~, i~, ~ and i~ as being fixed in accordance with the above 
mentioned considerations. I t  remains only to choose the value of E~. 

For the following reasons it appears that  this value should be as small as possible : 

(a. 1) The range of values of/5~ increases a little if E2/E~ decreases (see Figs. 16b, c). 

(a.2) The tab frequency f~ increases if the stiffness of the tab control circuit is regarded as 
constant because the moment of inertia of the tab 1~ decreases if E~ decreases. 

This is true even if the aerodynamic efficiency is kept constant. 

* I t  would be possible to get a particularly small moment of inertia of the tab by  placing additionally the tab hinge 
a reasonable distance aft of the leading edge of the tab, so that  the hinge and tile c.g. of the tab without mass balance 
would be near to each other. But then the tab would have an aerodynamic balance. According to the experience 
of Voigt, Walter and I-Ieger s' 9 on ailerons this miglxt have the same effect as reducing the stiffness of the control circuit 
of the tab, i.e., a bad effect. 
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A limit to the possible decrease of the tab chord is given by the following considerations : 

(b. 1) Ifi order to keep the same aerodynamic efficiency a tab with a smaller chord must have 
a greater span. But  the tab span cannot be longer than the span of the main control. 

Further a lower l imit to the tab chord itself is given by the fact that  the efficiency of 
t abswi th  very small chords is greatly reduced by boundary layer effects. 

(b.2) When E~ becomes very small the value of i~ will increase by a certain amount even 
though only tabs for the same aircraft with similar designs are considered. 

(b.3) A tab with a small chord will have a large span and such a tab will not be very stiff 
against torsion, especially if more than two hinges should be necessary, which often 
decreases the torsional stiffness in itself. 

The advantage cited in (a.1) may be nullified by the disadvantage in (b.2) or eventually even 
outweighed. 

But  there remains still one advantage in decreasing the tab chord, viz., that  the tab freqaency 
fv is increased. This is valid in so far as with very small tab chords the torsional stiffness has 
not become so small that  the tab frequency is not reduced by actual torsion of the tab itself, as in 
(b.3). I f i t  should not be possible to get a region free from flutter according to the formulae (9) 
and (10) which is wide enough by reducing the non-dimensional moment of inertia of the tab i, we 
have to reduce tile parameter q and with it the efficiency of the tab. This is possible by 
reducing the tab surface area, preferably by means of a reduction in the tab chord. 

7.3. Application of the Criteria to Actual Lif t ing Sys tems . - -Tha t  tabs of the kind treated here 
are sometimes liable to flutter in practice is shown by German experience 3 and by the example 
of the experimental g-restrictor tab of the Mosquitot Although British experience has indicated 
that  the stiffness of trimming tab connections is normally high enough for flutter to be unlikely, 
at least below a certain speed, current official requirements (about which more is said later in 
section 8) do not entirely exclude the possibility. Furthermore, if backlash should develop on 
a tab in service it is evident that  the tab would not be so susceptible to oscillation trouble if the 
out-of-balance moment lies within the limits of the criteria. 

In order tha t  our criteria can be used for real aircraft it remains to explain how to replace a 
real wing, rudder or tailplane by our simple system. 

A strict investigation has not been made into this question, and the following recommendations, 
therefore, should be regarded as provisional. 

The spans of our idealised wing and controI surface will normally be taken equal to the span of 
tile actual control surface. Some reduction of this span will be made only at that  end where the 
control surface ends together with the lifting surface. The tab will be given the same span as it 
has in reality (perhaps with a similar reduction as mentioned above). 

The  wing chord will be taken as the mean chord of that  part  of the surface which is supplied 
with a control surface. Tile idealised control surface chord and tab chord will be found by 
calculating the root-mean-squares of these chords. 

The non-dimensional quantities q, El, E~, #, ic, i,, 2be, fl~ can then be calculated and our criteria 
applied. 

If the movement of the lifting surface to be taken into account is more rolling than vertical 
t rans la t ion,  or contains pitching, the calculation of the Pt value in condition (10) should be 
modified. Mtx~ in the expression for p~ should then be replaced by 

Y~ Tm~ . xy 
Y,, 
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where 

E T  

ms 

X 

Y 

the summation over the tab, 

a mass element of the tab, 

the distance of the element aft of tab hinge, 

the distance of an element of the lifting surface (including control surface and tab) 
f rom the axis of rolling of the lifting surface (i.e., ill case of a rudder, distance of the 
element above the axis of twist of the fuselage). 

y,, the mean y-value of all elements of the part of the lifting surface (including control  
surface and tab) under consideration• 

(For the manner of calculating mass couplings of parts of actual aeroplanes, see Duncan, Ellis and 
GaddlL) 

Similar considerations would have to be taken into account if Pc had to be calculated• How- 
ever, the criterion should not be applied to cases where the mode of the lifting surface contains 
a considerable amount of pitching• " 

The reason w h y t h e  treatment of ih~ in condition (10) is different from that  in condition (9) is 
that  condition (10) implies a restriction of the coupling between wing movement (translation) and 
tab rotation whilst condition (9) implies restriction of the coupling between control surface 
rotation and tab rotation. 

Finally it should be mentioned that  in the case where the actual l if t ing surface (e.g., wing) has 
a greater span than the control surface (e.g., aileron) the part of the wing without control surface 
will damp the tab flutter motion in those modes in which the wing motion plays an essential part. 
(It is assumed here that  the system is flutter free without the tab). I n  consequence of this, the 
constant k3 in Condition (10) may then be allowed to have higher values. 

The above suggested modifications to inequality (10) will also apply to the inequalities (13), 
(23) and (24), and to the' corresponding inequalities listed in the Summary (section 8) as (B), 
(E) and 

8. Summary and Discussion of Results .--We summarise the results of this paper, chiefly from 
the point of view of their application in practice. 

If the system investigated with the degrees of freedom wing translation, control surface rotation 
and tab rotation flutters at  all there will be a low critical speed 

(1) if the tab c.g. is aft of the hinge and there is resonance 
(a) between wing translation and tab rotation, or 
(b) between control surface rotation and tab rotat ion;  

(2) if the tab c.g. is forward of the hinge and there is resonance between wing translation 
and control-surface rotation, and if in addition the natural  frequency of tab rotation is 
higher than the natural  frequency o! wing translation. 

The flutter modes appertaining to these cases consist predominantly of those degrees of freedom 
which are just in resonance, 

If the natural  frequencies of the tab and the control surface are zero, there is a range of zero 
critical speeds which lies predominantly in the region where the values of ib~ are positive (tab c.g. 
aft of its hinge), but  goes further into the region with negative values of p~ (i.e., tab c.g. before its 
hinge) the greater the moment of inertia of the tab, the greater the aerodynamic efficiency 
(bdb2), and the smaller the moment of inertia of the control surface. 

With regard to the flutter frequencies reference should be made to Table 2. 

't8 



The fact that  for appropriate values of the natural  frequencies of the system investigated the 
range of values of p, between two asymptotes of the curve v~ = f(p,) is free from flutter has been 
used to set up a flutter criterion which is given below as Criterion I. Successive developments of 
this criterion, with appropriate frequency conditions, give rise to Criteria I I  and I I l ,  also given 
below. In the order I, II, I I I  the criteria become simpler though more approximate, but  for 
most plactical purposes Criterion I I I  should be adequate. Factors k~ to k7 are introduced into 
the criteria to provide scope for further refinements in the light of experience. 

Trimming Tab Criterion I . ~ A  system with a trimming tab is free from flutter with the degrees 
of freedom wing translation, control surface rotation, tab rotation if the structural parameters 
satisfy the following inequalities, where all quantities k~ (i = 1 to 5) are provisionally taken equal 
to uni ty  and a, = a= = O. 5: 

f v > 2 k l  " f v > 2 k =  • r e < k 3  . . . . . .  (A) 
' f , • . . . .  . 

~ \  alq 
(B) 

3 E1 E2 

N \  alq JJ 

and 

q = j q  <<.as. 

Here a,, a,, aa, a4 and j are given by the formulae (5) and (21). 

. . . . . .  ( c )  

I t  is to be expected tha t  further practical experience will show that  the coefficients k~ and k2 
may be reduced whilst the coefficients k3, k~ and especially k5 may be increased. We remember 
tha t  ~, a~ are safety margins for p,  arbitrarily chosen. If at the moment all ki (i = 1 . . . 5) 
are taken equal to unity, the first of conditions A is, of course, superfluous. 

The range of validity of the tab flutter criterion is : 

/ ~ = 5 . 7 1 8 ;  i ~ = 1 t o 7 . 7 8 ;  i b m = 0 ;  i ~ = 1 . 3 1 t o 1 3 . 1  ; 

E ~ = 0 . 2 t o 0 . 4 ;  E 2 / E l = O . 1 3 t o O . 2 5 .  

The criterion will probably also be valid for values of/~ up to# = 50. From calculations by  Buxton 
and Sharpe 9, it seems probable that  the above mentioned criterion is still valid if the elevator is 
over mass-balanced, in fact for an even greater value of k~. 

If the second of conditions (A) in the tab Criterion I cannot be satisfied one of the following 
criteria should be used. 

Trimming Tab Criterion I I . I A  system with a trimming tab is free from flutter with the 
degrees of f reedom wing translation, control surface rotation, tab rotation if the structural 
parameters satisfy the following inequalities, where all quantities kl (i = J to 5) are provisionally 
taken equal to unity,  further k 6 ~ O. 1, and ~1 = O-5 

(5132o) 

f , >  2k l .  A < . . (D) 
f~ ' 7~ . . . . . . . . . . . .  

p,/> ko . . . . . . . . . . . . . . . . . .  (E) 
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with 

(F) 

Here the values of a~, a~, a~, a4, ~ are to be computed ill the same way as in the Trimming Tab 
Criterion I. The range of validity is the same as that  of the Criterion I. It  should however be 
emphasised tha t  the exact value of the constant k 6 could not be determined very closely. 

The criterion recommended for practicai use at the present stage is the following: 

Trimming Tab Criterion I I I . - - T o  prevent a trimming tab system from flutter with the degrees 
of freedom wing translation, control surface rotation, tab rotation, the structural parameters 
of the system should satisfy the following equations, where we take provisionally k~ = 1; 
k , = 0 . 1 ;  kT---- 1 

>1 2 k l  . . . .  . . . . . . . .  ( c )  

Mtxt ~ 0. 4k6pc~vctzq-s . . . . . . . .  (H) 

I~ + M, xt(E1 --  E~)F,~ p3/2 
L < k , c  . . . . . . . .  (K) 

Here C is given by the formulae (20) and (21). 

The range of validity of this criterion is about the same as that  Of Criterion II. I t  is only 
assumed that  the non-dimensional mass ~ of the lifting surface is greater than 5.7. It  is to be 
expected that  by a slight modification of the constants kl, k6, k7 the criterion can easily be adapted 
to practical experience and made valid for the whole normal range of the structural parameters. 

It  appears that  the non-dimensional quantities ic, it, p~, pc,, ~ introduced by the author  are 
useful in a wider field than in the above criteria. They could be used, for example, when 
compiling statistics of structural parameters and in the formulation of flutter requirements. 

In the case of a lifting surface with a more complicated planform and a more complicated 
degree of freedom than .investigated above, certain mean values of the structural parameters 
have to be put into the criteria as explained in section 7.3. 

The best possibility for the designer to satisfy any of the above mentioned criteria is to make 
the maximum tab angle as great as possible and the chord of the tab as small as possible (by 
choosing a suitable length for the tab span), and to give the tab with this chosen chord a moment 
of inertia as small as possible by placing the load-bearing parts of the tab as near as possible to 
the hinge line and by giving the balance arm a suitable length. In carrying out these measures 
the designer must not, however, forget the demand of a sufficiently high stiffness of the tab and of 
the tab control circuit to meet the conditions for the tab frequency. If i t  is impossible to meet 
the conditions for tab out-of-balance moment by the measures just mentioned, the criterion can 
still be satisfied by reducing the value of q, that  is, by reducing the aerodynamic efficiency of the 
tab. Another possibility to prevent flutter in this case, which is not yet covered by the criterion, 
would be to over mass-balance both the control surface and tab. 

I t  should be mentioned here that  the above criteria give sufficient conditions for eliminating 
flutter entirely with the three degrees of freedom considered. For some practical purposes (e.g., 
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ill relation to unsymmetrical elevator flutter) it is useful to know in addition that  only high 
critical speeds exist, if any, if the natural  frequency fa of the mass-balanced control surface is 
very high and the tab is slightly over mass-balanced. 

Finally, a word should be said about the relation between the criteria evolved in this report 
and the current official requirement relating to the flutter of tr imming tabs 18, which states in 
effect that  tr imming tabs shall be statically or slightly over mass-balanced for speeds greater than 
350 knots E.A.S. Superficially this requirement appears to have little ill common with the 
criteria of the present report, but in reality the A.P. 970 requirement is based oI~ the fact that  the 
majori ty of trimming tab sys temshave  connections whicl~ are so stiff that  there is little danger 
of flutter below 350 knots. Below this speed limit the A.P. 970 requirement, therefore, relies on 
the stiffness of the tab connection and makes no stipulation about tab mass-balance : in other 
words, though flutter may occur it will be at a speed well above 350 knots. Above the speed limit 
tab 'mass-balance is defined to  ensure that,  on the same principle as the new criteria, flutter will 
not occur at any speed. The main criticism of the A.P. 970 requirement is tha t  above the speed 
limit it appears unnecessarily restrictive. It  is to be noted, incidentally, that  A.P. 970 makes 
special reservations with regard to tr imming tab systems having unusually flexible connections 
(Chapter 500, section 7.44). 

The Collar-Sharpe criterion for spring tabs 1°, 11 can of course as it stands be applied to tr imming 
tabs by putt ing N, the follow-up ratio, equal to zero, though in the derivation of the criterion 
such an extension was not contemplated and in fact the application is not generally made. 
Nevertheless, comparisons made between Criterion I I I  of the present report and the Collar-Sharpe 
criterion with N = 0 show that  for the alternative forms K and K 'p  of the Collar-Sharpe 
criterion neither K '  nor K is constant by Criterion III, though K '  is much more so than K. Also, 
for all but extreme cases the Criterion I I I  is less restrictive than the Collar-Sharpe criterion with 
K '  = 0.1 : at the same time the Criterion I I I  involves all additional requirement ill respect of 
the tab natural  frequency, which should however ill most cases be easily met. 

• 9. Comlusio~¢s.--For the avoidance of flutter of t r imming tabs under the conditions considered 
certain qualitative conclusions can be drawn from the results obtained, viz., tha t  the following 
effects will be iavourable : 

(1) High stiffness of the tab connection. 

(2) Low moment of inertia of the tab about its hinge. 

(3) High moment of inertia of the control surface about its hinge, compatible with the 
avoidance of additional weight and with freedom from binary flutter involving main 
surface rotation and control surface rotation. 

(4) Low tab span parameter ~, which is, however, largely determined by the desired aero- 
dynamic performance of the tab b u t  will be reduced by adopting as high a maximum 
tab angle as possible. 

(5) Reasonably low tab chord (assuming the control surface chord fixed by aerodynamic 
considerations). 

Quantitative requirements for the avoidance of flutter are obtained in the form of alternative 
Criteria I, I I  and III, given in detail in section 8. For practical purposes Criterion I I I  is 
recommended. 

10. Furt/cer Develo~bments.--It  is considered desirable that  the investigation should be extended 
as follows : 

(a) Research, possibly by wind-tunnel tests, to obtain more accurate values for the factors 
kl to k7 in the criteria. 

(b) Effect of over mass-balance of  the main control surface and extension of the present 
range of values of tab and control surface inertias and of wing mass. 

(c) Effect of aerodynamic balance of the tab. 
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11. List of Symbols.--The term ' wing' is used generally to denote a lifting surface with cont ro l  
surface and tab, i.e., a main-plane unit, a tail-plane unit or a fin and rudder unit. 

Cw 

Cc 

c, 

d 

Dt 

E1 
E~ 

f 

f ,f ,f o 
£ 

L 

f 

f, 
F(E2/E,; E I ) = j  

L 
It 

J 
kl,. . ,ks,  k7 

k6 

Mw 

Mt 

P 
q 

S 

Vc 

& = ~1c~/2 

xt = ~2c~,/2 

(z) 

Constants defined in formulae (5) in section 4.1 

Complete  wing chord 

Control surface chord 

Tab chord 

Constant, defined in  Fig. 2 a  

Artificial damping moment about the hinge line of the tab per unit  angular 

velocity of rotation of the tab about its hinge line 

Control surface chord ratio co/c~ 

Tab/chord ratio cJc~ 

Symbol (if without index) for an arbitrary function 

Functions of El, E2 defined by Dietze 7 

Flutter  frequency (in c.p.s.) 

Natural frequency of wing vertical translation (assumed to 
be different from zero throughout the report) taking into 

. . . .  account the 
Natural  frequency of control surface rotation .. ~virtual inertia 

of the air Natural  frequency of tab rotation . . . . . . . .  

Constant defined in formula (21) in section 5.2 and shown in Fig. 2b 

Moment of inertia of the control surface (including tab) about its hinge line 

Moment of inertia of the tab about its hinge line 

Constant defined in formula (21) in section 5.2 

Constants nearly equal to uni ty which are used in the Trimming Tab Criteria 
in section 8 

Constant approximately equal to 0.1 which is used in the Trimming Tab 
Criteria in section 8 

Mass of the wing (including control surface and tab) 

Mass of the control surface (including tab) 

Mass of the tab 

Tab-contiol surface/chord ratio E2/EI, 

Tab span/control surface span 

Tab span parameter defined in section 3.2 

Control surface span 

Critical speed 

Reduced critical speed = V0 (m.p.h.)/c~ (It) . f,(sec -~) 

Distance of,control surface (including tab) c.g. behind control surface hinge 

Distance of tab c.g. behind tab hinge 

Abbreviation for the degree of freedom 'vertical  wing t ranslat ion '  
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P 

Po 

(~  = M . / s c 2 ~  

Abbreviation for the degree,of freedom 'wing rotation '. 

Abbreviation for the degree of freedom ' control surface rotation '. 

Abbreviation for the degree of freedom ' tab rotat ion' .  

Safety margins introduced into the criteria (see sections 4.3 and 8). 

Air density. 

Air density at  sea level. 

Wing density. 

D e r i v e d  q u a n t i t i e s  (all  n o n - d i m e n s i o n a l  

4M~, 4 4M~ 
t t  ~ p C ~  2 . s zcp  a ~  , /z 1 ~pC~v~ s , t t~  = 

~1 = 16Ic 16/~ . 8Dr 

~1 161"c v% 16/t 
i c = E---3 - -  z~ O c~s c a , i ~-~3 z~ O c~s c S q , 

Pc ~ r ~ _  8Mcxc . ~(r~ 8Mix~ . 
= g ~  - - ~ p c ~ c ~ s  , fit---- E2~ --z~pc~ct2qs , 

E~ E 1 -  E ~ )  . 

4Mr 
z~pc 2qs ' 
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T A B L E  2 

Summary of the Characteristics of the Branches o f '  Lower Critical Speeds'  of the Curves v~ = f(Pt). (See Figs. 3 to 10.) 

bo ol 

Branch 

II 

III 

IV 

Necessary 
condition 

for existence 
of the 

branch 

~ ~<0.5 

Approximate value of the Flutter Frequency fo under the conditions in 
thefirst rowI] 

Branch lies f# 
prindpal]y in ~ ~< 1 

the range where 
the tab c.g. is :-- fv >/1.2 

L 

f--v>~l 
fe 

forward of the f~ 
hinge of the 
tab. 

aft of the hinge 
of the tab 

-~ > > 1 f ~ < 1  ff~ >1  i ~ l  ~ > 1  - ~ 2  -~ > > 2  ReS°nance 
phenomenon 

* o c c u r s  

when :-- 

(<)/a f =f~ 

L 

fa f~ Ua =L 

f (<)f7 

L L 

Flutter 
modes near 
resonance 

consist 
predominant- 

ly of : 

(z), (#) 

Results are 
derived from 

figures t 

3d, 4d, 5d, e, 
f, 7e 

0}, {2} 

(~), (7) 3 , 4 , 5 , 7  
{7} 

L = L  (z), (7) 3, 4, 7 
{2} 

L =iv  (~), (r)t s, 6. 

* Only derived from curves in which f~/f, <~ 1. 
++ No calculations were made. 

The figures in curly brackets are those of previous report 6. 
[] Except near the asymptotes, where fo + co. 



TABLE 3 

Comparison between Criterion I l l  and Collar-Sharpe Criterion with N -: 0 

(1) Values of the constant s C, C1 in the requirement 

I, + Mtx~ (El -- E2) c~o 
L <~ Cp~/2= C, • . • ° 

with . . . . .  

C - -  v/p - -0 .0435+  0.751 0.69 0.14 0 . 6 3 4 +  
] i ~  + ~ + jq  .25 i 

and 

j =  ~/p [0.93 + 1.28 (1.97-- El)(0.745 --p)] 

for different sets of values of therelevant parameters. 

• O 

(22) 

(23) 

(24) 

J No. i i, p q E 1 C C 1 = C.~ 3'~" 

1 
2 
3 
4 
5 
l a  
5a 

10 
10 
3 
3 
3 

10 
3 

0"15 
0"15 
0"15 
0"3 
0"3 
0"15 
0"3 

0"25 
0"25 
0"25 
0"25 
0"25 
1 
1 

0"2 
0"2 
0"2 
0"2 
0-5 
0"2 
0"5 

0.0727 
0"140 
0"177 
0"205 
0"228 
0-116 
0"165 

0"00422 
0"0081 

0 ' 0 1 0 3  
0'0338 
0"0375 
0"00673 
0"0273 

(2) Values of the constants K and K' in Condition ~(19) according to Collar an d Sharpe (independent 
of the value of the structural parameters), if used for N ---- 0. 

Reference 

Collar and Sharpe 1° 
Sharpe ix . . . .  

K t '  

(compare with C) 

..  0.1 

K 
(compare with C1) 

0 . 0 2  
0.015 

if greater than 
K'pa/2 

26 



' W I N ~  ~ 

E 
. 7  -Lz ._ - . .  [ . ' . . . . .  

I ~I:[ HINGES 
~| CONTROL SURFACE C.Q. 

(INCLUDING TAI5 ) 
62 TAB C.~, 

Ct.,j [ 

~?4AIN C O N T R O L  
SU R FACF.. ' > 

..,._. r TAB'~ • :,,.- 

. x'~= 

. C c =  E I C ~  

F~IIGHT DIRECTION 

FIG.I .  a .  CROSS-SECTION OF THE WING WITH CONTROL SURFACE AND TAB, 
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w 
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15 

h 
'1 I 

F I G . I . b .  PLAN FORM OF THE WING WITH CONTROL SURFACE AND TAB. 

FIG.  I c.  DEGREES 
IT HAS 

I X 
E 

- 

OF FREEDOM OF THE SYSTEM. -. ( I N  THIS REPORT 
BEEN ASSUMED THAT ~,= 0 . )  

FIG. t. d .  
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FIG. 1. The system considered. 
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FIG. 2. Graphical illustration of the trimming tab criterion. 
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