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Summary —Theoretical investigations have been made of the flutter of an idealised trimming tab system having
three degrees of freedom—mnormal translation of the main lifting surface, rotation of the control surface and rotation
of the tab. All the structural parameters of the system have been varied except the out-of-balance moment of the
control surface. The cases in which the system is free from flutter have been particularly investigated.

From these investigations criteria for the avoidance of flutter have been derived. If the structural parameters of the
system satisfy these criteria, flutter of the system with these three degrees of freedom should be impossible.

The results are applicable to trimming tabs, servo-tabs with zero follow-up ratio, and generally to all systems in
which the tab can be regarded as connected elastically only to the control surface.

1. Introduction.—In flutter investigations of control systems in which the tab can be regarded
as connected elastically to the control surface onlyt it has been found desirable to consider the

following degrees of freedom:

(a) Normal translation of main lifting surface .. .. .. (2)
(b) Rotation of main lifting surface .. . ce e (o)
(c) Rotation of control surface . .. .. .. (B)
(d) Rotation of tab ‘e .. .. . .. .. (%)

and essential to consider one of the main lifting surface freedoms (z or «) in addition to both
control surface rotations (8 and y)**>.

Initial German investigations by Leiss' (1989) which were restricted to the control degrees of
freedom (p and y) showed that the system was free from flutter if the tab centre of gravity was
sufficiently far forward, but subsequent experiments by Voigt and Walter® (1941) with three
(2, # and y) and four degrees of freedom and theoretical investigations by the author® (1941) with
three degrees (z, # and y) showed that with more than two degrees flutter could occur with a far
torward position of the centre of gravity of the tab. These researches followed accident investi-
gations in Germany during the period 1939-41.. The above facts were also discovered in this
country in theoretical investigations by Buxton and Sharpe?, to explain an accident to a Mosguito

* R.A.E. Report Structures 19, received 7th January, 1949.
T Spring tabs are excluded from this report.
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aircraft fitted with an experimental g-restrictor device (involving heavy mass over-balance of the
elevator tab) and confirmed in experiments by Scruton, Ray and Dunsdon® in 1945. The former
report* brought out new important facts on the effect of the mass-balance of the main control.

The present report is part of a comprehensive consideration of the flutter of tabs* and is an
extension of the previous work of the author® to cover the eftect of the elastic connection between
the main lifting surface and the main control and to present the resualts in the form of a criterion
The method used is to compare systematically the results of flutter calculationst and then to
find rules of a non-dimensional form which the given results satisfy. From the mathematical
point of view, this method is comparable with the well-known method of the approximation to

a.function given by a set of points by a special kind of analytical functlon with a reasonable
number of parameters available (e.g., a polynomial).

The degrees of freedom covered in the present report are normal translatlon of the wing and
rotation of the control surface and the tab. A wide range of variation of the plan-form, mass,
and inertia parameters of the tab and of the frequency ratios of the tab, control and lifting
surface have been investigated and criteria developed to cover a large part of the practical
variation of these design parameters. General principles for the avoidance of flutter are given
and the criteria are presented in the form of frequency ratios of the three components and the
mass-balance of the tab (in non-dimensional form). Values for the criteria are suggested based
on the flutter calculations with a suitable safety margin. Comparisons are made with the existing
Collar-Sharpe criterion for spring tabs as it might be applied to trimming tabs by putting the
follow-up ratio equal to zero, and the relation between the new criteria and the current official
requirements for trimming tabs is also considered.

2. Description of the System and the Method of Investigation.—2.1. The System and its Degrees of
Fyeedom.—The system investigated (Fig. 1) is a rectangular lifting surface (referred to in short as
a wing) of chord ¢, fitted with a rectangular control surface of the same span s and chord ¢, = Eyc,.

On the trailing edge of the control surface there is a rectangular cut-out; and this space is filled
with a tab of span gs and chord ¢, = Ey,,.

The system incorporates the following elastic constraints:
(i) Constraint in respect of the normal translation of the wing. -
(ii) Constraint in respect of the rotation of the control surface relative to the wing.
(iii) Constraint in respect of the rotation of the tab relative to the main control.
The wing is fixed against rotation.
There are three degrees of freedom:
(i) Degree of freedom (z) normal translation of the wing.
(ii) Degree of freedom () rotation of the control surface relative to the wing.
(iii) Degree of freedom (y) rotation of the tab relative to the control surtace.
The choice of the degrees of freedom was discussed in the previous report®.
2.2. The Structural Parameters Considered.—In the author’s previous report®, the same system
with the same degrees of freedom was investigated in regard to the possibility of flutter when the

following structural parameters are varied (the corresponding non-dimensional parameters are

shown for each structural parameter in curly brackets for the new notation ot the present report
and in square brackets for the notation of the first report®).

* Spring tabs are excluded from this report.

t The extensive flutter calculations which are turned to account in the present report were made under the direction

of the author at the firm of Focke-Wulf by his collaborators Herren Korte, Mewes and Schéfer. The results have not
hitherto been published.
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(A) (i) Out-of-balance moment of the tab. ({5}, [y u,0.]) .
(i) Moment of inertia of the tab ({#}, [v®.]) .
(iii) Ratio of the uncoupled natural frequency of tab rotation to that of wing translation

({2113, [7202/n]) -
(iv) Moment of inertia [y9z] of a pair of masses kinematically coupled with the tab and the
gear ratio [e] of this connection. ~

(v) Ratio of the tab span to the wing span ({g}, [x.]) .
(vi) Damping of the tab ({4}, [W,/mpls"by,w]) .

In the present paper the effect of the following structural parameters is also investigated.

(B) (i) Ratio of the uncoupled natural frequency of control surface rotation to that of wing
teanslation ({f3/f.}, [#1/75]) -

(i) Moment of inertia of the control surface ({z}, [y9]) .

(iii) Mass of the wing ({u}, [¢]) .

(iv) Ratios of the control surface chord and of the tab chord, respectively, to the wing chord
({Ely Ez}: [71'52]) .
The structural parameters mentioned under A have all been varied again in the present paper
except A (iv) and A (vi).
It should be noted that the out-of-balance moment of the control surface has not been varied ;
the control surface is supposed to be always statically balanced. This corresponds almost exactly
to the former German requirements, and for this reason the author has not made calculations tor

control surfaces which are not mass-balanced. The investigations by Buxton and Sharpe?,
however, provide some information on the effect of control surface mass balance.

2.3. Choice of Non-dimensional Structural Parameters.—It is clear that the results must be
presented in a non-dimensional form if they are to be as general as possible. In the attempt to
find suitable parameters the author at first made use of the parameters introduced by Kiissner,
but later changed these parameters in such a way that the results were to a large extent inde-
pendent of the values of the ratios E,, £, of the control surface chord and the tab chord to the
wing chord. For this purpose the Kiissner parameters u,o;, 94, .0, 9, were replaced by the
parameters

U017 . ¥y POz . Dy

P_Ez; Es: ﬁt—Ez: Zt:ETa‘

In the present paper two additional non-dimensional constants have been found to be appropriate
and have been introduced into the presentation of the results. The non-dimensional mass coupling
between the degrees of freedom control surface rotation (8) and tab rotation (y) would be, in
Kiissner’s notation, &, 4+ 2(E, — E,)u0,. It is to be noted that of the above mentioned

parameters the two introduced by the author in his report®, vsz.,

u . 4
ptzf:gz and %=‘E%

have been proved to be expedient. This suggests the introduction of a new non-dimensional
parameter

) UE, — Eu,0, E E,
2 (}zlEf )0 . z,—}—‘7< )zﬁt— b .
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For the same reason the parameter ¢ which has been used exclusively in the previous report

has been replaced by § = jg, where 7 is a function of E,, E,. For particulars of this, see section 11
and Fig. 2b.

The non-dimensional quantities which have been introduced by the author, though not very
complicated, are nevertheless a little more so than those already existing. In order to demon-
strate the advantages of the new parameters, the parameter , may be compared with the well
known quantity x in the phrase “ x per cent over mass balance ”.

Let the out-of-balance moment of the part aft of the hinge of a tab be ]\Z;ci. It ‘Ehis tab is
x per cent over mass balanced the out-of-balance moment of the tab is M, x, = — Mx,(x/100)
and according to section 11,
. 8. M,yax
b=— 7. 100 . pc, . clgs

This means that two tabs with the same geometric form (z.e., with equal values of ¢,, ¢;, ¢, s) and
with the same degree x of mass balance and the same air density p can have different values of p,

if the values of M,x, are different. These different values of M, may arise from the different
kind of structure of the tab, e.g., the surface of the first tab may be covered by a metal sheet of
uniform thickness while the second tab may have a strong torsion-tube near the hinge line, the
surface being fabric covered. Because of these different p, values one of the tabs may flutter
and the other not, for $, is an essential parameter, as will be shown later.

This means that tabs with the same value of x need not have the same safety against flutter.
The value x in the phrase x per cent mass balanced is, therefore, not a suitable parameter for
characterising the flutter safety of a tab. Similar considerations apply to the corresponding
parameter for an aileron. It will be shown later that the non-dimensional parameters introduced

. in this paper are generally more appropriate for the purpose of describing the flutter characteristics
of the system.

Besides the qualification of the new non-dimensional parameters introduced above to
characterise the flutter capacity of the system, there is another advantage to be gained by using
them. The author has found by experience that the values for the parameters ¢, and 4, do not
vary very much if control surfaces or tabs for aeroplanes with similar types of construction and
similar load factors are considered. Therefore, the flutter specialist of a firm is able to guess at an
early stage of the design the probable values of the parameters ¢, and ¢, (and thence 7, and 1)) if
he has made a statistical survey of the values of ¢, and ¢ for former aeroplanes designed by this
firm. It is clear that these values will be higher for highly loaded aeroplanes than for others.
This is one reason why the values of the parameters ¢, and ¢, are often especially high for modern
aeroplanes.

2.4. Range of Values of the Parameters Considered.—The range of values of the parameters
which have been varied are now given. For comparison, Table 1 gives both the ranges of values
investigated in the previous report® and the ranges of values occurring in practice, as compiled
mainly from Focke-Wulf machines.

TABLE 1
; fﬁ Ez
Parameter E . T, A == =
1 H“ v P fz El
Statistical .. .. .. | 0-18100-50 4 to 50 2to8 0 0to2 0-15
Previous Report® .. .. 0-3 5-718 7-778. 0 0 0-25
Present Report .. .. 0-2t00-4 5-718 to 50 1to7-78 0 Otoo 0-13 to 0-25.
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TABLE i~contz'nued

Parameter 1, - Py % a, q
Statistical .. .. . 4408 2104 0tow — 0-3t00-5
. Previous Report® .. .. 1 393t0131 | —1-2t0 +1-2 0 to w 0to3 x 10-2 0-3to1-0
Present Report . 1-31to 13-1 —4 to +4 0tob 0 0-08to1-0

It should be noticed that with regard to the ranges of the values of the structural parameters of
British aircraft the ranges of values of £y, 4, 4, are greater than could have been investigated in
the present report, using only the available flutter calculations made in Germany in 1941.

2.5. The Hypotheses (including aerodynamic assumptions) used in Calculating the Critical Speed
of the System.—The formulae used for calculating the critical speed of the system investigated
have been established in former work by the author®. In deriving these formulae the usual
assumption was made that the theory of small oscillations would be valid. The airforces were
calculated by strip-theory using the values of Dietze’ for the case of a thin aerofoil with two hinged
flaps in an incompressible medium. The simplification sometimes made in British work that the
damping and stifiness derivatives may be assumed independent of frequency parameter for the
purpose of calculating the air forces has not been made. - '

2.6. Presentation of the Results.—As was shown in the previous report® it is convenient to plot
the results in terms of V,/fic, = v, instead of V,, and in terms of the ratios f/f, £,/f. and //f,
instead of the parameters f;, f, and £, themselves, These ratios are all non-dimensional if the
same system of units is used for all parameters. However, to conform to practical requirements
V, will be expressed in m.p.h., ¢, in ft and £, in c.p.s. Then v, will have the dimension
(m.p.h./sec™*{t). To obtain a value of ¥, in m.p.h. we have only to multiply the value of v, given
in the diagrams by ¢, in feet and f, in c.p.s. This product can easily be determined from the
ground resonance test. Its normal range is 20 to 40 ft/sec.

Dependence upon three structural variables will be shown in the following manner : along each
curve only one parameter (e.g., $,) will be varied, while a second (e.g., £,/£) Will vary from curve to
curve and the third (e.g., 4/f.) from one family of curves to the next.” A typical family of curves
will be denoted by

v, :f(pt ; %)ﬁ?/fz = constant .

Several such families will be denoted by

'Z’czf(Pt;% ,%)

The first argument of the function f will therefore always denote the independent variable
which varies along each curve, the second the parameter which varies from one curve to another,
and the third a parameter which varies from one family of curves to another.

3. Flutter Characteristics of the System—38.1. The Dependence of the Variation of Critical Speed
with Tab Out-of-balance Mowment on the Remaining Payameters (except the chovd ratios E,, E,).—
3.1.1. The four branches of the curve v, = f(p,).—Amongst all the functional dependences which
it is possible to investigate, priority has been given to the critical speed (more exactly its non-
dimensional equivalent v,) as a function of the out-of-balance moment of the tab (more exactly
its non-dimensional equivalent ), the remaining non-dimensional parameters varying from
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curve to curve, because this relationship is the most interesting in practice. In order to study the
variation of these curves u, = f(p,) with the variation of the remaining parameters it is
convenient to mark the particular branches of the curve suitably. Consideration will, however,
be confined to those branches in which ““ lower critical speeds” are plotted ; only these parts of the
curves are important in practice, of course, since they represent the critical speeds at which the
system begins to flutter if the speed is increasing. (The other critical speeds are called *“ upper
critical speeds ”’: the system stops fluttering if such a speed is exceeded.)

As regards their behaviour, we distinguish four branches of lower critical speeds in the curves '
under consideration. In Figs. 3 to'8 they are marked by Roman figures. It should first be
explained why just four branches are distinguished.

Branch I is the only one which lies principally in the region where the centre of gravity of the
tab is forward of its hinge. The Branches II, I1I and IV, on the other hand, lie principally in the
region where the centre of gravity of the tab is aft of its hinge. Differentiation of three branches
in the under mass-balanced region would seem to be unnecessary if the natural frequency of the
tab is high relative to the natural frequencies of control surface rotation and of wing translation.
The curves in Figs. 3d, 5f and 6 (for f,/f, = 5) are, for example, marked with II, IIT and IV
respectively, only because they have developed from different types of curves marked in that
way. Otherwise we should not have been able to distinguish between them as regards their shape.
But it is quite another thing when the natural frequency of the tab is low. Then Branch II
exhibits a resonance phenomenon if the natural frequencies of tab rotation and control surface
rotation coincide (Fig. 4b) while Branches III and IV exhibit a resonance phenomenon if the
natural frequencies .of tab rotation and wing translation (Figs. 3c, 4d and Sc) coincide. A
distinction between the Branches III and IV is convenient because of their behaviour when the
natural frequency of the control surface is increased: on increasing the value of f; Branch III
disappears upwards in the direction of the v-axis (Figs. 7c, d) while Branch IV approaches a
finite curve (Fig. 7f). (Incidentally, Branch III appears only in curves for which f;/f, < 0-5 and
Branch IV only in curves for which f;/f, > 1). Under certain conditions (e.g., filfs < 1;
0-5< f/f.<10; g=1; seeFigs.4a,b; 5a,b,c; 7c,d, e) Branch I is connected with Branch IT
and then a boundary between these two branches will not be defined. In Fig. 1 of the previous
report® it is shown that Branch I is connected with Branch III if the moment of inertia of the tab
is high enough. The Branches II and III are sometimes indirectly connected via a branch of
upper critical speeds, as for example in Fig. 3a or Fig. 8c of the present report. A summary of
the features of all four branches is given in Table 2.

3.1.2. Flutter frequencies—(a) Branch I. The ratio f,/f, for all the flutter cases belonging to
Branch I increases with increase of f;/f, (Fig. 7); of f,/f, (Figs. 3 to 5) or of x (Fig. 10) and with
decrease of 7, (Fig. 9), 4, (R. & M. 2418°, Fig. 1, where there is only a small influence) and

(Figs. 7a, 8a). The smallest value that has appeared in the calculations for Branch I is
flf. = 0-33 (Fig. 3a). Iff/f, > 1 and f5/f. < 1 then f/f, =1 (Figs. 3d, 4d, 5d, e, f). For large
values of f;/f, the value of /,/f, can become far greater than unity. If for example Jslf: = 10
and f,/f, = 0, f./f. lies on Branch I between 6-8 and 8-6 (Fig. 7c). With increasing values of
J3lf; and probably small values of /,/f,, the flutter frequency f, obviously tends to the frequency of
control surface rotation. With appropriate values of the tab frequency, the flutter frequency,
theretore, behaves in nearly the same way as a system with the two degrees of freedom wing

translation (2) and control surface rotation (g) for a sufficiently large out-of-balance moment of
the control surface.

(b} Branch II. It may be deduced from Flgs 3, 4, 5 and 7 that for

;y : fv—fﬂ

and for

%>1, Jo=J -



This means that the flutter frequencies behave in nearly the same way as those of a system with
the two degrees of freedom control surface rotation (#) and tab rotation (y) which has a sufficiently
large mass-coupling. Though it may not be important, it should be mentioned that in the curves
from which the above conclusions for f,/f; > 1 were derived, f,/f, < 1 always.

For convenience of reference in a future report, it is opportune to state here that if the critical
speeds on Branch II are low, the flutter frequency £, is higher than the natural frequency of the

tab, but sometimes approaches very closely to it. The same statement is true for Branch III
but not for Branches I and IV.

(c) Branch II1I. It may be deduced from the Figs. 3, 4 and 7 that for

]]—C{<1, fo= 1

and for

172>1’ L=/,

This means that the flutter frequencies behave in nearly the same way as those of a system with

the two degrees of freedom wing translation (z) tab rotation (y) which has a sufficiently large
mass coupling.

(d) Branch IV. It may be deduced from Figs. 5 and 6 that for

Ly ~
LS L=t

and for

J}V>>2, f=f .

This means that the flutter frequencies behave just as for Branch III in nearly the same way as
those of a system with the two degrees of freedom wing translation (z), tab rotation () which has
a sufficiently large mass coupling. :

3.1.3. Resonance phenomena.—There are exceptionally low values of the non-dimensional
critical speed on Branch Lif f;/f, = 1 and if simultaneously £,/f, > 1-2; f,/f; = 1. The minimum
moves to the left if f/f, increases (Figs. 5¢c, d, e). It is noteworthy that for Branch I the
coincidence of the two frequencies f; and f, alone is not sufficient. The reason is that the flutter
motion, though consisting predominantly of wing translation (z) and control surface rotation (),
has to be steered by a (perhaps small) tab rotation. The above-mentioned auxiliary conditions
provide the right phase for the tab rotation.

Branch III lies very low if ; = £, (Figs. 3, 4, 5).
Branches III and IV lie low if f, = £, (Figs. 3¢, 4d, for Branch ITI and Fig. 5¢ for Branch IV).

3.1.4. Flutter modes.—Flutter modes have not been calculated for this report, but we can in
several cases refer to calculations of the previous report®. In addition, reference can be made to

the behaviour of the flutter frequencies as mentioned in section 3.1.2 and the resonance phenomena
as mentioned in section 3.1.8.

(a) Branch I. One example of flutter modes for Branch I in which the degrees of freedom wing
translation (z) and control surface rotation () are predominantly engaged is shown in the previous
report® (Fig. 2, “ Flutter modes for IT”). Considering also the behaviour of the flutter frequencies
on this branch as well as the resonance phenomenon, this type of flutter mode seems to be typical
for this branch. It should, however, be emphasised that the tab rotation, small as it may be, is
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essential for steering this flutter motion, for flutter is not possible if the tab is not sufficiently
over mass-balanced, or if the tab is fixed. It may therefore be said that on Branch I the flutter
modes aré similar to the modes of a wing with an under mass-balanced control surface. The
behaviour similar to an under mass-balanced countrol surface is produced by over mass-balancing
the tab. (In this connection it is well to remember the fact found by Buxton and Sharpe* that
the effect of over mass-balancing the tab can be eliminated by over mass-balancing the control
surface.)

(b) Branch II. The flutter modes given in the previous report® [Fig. 7, n,/ny = 0-22] show
that, especially near resonance (f, = f,) the modes for Branch II will consist predominantly of
control surface rotation (§) and tab rotation (y). The behaviour of the flutter frequencies and
the nature of the resonance phenomenon on this branch support this statement.

(c) Branch III. In the same way as under (b), it may be concluded from the previous report®
(flutter modes for I), that especially near resonance (f, = f,) the modes for Branch III will consist
predominantly of wing translation (z) and tab rotation (y).

(d) Branch IV. The behaviour of the flutter frequencies, the nature of the resomance
phenomena and the behaviour when f;/f, tends to infinity make it probable that the flutter modes
corresponding to the Branch IV consist predominantly of wing translation (z) and tab rotation (y),
particularly in the case of resonance. There are, however, no calculations of flutter modes to
support this statement.

3.1.5. Euxistence of a vegion free from flutter —It was shown® that for the case f; = 0 there is a
region free from flutter in the neighbourhood of p, = 0 if the values of 7, and g are small enough.
Figs. 3 to 8 show that ‘these ranges become smaller and smaller with increasing f;, sometimes
disappearing entirely. However, if the value of f, is increased a gap appears between the branches
on the right side and the left side when f,/f; exceeds the figure 1-2 (Figs. 4c, 5d). For f,/f; = 2
and f,/f, > 2 nearly the whole region between the asymptotes is free from flutter (Figs. 3d, 4d,
5e,f). It would appear that the condition f,/f; > 2 ensures that the Branches II or III are shifted
near or to the right of the right-hand asymptote whilst the condition f,/f, = 2 has a corresponding
effect on Branch I on the left-hand side of the p, range (Figs. 4d, 5¢). In all curves which had been
considered for getting these conditions for a region free from flutter the condition f3/f, < 1 was
operative. Because of the lack of further curves with f;/f, > 1 and f£,/f, > 2, it is not certain
whether the condition f3/f, < 1 is really necessary or not. For reasons of caution this condition
must, however, be kept in mind.

For sufficiently high values of f;/f, another statement will probably be true, viz. that the region
between the asymptotes for which the tab c.g. is forward of the hinge will be free from flutter.
This may be conjectured from Figs. 8e, f, but a sufficient number of calculations does not exist
to make any quantitative statement possible.

In any case it can be stated that for sufficiently high values of f,/f, there are only high critical
speeds, if any, for over mass-balanced tabs, because for f;—co this range of p, must become
flutter-free. ‘

The above mentioned conditions f,/f; = 2; f/f. = 2; fi/f. <1 are, however, sufficient to
ensure that the region between the asymptotes is free from flutter. (Incidentally, the first of the
three inequalities can be omitted if the third is added because the first follows from the second and
the third). : '

The conditions for the existence of these asymptotes, and where they lie, will be investigated
in section 3.1.7.

If in addition to the condition f;//, < 1 only the condition f,/f; = 2is satisfied, Branch I always
lies, for the examples investigated in the previous report® and the present report, almost entirely
in the region in which the tab c.g. is before its hinge. In this case it can therefore be stated that
the range between p, = 0-1 and the right hand asymptote is free from flutter if for this asymptote
we have p, > 0-1, '
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3.1.8. Zero critical speeds.—It has been shown® that the critical speed may become zero* in a
certain p-range if f; = f, = 0 (see Fig. 7a, Branch II). If f; or £, or both are increased from the
value zero these zero-critical speeds will disappear, but for small values of f; and f, Branch II will
lie near the above mentioned range of $,. Therefore, a knowledge of the position of the zero
-~ critical speeds is essential for those cases for which f; # 0 and f, % 0. We have investigated the
dependence of the left-hand boundary of the range of zero critical speeds on .the structural
parameters. The p, values of these ‘ zero limits * are plotted in the curves in Figs. 12 and 13 as
abscissae whilst the ordinates of the curves are the non-dimensional tab span ¢g. It can be seen
from these figures that the zero limits move into a range of greater p, if ¢ or 4, decreases or 4,
increases. The influence was already known for 7, and ¢ from the previous report®, The influence
of these parameters is also apparent in the curves v, = f(p,): the influence of 7, may be seen in
Fig. 9 and of ¢ in Figs. 7 and 8. The (theoretically exact) independence of the position ot the
zero limit of the value of x may be seen in Fig. 10.

3.1.7. Asymptotes defining the flutter-free region~—It was found in section 3.1.5 that the
asymptotes are the boundaries of the region free from flutter if £,/ > 2 and f,/f, < 1. For this
reason it is important to consider how the position of these asymptotes depends on all parameters
under consideration except p,, that is, on 7, 4, g and x. The other parameters have no influence
because the position of the asymptotes is independent of the stiffness parameters.

In the interests of accuracy it is emphasized at this point that there are generally more than
two asymptotes to the curves v, = f(p). In this report, however, we are concerned only with
the two asymptotes which lie nearest to the v, axis and which approach each other if ¢ increases.
In Figs. 10c, 14 and 15 the values of ¢ have been plotted against those values of p, which are the
abscissae of the asymptotes of the curve v, = f(p,) for the above mentioned values of ¢. The
results are bell-shaped curves (see for example, Fig. 15a for the parameter value 4, = 13-1). The
region inside the bell is stable because no flutter can be excited if the parameters (g and ,) for
the system lie in this region and the system has suitable values of the natural frequencies f,, Ja
and f,, as mentioned above.

The branch to the left of a bell-shaped curve (apart from its right-hand boundary) hardly
depends at all on the parameter ¢ (Fig. 14). With increasing 4, or increasing x it moves to the
left (Figs. 15 and 10). From the work of Buxton?, it is known that this branch also moves to the
left if p, decreases (by an over mass-balance of the control surface).

The branch on the right of a bell-shaped curve moves a little to the right if x or s, increases.
With increasing ¢ it moves, however, to the left. By plotting the right-hand branch against the
parameter p, of the mass-coupling between control surface rotation and tab rotation (Fig. 14e) it
is seen that the dependence of these curves on 7, is much less than in the corresponding curves in
Fig. 14a. The variable more appropriate to the right-hand branch is therefore the parameter p,
whilst for the left-hand branch the variable p, is on all counts the more suitable one.

The movement of the two branches of the bell-shaped curve as described above determines the
position of the top of the bell. ~ The effect is that these tops have a very low value of g if ¢, is large.
That means that for such values of 4, there may be no asymptotes of the kind considered here, if
g is moderately large. For such values of 4, and ¢ it is not possible to obtain a range of 5, free
from flutter by choosing the values of the natural frequencies appropriately, although the critical
speed can, of course, theoretically be increased as much as desired by increasing the natural
frequencies. :

3.2. Influence of the Chord Ratios E, and E,—Although the parameters 7, 7, and p, have been
introduced instead of Kiissner’s parameters ¢,, #, and u,0,, it will be seen that the results still
depend on E, and E, (Figs. 13a, 16a), even if the more suitable variable #. has been introduced

* The branch of upper critical speeds which meets the p,-axis at the point where the range of zero citical speeds
begins (Fig. 8a) should have a vertical tangent at that point. This follows from the fact that the curves for V 2 (see
Fig. 13 in R. & M. 2418%) do not touch the p-axis. The author is indebted for this remark to Mr. G. H. L. Buxton,
who noticed this when translating the report. ’ -
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for the right-hand branch (Fig. 13b). To minimise this effect a new parameter § = jgisintroduced
in place of ¢ on the following principle. Let ¢s be the tab span, F,c, the tab chord, s the span
and E,c, the chord of the control surface of the system considered. We now choose an equivalent
system with the same control surface spanasabove but the chord ratios £,” = 0-3and E," = 0-075
irrespective of the values of E, and E,. The tab span §s will be determined in such a way that
for both systems the following ratio is equal; aerodynamic moment about the control surface
hinge per unit angle between the tab and the control surface (b; in aerodynamics notation) over
the corresponding moment caused by an angle of 1 radian between the control surface and the
wing (b, in aerodynamics notation). The value of § = jg found in this way will be used in the
following investigations instead of ¢.

With the help of Dietze’s expression for w = 0 the expression for 7 is easily tound to be

oy YD) MES) + fulBy E) _ L (Es
I= 0T R B RE) + ) T (&5 8)

where the functions f; have the same meaning as in Dietze’s report”. For an easier treatment of
this formula the function 7 = F(E,/E, ; E,) with E,/E, as an independent variable and E; as -
a parameter has been plotted in Fig. 2b.

If the variable ¢ is transformed into §, Figs. 13a and 16a change into 13c and 16b respectively,
and the curves for different values of £, and E, lie closer together than before the transformation.
A still better coincidence of the right-hand branches of Figs. 16b or 18c is obtained if the variable
$, is transformed into the variable , (Figs. 16c and 13d). The value of the introduction of the
parameters ¢, p,, § instead of &, u,, 0,¢ and of the parameter p, for the right-hand branch can also
be demonstrated for a curve representing the function v, = f(#,). In each of the Figs. 1la toe
are plotted two curves v, = f(). For the full lined £, = 0-3 and E, = 0-075 and for the
dotted ones E;, = E," = 0-3 and E, = E," = 0-04. (The parameters for the dotted curves will
be distinguished by a dash.) In Fig. 11a, the systems compared have the same values of ¢, and
pa0s. The two curves are quite different. No improvement is obtained by transforming only
the parameter u,0, into p, (Fig. 11b), but if curves with the same values of $, and 7, are compared
(Fig. 11c) they become more alike. The coincidence becomes still better if the curves compared
have not the same value for ¢ as in Fig. 11c but the same value for ¢, as in Fig. 11d. In view of
the benefit derived with the parameter p,, the right-hand branch of Fig. 11d has finally been
plotted against p, in Fig. 11le. It is then seen that the coincidence of the two curves near the
asymptote and near the zero critical speed is better in Fig. 11e than in Fig. 11d. The two minima
of p, for the full lined and the dotted curve in Fig. 11e are, however, more diverse than the
corresponding values of $, in the curves of Fig. 11d. The reason for this is probably that to the
branches concerned belong flutter modes which consist predominantly of wing translation (z)
and tab rotation (y) (Branch III, see section 3.1.4). These flutter cases, therefore, will depend
more on the coupling p, between these two degrees of freedom (2), (y) than on the coupling p,
between the two degrees of freedom control surface rotation (8) and tab rotation (y). It should
be emphasized, however, that this statement applies only to the arc of a curve for which
- fs=f,=0. This statement does not contradict previous statements that the best variable for
the zero critical speeds and the right-hand asymptotes is the parameter p,,.

Theretore, it can be said that by introducing the non-dimensional parameters 4, 7, #,, § the
influence of the geometry of the system on curves becomes very small. Further, for characterising
the situation of the right-hand asymptote and of the zero critical speeds of the curves v, = f ()
a still greater improvement is obtained by introducing the parameter p, instead of ..

4. The Trimming Tab Criterion I.—4.1. Derivation.—In order to establish a simple criterion
for freedom from flutter of a tab of the type considered we use the fact stated in section 3.1.5

that the region between the asymptotes of the curves is free from flutter if the following conditions
are satisfied : '

]—;222]31 ; ]—%22/’32 ; %gks .. .. .. .. - .. (1)
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where 2, =1 (i=1...3). .. .. . . .. . .. .. (2)

If the conditions (1) and (2) are satisfied, the required criterion has only to have the additional
conditions for the structural parameters that the points corresponding to them lie in the interior
of the bell-shaped curves in Figs. 14 and 15. In order to represent the bell-shaped curves in
Figs. 14 and 15 analytically it has heen assumed that they are of the form:

q[ﬁt—ﬂs+¢4(ﬂz—q)]2ﬂ1:
ag_“q

1. N )

The dependence of the free constants a,, a,, a;, a, on ¢, and ¢, has been determined graphically in
such a way that the curves in Figs. 14 and 15 are represented as well as possible by equation(3).
Sufficient curves do not exist to determine the dependence of the 4; on x and p,. (No curves
exist for determining the dependence on p.). It should, therefore, be stated that the following
relations are derived under some restrictions for the parameters, .e., for cases in which

p=2=56718; 4 =1—778; $.=0; 2,=1-31—13-1
E,=03; E,=005. .. .. .. . .. .. . @
The relations found are: '
@, = 0-222 4 0-013¢, 4- 4,(—0-0145 4 0-001497,)
S @y =1-12—0-02674 + 4,(0-0365 — 0-001) .. .. .. .. (3)
a; = — 0-164 — 0-09657; 4 4,(0-0778 4 0-004897,) '
| i,
%= 0448+ 0-277,,

— 0-238q, .

The graphical significance of the constants a,, @;, @, and d = 24/[(2a, — 1)/a,] is shown in Fig. 2a.
From the expression (3) we derive the following inequality for 2,

a5 — ag(a —.q) — kg \/(“.2“;__9)<;bt<a3—a4(a2—g)+k4 N/("‘zﬂ—qei N (5)
1
with '
g < a, .. .. .. .. .. .. .. . ‘e (7)
and A
Ry=1, ky=1. .. .. . .. . .. .. .. (8)

In order now, to include the dependence of this approximate formula on E, and E, the parameter
g is introduced in place of g and, in the right-hand part of the inequality, the parameter p, =
(Es/EL)i, + 2p(E, — E,)|E, instead of p, remembering from sections 8.1.7 and 3.2 that the
bell-shaped curve is nearly independent of the values of E,, E, if they are plotted in terms of
these new variables. In this way we get for the right-hand branch of the bell-shaped curves the
approximate formula

. —EN, _ . ]
2=l 2B BN < 0167+ 4y — afe— 9
1 1 .
a_- -
+k4J(La@J e A
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and for ’phe left-hand branch
- as — §
> — —_— —_ 2 . . . .. .
b a3 ay(a, 9) Ry J( g (10)

In order that inequalities (9) and (10) may have a real sense, a condition corresponding to
inequality (7) must be added, viz. :

j < a,. .. .. .. .. .. (11

The coefficients on the left-hand side and that of the first element on the right-hand side of
inequality (9) have been chosen in such a way that for E, = 0-3 and E, = 0-075 the inequality
(9) becomes identical with the right-hand part of inequality (6).

The inequalities (9) and (10) indicate that for safety against flutter the mass coupling 7,
between wing translation and tab rotation must not fall below a certain value and that the
dynamical mass coupling p,, between control surface rotation and tab rotation must not exceed
a certain value.

4.2. Range of Validity—The formulae (1), (2), (5), (8), (9), (10), (11) together form the new
criterion with the help of which the structural parameters can be chosen in such a way that
flutter is eliminated for the three degrees of freedom: wing translation, control surface rotation
and tab rotation. In order to determine the range of validity of these formulae the hypotheses
employed in deriving them will be stated here.

- The criterion was exactly satisfied by the curves corresponding to the parameters given in
Fig. 3. Tt was then assumed that the asymptotes were also the boundaries of the region free from
flutter for the range of paramesters given in equation (4) provided that the frequencies satisfied
the formulae (1), (2). - While this was a kind of extrapolation, the dependence of the position of
the asymptotes themselves on the values of these parameters was found from Fig. 14 by an
interpolation. The introduction of the parameters 4, %, $,, p. and § enables us to enlarge the
range of validity of the formulae for the asymptote positions to the following range of chord ratios

By 01810025 .. .. .. .. .. (12
E,

E,=02t00-4;
This has actually been shown to be true only for the values.of 4, $,, 7, and 4, given in Fig. 16.
Because this extension was largely based on physical considerations it was assumed that it would
be permissible not only for these special parameter values but also for the whole range of the
parameters given by equations (4) and (12) together, this being of course an extrapolation. .

Regarding the influence of 4 it could be shown by some examples that if the value of p is
greater than 5-718—as is usually the case—the range between the asymptotes of the curve
v, = f(p) is in any case larger than it would be if the coefficients ,(+ = 1,2, . . . 5) were put
equal to unity. The range is enlarged particularly on the left-hand side, i.e., the side for which
the tab c.g. lies forward of the hinge.

‘The effect of u could, therefore, be taken into account by making the constants &, and &;—
especially k;—greater than unity. For the moment however we cautiously refrain from doing
this because no calculations have been made which prove that the whole region between the
asymptotes is also free from flutter for great values of x if the frequencies satisfy the expressions
(1), (2). From the example in Figs. 10a and 10b we notice only that the range of $, has not
become smaller if » has increased: but f; = f, = 0 in this example. It seems probable that for
values of £, f;,f, satisfying the conditions (1), (2) an increase in x will have a more favourable
effect upon the flutter free range than it is seen to have in Figs. 10a and 10b, because the curves
will then be pressed against their asymptotes and the greater the value of u, the greater the range
between the asymptotes. :
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Altogether, it can be said that the criterion has been found valid for the range of values given
irt Table 1, partly by interpolation and partly by extrapolation, starting from the values given in
Fig. 8. Therefore, the more the given parameters differ from those in Fig. 3, the more the con-

stants &, . . . ks will differ from 1. An estimate of this difference must be kept for further
.experience to decide, perhaps in the form of wind tunnel tests.
For this reason it seems expedient to keep the constants %,, . . %45 in the criterion, so as to

retain the possibility of modifying it in the light of furtheér experience.

By giving those constants appropriate values we shall be able to allow for the inaccuracy of the
formulae arising from the simplifications made in its derivation, and at the same time allow for
the influence of structural damping and friction as well-as the fact that the theoretical air forces
are different from those occurring in practice. The last mentioned facts will probably mean that
the values of %, k, and %; are in practice greater than unity or that the constants £, %, are less

than unity. ‘

4.3. Introduction of a Safety Margin.—Up to the moment no safety margin has been introduced.
In practice a certain safety margin would be provided by the friction and structural damping
which have not been taken into account in the calculation; but it is possible that this margin
is not large enough. It seems reasonable to introduce this margin by the requirement that for
an increase or decrease of $, by certain amounts é,, 8, the system shall still be free from flutter.
That is, we replace in equation (9) p, by #, + 6, and in inequality (10) , by p, — é,. The
values of 8,, 6, are proposed arbitrarily as 0-5.

With the safety margins included the criterion is given in full in the summary (section 8)as
“ Trimming Tab Criterion I 7.

5. Simplified Forms of the Trimming Tab Criterion I.—5.1. Derivation of Trimming Tab
Criterion II.—The second of conditions (1) of section 4.1 is sometimes inconvenient to satisfy.
But it may be avoided if we remember the last section in section 3.1.5 from which it may be deduced
that if £,/f, > 2 is not satisfied sufficient conditions for preventing flutter are still obtained if the
condition (10) is replaced by

b=k . . .. .. o (18)

where
ke ==0-1. .. .. e . o (14)

This simplified criterion is given in full in the summary (section 8) as Trimming Tab Criterion II.
The range of validity of this criterion is the same as that of the Trimming Tab Criterion I.
However, it must be emphasised that the condition (13) has not been proved by very many

examples.

5.2. Derivation of Trimming Tab Critevion ITI—To find a still more simplified criterion for
use we start from the Trimming Tab Criterion I and first simplify in it the condition (9). We write
condition (9) in the abbreviated form

P <ty by P @) . ee e e e e ... (15)

Then the function ¢ is determined anew from the right-hand branches in Fig. 14. Though
trying to get a rather simpler approximation of the function ¢ care is taken, however, that the
differences between approximation and exact representation do not become too great and are in
any case on the safe side with regard to flutter prevention. In this way the requirement (9)
becomes simplified to

pa < — 014 4 0-25;, — % (0-63¢ -+ 1)
: 7 )

[

-}—i(0-751—|—0'69-{"——0-0435i6) PSR 1)
q (7 o R
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in which the safety margin, added later to condition (9), is already present. The condition (7)
which was necessary in order that the expression (9) had a real meaning is for that reason no
longer necessary for the expression (16) derived from (9). The additional restriction (7) would,
however, be necessary also for inequality (16) if our criterion should be right within just the range
of the parameters given in section 4.2; but normally the non-dimensional mass g of the wing is
greater than the value p = 5-718 for which the formula (9) has been derived. For such values
of u the condition (7) will be too restrictive. To understand this it will be remembered that a, is
the top value of § in the bell-shaped curves (see Fig. 2), and according to Fig. 1 a, increases very
much if  increases. Therefore, the value of a, will be for the normal practical values of u, 7.e.,
for values of 4 greater than 5-718, greater than the value of , given by relations (5). For this
reason it seems intelligible to omit the additional condition (7) when deriving here a criterion for
practical use.

Condition (16) can now be transposed into a form similar to that of the Collar-Sharpe Criterion.
Remembering that - :

g=7q .. - .. o .. .. (17
and (see the list of symbols, section 11)
Pu-q _ I, + Mux(E, — Ez)cw
i 1.p

with

NS
I
] o
B

oy

we finally derive from condition (16)

I, + Mx(E, — E,)c

L P CPP=Cr . . (19)
with
VI 0-751 | 0-69 | . [ ox 0-14 175 1.27
c._.3f{ 0-0435 + 27 +.fz--%ygﬁ)25 . —-7;03634+——% )]} (20)
and
J = A/P[0-98 + 1-28(1-97 — E)(0-745 — #)] . oo oo e (1)

" The set of formulae (19), (20) and (21) represent the simplified form of the requirement (9) we
wished to derive. For a complete criterion like the Trimming Tab Criterion II we should add the
requirements '

%22 N
B
%<1;@>k6 T 0.5 )

but it is still possible to make some further simplifications. The first of conditions (23) was only
to be added in the criteria I and I1 because the computed material was ounly available within this
range. However, the necessity for this condition not having been proved it is considered that it
should be omitted in a criterion proposed for practical use. Further, the condition p, > &, may
be written in the dimensional form

M, = 0-4kspe,cigs . .. .. e . .. .. (24

The formulae (19), (20), (21), (22), (24) constitute a recommendation for f)ractical use to
prevent flutter which are summarised in a slightly generalised form in the Summary (section 8)
as Trimming Tab Criterion III. ‘
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The range of validity of the Criterion IIT just derived is with respect to all structural parameters
except the non-dimensional mass p the same as that of Criterion II. With regard to ¢ we have
made the additional assumption that p is normally greater than 5-718 in order that the formula
(19) would be valid without the restriction (7). This is an extrapolation in respect to x4 that is
only justified by some examples in Fig. 10. Because of this simplification and because we have
omitted.the first of conditions (23) the Criterion III is not so exact as the Criteria I and II. In
this respect Criterion III can therefore be regarded only as a “ recommendation to prevent
flutter . Nevertheless, it has the advantage over Criteria I and II of greater simplicity.
Furthermore it is to be expected that by attaching correction factors to C in condition (19) and to
the numerical value 2 in (22) (se¢ Summary) it will be possible to adapt the Criterion III easily to
practical experience even in a wider range of the values of the structural parameters than assumed
until now.

6. Comparison Between Criterion I1T and the Collar-Sharpe Criterion. —If the existing Collar-
Sharpe criterion for spring tabs *** is applied to the case of a trimming tab by putting the follow-up
ratio N equal to zero the criterion takes exactly the form (19) of Criterion III with K’ replacing
C and K replacing C;. The important difference is that whereas C and C in Criterion 1II are
functions of ¢, 4, p, ¢, and E; the Collar-Sharpe criterion in its first form * has K constant and in
its second form™ has K’ constant. These relationships obtained by Collar and Sharpe were, of
course, admittedly approximate and were in any case obtained on a different basis. No attempt
was made, by means of frequency ratio requirements, to ensure that the curve of flutter speed
against tab out-of-balance moment lay wholly on the under-balance side of the asymptote, and
the Collar-Sharpe relationships in fact define the position of the nose of the curve, not of the
asymptote. It is, nevertheless, instructive to compare the criteria for the case of the trimming
tab, and in Table 8 values of C and C, as given by conditions (19), (20) and 21) for a range of values
of the relevant parameters are Compared with the Collar-Sharpe values for K’ and K. For all
cases except Case 1 the Sharpe (K’) Criterion is more restrictive than that of (19), (20) and (21).
In the extreme Case 1 the small value of C comes from high values of 4, 7, and small values of p,
g and E,. Following Cases 1 to 5 in Table 3 step by step we see that C increases by decreasing
1, and 4, and increasing p and E,. Comparing 1 and la and 5 and 5a respectively it is seen that
for small values of 7,, 4, the value of C decreases if g increases, but for large values of 4, and ¢, the
value of C increases if g increases. Inspection of the formulae (20), (21) confirms these conclusions
drawn from Table 3 and shows in addition that for small values of 4, and great values of ¢ the
value of C might increase if 4, increases. Further, it should be noted that the influence of 7, upon
C 1s much greater than that of ¢, This influence of 7, is in such a direction that a large value of
I, is not so beneficial as it would be if C in formula (19) were a constant, as K’ is in the Sharpe
criterion. Comparing finally the values of C and C; in Table 3 it appears that the constant K
of the Collar-Sharpe Criterion varies much more than the constant K’ of the Sharpe Criterion,
thus confirming that the latter is at any rate an improvement on the former.

The further requirements (22) and (24) of Criterion IIT have no counterpart in the criteria of
Collar and Sharpe. This means that while conditions (19), (20) and (21) is normally less
restrictive than the Sharpe (K') Criterion the requirements (22) and (24) provide additional
restrictions. However, on the whole, Criterion III will in practice give normally some relief
compared with the Sharpe (K" Criterion with a zero follow-up ratio N and only prove more
restrictive in exceptional cases of high (non-dimensional) moments of inertia of the control
surtace or unusually flexible tab conuections.

It is not proposed to pursue this comparison any further at the present stage as it will be
considered again in the later report on spring tabs (N = 0) for which the Collar-Sharpe criterion is
more directly applicable and comparison therefore more relevant.

7. Practical Deductions and Applications.—7.1. Theoretical Deductions from the Criteria—To
draw deductions of a qualitative kind from the criteria we note that the formulae (9) and (10)
represent a synopsis of the curves of Figs. 14 and 15, considering also Fig. 16 for the influence of
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the parameters £, and E,. From these curves we derive the following guiding principles for
obtaining a system as advantageous as possible. In order to obtain a range of p, which is as wide
as possible and lies as far as possible in the region where the tab c.g. is aft of its hinge, we would
have, besides satisfying.the conditions (1), (2) for the natural frequencies, to make the value of
1, as high as possible and the values of 7, 4, and E,/E, as low as possible.

7.2. Practical T nteyprémtion of the Deductions.—The designer cannot simply comply with
the recommendations just given in section 7.1 because he has to consider other points of view
as well.

He will not make the value of 7, (non-dimensional moment of inertia of the control surface)
exceptionally high because this would promote flutter with the two degrees of freedom wing
rotation, control surface rotation, and besides this would involve additional weight.

The value E, of the ratio of the control surface chord to the lifting surface chord will be fixed
by aerodynamic counsiderations for the aeroplane as a whole.

With regard to the tab, the designer must primarily meet the desired requirement for aero-
dynamic performance of the tab system. For our purposes it will be sufficient to define the
performance of a trimming tab system in the following way. Two trimming tab systems will
have by definition the same performance if their maximum tab deflections give the same lift
to the system. If we compare only systems the planforms of which are identical except in
regard to the tabs—as is done here—this definition can be simplified for our purposes if the tab
chord has not exceptionally high or low values. Two trimming tab systems of this kind will
have nearly the same aerodynamic performance if the ratio of the aerodynamic surface hinge
moment due to the maximum tab angle to the corresponding moment due to a certain required
control surface angle is the same for both systems. Remembering the definition of § in section
3.2 we see that for such equivalent trimming tab systems the following equation holds

Vmaxl-élzymaxz-qz-

The value of § is thus determined by the standard of aerodynamic performance required of the
tab system and by the value of y,,, adopted.

Since from the flutter point of view the smaller § is the better, y,.. should be chosen as high as
possible compatible with aerodynamic considerations.

It is possible to make the value of i, (non-dimensional moment of inertia of the tab) small by
placing the load-bearing parts of the tab as far as possible in the neighbourhood of the hinge, and by
giving the balance arm of the tab a suitable length*. According to the author’s experience ¢
depends only slightly on E, if different tabs with similar kinds of construction are compared for
the same aircraft, vez., 7, increases slightly if £, decreases.

We can now regard the values of E,, 4, ¢ and 4, as being fixed in accordance with the above
mentioned considerations. It remains only to choose the value of E,.

For the following reasons it appears that this value should be as small as possible:
(a.1) The range of values of p, increases a little if E,/E, decreases (s¢e Figs. 16b, c).

(a.2) The tab frequency f, increases if the stiffness of the tab control circuit is regarded as
constant because the moment of inertia of the tab 7, decreases if E, decreases.

This is true even if the aerodynamic efficiency is kept constant.

* Tt would be possible to get a particularly small moment of inertia of the tab by placing additionally the tab hinge
a reasonable distance aft of the leading edge of the tab, so that the hinge and the c.g. of the tab without mass balance
would be near to each other. But then the tab would have an aerodynamic balance. According to the experience
of Voigt, Walter and Heger®? on ailerons this might have the same effect as reducing the stiffness of the control circuit
of the tab, 7.e., a bad effect.
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A limit to the possible decrease of the tab chord is given by the following considerations:

(b.1) In order to keep the same aerodynamic efficiency a tab with a smaller chord must have
a greater span. But the tab span cannot be longer than the span of the main control.

Further a lower limit to the tab chord itself is given by the fact that the efficiency of
tabs with very small chords is greatly reduced by boundary layer effects.

(b.2) When E, becomes very small the value of 4, will increase by a certain amount even
though only tabs for the same aircraft with similar designs are considered.

(b.3) A tab with a small chord will have a large span and such a tab will not be very stiff
against torsion, especially if more than two hinges should be necessary, which often
decreases the torsional stiffness in itself.

The advantage cited in (a.1) may be nullified by the disadvanfage in (b.2) or eventually even
outweighed.

But there remains still one advantage in decreasing the tab chord, viz., that the tab frequency
/, is increased. This is valid in so far as with very small tab chords the torsional stiffness has
not become so small that the tab frequency is not reduced by actual torsion of the tab itself, as in
(b.3). If1it should not be possible to get a region free from flutter according to the formulae (9)
and (10) which is wide enough by reducing the non-dimensional moment of inertia of the tab s, we
have to reduce the parameter § and with it the efficiency of the tab. This is possible by
reducing the tab surface area, preferably by means of a reduction in the tab chord.

- 7.8. Application of the Criteria to Actual Lifting Systems.—That tabs of the kind treated here
are sometimes liable to flutter in practice is shown by German experience’ and by the example
of the experimental g-restrictor tab of the Mosquito*. ~Although British experience has indicated
~ that the stifiness of trimming tab connections is normally high enough for flutter to be unlikely,

at least below a certain speed, current official requirements (about which more is said later in
section 8) do not entirely exclude the possibility. Furthermore, if backlash should develop on
a tab in service it is evident that the tab would not be so susceptible to oscillation trouble if the
out-of-balance moment lies within the limits of the criteria. '

In order that our criteria can be used for real aircraft it remains to explain how to ‘replace a
real wing, rudder or tailplane by our simple system.

A strict investigation has not been made into this question, and the following recommendations,
therefore, should be regarded as provisional.

The spans of our idealised wing and control surface will normally be taken equal to the span of
the actual control surface. Some reduction of this span will be made only at that end where the
control surface ends together with the lifting surface. The tab will be given the same span as it
has in reality (perhaps with a similar reduction as mentioned above).

‘The wing chord will be taken as the mean chord of that part of the surface which is supplied
with a control surface. The idealised control surface chord and tab chord will be found by
calculating the root-mean-squares of these chords.

 The non-dimensional quantities ¢, E,, E,, #, %, %, $., £, can then be calculated and our criteria
applied. ' ' ,
~ If the movement of the lifting surface to be taken into account is more rolling than vertical
translation, or contains pitching, the calculation of the p, value in condition (10) should be
modified. My, in the expression for $, should then be replaced by
ZTm . xy
b
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where
27T the summation over the tab,
m, a mass element of the tab
% the distance of the element aft of tab hinge,

the distance of an element of the lifting surface (mcludmg control surface and tab)
from the axis of rolling of the lifting surface (s.e., in case of a rudder, distance of the
element above the axis of twist of the fuselage).

¥» the mean y-value of all elements of the part of the lifting surface (including ‘control
surface and tab) under consideration.

(For the manner of calculatmg mass couplmgs of parts of actual aeroplanes, see Duncan, Ellis and
Gadd*®.)

Similar considerations would have to be taken into account if p. had to be calculated. How-

ever, the criterion should not be applied to cases where the mode of the lifting surface contains
a considerable amount of pitching.

The reason why.the treatment of 4, in condition (10) is different from that in condition (9) is
that condition (10) implies a restriction of the coupling between wing movement (translation) and
tab rotation whilst condition (9) implies restriction of the coupling between control surface
rotation and tab rotation. :

Finally it should be mentioned that in the case where the actual lifting surface (e.g., wing) has
a greater span than the control surface (¢.g., aileron) the part of the wing without control surface
will damp the tab flutter motion in those modes in which the wing motion plays an essential part.
(It is assumed here that the system is flutter free without the tab). In consequence of this, the
constant %; in condition (10) may then be allowed to have higher values.

The above suggested modifications to inequality (10) will also apply to the inequalities (18),

(23) and (24), and to the corresponding inequalities listed in the Summary (section 8) as (B),
(E) and (H). '

8. Summary and Discussion of Results—We summarise the results of this paper, chiefly from
the point of view of their application in practice. ‘

If the system investigated with the degrees of freedom wing translation, control surface rotation
and tab rotation flutters at all there will be a low critical speed
(1) if the tab c.g. is aft of the hinge and there is resonance
~ (a) between wing translation and tab rotation, or
(b) between control surface rotation and tab rotation ;
(2) if the tab c.g. is forward of the hinge and there is resonance between wing translation

and control surface rotation, and if in addition the natural frequency of tab rotation is
higher than the natural frequency of wing translation.

The flutter modes appertaining to these cases consist predominantly of those degrees of freedom
which are just in resonance,

If the natural frequencies of the tab and the control surface are zero, there is a range of zero
* critical speeds which lies predominantly in the region where the values of $, are positive (tab c.g.

aft of its hinge), but goes further into the region with negative values of $, (z.e., tab c.g. before its
hinge) the greater the moment of inertia of the tab, the greater the aerodynamlc efficiency
(bs/by), and the smaller the moment of inertia of the control surface.

With regard to the flutter frequenc1es reference should be made to Table 2.
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- The fact that for appropriate values of the natural frequencies of the system investigated the
" range of values of p, between two asymptotes of the curve v, = f(p,) is free from flutter has been
" used to set up a flutter criterion which is given below as Criterion I. Successive developments of
this criterion, with appropriate frequency conditions, give rise to Criteria 1T and IIl, also given
below. In the order I, II, ITI the criteria become simpler though more approximate, but for
most practical purposes Criterion III should be adequate. Factors &, to %, are introduced into
the criteria to provide scope for further refinements in the light of experience.

Trimming Tab Criterion I —A system with a trimming tab is free from flutter with the degrees
of freedom wing translation, control surface rotation, tab rotation if the structural parameters
satisty the following inequalities, where all quantities #; (/ = 1 to 5) are provisionally taken equal
to unity and 6; = 6, = 0-5:

Lrsop o Frsop o fo<ch .. .. .. .. .. . A
fE FE Esh - )
pt?%“}‘“s_‘(h(%“@_ksN/<a2“—?iq .. .. . . (B)

TN T MO
+k4\/<‘?271—q_é>}—al.. N (o)

j=j9<a.

and

Here a,, a,, a;, a, and j are given by the formulae (5) and (21).

It is to be expected that further practical experience will show that the coefficients %, and &,
may be reduced whilst the coefficients %, £, and especially %; may be increased. We remember
that 4,, 8, are safety margins for p, arbitrarily chosen. If at the momentallk, (=1 ... 5)
are taken equal to unity, the first of conditions A is, of course, superfluous.

The range of validity of the tab flutter criterion is:
p=95718; 2,=1t778; $=0; 4,=1-31t013-1;
E,=02t004; E,E, =0-13t00-25.

~The criterion will probably also be valid for valuesof y uptog = 50. From calculations by Buxton
and Sharpe’, it seems probable that the above mentioned criterion is still valid if the elevator is
over mass-balanced, in fact for an even greater value of %;.

If the second of conditions (A) in the tab Criterion I cannot be satisfied one of the following
criteria should be used.

Trimaming Tab Criterion II.—A system with a trimming tab is free from flutter with the
degrees of freedom wing translation, control surface rotation, tab rotation if the structural
parameters satisfy the following inequalities, where all quantities %, (¢ = 1 to 5) are provisionally
taken equal to unity, further 2, =0-1, and 6, = 0-5

Lrsop - fecp L . . .. (D

'fﬁ/ 1 fz 3 . . * M ()

5> ke O
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4+k4\/<%a—lqg>}_5.l O €

g < @

with

Here the values of @y, @,, as, a4, § are to be computed in the same way as in the Trimming Tab
Criterion I. The range of validity is the same as that of the Criterion I. It should however be
emphasised that the exact value of the constant %, could not be determmed very closely.

The criterion recommended for practical use at the present stage is the following:

Trimming Tab Criterion I11.—To prevent a trimming tab system from flutter with the degrees
of freedom wing translation, control surface rotation, tab rotation, the structural parameters

of the system should sat1sfy the following equa’uons where we take prov151ona11y ky=1;
Be=01; k=1

frs on | | G
= R | (G)
Mpz, > 0-4kepeuciys .. .. .. .. (H)

It + M;%;(IEc‘l - Ez)Cw < k-, C.‘?s/z . . .. . (K)

Here C is given by the formulae (20) and (21).

The range of validity of this criterion is about the same as that of Criterion II. Tt is only
assumed that the non-dimensional mass # of the lifting surface is greater than 5-7. It is to be
expected that by a slight modification of the constants %, &, £, the criterion can easily be adapted
to practical experience and made valid for the whole normal range of the structural parameters.

It appears that the non-dimensional quantities 7, ¢, #, p., ¢ introduced by the author are
useful in a wider field than in the above criteria. They could be used, for example, when
compiling statistics of structural parameters and in the formulation of flutter requirements,

In the case of a lifting surface with a more complicated planform and a more complicated
degree of freedom than investigated above, certain mean values of the structural parameters
have to be put into the criteria as explained in section 7.3.

The best possibility for the designer to satisfy any of the above mentioned criteria is to make
the maximum tab angle as great as possible and the chord of the tab as small as possible (by
choosing a suitable length for the tab span), and to give the tab with this chosen chord a moment
of inertia as small as possible by placing the load-bearing parts of the tab as near as possible to
the hinge line and by giving the balance arm a suitable length. In carrying out these measures
the designer must not, however, forget the demand of a sufficiently high stiffness of the tab and of
the tab control circuit to meet the conditions for the tab frequency. If it is impossible to meet
the conditions for tab out-of-balance moment by the measures just mentioned, the criterion can
still be satisfied by reducing the value of 7, that is, by reducing the aerodynamlc efficiency of the

tab. Another possibility to prevent flutter in this case, which is not yet covered by the criterion,
would be to over mass-balance both the control surface and tab.

It should be mentioned here that the above criteria give sufficient conditions for eliminating
flutter entirely with the three degrees of freedom considered. For some practical purposes (e.g.,
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in relation to unsymmetrical elevator flutter) it is useful to know in addition that only high
critical speeds exist, if any, if the natural frequency f, of the mass-balanced control surface is
very high and the tab is slightly over mass-balanced.

Finally, a word should be said about the relation between the criteria evolved in this report
and the current official requirement relating to the flutter of trimming tabs®®, which states in
effect that trimming tabs shall be statically or slightly over mass-balanced for speeds greater than
350 knots E.A.S. Superficially this requirement appears to have little in common with the
criteria of the present report, but in reality the A.P. 970 requirement is based on the fact that the
majority of trimming tab systems.have connections which are so stiff that there is little danger
of flutter below 350 knots. Below this speed limit the A.P. 970 requirement, therefore, relies on
the stiffness of the tab connection and makes no stipulation about tab mass-balance: in other
words, though flutter may occur it will be at a speed well above 350 knots. Above the speed limit
tab ‘mass-balance is defined to ensure that, on the same principle as the new criteria, flutter will
not occur at any speed. The main criticism of the A.P. 970 requirement is that above the speed
limit it appears unnecessarily restrictive. It is to be noted, incidentally, that A.P. 970 makes

special reservations with regard to trimming tab systems having unusually flexible connections.
(Chapter 500, section 7.44). ' ’

‘The Collar-Sharpe criterion for spring tabs'™ ' can of course as it stands be applied to trimming
tabs by putting IV, the follow-up ratio, equal to zero, though in the derivation of the criterion
such an extension was not contemplated and in fact the application is not generally made.
Nevertheless, comparisons made between Criterion ITT of the present report and the Collar-Sharpe
criterion with N = 0 show that for the alternative forms K and K'p of the Collar-Sharpe
criterion neither X’ nor X is constant by Criterion III, though K’ is much more so than K. ~Also,
for all but extreme cases the Criterion III is less restrictive than the Collar-Sharpe criterion with
K’ =0-1: at the same time the Criterion III involves an additional requirement in respect of
the tab natural frequency, which should however in most cases be easily met.

" 9. Conclustons.~—For the avoidance of flutter of trimming tabs under the conditions considered
certain qualitative conclusions can be drawn from the results obtained, v1z., that the following
effects will be tavourable:

(1) High stiffness of the tab connection.
(2) Low moment of inertia of the tab about its hinge.

(8) High moment of inertia of the control surface about its hinge, compatible with the
avoidance of additional weight and with freedom from binary flutter involving main
surface rotation and control surface rotation.

(4) Low tab span parameter g, which is, however, largely determined by the desired aero-
dynamic performance of the tab but will be reduced by adopting as high a maximum
tab angle as possible.

(5) Reasonably low tab chord (assuming the control surface chord fixed by aerodynamic
considerations). ‘

Quantitative requirements for the avoidance of flutter are obtained in the form of alternative

Criteria I, IT and III, given in detail in section 8. TFor practical purposes Criterion III is
recommended. ‘

10. Further Developments.—It is considered desirable that the investigaﬁon should be extended
as follows:

(a) Research, possibly by wind-tunnel tests, to obtain more accurate values for the factors
k, to &, in the criteria. ‘

(b) Effect of over mass-balance of the main control surface and extension of the present
range of values of tab and control surface inertias and of wing mass,

(c) Effect of aerodynamic balance of the tab.
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11. List of Symbols.—The term ‘wing’ is used generally to denote a lifting surface with control-
surface and tab, 7.e., 2 main-plane unit, a tail-plane unit or a fin and rudder unit.

A, « o, g

. Cw

Ju fo fro
fe
e

Natural frequency of control surface rotation

Constants defined in formulae (5) in section 4.1

- Complete wing chord

Control surface chord

Tab chord

Constant, defined in Fig. 2a -

Artificial damping moment about the hinge line of the tab per unit angular
velocity of rotation of the tab about its hinge line

Control surface chord ratio ¢,/c, '

Tab/chord ratio ¢,/c,

Symbol (if without index) for an arbitrary function

Functions of E,, E, defined by Dietze’

Flutter frequency (in c.p.s.)

Natural frequency of wing vertical translation (assumed to

be different from zero throughout the report) taking into

account the
. |virtual inertia

Natural frequency of tab rotation of the air

Constant defined in formula (21) in section 5.2 and shown in Fig. 2b
Moment of inertia of the control surface (including tab) about its hinge line
Moment of inertia of the tab about its hinge line

Constant defined in formula (21) in section 5.2

Constants nearly equal to unity which are used in the Trimming Tab Criteria
in section 8

Constant approximately equal to 0-1 which is used in the Tcimming Tab
Criteria in section 8

Mass of the wing (including control surface and tab)

Mass of the control surface (including tab)

Mass of the tab

Tab-control surface/chord ratio E,/E, .

Tab span/control surface span .

Tab span parameter defined in section 3.2

Control surface span

Critical speed

Reduced critical speed = V, (m.p.h.)/c, (ft) . fi(sec™)

Distance of -control surface (including tab) c.g. behind control surface hinge

Distance of tab c.g. behind tab hinge

Abbreviation for the degree of freedom *vertical wing translation’
22



(&) - Abbreviation for the degree of freedom ‘ wing rotation’.

(B) Abbreviation for the degree of freedom ‘control surface rotation’.
(7) ' Abbreviation for the degree of freedom ‘tab rotation’.

d;, 02 Safety margins introduced into the criteria (see sections 4.3 and 8).
p - Air density.

Po Air density at sea level.

0, = M,[sc?, Wing density.' \

Derived quantities (all non-dimensional)

AM, 4 . 4M, . 4M,

. _ 161, 16l 8D,
1 anfS s 2 =™ ”P%WS ; t n2p0w4qsﬁ ’ °
9, 161, . . 9, 16l
be = E?  mpeyse® b= s TPCLSCig
#1001 8M x, H20g 8M x,
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TABLE 2

Summary of the Characteristics of the Branches of ¢ Lower Critical Speeds’ of the Curves v, = f(p). (See Figs. 3 to 10.)

Approximate value of the Flutter Frequency f, under the conditions in
the first rowl]] ‘
Necessary 7SS VS VA S VA VS odes ne
o Branch lies B JB Jy Jy Jy Jy Jy J» _ ol Resonance | modes near
Branch foioél)?ils?:;lce principally in | f, < 1 £ >1 75 <1 fs >1 f. <1 £~ ! fe S2 77 >2 phenomenon | resonance (Fe_sul‘(cis fare
the range where * occurs consist CILvec trom
of the |ihe tab cg. is - fo when :— |predominant-| figures f
branch 7 >=1-2 ly of ~— .
Iy~
2 =1
fe”
I — forward of the A (<) fa — — — — — — f =T (2), (B 3d, 4d, 5d, e,
hinge of the ' Jy 1 f,7e
tab. 7= {1, (2}
I — — - s Iy — — — — fo=1r (B, (7)) |3 457
{7}
o1 | fs . aft of the hinge | — — — - £ f, — — f. =1 @), (» 1847
7595 7 ot the tab ” ’ (2}
v %9 >1 - — — — — — / (AL | L=l @, Nt |56

* Only derived from curves in which f,/f, < 1.

T No calculations were made.

T The figures in curly brackets are those of previous report$,

|| Except near the asymptotes, where f, - co.



TABLE 3
Comparison between Criterion I1I and Collar-Sharpe Criterion with N = 0

(1) Values of the constants C, C, in the requirement

I, + My, (El — Ez) 4

S e < Cp = C, P ¢
with
c_ Vb 751, 0-69 0-14
_#{ 0-0435 + ¢ =T jq[OZS _____<0634—|— )]} .. (23
and ,
j=/p[0-93 4 1-28(1-97 — E;) (0-745 — )] O -7

for different sets of values of the relevant parameters.

No. i i, P g E, c L C, = Cpn
1 7 10 0-15 0-25 0-2 0-0727 0-00422
2 3 10 0-15 0-25 0-2 0-140 0-0081
3 3 3 0-15 0-25 0-2 0-177 £ 00103
4 3 3 0-3 0-25 0-2 0-205 | 0-0338
5 3 3 03 0-25 0-5 0-228 0-0375
la 7 10 0-15 1 0-2 0-116 0-00673
5a 3 3 0-3 1 0-5 0-165 0-0273

(2) Values of the constants K and K’ in condition (19) accoi*ding to Collar and Sharpe (independent
of the value of the structural parameters), if used for N = 0.

Reference K K
.  (compare with C) | (compare with Cy)
Collar and Sharpe® .. — 0-02
Sharpe* .. .. .. 0-1 0-015
' : ' if greater than
Pa/z
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FLIGHT DIRECTION

FIG.I. @. CROSS-SECTION OF THE WING WITH CONTROL SURFACE AND TAB.

FLIGHT DIRECTION

FIG.I. b. PLAN FORM OF THE WING WITH CONTROL SURFACE AND TAB.

FIG.l c. DEGReES OF FREEDOM OF THE svsTem. _(IN THIS REPORT
IT HAS BEEN ASSUMED THAT «=0.)

/s

:|: - m\&/

FIG. L d. THE ELASTIC SYSTEM.

Fic. 1. The system considered.
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Fic. 2. Graphical illustration of the trimming tab criterion.
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Fic. 11. Critical speed as a function of tab centre of gravity position.

37




TAB SPAN
CONTROL SPAN

THE POSITION OF THE BOUNDARIES OF THE ZERO CRITICAL
SPEEDS OF THE CURVES e = { (fue) A5 A FUNCTION
OF THE REDUCED TAB SPAN ‘[, FOR SEVERAL VALUES
OF THE MOMENT OF INERTIA LC OF THE CONTROL SURFACE
AND THE MOMENT QF INERTIA ,L(._ OF THE TAB.

SYSTEM

g=1 (fr; “itt)v..g

c=

\\ DEGREES OF FREEDOM ), B &

VALUES OF PARAMETERS

\ A= ANY VALUE , b= ANY VALUE,
2 CASE (@ = 13+
\ le =f. mem—s 4, iL={CASE (&) = G55
- ——— 778 CASE (&) = 3.93

By =03 , E;=0-075 , fg = fy=0, f, = ANY vaLe
NO FRICTION , NO DAMPING

:

s " " L PRSE L . : N " ‘ - i "

TAB C.G, FORWARD.__ __ TAB CG. AFT OF c;‘
OF  HINGE ] HINGE
05
-z - 0

1 2 3 4 5 G 7 '8 3 o 12 1& 2 -1 0 1 2 3 4 ) =] 7 8 9 10 H

¥16. 12. Position of the boundaries of the range of zero critical speeds as a function of tab span.

38




68

05

1 ).

] 3 3
— TAB C.G., AFT OF HINGE P
=¥ Y10
05
R ¥ z 3 %
P

2

THE POSITION OF THE LEFT- HAND
BOUNDARIES OF THE ZERO CRITICAL ,
SPEEDS OF THE CURVES We=1f ( ¢ -
AS A FUNCTION OF THE REPUCED

TAB SPAN  § FOR SEVERAL TAB—-GHORD
RATIOS, PLOTTED IN DIFFERENT WAYS.

FOR THE SYSTEM AND THE DEGREES OF
FREEDOM SEE FIg, 12,

VALUE OF PARAMETERS
AL = ANY VALUE , P . = ANY VALLE

’("c = 778 N Ct = (55
Ey(=02 , Ep =004
0-075
E, =03, £2= 000 @ —emema—
0-04 —_———

E, =04 , E,=0:08 ——— e

fﬁ': fX=D
NO FRICTION » NO DAMPING

F16. 18. Position of the boundaries of the range of zero critical speeds as a function of tab span.




ov

THE POSITION OF THE ASYMPTOTES OF THE CURVES \ka;(pt)
AS A FUNCTION OF THE REDUCED TAB SPAN 4 FOR °
SEVERAL VALUES OF THE MOMENT OF INERTIA Lc

OF THE CONTROL SURFACE AND THE MOMENT OF
INERTIA Ly OF THE TAB-

It
I

?/g ‘F<1’t 1 e L’:)’d’c:d,

DEGREES OF FREEDOM (%),(/3). ()
VALUE OF PARAMETERS

A = 5718, Pe=0O
case (a) 776 — 131
¢ case ( b) 4" — .~ @55
l.c = L
case (c) @ 1 % o= ) —-— 3093
case (d) | L=
E, =03 , Ep= 0075 fo, f4, fy MAY HAE
ANY  VALUE , .
N N L A L A L ) N o
T2 3 _4p A 3 ¢ - o0 t 2 3 4g FRICTION AND DAMPING MAY HAVE ANY VALUE
RWARD ~~—O—> TAB CG. AFT t t
NG OF HINGE
.
i \ : o A DIFFERENT FLOTTING OF
| .

THE RIGHT - HAND BRANCHES
OF THE CURVES oF F1G.@

\ ¥
\ \ 3-53 .
L
\- 3
\ [ )
Y o5 1431

\; ,'_-1-31 |
e

TTTE T3 4. 3 S = oo 1 2z 3
e 5 2 3 4p, 0 2 4 & B 10

FiG. 14. Position of the asymptotes of the curves v, = f(#,) as a function of tab span,



07819)

te

s
o

78
,\;4 N
‘~Y\f 4t 655
e 3 4Pé -4 -3 -2
OF HINGE

<—0—= TAB C.G.AFT

THE SAME CURVES ARE PLOTTED AS 1IN FIGURE 14
THE ONLY DIFFERENCE BEING THAT THOSE CURVES
WHICH RELATE TO THE SAME REDUCED MOMENT OF
INERTIA LC OF THE TAB ARE PLOTTED TOGETHER"

%:f(ptg les l"’-)'\/‘caoo

778

- = —_——— 4_
—— 2
1

F1c. 15 Position of the asymptotes of the curves v, = f(p,) as a function of tab span.




ME zE/0T & 089/cItIm (02818)

NIFLINE LVHYD NI QUINIYE

THE POSITION OF THE ASYMPTOTES OF THE CURVES e=fp,) AS A
FUNCTION OF THE REDUCED TAB SPAN ¢, FOR SEVERAL CHORD

RATIOS, PLOTTED N DIFFERENT WAYS.
FOR THE SYSTEM AND THE DEGREES OF FREEDOM SEE FIG 14,

VALUE ©&F PARAMETERS

= 5718, Pe = O ia =778 ; * = 655

' ]

E, =02 Ep= 0004 - oooseene

)

[or078 ———
g, =03, E,= Q068 @« —————-
0-0 4 ————

€, =04, Eg =Q08 @ —-—-—

f2, fa, Fs AND
FRICTION AND DAMPING MAY HAVE ANY VALUE.

3=4 9
10
THE LEFT -HAND BRANCHES |
HAVE BEEN OMITTED
05
© |
L 4 1 2 L A L 1 L " ] ' . 2 i ) 1 i
-4 3 o g 5 .| E 3 3 T3 F - o v e 3 4 5 6 7 B pg

"TAB C.G. FORWARD OF HINGE = TAB C.G. AFT OF HINGE Pe

Fic. 16. Position of the asymptotes of the curves v = f($,) as a function of tab span.



R. & M. No. 2671
(12,043)
A.R.C. Technical Report

Publications of the
Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL
(BOUND VOLUMES)—
1934-35 Vol. 1. Aerodynamics. Qus of print.
Vol. IL. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 84.)

1935~36 Vol. I. Aerodynamics. 30s. (30s. 7d.)
Vol. I. Structures, Flutter, Engines, Seaplanes, etc.  30s. (305, 74.)

1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning.
405. (405, 9d.)
-Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. 104.)

1937 Vol I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning,
. 405. (40s. 104.)

Vol. IL. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (614.)

1938 Vol. I. Aerodynamics General, Performance, Airscrews. sos. (§Is.)

Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels,
Materials. 30s. (305. 94.)

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (505, 114.)

Vol. II. Stability and Control, Flotter and Vibration, Instruments, Structures,
Seaplanes, etc. 635. (64s. 24.)

1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability
-and Control, Structures, and a miscellaneous section. §os. (§515.) |
Certain other reporss proper o the 1940 volume will subsequently be
included in a separate volume.

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL——-

193334 1. 64. (15. 84.)
1934—35 15. 6d. (1s. 84.)
April 1, 1935 to December 31, 1936. 45. (4+. 44.)
1937 25. (25. 2d.)
1938 15, 64. (15. 84.)
193948 35. (35. 2d.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL
TECHNICAL REPORTS, AND SEPARATELY--

April, 1950 R. & M. No. 2600. 25. 64. (25. 744.)

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH
COUNCIL—

December 1, 1936 — June 30, 1939. R. & M. No. 1850. 1s. 34. (15. 434.)
July 1, 1939 — June 30, 19435. R. & M. No. 1950. 15 (15, 144.)
July 1, 1945 — June 30, 1946. R. & M. No. 2050, 15 (15. 134.)
July 1, 1946 — December 31, 1946. R. & M. No. z150. 15, 34. (14. 434.)
January 1, 1947 ~— June 30, 1947. R. & M. No. 2250. 1. 3. (15. 444.)

Prices in brackets include postage.
Obtainable from

‘HER MAJESTY’'S STATIONERY OFFICE

York House, Kingsway, LONDON, W.C.2 423 Oxford Street, LONDON, W.1
.0. Box 569, LONDON, s.E.1
13a Castle Street, EDINBURGH, 2 1 5t Andrew* Crescent, CARDIFF
39 King Street, MANCHESTER, 2 Tower Lane, BRISTOL, 1
2 Edmund Street, BIRMINGHAM, 3 80 Chichester Street, BELFAST

or through any bookseller.

5.0. Code No. 23~2671



