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Summary.--A theoretical examination is made of the deadrise effect on associated mass and wetted area in the 
tw0-dimensional impact case (vertical drop of an infinitely long wedge at zero attitude). Available estimates are 
summarised and a new theoretical formula is developed by  means of an expanding prism flow which gives results for 
associated mass in very close agreement with those given by Wagner's ~ semi-empirical formula (on which most of 
the estimates of three-dimensional associated mass have so far been based). In addition the new treatment gives a 
formula for wetted area which is not available from Wagner's t reatment  except for very small values of deadrise angle. 

Comparison is made between these and other formulae in the light both of theory and experiment and a brief survey 
is made (in Appendix I) of the assumptions involved in applying associated mass methods to motions through a free 
surface. 

1. Iratroduction.--The usual method of approach to the seaplane-water impact problem 
has been to assume that  during the course of an impact, momentum is transferred from the 
body to a fictitious ' associated ' or ' virtual ' mass of water t and by making assumptions about 
the nature of this ' mass ' the motion of the body can be determined. 

Various estimates have been given in the past for the value of the associated mass, depending 
on the assumptions made about the effects of deadrise angle and aspect ration of the wetted 
area on the body. (For a summary of these estimates see Appendix II of Ref. 3). The present 
note is restricted to a theoretical examination of the deadrise effect and deals with the two- 
dimensional case only (vertical drop of an infinitely long wedge at zero a t t i t u d e ) .  A new 
theoretical formula is developed which gives results in very close agreement with Wagner's" 
semi-empirical formula (on which most of the estimates of three-dimensional associated mass 
have been based). In addition the new treatment  gives a formula for splash-up factor (splash-up 
is the rise of displaced water along the sides of the body) which is not available from Wagner's 
t reatment  except for very small values of deadrise angle. 

Also, in Appendix I, a brief survey is made of the assumptions involved in applying associated 
mass methods to motions through a free surface. 

This report is part of a series giving the results of an investigation of water impact forces 
and pressures. 

* R.A.E. Tech. Note Aero. 1989, received 8th June, 1949. 
t The term ' associated mass ' has commonly been used by writers on this subject and for  that  reason is used in 

the present note. 
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2. Available Estimates [or ~he Two-dimensional Associated Mass for Wedges.--As shown in 
Appendix I, associated mass methods can only give an approximation to the true-motion of 
a body through a free surface and their worth is largely dependent on the correct choice of values 
for the associated mass to give agreement with experimental resul ts .  

The present report is restricted to a theoretical examination of the de.adrise effect and this 
can only be made for the two-dimensional case, i.e., the vertical drop of an infinitely long wedge 
at zero attitude. Various estimates have been made for the associated mass under these conditions 
and they can be summarised as follows. 

2.1. Von Kdrmdn.l--The earliest estimate appears to have been made by Von K~rm/m, 1 
who proposed that  the associated mass be taken as the mass of a semi-cylinder of water on the 
wetted width of the wedge as diameter. He took this w e t t e d w i d t h  to Be the intersection of 
the wedge with tile undisturbed water surface (Fig. 2b). 

This value is half the value obtained from the motion of a flat plate of the same width in 
unbounded fluid and Von K/~rm~n took it to apply without any correction for finite deadrise 
angle (0). Thus (denoting associated mass by/~M where M is the mass of the wedge) he took 

•M = 0 ~ Co ~ = ~ ~ h '~ cot ~ 0 . . . . . . . . . . . . . .  (1) 

per unit length of the wedge, where 2Co is the wetted 'width given by the intersection with the 
undisturbed water surface, h is the draft,  (see Fig. 2b), and 0 is the density of water. 

2.2. Wagner2.--.During an impact motion there will be a rise of displaced water along the 
sides of the body (known as ' splash-up ') so that  the actual wetted width Will be greater than 
that  given by the intersection of the body with the undisturbed water  Surface. 

Provided that  the deadrise angle 0 is small, Wagner ~ considered that  the flow relative to the 
wedge in an impact motion would be closely approximated to by the flow normal to a flat plate 
in unbounded fluid if at each instant 

(a) the plate width was taken equal to the actual wetted width of the wedge, 
and (b) the plate was taken to lie in the plane of the undisturbed free Surface. 

Thus, his assumed conditions are as shown in Fig 3 and the implications of these conditions are 
discussed in Appendix I. 

From these assumptions, Wagner calculated the rise of the free surface during the course 
of the motion and found that  for a plane-faced wedge the wetted width would be =/2 times 
that  given by the intersection with the undisturbed water surface, i.e., 

c - c0  . . . . . . . . . . . . . . .  . . . . . . .  ( 2 )  

Also, only one side of the plate is wetted in an impact motion as compared with both sides 
in motion through an unbounded fluid so that  the associated mass in the former case will be 
half that  in the latter, i.e., 

~a 
C 2 ]?a ~M = e ~ = e ~ cot = 0 when 0 is small . . . . . . . .  (3) 

The value of this approximation decreases as 0 increases and to obtain an expression for the 
force on the wedge valid for all deadrise angles, Wagner chose the following method. 

(1) If the motion is steady, i.e., V = constant, then an exact, if laborious,, solution of the 
impact problem for a plane-faced wedge cari be made by a centre of similitude method 2. Wagner 
made these calculations for a deadrise angle of 18 deg and quotes the result in Ref. 2. 
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(2) For  l imit ingly small values of 0 (0 -+ 0) a value for the  vert ical  force in s teady mot ion can 
be obta ined from 

F = V .  d ( ~ M )  .. (4) 
dt . . . . . . . . . . . . . .  

where ~M is given by equat ion  (3). 

This gives an asymptot ic  curve for 0 -+ 0. 

zr 3 1 

F - -  4 02 ~V~h . . . . . . . . . . . . . . . . .  (5) 

(3) For very great  values of 0 (0 --~ 90 deg) the  problem can be simplified to tha t  of the  immers ion 
of a knife edge wi thout  splash-up and this can be solved exactly by conformal t ransformation,  
thus giving an asymptot ic  curve for 0 -+ 90 deg. 

From these three solutions Wagner  then  derived an empirical variat ion of impact  force with 
deadrise angle by generalising equat ion (5) in the form 

F =  K ~ ~ o V 2 h  . . . . . . . . . . . . . . . .  (6) 

and by taking 

K = ( 1 - - z ~ )  2 . ' " ° "  . . . . . . . . .  . . . . . . .  (7) 
\ ~I 

From equat ions (4), (6) and (7) and by integrat ion we can then  obtain 

~ M = o  g U 1 -- h ~ . . . . . . . . . . . . . .  (8) 

as an expression for # M  valid over the  whole range of 0. Equa t ion  (8) applies str ict ly only to 
s teady motions (V = constant) but  it has also been taken  to apply to uns teady  motions 
(V = function of time). 

I t  should be no ted  tha t  only in the  region 0 -+ 0 does equat ion (8) assume tha t  the  impact  
associated mass is half the value of some unbounded  fluid associated mass. Also it is only in 
the same region tha t  the  splash-up factor of ~/2 has been derived, so tha t  for usual Values of 
0 no th ing  is known of the  we t t ed  area. 

However,  in application, most  later writers ~ have expressed equat ion  (8) in the  form 

7g 3 

~M = e ~- cot ~ 0 .  ~lh 2 . . . . . . . . . . . . . . .  (8a) 

wi th  

(toO)  ( , _  . . . . . . . . . . . . . .  

and have  regarded ~1 as a deadrise correction factor to the  associated mass as given by  
equat ion  (3). The splash-up factor has then  been taken  as =/2 for all deadrise angles. 

Other  more recent  writers 4 have used equat ion  (8) in a form equivalent  to 

with 

gg 
/~M = ~ ~ (h = cot ~ 0) (f(0)) 2 . . . . . . . . . . . . . .  (8b) 

; I . . . . .  f ( O )  g - -  . . . . . . . . . .  
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and have assumedtha t  the splash-up factor for finite values of 0 is given by f(0). Theoretically, 
this has the advantage tha t  f(O) ~ ~/2 as 0 ~ 0 and f(O) --~ 1 as 0 -+ ~/2, but the method of 
derivation of equation (8) cannot be said to support the variation for intermediate values of 0. 
For instance, there is no evidence in support of the implicit assumption that  the associated 
mass for a wedge of finite deadrise angle is a semi-cylinder of water on the full wetted width as 
diameter. 

2.3. KrepsS.---Kreps assumed a splash-up factor of =/2 for all deadrise angles and gave a formula 
for associated mass in the form of equation (8a), i.e., 

but with 

2 1 : 3  

/*M = e--g cot20 • ~h ~ . . . . . .  ( S a )  

0 
~ = 1 -- - • . . . . . . . . . . . . . . . . .  (11) 

instead of equation (9) for ~1. Equation (11) was derived from consideration of the relation 
between the flows without splash-up past a prism and past a flat plate. 

3. A New Treatment for the Two-dimensional Impact of a Wedge of Finite Deadrise A n g l e . -  
Wagner 's  expanding plate flow of section 2.2 applies in the case of limitingly small deadrise 
angles. When the deadris~e angle is of finite magnitude (as in the case of seaplane hull bottoms) 
a better approximation to the relative flow might be obtained by considering the flow past an 
expanding prism, derived as shown in Fig. 4. The deadrise of the prism is the same as that  of 
the wedge and at any instant  its width is' equal to the wetted Width of the wedge. 

The mathematical  solution of the flow problem is given in Appendix II. The main 
differences appearing when compared with Wagner's solution are 

(a) The splash-up factor is now given by 

c _ V ~  s in0  / F (  1 + O ) ~ ( 1  -- ~)} (12) 
C o - - g -  0 " / . . . . . . . .  

where F(n) denotes the complete gamma function. This reduces to Wagner 's factor of 
~/2 as 0 -+ 0, and C/Co -+ 1 as 0 -+ ~/2. 

An approximation, valid to within 2 per cent in the range 0 ~< 0 ~ ~/4 i s  given by 

o) 
- -  _ _  - -  - -  , . . . . . . . . . . . . . . .  Co 2 1 (13 

(b) The associated mass of liquid is given by 

} ~M = Oc ~ t a n 0 (  sin 20 Ep(_l 2 + O) / ' ( 1  -- O)1~ - -1  . . . .  (14) 

0 -  °) . . . . . . . . . .  __-"-~ q c~ . . . .  

over the practical range of 0 as compared with Wagner's value 

= . . . . . . . . . . . . . . . . . .  ( 3 )  

Thus there is a deadrise effect both on splash-up and on associated mass. 

4 



Comparison of the two expressions (equations (3) and (15)) for the associated mass of a flat 
plate and of a prism respectively at the same wetted width (2c) shows tha t  the effect of deadrise 
is to introduce the Kreps factor 5. 

$1 = 1 -- 0 . . . . . . . . . . . . . . . . . .  (11) 
= , 

as given in section 2.3. 

On the other hand, the splash-up factor as given by equation (12) or (13) is smaller than the 
Wagner value of =/2 as used by Kreps, so tha t  the associated mass in terms of draft is given by 
(from equations (15) and (13)) 

# M = ~  g c o t  20 1 -- h ~ . . . . . . . . . . . . . . .  (16) 

The objection can be raised that,  in the t reatment  of this section, the flow is diverted by the 
prism too early (at the point P1 in Fig. 43) as compared with the flow past the wedge (which is 
diverted at point P2 of Fig. 4a). This is the case, but 

(a) the treatment is in any case only approximate, 
and (b) in the Wagner flat plate t reatment the flow is diverted much too late (at the point P3), 
so tha t  it is considered that  the suggested method might give a closer approximation to the 
true conditions than consideration of the flat plate flow has provided. 

4. Compal,ison of Results.--Fig. 5 shows a comparison of the various estimates for the two- 
dimensional associated mass. 

The expanding prism analogy of the present note gives a formula for associated mass 

( / ~ M = 0 - ~  cot~0 . 1 - -  h 2 . . . . . . . . . . . .  (16) 

whose results (represented by the full line) are in very close agreement with those obtained from 
Wagner's semi-empirical formula 

over the range of 0 ~ =/4. The lat ter  formula includes the exact centre-of-similitude solution 
at 0 = 18 deg, and has been the basis of the majori ty of three-dimensional associated mass 
estimates. 

Therefore, the expanding prism analogy might be expected to give a good approximate 
representation of events during the impact. I n  particular, it gives an expression 

t o  - 1 - . . . . . . . . . . . . . . . . . .  ( 1 3 )  

for the splash-up factor in the range 0 ~< 0 ~ =/4, whereas Wagner 's  theory 2 only gives this factor 
for limitingly small values of 0. This factor is 0 f importance in determining wetted areas, 
instant  of chine immersion, etc., and its variation is shown in Fig. 6. 

The effect on associated mass of neglecting the variation of the splash-up factor by taking.i t  
as =/2 for all deadrise angles, while using the deadrise correction factor from prism to flat-plate 
flow as derived in the present report, is shown by the broken line in Fig. 5 which corresponds 
to Kreps's 5 formula 

/ ~ M = p ~ - c o t  20 1 - -  h 2 . . . . . . . . . .  (8a) a n d ( l l )  
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The results are everywhere greater than those given by Wagne# iequation (5)) or the formula 
of the present note (equation (16)). 

However, experimental (three-dimensional) measurements of wetted areas for 0 = 2 0  deg have 
so far shown no variation of splash-up factor with deadrise angle and support the value ~/2 
throughout, both in impact and in planing motions. Also, analysis 6 of three-dimensional 
impact results from the N.A.C.A. for values of 0 up to 40 deg would seem to support a deadrise 
variation of associated mass 

as in Kreps's formula, rather than the variation 

of the present report (which agrees with the variation from Wagner's formula, @ Fig. 5). 

Thus two-dimensional theory supports the variation 

o) 
Co g . . . . . . . . . . . . . . . . . . . .  (13) 

While three-dimensional experimental results support the constant value 
C 

C 0 2 " 

The discrepancy would best be investigated by a series of two-dimensional impact tests. 

Also shown in Fig. 6 is the variation 

- -  _ _  . . . .  , ° • . . . . . . .  

Co 2 0 . . . . . .  

for splash-up factor advanced by Milwitzky 4, which would give even smaller wetter areas and 
later chine immersion than the variation suggested in this report. 

5. Comlusions.--(1). The expanding prism analogy of the present report gives a theoretical 
formula for the two-dimensional associated mass of a wedge in very close agreement with 
Wagner's ~ semi-empirical formula. I t  is 

(o) 
~M = ~ - 8 - c o t  s0 1 - -  ~h ~ 

in the range 0 ~ 0 ~< =/4. 

(2). I t  also gives an expression for the variation of splash-up factor with deadrise angle which 
is not available from Wagner's ~ work. This is 

c 0 - - 2  1 -  

in the range 0 ~ 0 ~ ~/4, which reduces to the Wagner value of ~/2 as 0 -+ 0. 

(3). So far, experimental (three-dimensional) results have not shown any variation of splash-up 
factor with deadrise. In effect, they support Kreps's 5 result for associated m a s s  

/~M = e-g-cot  s0 1.-- h ~ 

in preference to the formula of conclusion 1 or Wagner's formula (which give almost identical 
results). 
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(4). There is no support for the recently advanced variation 

Co 2 0 

of splash-up factor .  (This expression was derived from Wagner's formula for associated mass 
by assuming that  the associated mass for a wedge of finite deadrise angle is a semi~cylinder of 
water on the wetted width as diameter.) 
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~M Associated mass of water 

Density of water 
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h D r a f t  with respect to undisturbed free surface 

2c0 Wetted width at intersection of wedge with undisturbed free surface 

2c Actual wetted width of wedge 

V Vertical velocity 

F Vertical force 

~1 Deadrise correction factor to associate.d mass 

The symbols in the appendices are defined as they occur. 
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A P P E N D I X  I 

Appl ica t ion  ,qf Associated Mass  Methods to the Two-dimensio'nal Impac t  Problem 

A two-dimensional impact is the vertical impact of an infinitely long wedge at zero attitude. 
The flow in any cross-section can then be taken as two-dimensional, as in Fig. 1. 

At touch-down suppose t he  (vertical) velocity of the body (Mass M) is V0. The liquid is at 
rest, so tha t  the total momentum of the system is MVo.  As the body penetrates the surface 
it sets up motion in the liquid so that  the liquid gains momentum and if no external forces are 
acting and viscosity is neglected, then the body must lose a corresponding amount in order 
to satisfy the law of conservation of momentum. Thus, if V is the velocity of the body at some 
later time, ' t ', we can write 

M V o  = M V  + ~ M .  V . . . . . . . . . . . . . .  (1) 

where /~M. V represents the liquid momentum and as yet no assumptions have been made 
about the form of #M. 

Now, in general, the total momentum of the liquid is given by 

y _B = ~ v  dr  . . . . . . . . . . . . . . . . . .  (3) 

where & is an element of volume (see Fig. 1) with density ~ and vectorial velocity v, and the 
integral is taken over the whole volume of the liquid. (In our case, B will be vertical.) 

The flow is ' potential ' since it has been generated from rest by the normal pressures applied 
to the liquid by the surface of the body and no other forces are acting. Hence 

v = -- grad ¢ . . . . . . . .  

and substituting in equation (2) we get 

_ B = - -  f e g r a d 4 d r  . . . . . .  

which by Gauss's theorem becomes the surface integral 

where _n is the inwards drawn normal, 

SB is the wetted surface of the body, 

Sw is the free surface of the liquid, 

and S ,  is the surface at oo (see Fig. 1). 

On S~, ¢ is zero so that  equation (5) becomes 

. . . . . . . . . .  (3) 

. . . . . . . . . .  (4) 

f s e$~_ ds  . . . . . . . .  (5) 

[ .  
P 

u , j  S B  _ _  . d S w  _ _  . 

In the motion of a body in unbounded fluid, the second integral in equation (6) disappears so 
that  

f s OCn_. ds . . . . .  . . . . . . . . . . . . . .  (6a) B_ 

i.e., the momentum of the liquid can be obtained by an integration over the body surface alone. 
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Furthermore; the potential function ~ can be expressed in the form 

q~ = V.  ca . . . . . . . . . . . . . . . . . .  (7) 

where _V is the velocity of the body, 

and _~ is a geometrical function independent of Velocity. 

Equation (7) is the basis for the whole of the associated m.ass treatment of the motion of a 
body in unbounded fluid s, 3, and leads to an expression of the form CM.V for the component of 
liquid momentum in the direction of a ' principal axis ' of the energy ellipsoid, where CM has 
the dimensions of mass and is determined by the geometry of the body alone, and V is the 
velocity component in that direction. 

This is no longer the case in the presence of a free surface. Even if it were possible to express 
in the form of equation (7), with ca dependent on body shape alone, the second integral of 

equation (6) would still involve knowledge of the free surface shape which depends on the history 
of the motion. 

If associated mass methods are to be .applied to the motion of a body through a free surface 
it is therefore necessary to assume as an approximation that  

4 = 0  

on the free surface in which case equation (6a) applies. 

Thus the momentary flow conditions {relative to the body) are assumed to be as shown in 
Fig. 2, where the free surface 6 =.0  in Fig. 2b is equivalent to the plane of symmetry ~ = 0 in 
Fig. 2a. Thus the flows in the lower half-planes of the two motions are subject to the same 
boundary conditions and hence the two flows are identical in that  region. In the free surface 
problem only half of the body surface is wetted as compared with the whole surface wetted in 
the unbounded fluid problem and hence the associated mass in the former case is only half that  
obtained in the latter. 

It can be Shown that  the motion in Fig. 2 is along a principal axis of the energy ellipsoid so 
that  equation (1) can be applied for the momentum balance, with #M a function of the geometry 
of the bodv alone. 

A further approximation must Still be made. The condition 6 -- 0 on the free surface implies 
that  the free surface is flat, whereas it will actually be ' splashed-up '* in the region of the body, 
somewhat as in Fig. 1. For that  reason Wagner * takes the condition 4 ---- 0 to apply along the 
line of the undisturbed free surface (as i n  Fig. 3) and calculates his results accordingly. The 
same approximation is taken in the present report. 

A P P E N D I X  II 

Mathematical Details of the Expanding Prism Analogy to the Two-dimensional Impact of a Wedge 
of Finite Deadrise Angle 

In this case, when the deadrise angle 0 is finite, a better approximation to the relative flow 
than Wagner's expanding flat plate solution might be obtained by considering an expanding 
prism flow, derived as shown in Fig. 4a. 

* ' Splash-up ' is tile rise of displacect water along the sides of the body. 
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Thus the unbounded relative flow problem is that  of the flow of a streatn of velocity V past 
a prism of deadrise angle 0 and momentary width 2c. Ttiis is taken as the z-plane, with origin 
and axes as shown in Fig. 4b, and the flow in the z-plane can be transformed into a flow past a 
flat plate in a C-plane (Fig. 4c) as follows. 

Transfo~'mation Between the z- and C-Planes.---I t  is required to transform the prism in the z-plane 
into a flat plate in the C-plane, so that  the points [4- c, 0~ go to the points [q- c, 0] and the 
points [0, ± ic tan ~1 go to the origin. 

The Schwarz-Christoffel transformation gives 

dz 
- -  = K ¢  ~°/~ ( ~  - -  c") - ° l ~  = K ¢  ~'' ( ~  - -  c2) - ~  . . . . . . . . . .  (1)  
de 

w h e r e n = 0 / a , z = x + i y , ¢ = ~  + i~ . 

if  I*1 < c, then 

dz K \-d/ 
d~ eni'~ (1 ~2~n 

\ 

(2) 

Put  ¢"/c 2 = 3, then d~ = cdT/2z 1/2 and 

K c  T n-l/2 
dz - -  dr 

2 e  n'~ ( 1  - ~)~ (3) 

When¢  = 0 ,  z =  q - i c t a n 0  

K c  f "  -,~1/~ (1 ~)-" Therefore, z 4- ic tan 0 ~ 0 ~ -- dr (4) 

gives the transformation between the z- and C-planes via the r-plane 

~ 2 

T ~--- ~--ff. 

Also, y positive corresponds to ~7 positive and infinity in the z-plane to infinity in the C-plane. 
Now ~=0 ,  l~l < c corresponds to the faces of the prism in the z-plane. Also ~ = 0  implies r. real, 
and for this case the integral on the right hand side of equation (4) is solvable in terms of the 
incomplete Beta function giving (for positive y) 

K c  
z - - i c t a n O - -  2e~C ` B~(p,q)  . . . . . . . . . . . .  (5) 

wherep = n + ½  

q---= 1 - - n ,  

However, evaluation of B~ (p, q) is handicapped by the fact that  n = 0/= ~ ½, therefore p and q 
are both in the range [½, 11, and tables of the incomplete Beta function are only available for 
values of p and q equal to 0.5, 1.0, 2.0, etc. I t  was n o t  considered appropriate to invest igate  
further numerical solutions in this report. 
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E v a l u a t i o n  o f  the Cons tant  K in  the T r a n s f o r m a t i o n . - - S i n c e  ~ = c (, = 1) implies that  z = c, 
then from equation (5) 

K c  
c ( 1 - - i t a n 0 ) - -  2d 0 B ( n  + ½, 1 -- n), 

2 . . . .  (6) 
i.e., K =  B (n + ½, 1 - -  n) . cos O . . . . . . . .  

- -  v / ~  . . . .  ( 7 )  
- r (n  + } )  r (1 - n ) .  c o s  0 . . . . . . . .  

where n = 0/~ 

and F denotes the Gamma function. 

Correspondence o f  F l o w  Fie lds  i n  the z- and  ~ - P l a n e s . - - T a k e  

and 

Then 

At o% 

d w  
- - ~  ~ ve - i~  

dz 

d w  
- - - -  = v l e - i ~ '  

d~ 

-i~ /dz  

I_,im~o~ (d~) : Lim~_~ EK¢2O,,, (¢3 c2)-o,,, 1 (from (1)) 

/si 

= K .  

Hence, at infinity in the two planes 

Vl = K v  . . . .  (9) 

~1 = ~ . . . . . . . . . . . . . . . . . . . .  ( lO) 

so that  if there is a uniform stream V in the z-plane in the direction of the negativ6 y-axis, there 
is a uniform stream K V  in the C-plane in the direction of the negative y-axis. 

Thus the complex relative fl0w potential is given by 

w = - -  i K V  .V'(¢ ~ - - c  2) . . . . . . . . . . . . . .  ( l l)  

Superimposing a velocity V in the direction of the positive y2axis on the whole system in the 
z-plane, we obtain 

w = i V z  - -  i g v  .V/(¢ ~ - -  c 2) . . . . . . . . . . . . . .  (12) 

as the complex potential  for the flow caused bs~ a prism moving in liquid at rest at infinity, the 
relation between z arid ~ being given by the integral o f  1. 
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M o m e n t u m  of the L i q u i d . - - O n  the surface of the prism, ~ = e a n d l e  < c, hence  

hence 

w = i v  (x + iy)  + K V c  1 - -  

,/( 0 4, = K V c  1 - - - #  - -  V y  onSB . 

Now the m o m e n t u m  of the l iquid is given by  

B_ = e f 4,ntis 
SB 

hence the vert ical  component ,  downwards, is 

B ,  = ~ ( 4' dx 
d SB 

which from equat ion (14) becomes 

+i +c 
~ de - qv f cy dx 

= 2~ K V c  ~/(1 --  ,) ~ dr - -  q V  y dx 

e ~ if ~ is now taken  equal t o ~  • 

From equat ion (3) 

hence 

dx Kc  cos 0 ,,,-i/2 
dr 2 (1 -- 3)" 

1 

2~KVc f0 V(1 -- 3) . dx~d~ 
1 

= eK2Vc ~ cos 0 f 
0 

~"-~"~ (1 - -  ~ ) ~ n = , ,  d r  

= qK~Vc ~cosO . B (n + 12,2a n) 

also 

therefore 

and 

{~ - -  2 0  . ~ } 
= e V c ~  s i n 2 0  [ / ' ( n + ½ )  F ( 1 - - n ) ]  ~ tanO 

- - e v  f y d x = - - o V c  ~tanO 

B y  
{~ - -  2 0  

= o Vc 2 tan  O sin 20 

(lO) 
- -  -2 ~ V c  ~ - -  

Zt~ 

E/~ (n + ½) _/1 (1 --  n)] ~ 

Fy = , 2 
- -  D t  V d t  + c - d t  " 

y *.  

_1} 

J 

' 1 2  

. .  (12) 

.. 14) 

. .  (15) 

. .  (16) 

. .  (17) 



S p l a s h - u p . - - C o n s i d e r i n g  the flow relative to the prism, then 

and 

hence 

= - i K v  V ( ,  ~ - ~) 

dz 
_ -_= K ~ 2 ,  ( ~  - -  c ~ )  - , ,  
de 

dw 
dz 

i V ¢  ~-~o (~  - c*).-~/~. 

(11) 

(1) 

(18) 

On the undisturbed free surface 

_~ : t: and ]*1 > c 

hence the resultant velocity is vertical and of magnitude 

/ 62~n-172 
v. = V I1 - -  ? /  • k 

(19) 

Then the elevation of the water above the keel at position ~ at time t is given by 

f ,  fc<x u(c) dc = v. dt - -  ( c~l/~_. . . . . . . . . . . . .  (20) 
o c=0 1 - - ~ /  

tic 
where u(c) = V ~ • . . . . . . . . . . . . . . . . . . .  (21) 

At the surface of the body ~ = x = c, and therefore 

f l  =~ u(c) dc Vb = ( C~1/2_ . = X tan 0 . . . . . . . . . . . .  (22) 

from the geometry of the body. Solving this integral equation by the same method as used b y  
Wagner for his flat plate motion, i .e. ,  putting 

u(c) = ao + a l c +  a~d + . . . .  + arc ~ + . . . . . . . . . . . .  (23) 

we find that  for a straight-sided wedge, 

from which 

and 

When 0 

V b = x t a n 0  = - ~ x B ( 1 ,  n + ½ )  + blx ~ + b~x 3 + . . . .  (from (22)) 

2 0 tan 0 2KO 
a 0 = V ,  zl sin0 F ( ½ +  ~ ) / ' ( 1  -- ~) ~ . .  . . . .  (24) 

b 1 ---- 3 2 = . . . . .  0 

= 0 this reduces to the Wagner value of 20} 
7~ 
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Now 

hence 

V dh 
u(c) = ao = dc/di  = d.--c 

h 
- -  ~ a 0 . ° ° ° ° ° ° ° . ° ° ° • ° ° 

C 

Also h/co = tan 0 where Co is the wetted width without splash-up. 

Therefore, the splash-up factor 

• . .  . . . .  ( 2 5 )  

_ , ~  ~o 0/~(_ ~ + 2 ) ~ ( ~ -  °)/ . . . . . . . . . .  (~0~ 
co 2 0 

1 -- for 0 -< 0 ~ = - -  - - . . ~ :  - ~  " ~ -  , , , . • . ~  ° • * * • • • 

The rnaximum error involved in using the approximate factor given by equation (27) is less than 
2 per cent in the range specified. 

Also, as 0 
C 

2 ' C o 
~- 1 (from equation, (26)). 

Fur the r  W o r k . - - P r e s s u r e  distributions over the wedge could be obtained by using the flow 
potential given by equation (12) instead of Wagner 's fiat plate potential, but the work is 
complicated by lack of solutions of equation (4) for the transformation between the z- and ~-planes. 
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