

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE
1954
PRICE $5 s 6 d$ NET

The Pressure Distribution, at Supersonic Speeds and Zero Lift, on some Swept-back Wings having Symmetrical Sections with Rounded Leading Edges

By

G. M. Roper, M.A., Ph.D.
Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

Reports and Memoranda No. 2700*
February, I949

Summary.-Formulae are found for the pressure distribution at supersonic speeds and at zero incidence for certain symmetrical surfaces of small finite thickness, with swept-back leading edges, the surfaces being set symmetrically to the wind direction. The solutions are only valid if the surfaces lie wholly within the Mach cone of the apex.

The results are applied to the surfaces

$$
\frac{z}{2 t_{0}}=\frac{x^{2}}{c^{2}}\left(\frac{x^{2}-y^{2} \cot ^{2} \gamma}{c^{2}}\right)^{1 / 2}, \frac{z}{2 t_{0}}=\frac{y^{2} \cot ^{2} \gamma}{c^{2}}\left(\frac{x^{2}-y^{2} \cot ^{2} \gamma}{c^{2}}\right)^{1 / 2}
$$

c being the chord in the vertical plane of symmetry, and t_{0} a constant determining thickness.
Combining these solutions with others already available, the pressure distribution is found for a wing whose equation is of the form

$$
\frac{z}{2 t_{0}}=\left(1+\frac{x}{a}-\frac{x^{2}}{\bar{b}^{2}}+\frac{y^{2}}{d^{2}}\right)\left(\frac{x^{2}-y^{2} \cot ^{2} \gamma}{c^{2}}\right)^{1 / 2}
$$

where a, b, d are constants. Some examples of the pressure distribution for wings of this type have been calculated.

1. Introduction.-In R. \& M. 2548^{1}, the linearised differential equation of supersonic flow is solved in a special system of curvilinear co-ordinates, referred to as hyperboloido-conal co-ordinates; and it is shown that one of the simplest solutions corresponds to the flat delta wing at incidence. In R. \& M. 2549^{2}, further solutions are found, corresponding to the thin elliptic cone and the elliptic hyper-cone at zero incidence, and the two solutions are combined to give the flow over a wing-like surface.

In the present report, certain general solutions are discussed, and the results are applied to the surfaces $z / 2 t_{0}=\left(x^{2} / c^{2}\right)\left[\left(x^{2}-y^{2} \cot ^{2} \gamma\right) / c^{2}\right]^{1 / 2}$ and $z / 2 t_{0}=\left(y^{2} \cot ^{2} \gamma / c^{2}\right)\left[\left(x^{2}-y^{2} \cot ^{2} \gamma\right) / c^{2}\right]^{1 / 2}$, where x is measured downstream from the apex, y is measured to starboard and z is measured vertically upwards. The quantity c is the chord in the vertical plane of symmetry, γ is the apex semi-angle in the horizontal plane of symmetry, and t_{0} is a constant determining thickness.

* R.A.E. Report Aero. 2312.
(52209)

The surfaces are symmetrical with respect to the $x y$ and the $z x$-planes and they are set symmetrically to the wind direction, with the apex pointing against the stream." The solutions are only validjif the surfaces lie wholly within the Mach cone of the apex, and therefore; the Mach angle $m\left(=\operatorname{cosec}^{-1} M\right)$ is greater than the apex semi-angle γ.

The solutions for these two surfaces are combined with those given in R. \& M. 2549^{2}, to give the pressure distribution for wings of small finite thickness placed symmetrically to the wind direction, with straight leading edges and a hyperbolic or parabolic trailing edge. Some calculations for wing drag have also been made.
2. Method of Solution:- The method is essentially that used in R. \& M. $2548^{\text {r }}$ and 2549^{2}.

The co-ordinates used are the pseudo-orthogonal co-ordinates introduced in R. \& M. 2548², where

$$
\begin{align*}
x=\frac{\beta \gamma \mu v}{h k}, & y=\frac{\gamma\left(\mu^{2}-h^{2}\right)^{1 / 2}\left(v^{2}-h^{2}\right)^{1 / 2}}{h\left(k^{2}-h^{2}\right)^{1 / 2}}, z=\frac{\gamma\left(\mu^{2}-k^{2}\right)^{1 / 2}\left(k^{2}-v^{2}\right)^{1 / 2}}{\ldots \cdots\left(k^{2}-h^{2}\right)^{1 / 2}} \tag{1}
\end{align*} \quad \ldots
$$

It is assumed that the surfaces all lie close to the basic plate, whose equation is $\mu=k$, and that the induced velocities on the surface are small and equal to the induced velocities on the plate. Therefore, the relation between the shape of the body and its induced velocity potential ϕ is of the form

$$
\begin{equation*}
\frac{\partial z}{\partial x}=\frac{1}{=}\left(\frac{\partial \phi}{\partial z}\right)_{i=k} \quad \ldots \quad \therefore \quad \quad \cdots \quad \cdots \quad \therefore \cdot \quad . \quad \cdots \tag{3}
\end{equation*}
$$

where V is the free stream velocity.
For the linearised theory, the pressure difference Δp and the pressure coefficient C_{p} are given by :

$$
\begin{align*}
& \Delta p=-\rho V\left(\frac{\partial \phi}{\partial x}\right)_{\mu=k} \\
& C p=\frac{2 \Delta p}{\rho V^{2}}=-\frac{2}{V}\left(\frac{\partial \phi}{\partial x}\right)_{\mu=k} \tag{4}
\end{align*}
$$

where ρ is the density of the free stream.
The linearised differential equation for the velocity potential ϕ, in terms of the co-ordinates r, μ, v is 1 :

$$
\begin{align*}
& \left(\mu^{2}-\nu^{2}\right) \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)-\sqrt{ }\left[\left(\mu^{2}-h^{2}\right)\left(\mu^{2}-k^{2}\right)\right] \frac{\partial}{\partial \mu}\left(\sqrt{ }\left[\left(\mu^{2}-h^{2}\right)\left(\mu^{2}-k^{2}\right)\right] \frac{\partial \phi}{\partial \mu}\right) \\
& -\sqrt{ }\left[\left(\nu^{2}-h^{2}\right)\left(k^{2}-\nu^{2}\right)\right] \cdot \frac{\partial}{\partial \nu}\left(\sqrt{ }\left[\left(\nu^{2}-h^{2}\right)\left(k^{2}-\nu^{2}\right)\right] \frac{\partial \phi}{\partial \nu}\right)=0, \quad . \quad . \tag{5}
\end{align*}
$$

and it has been shown, in Appendix V of R. \& M. 2548 ${ }^{1}$, that a solution of equation (5) can be found of the form $\phi=\gamma^{n} f(\mu, \nu)$, where $f(\mu, \nu)$ is the product of two Lamé functions of μ, ν respectively, of degree n, n being a positive integer.

A standard Lamé function of degree $n, E_{n}^{m}(\mu)$, can be determined in $(2 n+1)$ different wavs. and belongs to one of four classes K, L, M, N (Ref. 3).

Assuming that $E_{n}^{\prime \prime \prime}(\mu)$ has been determined, there is a second solution of Lamés equation defined by ${ }^{1,3}$

$$
F_{n}^{m}(\mu)=E_{n}^{m}(\mu) \int_{\mu}^{\infty} \frac{d t}{\left[E_{n}^{m}(t)\right]^{2}\left[\left|\left(t^{2}-h^{2}\right)\left(t^{2}-k^{2}\right)\right|\right]^{1 / 2}}
$$

For the solution of problems of the type under consideration, we require that the equation of the surface found by the integration of equation (3) shall give symmetry with respect to the $x y$ and $z x$-planes, and that $\left(x^{2}-y^{2} \cot ^{2} \gamma\right)^{1 / 2}$ shall appear as a factor. It is easy to verify that the required solutions are given by combinations of solutions for the potential of the form

$$
\phi_{n^{m}}=C_{n} r^{n} F_{n}{ }^{m}(\mu) \cdot E_{n}{ }^{m}(v),
$$

where $E_{n}{ }^{n}(\mu)$ is a standard Lame function of degree n of the K class; that is, $E_{n}{ }^{m}(\mu)$ is of the form $E_{n}^{m}(\mu)=\mu^{n}+a_{1} \mu^{n-2}+\ldots$, the last term being $a_{n / 2}$ or $a_{(n-1) / 2}$ according as n is even or odd. $\phi_{n}{ }^{m}$ also satisfies the condition $\phi_{n}{ }^{n}=0$ on the Mach cone of the apex.

The solutions for odd and even values of n will be considered separately.
3. (i) Solutions for $n=2 N+1$. -For $n=2 N+1$, where N is a positive integer, there are $(N+1) K$-functions of the form

$$
\begin{equation*}
E_{2 N+1}{ }^{m}(\mu)=\mu^{2 N+1}+b_{1, m} \mu^{2 N-1}+\ldots+b_{N, m} \mu, m=1,2, \ldots(N+1) . \tag{6}
\end{equation*}
$$

Equations satisfied by the coefficients $b_{1, m}, \ldots b_{N, m}$ are given in Appendix II.
The second Lamé function is given by

$$
\begin{equation*}
F_{2 N+1}^{m}(\mu)=E_{2 N+1}{ }^{m}(\mu) \int_{\left[\frac{\mu}{m}\right.}^{\infty} \frac{d t}{\left[E_{2 N+1}^{m}(t)\right]^{2}\left(t^{2}-h^{2}\right)^{1 / 2}\left(t^{2}-k^{2}\right)^{1 / 2}} \equiv E_{2 N+1}^{m}(\mu) \cdot R_{2 N+1}{ }^{m}(\mu) \tag{7}
\end{equation*}
$$

We consider the solution

$$
\begin{equation*}
\phi_{m}=C_{2 N+1} \gamma^{2 N+1} E_{2 N+1}^{m}(\mu) E_{2 N+1}^{m}(\nu) \mathrm{R}_{2 N+1^{1}}(\mu) . \quad . \quad . . \quad . \tag{8}
\end{equation*}
$$

At the plate, $\mu \rightarrow k$, and

$$
\begin{equation*}
r^{2}=\frac{\left(x^{2}-\beta^{2} y^{2}\right)}{\beta^{2}}, \quad r^{2} v^{2}=\frac{h^{2} x^{2}}{\beta^{2}}, \quad . \quad . . \quad . \quad . \quad . \tag{9}
\end{equation*}
$$

and

$$
\frac{\partial \phi_{m}}{\partial z}=\frac{\partial \phi_{m}}{\partial \mu} \cdot \frac{\partial \mu}{\partial z}
$$

Hence, it can be shown that, as $\mu \rightarrow k$,

$$
\begin{align*}
& \frac{\partial \phi_{m}}{\partial z} \rightarrow \frac{-C_{2 N+1}}{E_{2 N+1}(k)} \frac{\gamma^{2 N} E_{2 N+1}{ }^{\prime \prime}(v)}{\left(k^{2}-\nu^{2}\right)^{1 / 2}} \quad . \tag{10}\\
& =\frac{-C_{2 N+1} h}{\beta^{2 N+1} E_{2 N+1}{ }^{m}(k)} \frac{x\left[h^{2 N} x^{2 N}+b_{1, m} h^{2 N-2} x^{2 N-2}\left(x^{2}-\beta^{2} y^{2}\right)+\ldots+b_{N, m}\left(x^{2}-\beta^{2} y^{2}\right)^{N}\right]}{\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}} \\
& \equiv \frac{-C_{2 N+1} \hbar}{\beta^{2 N+1} E_{2 N+1}(k)} \frac{x \sum_{r=0}^{N}\left(H_{r, m} x^{2 r} y^{2 N-2 r}\right)}{\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}}, \tag{11}
\end{align*}
$$

where

$$
\begin{align*}
& H_{r, m}=(-1)^{N-r} \beta^{2 N-2 r}\left[b_{N-r, m} h^{2 r}+b_{N-r+1, m} h^{2 r-2}(N-r+1)\right. \\
& \left.\quad+b_{N-r+2, m} h^{2 r-4} \frac{(N-r+2)(N-r+1)}{2!}+\ldots+b_{N, m} \frac{N!}{r!(N-r)!}\right] \tag{12}
\end{align*}
$$

and $b_{0, m}$ is taken as 1 .

Integrating the relation (3), it can be shown that, if the integration constant is taken as zero, z is of the form

$$
\begin{equation*}
z=D_{2 N+1}\left(x^{2 N}+d_{1, m} x^{2 N-2} y^{2}+\ldots+d_{N, m} y^{2 N}\right)\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}, \tag{13}
\end{equation*}
$$

where $D_{2 N+1}, d_{1, m}, \ldots d_{N, m}$ are constants.
Therefore, $\phi_{m}, m=1,2, \ldots(N+1)$, gives the induced velocity potentials for the flow past the $(N+1)$ different surfaces given by equation (13).

By constructing a potential

$$
\Phi_{2 N+1}=\sum_{m=1}^{N+1}\left(\lambda_{m} \phi_{m}\right),
$$

where the λ 's are constants to be determined, we can find the solution for any surface of the form of equation (13), where the coefficients are chosen arbitrarily. The values of λ_{m} are found by equating corresponding coefficients for z or for $\partial z / \partial x$, there being, in either case, $(N+1)$ linear simultaneous equations.

In practice, it is convenient to construct solutions for surfaces whose equations are of the form

$$
\begin{equation*}
\frac{z}{2 t_{0}}=\frac{x^{2 s} y^{2 N-2 s}}{c^{2 N}}\left(\frac{x^{2}-k^{2} y^{2}}{c^{2}}\right)^{1 / 2}, \quad s=0,1, \ldots, N \tag{14}
\end{equation*}
$$

and then to combine these solutions, since for surfaces of the form (14), $b_{1, m}, \ldots b_{N, m}$ can be more easily eliminated, and the constant coefficients expressed in terms of h and k.

To find the pressure distribution, we require the value of $\partial \dot{\phi}_{m /} / \partial x$. When $\mu \rightarrow k$,

$$
\begin{equation*}
\frac{\partial \phi_{m b}}{\partial x}=\frac{C_{2 N+1} h}{\beta^{2 N+1}} \cdot E_{2 N+1}^{m}(k) \cdot R_{2 N+1}{ }^{m}(k) \sum_{r=0}^{N}\left[(2 r+1) H_{r, m} x^{2 r} y^{2 N-2 r}\right] \tag{15}
\end{equation*}
$$

where $H_{r, m}$ is given by equation (12).
It is shown, in Appendix II, that $R_{2 N+1^{m}}(k)$ can be evaluated in terms of the complete elliptic integrals of the first and second kind of modulus h / k. Hence the pressure coefficient for a surface of the form (13) or (14) can be evaluated from the formula

$$
\begin{equation*}
C_{p}=\frac{-2}{V}\left(\frac{\partial \Phi_{2 N+1}}{\partial x}\right)_{\mu=k}=\frac{-2}{V} \sum_{m=1}^{N+1}\left[\lambda_{m}\left(\frac{\partial \phi_{m}}{\partial x}\right)_{\mu-k}\right] . \quad . \quad . \quad . \tag{16}
\end{equation*}
$$

(ii) Solutions for $n=2 N$.-For $n=2 N$, there are $(N+1) K$-functions of the form

$$
\begin{equation*}
E_{2 N}{ }^{m}(\mu)=\mu^{2 N}+a_{1, m} \mu^{2 N-2}+\ldots+a_{N, m,} \quad m=1,2, \ldots(N+1) \ldots . . \tag{17}
\end{equation*}
$$

Using the notation of equation (7), the second Lamé function is given by

$$
\begin{equation*}
F_{2 N^{m}}(\mu)=E_{2 N}^{m}(\mu) \cdot R_{2 N}{ }^{m}(\mu), \tag{18}
\end{equation*}
$$

and we consider the solution

$$
\begin{equation*}
\phi_{m}=C_{2 N} 2^{2 N} E_{2 N}{ }^{m}(\mu) E_{2 N}{ }^{m}(\nu) R_{2 N}{ }^{3 n}(\mu) \tag{19}
\end{equation*}
$$

Using the relation (3), it can be shown that

$$
\begin{equation*}
\frac{\partial z}{\partial x}=\frac{-C_{2 N}}{V \beta^{2 N} E_{2 N^{m}(k)}} \frac{\sum_{r=0}^{N}\left(H_{r, m} x^{2 r} y^{2 N-2 r}\right)}{\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}}, \quad . \quad \ldots \quad \ldots \quad \ldots . . \tag{20}
\end{equation*}
$$

where $H_{r, m}^{\prime}$ is given by equation (12) if a is written for b. Hence

$$
\begin{align*}
z= & \frac{-C_{2 N}}{V \beta^{2 N} E_{2 N^{\prime \prime}}(k)}\left[\left\{d_{1, m^{\prime}} x^{2 N-1}+d_{2, m m^{\prime}} x^{2 N-3} y^{2}+\ldots+d_{N,, m}{ }^{\prime} x y^{2 N-2}\right\}\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}\right. \\
& \left.+D_{m} y^{2 N} \int \frac{d x}{\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}}\right], \text { where } d_{1, m^{\prime}}, d_{2, m}^{\prime}, \ldots d_{N, m}^{\prime} \quad \ldots \quad \ldots \tag{21}
\end{align*}
$$

are constants, and

$$
\begin{equation*}
D_{m}=\sum_{r=0}^{N}\left[\frac{(2 \gamma)!}{2^{2 r}(\gamma!)^{2}} k^{2 r} H_{r, m}\right] . \quad: \quad . \quad . . \quad . \quad . \quad . . \tag{22}
\end{equation*}
$$

If we construct a potential

$$
\Phi_{2 N}=\sum_{m=1}^{N+1}\left(\lambda_{m} \phi_{n}\right)
$$

where the λ 's satisfy the condition

$$
\begin{equation*}
\sum_{m=1}^{N+1}\left(\frac{\lambda_{m} D_{m}}{E_{2 N}^{m}(k)}\right)=0, \quad \therefore \quad \ldots \quad . . \quad . \quad \ldots \quad . . \tag{23}
\end{equation*}
$$

we obtain the solution for a surface whose equation is

$$
\begin{equation*}
z=\left(c_{1} x^{2 N-1}+c_{2} x^{2 N-3} y^{2}+\ldots+c_{N} x y^{2 N-2}\right)\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}, \quad \ldots \quad \ldots \tag{24}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots c_{N}$ are constants.
In particular, we can construct the solutions for the N surfaces whose equations are of the form

$$
\begin{equation*}
\frac{z}{2 t_{0}}=\frac{x^{2 s+1} y^{2 N-2 s-2}}{c^{2 N-1}}\left(\frac{x^{2}-k^{2} y^{2}}{c^{2}}\right)^{1 / 2}, \quad . \quad . \quad \ldots \quad . . \tag{25}
\end{equation*}
$$

for which the coefficients are more easily evaluated. For example, for $n=2$, the condition (23) gives

$$
\frac{\lambda_{1}}{\lambda_{2}}=-\frac{\left(k^{2}-a_{1}\right)\left[k^{2} h^{2}+a_{2}\left(k^{2}-2 h^{2}\right)\right]}{\left(k^{2}-a_{2}\right)\left[k^{2} h^{2}+a_{1}\left(k^{2}-2 h^{2}\right)\right]}=-\frac{a_{2}}{a_{1}}
$$

since $3 a_{1} a_{2}=h^{2} k^{2}$. (See equation (1) in Appendix II.) Therefore, the potential $\Phi_{2}=\phi_{1} / a_{1}-\phi_{2} / a_{2}$, with the appropriate value of C_{2}, gives the solution for the one surface $z / 2 t_{0}=(x / c)\left[\left(x^{2}-k^{2} y^{2}\right) / c^{2}\right]^{1 / 2}$. This solution is given in R. \& M. 2549 ${ }^{2}$.

Returning to the general case, for $n=2 N$, when $\mu \rightarrow k$,

$$
\frac{\partial \phi_{\phi_{n}}}{\partial x} \rightarrow \frac{-C_{2 N}}{\beta^{2 N}} E_{2 N^{m}}(k) R_{2 N^{m}}(k) \sum_{r=1}^{N}\left[2 \gamma H_{r, m^{\prime}} x^{2 r-1} y^{2 N-2 r}\right]
$$

the formula for $R_{2 N}{ }^{m}(k)$ being given in Appendix II. Hence the pressure coefficient C_{p} for any surface of the form (24) or (25) is given by

$$
\begin{equation*}
C_{p}=\frac{-2}{V} \sum_{m=1}^{N+1}\left[\lambda_{m}\left(\frac{\partial \phi_{m}}{\partial x}\right)_{\mu=\bar{k}}\right], \quad \quad \quad \vdots \quad . . \quad . \quad . \quad . \tag{26}
\end{equation*}
$$

the λ 's being found as before, by equating the coefficients of z or of $\partial z / \partial x$.

By combining the solutions found for the surfaces given by equations (14), (25), it is possible to find formulae for the velocity distribution and the pressure coefficient for any surface whose equation is of the form

$$
z=f\left(x, y^{2}\right)\left(x^{2}-k^{2} y^{2}\right)^{1 / 2},
$$

where $f\left(x, y^{2}\right)$ is a rational algebraic function of x and y^{2}.
4. Examples
(i) The surface $\frac{z}{2 t_{0}}=\frac{x^{2}}{c^{2}}\left(\frac{x^{2}-k^{2} y^{2}}{c^{2}}\right)^{1 / 2}$
(ii) The surface $\frac{z}{2 \overline{t_{0}}}=\frac{k^{2} y^{2}}{c^{2}}\left(\frac{x^{2}-k^{2} y^{2}}{c^{2}}\right)^{1 / 2}$ at zero incidence.

For the two surfaces (i), (ii), the solution for $n=3$ is taken. We assume

$$
\begin{equation*}
E_{3}^{m}(\mu)=\mu^{3}-a_{m} \mu, \quad m=1,2 . \tag{27}
\end{equation*}
$$

Relation (2) of Appendix II gives the equation
and therefore,

$$
5 a_{m}{ }^{2}-4\left(h^{2}+k^{2}\right) a_{m}+3 h^{2} k^{2}=0
$$

$$
\begin{equation*}
a_{1}+a_{2}=\frac{4}{5}\left(h^{2}+k^{2}\right), \quad a_{1} a_{2}=\frac{3}{5} h^{2} k^{2} . . \quad . . \quad . \quad . \quad . . \quad . \tag{28}
\end{equation*}
$$

We consider the solution

$$
\begin{equation*}
\phi_{m}=C_{3} \gamma^{3} E_{3}^{m}(\mu) E_{3}^{m}(\nu) R_{3}^{m}(\mu), \quad m=1,2 . \quad . . \quad . \quad . . \tag{29}
\end{equation*}
$$

and it can be shown that, as $\mu \rightarrow k$,

$$
\begin{equation*}
\frac{\partial \phi_{m}}{\partial z} \rightarrow \frac{-C_{3} h x\left[h^{2} x^{2}-a_{m}\left(x^{2}-\beta^{2} y^{2}\right)\right]}{k \beta^{3}\left(k^{2}-a_{m}\right)\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}}, \quad . \quad . \quad . . \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \phi_{m}}{\partial x} \rightarrow \frac{C_{3} h k}{\beta_{3}}\left(k^{2}-a_{m}\right)\left[3\left(h^{2}-a_{m}\right) x^{2}+a_{m} \beta^{2} y^{2}\right] R_{3}^{m(}(k), \tag{31}
\end{equation*}
$$

where (see Appendix II)

$$
\begin{align*}
R_{3}^{m}(k)= & \frac{1}{2 k h^{2} a_{m}\left(k^{2}-a_{m}\right)\left(h^{2}-a_{m}\right)}\left[\left(3 a_{m}-2 k^{2}-2 h^{2}\right) E\left(\frac{h}{k}\right)\right. \\
& \left.-\left(3 a_{m}-h^{2}-2 k^{2}\right) K\left(\frac{h}{k}\right)\right], \quad \ldots \tag{32}
\end{align*}
$$

$K\binom{h}{h}, E\binom{h}{h}$ being the complete elliptic integrals of the first and second kind respectively.
We construct a potential

$$
\begin{equation*}
\Phi_{3}=\lambda_{1} \phi_{1}+\lambda_{2} \phi_{2}, \quad . . \quad . \quad . . \quad . . \quad . . \tag{33}
\end{equation*}
$$

where λ_{1}, λ_{2} are constants to be determined after using relation (3).
(i) The surface $\frac{z}{2 t_{0}}=\frac{x^{2}}{c^{2}}\left(\frac{x^{2}-k^{2} y^{2}}{c^{2}}\right)^{1 / 2}$ at zero incidence.

If Φ_{3} is the induced velocity potential for flow past surface (i), it can be shown, after some simplification that

$$
\frac{\lambda_{1}}{\lambda_{2}}=-\frac{\left(5 a_{2}-h^{2}\right)}{5 a_{1}-h^{2}}
$$

Therefore, the induced velocity potential can be taken as

$$
\begin{align*}
& \begin{array}{l}
\Phi_{3}=\frac{5}{h^{2}}\left(a_{2} \phi_{1}-a_{1} \phi_{2}\right)-\left(\phi_{1}-\phi_{2}\right) . \\
\\
C_{3}=\frac{2 t_{0} V k^{3} \beta^{3}}{5 c^{3} h\left(a_{1}-a_{2}\right)} . \\
\end{array} \tag{34}\\
& \text { By comparing coefficients, it is found that this requires } \tag{35}
\end{align*}
$$

Hence, by using relation (4), and eliminating a_{1}, a_{2}, by means of relations (28), it can be shown that the pressure coefficient C_{p} is given by

$$
\begin{align*}
C_{p} \sqrt{ }\left(M^{2}-1\right) & =\frac{4 t_{0}}{c^{3}}\left[x^{2} G_{1}\left(\frac{h}{k}\right)+k^{2} y^{2} G_{2}\left(\frac{h}{k}\right)\right] \\
& =\frac{4 t_{0}}{c^{3}}\left[x^{2} F_{1}\left(\frac{\tan \gamma}{\tan m}\right)+y^{2} \cot ^{2} \gamma F_{2}\left(\frac{\tan \gamma}{\tan m}\right)\right], \quad \ldots \quad \ldots \quad . \tag{36}
\end{align*}
$$

since $\frac{h^{2}}{k^{2}}=1-\frac{\tan ^{2} \gamma}{\tan ^{2} m}$.
Writing $\frac{h^{2}}{\bar{k}^{2}}=\varkappa^{2}$,

$$
\left.\begin{array}{l}
F_{1}\left(\frac{\tan \gamma}{\tan m}\right) \equiv G_{1}(\varkappa)=\frac{\sqrt{ }\left(1-\varkappa^{2}\right)}{2 \varkappa^{6}}\left[\left(3 \varkappa^{4}+\varkappa^{2}+8\right) K(\varkappa)-\left(6 \varkappa^{4}+5 \varkappa^{2}+8\right) E(\varkappa)\right] \\
F_{2}\left(\frac{\tan \gamma}{\tan m}\right) \equiv G_{2}(\varkappa)=\frac{\sqrt{ }\left(1-\varkappa^{2}\right)}{2 \varkappa^{6}}\left[\left(\varkappa^{4}-9 \varkappa^{2}+8\right) K(\varkappa)+\left(\varkappa^{4}+5 \varkappa^{2}-8\right) E(\varkappa)\right] \tag{37}
\end{array}\right\}
$$

where $K(x), E(x)$ are the complete elliptic integrals of the first and second kind respectively, with modulus x.

The functions F_{1}, F_{2} are finite and continuous for $0 \leqslant\left|\frac{\tan \gamma}{\tan m}\right| \leqslant 1$, that is for $1 \geqslant|x| \geqslant 0$.
It can be verified that when $x \rightarrow 0, F_{1} \rightarrow 2.798$ and $F_{2} \rightarrow 0.4416$.
(ii) The surface $\frac{z}{2 t_{0}}=\frac{k^{2} y^{2}}{c^{2}}\left(\frac{x^{2}-k^{2} y^{2}}{c^{2}}\right)^{1 / 2}$ at zero incidence .

If Φ_{3} is the induced velocity potential for surface (ii), it can be shown that

$$
\frac{\lambda_{1}}{\lambda_{2}}=-\frac{\left(k^{2}-a_{1}\right)\left(h^{2}-a_{2}\right)}{\left(k^{2}-a_{2}\right)\left(h^{2}-a_{1}\right)}=-\frac{\left(8 h^{2} k^{2}-5 a_{1} h^{2}-5 a_{2} k^{2}\right)}{8 h^{2} k^{2}-5 a_{2} h^{2}-5 a_{1} k^{2}}
$$

Therefore, we construct the potential

$$
\begin{equation*}
\Phi_{3}=8 h^{2}\left(\phi_{1}-\phi_{2}\right)-5 \frac{h^{2}}{k^{2}}\left(a_{1} \phi_{1}-a_{2} \phi_{2}\right)-5\left(a_{2} \phi_{1}-a_{1} \phi_{2}\right) \tag{38}
\end{equation*}
$$

It is found that in this case

$$
\begin{equation*}
C_{3}=\frac{-2 t_{0} V k^{5}}{5 c^{3} \beta h^{3}\left(a_{1}-a_{2}\right)} \quad . \quad . \quad . \quad . \quad . . \quad . \quad . \tag{39}
\end{equation*}
$$

Hence it can be shown that the pressure coefficient C_{p} is given by

$$
\begin{align*}
C_{p} \sqrt{ }\left(M^{2}-1\right) & =\frac{4 t_{0}}{c^{3}}\left[x^{2} G_{3}\left(\frac{h}{k}\right)+k^{2} y^{2} G_{4}\left(\frac{h}{k}\right)\right] \\
& =\frac{4 t_{0}}{c^{3}}\left[x^{2} F_{3}\left(\frac{\tan \gamma}{\tan m}\right)+y^{2} \cot ^{2} \gamma F_{4}\left(\frac{\tan \gamma}{\tan m}\right)\right] . \tag{40}
\end{align*}
$$

Writing $\frac{h^{2}}{k^{2}}=\kappa^{2}$,

$$
\begin{align*}
& F_{3}\left(\frac{\tan \gamma}{\tan m}\right) \equiv G_{3}(x)=\frac{\sqrt{ }\left(1-\varkappa^{2}\right)}{2 x^{6}}\left[\left(8-5 x^{2}\right) K(x)-\left(8-\varkappa^{2}\right) E(x)\right] \\
& F_{4}\left(\frac{\tan \gamma}{\tan m}\right) \equiv G_{4}(x)=\frac{\sqrt{ }\left(1-\varkappa^{2}\right)}{2 \varkappa^{6}}\left[\left(8-15 \varkappa^{2}+7 \varkappa^{4}\right) K(\varkappa)-\left(8-11 \varkappa^{2}+2 x^{4}\right) E(\varkappa)\right] \tag{41}
\end{align*}
$$

The functions F_{3}, F_{4} are finite and continuous for $0 \leqslant\left|\frac{\tan \gamma}{\tan m}\right| \leqslant 1$, that is, for $1 \geqslant|x| \geqslant 0$.
It can be verified that when $x \rightarrow 0, F_{3} \rightarrow 0.1472$ and $F_{4} \rightarrow 0.4416$.
The values of $F_{1}, F_{2}, F_{3}, F_{4}$ are tabulated in Appendix I, and are shown graphically in Fig. 1 .
5. The surface $\frac{z}{2 t_{0}}=\left(1+\frac{x}{a}-\frac{x^{2}}{b^{2}}+\frac{y^{2}}{d^{2}}\right)\left(\frac{x^{2}-y^{2} \cot ^{2} \gamma}{c^{2}}\right)^{1 / 2}$, at zero incidence.-By combining the solutions found in section 4 and the solutions given in R. \& M. 2549^{2}, a formula can be found for the pressure coefficient for a wing of small finite thickness, with straight leading edges and a hyperbolic (or parabolic) trailing edge. If the constants are chosen so that $d / b>\tan m$, the whole of the surface will lie outside the Mach cones of points on the trailing edge. If this condition is not satisfied, there will be small corrections to be made for the portions of the wing within these Mach cones.

The pressure coefficients for the surfaces
are given by

$$
\frac{z}{2 t_{0}}=\left(\frac{x^{2}-k^{2} y^{2}}{c^{2}}\right)^{1 / 2} \quad \text { and } \quad \frac{z}{2 t_{0}}=\frac{x}{c}\left(\frac{x^{2}-k^{2} y^{2}}{c^{2}}\right)^{1 / 2}
$$

$$
\begin{align*}
& C_{p} \sqrt{ }\left(M^{2}-1\right)=\frac{4 t_{0}}{c} f_{1}\left(\frac{\tan \gamma}{\tan m}\right) \ldots \tag{42}\\
& C_{p} \sqrt{ }\left(M^{2}-1\right)=\frac{4 t_{0}}{c^{2}} x f_{2}\left(\frac{\tan \gamma}{\tan m}\right) \tag{43}
\end{align*}
$$

respectively, where

$$
\begin{align*}
& f_{1}\left(\frac{\tan \gamma}{\tan m}\right)=\frac{\sqrt{ }\left(1-\varkappa^{2}\right)}{\varkappa^{2}}[K(x)-E(x)] \quad \ldots \tag{44}\\
& \quad . \quad \quad . \tag{45}\\
& f_{2}\left(\frac{\tan \gamma}{\tan m}\right)=\frac{\sqrt{ }\left(1-x^{2}\right)}{x^{4}}\left[\left(x^{2}+2\right) K(x)-2\left(\varkappa^{2}+1\right) E(x)\right] \quad . . \\
& \ldots \\
& .
\end{align*}
$$

f_{1}, f_{2} are tabulated in R. \& M. 2549^{2} and are repeated in Appendix: I to this report.

Hence, combining the formulae (42), (43), (36), (40), the pressure coefficient for the surface

$$
\begin{align*}
\frac{z}{2 t_{0}} & =\left(1+\frac{x}{a}-\frac{x^{2}}{b^{2}}+\frac{y^{2}}{\bar{d}^{2}}\right)\left(\frac{x^{2}-y^{2} \cot ^{2} \gamma}{c^{2}}\right)^{1 / 2} \text { is } \quad \ldots \quad \ldots \tag{46}\\
C_{p} \sqrt{ }\left(M^{2}-1\right) & =\frac{4 t_{0}}{c}\left[f_{1}+\frac{1}{a} f_{2} x-\frac{1}{b^{2}}\left(x^{2} F_{1}+k^{2} y^{2} F_{2}\right)+\frac{1}{k^{2} d^{2}}\left(x^{2} F_{3}+k^{2} y^{2} F_{4}\right)\right] \ldots \tag{47}
\end{align*}
$$

The induced drag coefficient is $D=D_{p}+D_{n}$, where D_{p} is the pressure drag and D_{n} is the drag due to the high pressure at the rounded leading edges of the wing ${ }^{4}$.

As an example, the drag has been calculated for the surface

$$
\frac{z}{T_{0}}=0 \cdot 94\left(1+\frac{x}{c}-\frac{2 x^{2}}{c^{2}}+\frac{y^{2}}{4 c^{2}}\right)\left(\frac{x^{2}-y^{2} \cot ^{2} \gamma}{c^{2}}\right)^{1 / 2}
$$

for different values of γ, c is the maximum chord in the vertical plane of symmetry, T_{0} is the maximum thickness and the thickness ratio T_{0} / c is taken as $0 \cdot 10$. It can be shown that the pressure coefficient C_{p} is given by

$$
C_{p} \sqrt{ }\left(M^{2}-1\right)=0 \cdot 189\left[0.6303+1.5038 \frac{x}{c}-4.911 \frac{x^{2}}{c^{2}}+0 \cdot 723 \frac{y^{2}}{c^{2}}\right] .
$$

The pressure drag is found by integrating the component pressure along the wind direction over the planform. Therefore, the pressure drag coefficient $C_{D, p}$ is given by

$$
C_{D, p} \times(\text { area of planform })=+2 \iint C_{p} \frac{\partial z}{\partial x} d x d y, \text { integrated over the planform. }
$$

z is zero on the leading and trailing edges, therefore, integrating by parts,

$$
\begin{equation*}
C_{D, p} \times(\text { area of planform })=-2 \iint z \frac{\partial C_{p}}{\partial x} d x d y . \quad . \quad . . \quad . . \quad . \tag{48}
\end{equation*}
$$

Hence

$$
C_{D, p} \sqrt{ }\left(M^{2}-1\right)=0.03585 \pi\left[0.0490 f_{2}+0.1479 F_{1}-0.0185 \frac{F_{3}}{k^{2}}\right] .
$$

R. T. Jones' formula for the force per unit length normal to the leading edge at any point is ${ }^{4}$

$$
\begin{equation*}
F_{n}=\pi \gamma \frac{\rho V^{2}}{2} \frac{\sin ^{2} \gamma}{\left(1-M^{2} \sin ^{2} \gamma\right)^{1 / 2}} \quad . . \quad . . \quad . \quad . . \quad . . \tag{49}
\end{equation*}
$$

where γ is the radius of curvature of the leading edge and the other symbols are as defined in the report. This leads to the additional drag which is given by

$$
C_{D, n} \sqrt{ }\left(M^{2}-1\right)=0 \cdot 017672 \pi \frac{\tan \gamma}{\tan m}\left(1-\frac{\tan ^{2} \gamma}{\tan ^{2} m}\right)^{1 / 2}\left\{\frac{17}{20}+\frac{9}{40}\left(\tan ^{2} \gamma-8\right)+\frac{1}{96}\left(\tan ^{2} \gamma-8\right)^{2}\right\}
$$

The total induced drag coefficient is $C_{D}=C_{D, p}+C_{D, n}$.
The drag coefficient C_{D}, based on the area of the wing, is plotted against M in Fig. 3. The striptheory values for the centre section are also shown.

As examples of the pressure distribution, some calculations have been made for
(a) the surface $z=0.94 \frac{T_{0}}{c}\left(1+\frac{x}{c}-\frac{2 x^{2}}{c^{2}}+\frac{1}{4} \frac{y^{2}}{c^{2}}\right)\left(x^{2}-y^{2}\right)^{1 / 2}$, for $M=1 \cdot 118$;
(b) the surface $z=2 \frac{T_{0}}{c}\left(1-\frac{x}{c}+\frac{y^{2}}{c^{2}}\right)\left(x^{2}-3 y^{2}\right)^{1 / 2}$, for $M=1 \cdot 442$;
(c) the surface $z=0.6095 \frac{T_{0}}{c}\left(1+\frac{3 x}{c}-\frac{4 x^{2}}{c^{2}}+\frac{4 y^{2}}{c^{2}}\right)\left(x^{2}-y^{2}\right)^{1 / 2}$, for $M=1 \cdot 118$;
(d) the surface $z=\frac{2 T_{0}}{c}\left(1-\frac{x}{c}+\frac{1}{2} \frac{y^{2}}{c^{2}}\right)\left(x^{2}-y^{2}\right)^{1 / 2}$,
for $M=1 \cdot 118$;
(e) the surface $z=3 \cdot 375 \frac{T_{0}}{c}\left(1-\frac{2 x}{c}+\frac{x^{2}}{c^{2}}-\frac{3 y^{2}}{c^{2}}\right)\left(x^{2}-3 y^{2}\right)^{1 / 2}$, for $M=1 \cdot 442$;
(f) the surface $z=2 \cdot 598 \frac{T_{0}}{c}\left(1-\frac{3}{2} \frac{x}{c}+\frac{1}{2} \frac{x^{2}}{c^{2}}-\frac{1}{4} \frac{y^{2}}{c^{2}}\right)\left(x^{2}-3 y^{2}\right)^{1 / 2}$,
for $M=1.709$.
In each case, c is the chord in the vertical plane of symmetry, and T_{0} is the maximum thickness in this plane. The thickness ratio T_{0} / c is taken as $0 \cdot 10$. The pressure distributions and the shapes of surfaces (a), (b), (c), (d), (e), (f) are shown in Figs. 2, 4, 5, 6, 7, 8 respectively.

It is easy to show that for any surface of the form given by equation (46), if $b^{2} \geqslant 0$, the maximum thickness in the vertical plane of symmetry is at $x=x_{t}$, where $c / 2 \leqslant x_{t} \leqslant 2 c / 3$, c being the chord in this plane, and also that the leading edges are slightly rounded, except at the apex. If $b^{2}<0$, as in surfaces (e), (f), $c / 3 \leqslant x_{i}<c / 2$.

For surface (a), it can be shown that, for $M=1 \cdot 118$,

$$
C_{p}=0 \cdot 378\left[0.6303+1 \cdot 5038 \frac{x}{c}-4 \cdot 911 \frac{x^{2}}{c^{2}}+0 \cdot 723 \frac{y^{2}}{c^{2}}\right],
$$

for all points on the surface.
For surface (b), for $M=1 \cdot 442$,

$$
C_{p}=0.3849\left[0.6740-1.5838 \frac{x}{c}+0.0702 \frac{x^{2}}{c^{2}}+0.2949 \frac{y^{2}}{c^{2}}\right],
$$

for all points on the surface ahead of the Mach cones of points M, N on the trailing edges (Fig. 4).
For surface (c), for $M=1 \cdot 118$,

$$
C_{p}=0.2438\left[0.6303+4.514 \frac{x}{c}-9.0244 \frac{x^{2}}{c^{2}}+2 \cdot 3232 \frac{y^{2}}{c^{2}}\right],
$$

for all points on the surface ahead of the Mach cones of points M, N on the trailing edge (Fig. 5).

For surface (d), for $M=1 \cdot 118$,

$$
C_{p}=0.8\left[0.6303-1.5038 \frac{x}{c}+0.1139 \frac{x^{2}}{c^{2}}+0.1253 \frac{y^{2}}{c^{2}}\right],
$$

for all points on the surface ahead of the Mach cones of the points M, C on the trailing edge (Fig. 6).
For surface (e), for $M=1 \cdot 442$,

$$
C_{p}=0.6495\left[0.6740-3 \cdot 1676 \frac{x}{c}+2 \cdot 3785 \frac{x^{2}}{c^{2}}-1.9725 \frac{y^{2}}{c^{2}}\right],
$$

for all points ahead of the line MPN (Fig. 7).
For surface (f), for $M=1.709$,

$$
C_{p}=0.3749\left[0.7393-2.5390 \frac{x}{c}+1.3453 \frac{x^{2}}{c^{2}}-0.7068 \frac{y^{2}}{c^{2}}\right],
$$

for all points on the surface.
6. Conclusion.-Similar calculations could be made for surfaces formed by including solutions for higher values of n. But for n greater than 3 , the work involved in obtaining the formulae, in a form suitable for computation, would be considerably longer.*

[^0]
LIST OF SYMBOLS

chord in the vertical plane of symmetry
$t_{0} \quad$ Constant determining thickness
$\gamma \quad$ Apex semi-angle
T_{0} Maximum thickness of wing in the vertical plane of symmetry
$x \quad$ Chordwise co-ordinate (measured downstream from the apex)
$y \quad$ Spanwise co-ordinate (positive to starboard)
z Normal co-ordinate (positive upwards)
$\left.\begin{array}{c}r \\ \mu \\ \nu\end{array}\right\} c f$. equations (1), (2)
m Mach angle
M Mach number
$\beta \quad\left(M^{2}-1\right)^{1 / 2}$
$k \quad \cot \gamma$
$h\left(\cot ^{2} \gamma-\cot ^{2} m\right)^{1 / 2}$
$\phi, \Phi \quad$ Induced velocity potential
V Free-stream velocity
$\rho \quad$ Free-stream density
$\Delta p \quad$ Pressure difference
$E_{n}(\mu) \quad$ Standard Lamé function of degree n
$F_{n}(\mu) \quad$ Lamé function of the second kind
$R_{n}(\mu) \quad F_{n}(\mu) / E_{n}(\mu)$

* h / k
$K(x)$ Complete elliptic integral of the first kind, with modulus x
$E(x) \quad$ Complete elliptic integral of the second kind, with modulus x
C_{D} Drag coefficient, based on the area of the wing

REFERENCES

No.	Author	Title, etc.
1	A. Robinson	Aerofoil Theory of a Flat Delta Wing at Supersonic Speeds. R. \& M. 2548 September, 1946.
2	H. B. Squire	Theory of the Flow over a Particular Wing in a Supersonic Stream. R. \& 2549. February, 1947.
3	bson	Spherical and Ellipsoidal Harmonics. Cambridge University Press.
4	R. T. Jones	Leading-edge Singularities in Thin-airfoil Theory. Journal of the Aeronan Sciences, Vol 175. May 1950.

APPENDIX I
Values of the functions $f_{1}, f_{2}, F_{1} ; F_{2}, F_{3}, F_{4}$

$\frac{\tan \gamma}{\tan m}$	0	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	0.9	$1 \cdot 0$
$\frac{h^{2} / k^{2}}{\equiv \underline{\chi^{2}}}$	1	0.99	0.96	0.91	0.84	$0 \cdot 75$	$0 \cdot 64$	$0 \cdot 51$	$0 \cdot 36$	$0 \cdot 19$	0
	0	$0 \cdot 2707$	$0 \cdot 4095$	$0 \cdot 5048$	$0 \cdot 5755$	$0 \cdot 6303$	$0 \cdot 6740$	$0 \cdot 7097$	0.7393	$0 \cdot 7642$	$0 \cdot 7854$
f_{2}	0	0.7148	$1 \cdot 0438$	1-2528	$1 \cdot 3979$	$1 \cdot 5038$	$1 \cdot 5838$	$1 \cdot 6458$	$1 \cdot 6927$	$1 \cdot 7347$	$1 \cdot 7672$
F_{1}	0	$1 \cdot 286$	$1 \cdot 821$	$2 \cdot 132$	$2 \cdot 342$	$2 \cdot 484$	$2 \cdot 587$	$2 \cdot 659$	$2 \cdot 720$	$2 \cdot 760$	$2 \cdot 798$
$-F_{2}$	0	$0 \cdot 0950$	$0 \cdot 1745$	$0 \cdot 2385$	$0 \cdot 2895$	$0 \cdot 3302$	$0 \cdot 3626$	$0 \cdot 3893$	$0 \cdot 4088$	$0 \cdot 4260$	$0 \cdot 4416$
F_{3}	0	0.2139	$0 \cdot 2550$	$0 \cdot 2572$	$0 \cdot 2452$	0.2279	$0 \cdot 2105$	$0 \cdot 1916$	$0 \cdot 1770$	$0 \cdot 1610$	$0 \cdot 1472$
F_{4}	0	$0 \cdot 0507$	$0 \cdot 1026$	$0 \cdot 1539$	$0 \cdot 2036$	$0 \cdot 2506$	0.2949	$0 \cdot 3321$	$0 \cdot 3746$	$0 \cdot 4100$	$0 \cdot 4416$

APPENDIX II

Evaluation of the Second Lamé Function $F_{n}(k)$

The second Lamé function $F_{n}(\mu)$ is given by :

$$
F_{n}(\mu)=E_{n}(\mu) \int_{\mu}^{\infty} \frac{d t}{\left[E_{n}(t)\right]^{2}\left(t^{2}-h^{2}\right)^{1 / 2}\left(t^{2}-k^{2}\right)^{1 / 2}} \equiv E_{n}(\mu) R_{n}(\mu),
$$

where $E_{n}(\mu)$ is a standard Lamé function of degree n. The class of Lamé function considered here is the K class of functions ${ }^{3}$; that is $E_{n}(\mu)$ is of the form $\mu^{n}+a_{1} \mu^{n-2}+a_{2} \mu^{n-4}+\ldots$, where a_{1}, a_{2}, \ldots are constants, and the last term is of the form $a_{n / 2}$ or $a_{(n-1) / 2} \mu$ according as n is even or odd.

It is shown in Ref. 3 that the roots of the equation $E_{n}(\mu)=0$ are all real and unequal, and not equal to $\pm h$ or $\pm k$. Therefore, if n is even and equal to $2 N$, we can express $E_{n}(\mu)$ in the form $E_{2 N}(\mu)=\left(\mu^{2}-c_{1}\right)\left(\mu^{2}-c_{2}\right) \ldots\left(\mu^{2}-c_{N}\right)$, where $c_{1}, c_{2}, \ldots c_{N}$ are real, positive and unequal.

Substituting for E in Lamés equation

$$
\left(\mu^{2}-h^{2}\right)\left(\mu^{2}-k^{2}\right) \frac{d^{2} E}{d \mu^{2}}+\mu\left(2 \mu^{2}-h^{2}-k^{2}\right) \frac{d E}{d \mu}+\left\{\left(h^{2}+k^{2}\right) p-n(n+1) \mu^{2}\right\} E=0
$$

and substituting the value $\mu^{2}=c_{r}$, we obtain, after some simplification, the relation

$$
\frac{1}{2 c_{r}}\left(3+\frac{h^{2}}{c_{r}-h^{2}}+\frac{k^{2}}{c_{r}-k^{2}}\right)+2\left(\frac{1}{c_{r}-c_{1}}+\frac{1}{c_{r}-c_{2}}+\ldots+\frac{1}{c_{r}-c_{s}}+\ldots+\frac{1}{c_{r}-c_{N}}\right)=0
$$

$$
\begin{equation*}
r=1,2, \ldots N, \quad s \neq r \tag{1}
\end{equation*}
$$

Similarly, if n is odd and equal to $2 N+1, E_{n}(\mu)$ can be expressed in the form

$$
E_{2 N+1}(\mu)=\mu\left(\mu^{2}-d_{1}\right)\left(\mu^{2}-d_{2}\right) \ldots\left(\mu^{2}-d_{N}\right),
$$

where $d_{1}, d_{2}, \ldots d_{N}$ are real, positive and unequal, and it can be shown that

$$
\begin{align*}
& \quad \frac{1}{2 d_{r}}\left(5+\frac{h^{2}}{d_{r}-h^{2}}+\frac{k^{2}}{d_{r}-k^{2}}\right)+2\left(\frac{1}{d_{r}-d_{1}}+\frac{1}{d_{r}-d_{2}}+\ldots+\frac{1}{d_{r}-d_{s}}+\ldots+\frac{1}{d_{r}-d_{N}}\right)=0, \\
& r=1,2, \ldots N, \quad s \neq r . \tag{2}
\end{align*}
$$

To evaluate

$$
R_{2 N}(k)=\int_{k}^{\infty} \frac{d t}{\left(t^{2}-c_{1}\right)^{2}\left(t^{2}-c_{2}\right)^{2} \ldots\left(t^{2}-c_{N}\right)^{2}\left(t^{2}-h^{2}\right)^{1 / 2}\left(t^{2}-k^{2}\right)^{1 / 2}},
$$

put $t=k \operatorname{sn} u$, and write $h^{2} / k^{2}=x^{2}, c_{r} / k^{2}=\alpha_{r}^{2}, \gamma=1,2, \ldots N$, sn u being a Jacobian elliptic function of modulus x.

Hence

$$
R_{2 \mathrm{~N}}(k)=\frac{1}{k^{4 N+1}} \int_{0}^{K(x)} \overline{\left(1-\alpha_{1}^{2} \operatorname{sn}^{2} u\right)^{2}\left(1-\alpha_{2}^{2}{ }^{2} \operatorname{sn}^{2} u\right)^{2} \cdots\left(1-\alpha_{N}{ }^{2} \operatorname{sn}^{2} u\right)^{2}},
$$

$K(x)$ being the complete elliptic integral of the first kind, with modulus x.

Similarly, it can be shown that

$$
R_{2 N+1}(k)=\frac{1}{k^{4 N+3}} \int_{0}^{K(x)} \frac{\operatorname{sn}^{4 N+2} u d u}{\left(1-\beta_{1}{ }^{2} \operatorname{sn}^{2} u\right)^{2}\left(1-\beta_{2}{ }^{2} \operatorname{sn}^{2} u\right)^{2} \ldots\left(1-\beta_{N}{ }^{2} \mathrm{sn}^{2} u\right)^{2}},
$$

where $d_{r} / k^{2}=\beta_{r}{ }^{2}, \gamma=1,2, \ldots N$.
By expressing $\frac{\operatorname{sn}^{2 N-2} u}{\left(1-\alpha_{1}{ }^{2} \operatorname{sn}^{2} u\right)\left(1-\alpha_{2}{ }^{2} \operatorname{sn}^{2} u\right) \ldots\left(1-\alpha_{N}{ }^{2} \operatorname{sn}^{2} u\right)}$ in partial fractions, we obtain, after some further simplification,

$$
\begin{aligned}
& R_{2 N}(k)= \\
& \frac{1}{k^{2 N+1}} \sum_{r=1}^{N}\left[\frac { 1 } { (\alpha _ { r } { } ^ { 2 } - \alpha _ { r } ^ { 2 }) ^ { 2 } (\alpha _ { r } ^ { 2 } - \alpha _ { 2 } { } ^ { 2 }) ^ { 2 } \ldots (\alpha _ { r } { } ^ { 2 } - \alpha _ { s } { } ^ { 2 }) ^ { 2 } \ldots (\alpha _ { r } { } ^ { 2 } - \alpha _ { N } { } ^ { 2 }) ^ { 2 } } \left\{\int_{0}^{K(x)} \frac{\operatorname{sn}^{4} u}{\left(1-\alpha_{r}{ }^{2} \mathrm{sn}^{2} u\right)^{2}} d u\right.\right. \\
& \left.\left.\therefore-2\left(\frac{1}{\alpha_{r}^{2}-\alpha_{1}{ }^{2}}+\frac{1}{\alpha_{r}{ }^{2}-\alpha_{2}{ }^{2}}+\ldots+\frac{1}{\alpha_{r}{ }^{2}-\alpha_{s}{ }^{2}}+\ldots+\frac{1}{\alpha_{r}^{2}-\alpha_{N}{ }^{2}}\right) \int_{0}^{K(x)} \frac{\operatorname{sn}^{2} u}{1-\alpha_{r}{ }^{2} \operatorname{sn}^{2} u} d u\right\}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{2 N+1}(k)= \\
& \frac{1}{k^{4 N+3}} \sum_{r=1}^{N}\left[\frac { 1 } { (\beta _ { r } { } ^ { 2 } - \beta _ { 1 } { } ^ { 2 }) ^ { 2 } (\beta _ { r } { } ^ { 2 } - \beta _ { 2 } { } ^ { 2 }) ^ { 2 } \ldots (\beta _ { r } { } ^ { 2 } - \beta _ { s } { } ^ { 2 }) ^ { 2 } \ldots (\beta _ { r } { } ^ { 2 } - \beta _ { N } { } ^ { 2 }) ^ { 2 } } \left\{\int_{0}^{K(x)} \frac{\operatorname{sn}^{6} u}{\left(1-\beta_{r}{ }^{2} \operatorname{sn}^{2} u\right)^{2}} d u\right.\right. \\
&-2\left(\frac{1}{\left.\left.\beta_{r}{ }^{2}-\beta_{1}{ }^{2}+\frac{1}{\beta_{r}{ }^{2}-\beta_{2}{ }^{2}}+\cdots+\frac{1}{\beta_{r}{ }^{2}-\beta_{s}{ }^{2}}+\ldots+\frac{1}{\beta_{r}{ }^{2}-\beta_{N}{ }^{2}} \int_{0}^{K K(x)} \frac{\operatorname{sn}^{4} u}{1-\beta_{r}{ }^{2} \operatorname{sn}^{2} u} d u\right\}\right]} \begin{array}{l}
s \neq \gamma .
\end{array} .\right.
\end{aligned}
$$

It has been shown in the Appendix of R. \& M. 2549^{2} that

$$
\int_{0}^{K(x)} \frac{\operatorname{sn}^{4} u}{\left(1-\alpha^{2} \operatorname{sn}^{2} u\right)^{2}} d u=\frac{\left(1-\alpha^{2}\right) K(x)-E(x)}{2 \alpha^{2}\left(\varkappa^{2}-\alpha^{2}\right)\left(1-\alpha^{2}\right)}-\frac{1}{2 \alpha^{2}}\left(3+\frac{\varkappa^{2}}{\alpha^{2}-x^{2}}+\frac{1}{\alpha^{2}-1}\right) \int_{0}^{K(x)} \frac{\operatorname{sn}^{2} u}{1-\alpha^{2} \operatorname{sn}^{2} u} d u,
$$

where $K(\varkappa), E(\varkappa)$ are the complete elliptic integrals of the first and second kind, with modulus \varkappa.
It can also be shown that

$$
\begin{aligned}
\int_{0}^{K(x)} \frac{\operatorname{sn}^{6} u}{\left(1-\beta^{2} \operatorname{sn}^{2} u\right)^{2}} d u= & \frac{\left(3 \beta^{2}-2-2 \varkappa^{2}\right) E(x)-\left(3 \beta^{2}-2-\varkappa^{2}\right) K(x)}{2 \beta^{2} \chi\left(\varkappa^{2}-\beta^{2}\right)\left(1-\beta^{2}\right)} \\
& -\frac{1}{2 \beta^{2}}\left(5+\frac{\varkappa^{2}}{\beta^{2}-\chi^{2}}+\frac{1}{\beta^{2}-1}\right) \int_{0}^{K(x)} \frac{\operatorname{sn}^{4} u}{1-\beta^{2} \operatorname{sn}^{2} u} d u .
\end{aligned}
$$

Therefore, using relations (1) and (2), it is seen that the coefficients of

$$
\int_{0}^{K(x)} \frac{\operatorname{sn}^{2} u}{1-\alpha_{r}{ }^{2} \mathrm{sn}^{2} u} d u, \quad \int_{0}^{K(x)} \frac{\mathrm{sn}^{4} u}{1-\beta_{r}{ }^{2} \mathrm{sn}^{2} u} d u
$$

in the expressions for $R_{2 N}(k), R_{2 N+1}(k)$ respectively, vanish.

Hence, $(s \neq r)$,

$$
\begin{aligned}
& R_{2 N}(k)= \\
& \frac{1}{k^{4 N+1}} \sum_{r=1}^{N}\left[\frac{1}{\left(\alpha_{r}{ }^{2}-\alpha_{1}{ }^{2}\right)^{2}\left(\alpha_{r}{ }^{2}-\alpha_{2}{ }^{2}\right)^{2} \ldots\left(\alpha_{r}{ }^{2}-\alpha_{s}{ }^{2}\right)^{2} \ldots\left(\alpha_{r}{ }^{2}-\alpha_{N^{2}}{ }^{2}\right)^{2}} \cdot \frac{\left(1-\alpha_{r}{ }^{2}\right) K(x)-E(\varkappa)}{2 \alpha_{r}{ }^{2}\left(\varkappa^{2}-\alpha_{r}{ }^{2}\right)\left(1-\alpha_{r}{ }^{2}\right)}\right] \\
& R_{2 N+1}(k)= \\
& \frac{1}{k^{4 N+3}} \sum_{r=1}^{N=}\left[\frac{1}{\left(\beta_{r}{ }^{2}-\beta_{1}{ }^{2}\right)^{2}\left(\beta_{r}{ }^{2}-\beta_{2}{ }^{2}\right)^{2} \ldots\left(\beta_{r}{ }^{2}-\beta_{s}{ }^{2}\right)^{2} \cdots\left(\beta_{r}{ }^{2}-\beta_{N}{ }^{2}\right)^{2}} .\right. \\
& \left.\frac{\left(3 \beta_{r}{ }^{2}-2-2 x^{2}\right) E(x)-\left(3 \beta_{r}{ }^{2}-\varkappa^{2}-2\right) K(x)}{2 \beta_{r}{ }^{2} \chi^{2}\left(\varkappa^{2}-\beta_{r}{ }^{2}\right)\left(1-\beta_{r}{ }^{2}\right)}\right] .
\end{aligned}
$$

Therefore, substituting for κ, a_{n}, β_{r},

$$
\begin{aligned}
& F_{2 N}(k)= \\
& \frac{1}{k} E_{2 N}(k) \sum_{r=1}^{N}\left[\frac{1}{\left(c_{r}-c_{1}\right)^{2}\left(c_{r}-c_{2}\right)^{2} \ldots\left(c_{r}-c_{s}\right)^{2} \ldots\left(c_{r}-c_{N}\right)^{2}} \cdot \frac{\left(k^{2}-c_{r}\right) K\left(\frac{h}{k}\right)-k^{2} E\left(\frac{h}{k}\right)}{2 c_{r}\left(h^{2}-c_{r}\right)\left(k^{2}-c_{r}\right)}\right] \\
& F_{2 N+1}(k)= \\
& \frac{1}{k} E_{2 N+1}(k) \sum_{r=1}^{N}\left[\frac{1}{\left(d_{r}-d_{1}\right)^{2}\left(d_{r}-d_{2}\right)^{2} \cdot \cdot\left(d_{r}-d_{s}\right)^{2} \ldots\left(d_{r}-d_{N}\right)^{2}} \cdot\right. \\
& \left.\quad \frac{\left(3 d_{r}-2 k^{2}-2 h^{2}\right) E\left(\frac{h}{k}\right)-\left(3 d_{r}-h^{2}-2 k^{2}\right) K\left(\frac{h}{k}\right)}{2 d_{r} h^{2}\left(h^{2}-d_{r}\right)\left(k^{2}-d_{r}\right)}\right] .
\end{aligned}
$$

Fig. 1. The functions $F_{1}(\tan \gamma / \tan m),-F_{2}(\tan \gamma / \tan m)$, $F_{3}(\tan \gamma / \tan m), F_{4}(\tan \gamma / \tan m)$.

Fig. 2. Pressure distribution and shape of surface- ${ }^{-}$a). $T_{0} / c=0 \cdot 10, M=1 \cdot 118$.

Fig. 4. Pressure distribution and shape of surface (b).
$M=1 \cdot 44, T_{0} / c=0 \cdot 10$.
Solution not valid behind the lines MP, NQ.
Fig. 3. Calculated drag of wing in Fig. 2 for different values of γ. C_{D} based on wing area. $\quad T_{0} / c=0 \cdot 10$.

Fig. 5. Pressure distribution and shape of surface (c). $M=1 \cdot 118, T_{0} / c=0 \cdot 10$. Solution not valid behind the lines MP, NQ.

Fig. 6. Pressure distribution and shape of surface (d). $M=1 \cdot 118, T_{0} / c=0 \cdot 10$. Solution not valid behind the lines MP, CQ.

Fig. 7. Pressure distribution and shape of surface (e). $M=1 \cdot 442, T_{0} / c=0 \cdot 10$. Solution not valid behind line MPN.

Fig. 8. Pressure distribution and shape of surface (f). $\quad M=1 \cdot 709, T_{0} / c=0 \cdot 10$.

Publications of the Aeronautical Research Council

```
ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEA猶C COUNCHL (BOUND VOLUMES)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (405. 9 d. ) Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. rod.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 4os. (405. 10d.) Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 6os. (6rs.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. (5 rs.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. zos. (30s. 9d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (50s. IId.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64s. 2 d .)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (5Is.)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63s. (64s. 2d.)
1942 Vol. 7. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76r. 3d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels 47s. 6d. (48s. 5d.)
1943 Vol. I. (In the press.)
Vol. II. (In the press.)
```

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

1933-34	is. 6 d. (is. 8d.)	1937	2s. (2s. 2d.)
1934-35	1s. 6 d. (Is s 8d.)	1938	1s.6d. (1s. 8 d .)
April r, 1935 to	4. (4s. $4 d$.	1939-48	3s. (3s. 2d.)

HNDEY TO ALH REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TCCHNTCAL REPORTS, AND SEPARATELYApril, 195° - - - \quad R. \& M. No. 2600. 2J. 6d. (21. $7 \frac{1}{2} d$.)

AUTHOR TNDEX TO ALC REPORTS AND MEMORANDA OF THE AERONAUTTCAL RESEARCH COUNCIL-1909-1949. R. \& M. No. 2570 . I5s. (I5s. 3d.)

HNDEXES TO THE TECHNICAE REPORTS OF THE AERONAUTICAL RESEARCH COUNCLL-

December I, 1936- June 30, 1939. July I, 1939 - June 30, 1945. July I, 1945 - June 30, 1946. July I, 1946 - December 3r, 1946. January I, 1947 - June 30, 1947. July, 195 I.
R. \& M. No. 1850 . Is. 3 d. (is. $\left.4 \frac{1}{2} d.\right)$
R. \& M. No. 1950. is. (Is. I $\frac{1}{1} d$)
R. \& M. No. 2050. 1s. (xs. $1 \frac{1}{2} d$.)
R. \& M. No. 2150 Is. 3 d. (1s. $4 \frac{1}{2}$ d.) R. \& M. No. $2250 . \quad$ Is. $3 d$ (Is. $4 \frac{1}{2} d$) R. \& M. No. 2350 . Is. 9 d. (Is. 10 $\frac{1}{2}$ d.)

Prices in brackets include postage.
Obtainable from
HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, London, W.C. $2 ; 423$ Oxford Strcet, London, W. 1 (Post Orders: f.O. Box 569, London, S.E.1) ; 13a Castie Street, Edinburgh 2; 39, King Street, Manchester, 2 ; 2 Edmund Street, Birmingham 3; I St. Andrew's Crescent, Cardiff; Tower Lane, Bristol i: 80 Chichester'Street, Belfast, or through any bookseller

[^0]: * Calculations have since been made for $n=4,5,6$. The results will be published in R. \& M. 2865.

