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Introduction and Sumary

4 method of intograting the laminar compressible boundary layer
equations ig desecribed in Soction 1, It is assumed that the oxternal
velocity at tho loading odge of the boundary layer is not zcero, but cascs
with leading edge stagnation points could be doalt with on broadly similar
lincs, The mothed enables rosults of fair accuracy to bo obtained oven
vhen large intervals of integration are uscd, and it is thus suitable
whoro tho computations ere performod by means of a slide rule or mechanical
computing machinc,

Certaln solutions obtained by tho mothod ara presonted in
Bcetion 2, Thoy arc oll concorned with the position of soparation under
advorse prossurc grodionts. Tho most intorcsting results, in sub-scction 3,
arc for two cases with the vall coolod to the froo strcam temperaturae.
The first is for a Mach number of 4, w {tho viscesity-temperaturc
rolation index) and o (tho Prendtl numbor) ogqual to 1, and with constant
advorse oxternal volocity gradiont, The sccond is for a Mach number of 2,
 and ¢ e¢qual to 1, and with constant adverso prossurc gradionts In
both cascs tho boundary layer is found to scparato wery much loss rcadily
than vhon the wall is thoermally insulatced.

SECTION I

A Method for the Numerical Solution of Comprossible
Boundary lLayors with Non-zero Leading Edge Volocitics.

1. Equations
The governing oquations for the viscous stross T and the

onthalpy I in torms of indopcrdomt variablos x, u as usod by
Crocoo (Rofa1) aro

u .j (Ef) + Ty ™ Px .-.a. <f> = 0 vee(1)
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(See list of symbols at end.) The boundary conditions are

T = 0
u = 0, TTy = pxiy : u = u, uda u;
I I = Ia+-----—-'
" 2 2

together with a condition for I at u = 0 depending on
ciroumstances.

Yo transform to independont variables x,7 vwhere n & uu .
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2, Change of Parameter

Numerical integration employs finlte difference approximations,
so it is desirabloc to deal with functions which are free from singular
points whore the functions themselves or any of their lower derivatives
become infinite. I is free from such singularities with respej;h_ to
gradients in the x direction, but T is proportiomal to 1/V x near
the loading edge x = 0 if tho external welocity is not zoro thero,
and to VX = x et the wall noer the separation point xg. (The latter
condition was shown probobly to apply in incompressible flow by Goldstein
(Ref.2), and it can bo shown by similar arguments that it also probably
applics in the compressihlo casc.) Hence

is a moro suitable function to doal with than 71, Equation () becomes
in terms of q

2npuu, ® 2u ?x DyH
2qapy = {an)® = —====%= {xqe = q] 4 ==Zeemd |77 pprt, oy 4 =mm
PakHauq PaHava
hxu *q 3(pu) a(pu)  pyt
MR P D = 0 .(8)
Pataia dx an W

with the boundary conditions

2u, Xyl
N & 0, qp = wemmmm—= 1 0 = 1, g = O,

Pd“duﬂ?

In tho numerical solution of this equation and equation (7) for I

it is found possible, if great accuracy is not required, to usec

big steps of integration in the x direction sinco with smooth pressuro
distributions g and I uswally scem to vary roughly perabollcally
with =x.

3. Leadin- Bdve Values

For the first x - step of the integration e need to kmov q, Qg
I, and I, at the leading edge x = O. At this position the equations
for q@ and gx are less convenient than those for

Vq = =ew= fee= gzt and by, so we work vith the latter functlons,
Haug
from which q and g, arc casily deduced.

The/
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The gencral equation for t 1is

t
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Also

(Tpn +oug’) t+ (1 =-0) I b, = 0 vee(11)
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The boundary conditions arc
n = 0, tn = 0 ;n.-_—'l,t:tx:O
Wyd /L W
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ug g

Vo consider the solution of those equations for various conditions on
w and o, as follows:

3.1 w =0 = 1

Equation (9) becomes
2ttyy +7 = O ves(13)

and equation (11) becomes

Iﬂn""“d_a = 0 ‘ .

so that
Y -1
I = I 1+(1—n’)-5-—Md (1) Lo

Honce for equation (10) wo obtain
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whilst for equation (12) we obtain

Y - I’
?;mx-rnx = %ﬁ? v = 2ud +(1-rf)<1*-m;—mf Im?-(1-¢ ﬁi .
eass(15)

From (13) on tho bounicry con'itinns for ¢ w sec that t is o function
of n only: q = is given in Table 1. Prom (14) and ths boundary
conditions for tx it follows that gy = 2tty must be of the form

-

Wexed Inw
q‘x = -  esieeses A + mﬁda + C -2_ ?
ug I

vhere A, B, C are functions of 7 only, whilst from (15) and the
boundary conditions for Iy it follows that Ix is tho fom

W g Y = 1 I
ug 2 %]
whore D, E, F are also functions of n only.

Approximate valuss of the functions A, B, C, D, E, F are
given in Table 1,

For cortain wall temperaturc conditions ve noed to know the
relation for Inmr: it is

2

Uy xd -1 Wag I

Inxﬁ' = -1.61.‘.0 IX\'\' = 3430 e (1 4 mammse Mda ITTW + 2,66 =mm— .-? '
3 2 uq ad

3.2 Either ®w or o = 1

. In this case equations (9) to (12) can be solved separately., Thus
if @ = 1 the equation for +, (9), is independent of I and that for
txy, (10), is independent of Iy, Hence + can be found from (9), then
(11) solved for I, then (10) solved for +tyx, and finally (12) solved for
Iy, Bimilarly :f ¢ = 1 the equation for I, (11), is independent of +t
and that for Iy, (12), is independent of tx, so the equations can again
be solved successively and independently.

Jeo BATney w or G iwar |

If neithor @ nor ¢ is equal to 1 wa have two palrs of
simultoncous oquations in pairs of unknowns, equations (9) and (41)
cach involving % and I, and (10) and (12) cach imvolving and Iy,
However 4f w or ¢ is mear 1 it is probably poseible to sclve the
oquations soparately by the following iteration mothod:

e/
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If it 4s © which is near 1, o put ¢ = 1 in oquation (11)
and solve the resulting oquation for a first approximation to I. This
approximation is then ?ubstitutad in equation (9) in place of I in the

pu I \%
torm  eeme— = (-—) » and the equation obtained 1s solved far a first
Paty Ia
approximation to t. In turn this approximation is substituted for the ¢
torms of equation (411) , which is thon solved for a second approximation to
I, and g0 on. The preeess will probably be convergent, so that cvontually
a sufficiently closc approximation to the truec solutions t and I should
bo obtained. The pair of oquations (10) and (12) can then be doalt with
similarly, with ¢ first taken as equal to 1 in oquation (12) and the
oquation solved for a first approximation to Ty, and so on.

If it is @ which isnoar 1 w put w = 1 in equation (9)
and solve for a first approximation to t as the first stop in a similar
iteration procoss.

3.4 Other Casoes

In the practical case for air ® and o are both near to 1
go it should normally be possible to solve equations (9) to (12) by ome
of the methods described above, However, if the lterntion procoss of
sub~section 3.3 fails to convorge, or if mpither w nor ¢ is near 1,
tho method of solution will probably have to be that of laborious con-
currcnt Integration of pairs of simultansous cquations,

Le Avay from Leading Edgo

Having detemined gq, gy, I, and Iy at the leading odge
Xx = 0 wo can procced to the first x-step in the intogration of
oquations (8) and (7) for q and I. For a stop from x, to x
(xp of coursc being O for the first stop) wo make tho finito difforonco
approxinntion

) B La(n,x) = a(n,%0)] = ax(n, %) oo {16)

Ix(n’x) Bommeme—— {I(ﬂ,x) - I(nsxu)] - Ix(n’xa,) eae{17)

though for the special casc of ¢ = 1, mno hoat transfer to the wall,
vo know the oexact solution for I,

uf\Y =1 .
I = I3 1+<1-n3 --‘-;)---—Md }
uy 2

Tho/
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The epproximation for q, reduces equation (8) to

2qqﬂn - (qn)n + Rq‘n + Sq, +T = 0 .-0(18)
where
e 21112;{ pxu
R = -—-—-n; na puui x o "mmmpe
Pakaug Y
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Tho approximation for I, roduces cquetion (7) to

1
u ® wiAINY -1 Y=1 1 ¥
I 3 - - -?-'-.. -n’;—. —— 9 [ 1"
(nn+ou1)q+%—(‘l o')qﬂln on 3x1+<1 a) : Mg (I)
Y3 U3 d
r , u’.a Y w4
2T (1 = =t | emm—a M3
4 ( uda) 2 fe u ? T\ @1
T el WUy T = m’ux(""")
L X - Xn i I3
wle
u Yy -1 \ =tz uf Y-
® 1+<1 ™ -—--)-——_-M T — .na 1+ (1 - m— - Md I
Ud? 2 Id udé o n

u ul?\ Y -1 =1 1w 2X(xy,m)
+ 0'--:5-17]( 1 + (1 b ""j:"')"'"‘-" lﬂ.da (w) —--v-—-:-u <+ % (xa'n) = o.

ug® u'/ 2 I X - % vre(19)
The boundary conditions are
2u1xPx“w q = C
n = 0, Uy = oS- t n = 1
PaHaVy x 2 Wy o
Thus if wo havo solved up to X = , and know q, ; X, and Iy
thero, we have two simultansous equations in the singloe pendant

variable 7 but sach involving two unknown veriables, I amd q.
Ve conslder the solution of these equations in the following cases:

Lel o = 1, No Heat Transfer to VWall

In this case I is known as mentioned above so wo have a
singls straightformard cquation in 2 single unknown q.

L.2 Case Vhere a Good Guess can be Made for ths Temporature Distribution

In this cese we have a Tirst approximation for I, and can
substitute it for I in equation (18), which can then be solved for a
first approximation to gq. In twn this approximation can be
substituted for ¢ in equation (19), and ths resulting oquation solved
Tfor a second approximation to I, and so on. The itoration process may
or may not be convergont.

Circunstances under which it should be possible to guess tho
tompareture distribution fairly closoly aro:

(a) Conditions close to the ¢ = 1, no hoat transfor case, Tho
knovm solution for the latter casc can bo telon as tho first approximation.

(v)/



(b) 1In heat transfer csses where the wall tempersture is kmovm,
The temperature wlll also be known at n = 1, and by extrapolating
from conditions at x, and making suitable adjustments to agree with
the end point values a fair approximation to the tcmperature distribution
can probably be obtained.

L+3 Other Cases

It will probably be difficult to make a close guess to tho
temperature distribution if one temperature boundary condition consists
of & relation between I and I, at the wall, as will be the case
where radiation and the conductive properties of the wall are governing
factors. In such circumstances as these, thorefore, or if the iteration
rrocess of subw-section 4.2 does not converge, the equations can probably
only be solved by laborious concurrent integretion.

Having determined q and I (end honce by rolations (46)
and (17) qy and Iy) at x,, the ond of the first integretion stop
for vhich x, = 0, vwo cen take x, as tho value of x, for the socond
step, and sinllarly we can proceed to successive steps.

5« Swumary of the Method and a Note on Singularities at n = 1

In sub-sections 3 amd L4 it has becen shown that In
favourable circumstances, when we do not have to integrato pairs of
equations concurrently, the problem of solving the comprossible boundary
layer can be reducod to that of solving soveral socond order equations
cach in the single independsnt varisble n and onc unknown (assumed
velues boing teken for any second wmknown prosont) and each having one
boundary oonditlon specified at # =" 0 and tho other at p = 1.
Such oquations can be solved in & nunbor of standard vways. The author
used in the original calculations step-by-stop methods, but in tho
subsaequent calculations, porfomod under the suporwision of Dr, L, Fox and
Mr. Cs W. Clenshaw by thc llathomatics Division of the N.P.L., rclaxation
tochniques vere used. The lattor have the advantage of boing casily sable
to deal with tho singularities at 7 = 1in q, gy, I and Iy with
respect to gradicnts in the n dircction. Vith step-by=-step methods
hovover the singularitics arc troublesome and accordingly it was
attempted to find amalytical solutions for the functions near 7 = 1,
Such solutions vere found only for cases with o = 1, end as thoy
involve cumbersome expressions it is not worthvhilu to quote then all
here, However the solution for I, (Ip at # = 1) 1s perhaps
worth stating at the leading odge if = 1

Y -1
I o= Ig |14 (1 mtP) omme g | = (1= 1) Ipy
2

so that

2
I, = Ty = (¥ = 1) Mg'Ig o

It/
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It ls found that elsovhore I, satisfies the simple first order
differential equation

1_°* u® u,
- _H.J;.. + (2 - —do IT]:I. - Inxa. = 0 000(20)
I I, Uy x '

which can easily be solwod numerically.

SECTION II

Calculated Rosults

A few cases have besn calculeted by the methods described abova.
The principal aim was to detemino tho separation position, vhero of coursc
the viscous stress at the wall bocomes zero. Tho position of separation was
estimated by extrapolating the parabolic relation assuicd for q(0,x) in
the last x - interval of integrotion to the position thore it indicatoed
a to be zero at the wall.

1. Incompressible Hownrth Caso

VYo Pirst considered the casc of an incormressible boundary layer
with {ug - ui]/x constant, for vhich Howarth (P.ef.}) has obtained an
accurate solution against which the results obtalincd by using the presont
mothods with large x-steps of integration could bo checked. At separation

ug is accurately equal to 0.880., The value found by assuaing

Q%) = = [?;,(n.x) - q(n,o)] - qy(n,0) and solving the cquation at the

b

position u._,_/ud = 0.925 was 0,895, By performing thc calculations in
three steps with stetions of intogration at w/uy = 0.9625, 0.9250 and
0,9000 and g assumed to vary parebolically in each interwl, the value
obtained for w/ug et scperation ves 0.886. Thus quitv good results
for separation distance werc obteined even with very large x-stops of
integration. The computed stross distributions wero also fairly accurate
as Teble 2 shows.

2, ¢ = 1, v near 1, No Heat Transfor Cases

A second problem considered was thet of comprossible boundary
layors with (ug = w)/x constant, no hoat trensfor to the vall, Mg = b4,
¢ = 1, eand @ = 1, 0,9 and 0.7, tho ain being to determins the
prroportional changes of separation distance duc to the changcs of W,

Tho w = 1 casec con be solved by the Stowartson trensfommation

in conjunction with Thwaites' approximate mothod for incompressiblo

boundary layers (Refs.l, 5), and in this way it vos ostimatod that separation

occurs &t w/uy = 0.940. By assuiing that q varies parabolically

with x over the wholc boundary laycr and intograting et the position

u/ug = 0.960 vo computed by the present mcthods that separation occurs

at w/ug = 04951, Thus it can bo assumed that such 1 stop calculations

givo roughly correct rosults. lorcover if perfonacd with precisely the

same intervels of intogratiom, ote., with the 3 difforont values of w they

should give results subjoct to approxinately the samo errors, so that the

estimatod proportionsl differences in scparation distanco should be feirly /
closg
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close to the actwl proportionel differences. Accordingly 1 step
calculations similar to those with w = 1 woere performed with

@ = 0,9 and 0,7, though with the slight differenco that for tho
formexr case ®w = 1 the loading odge walucs of q, qy, I, and I
ware ostimated from Table 1, whereas for the lattor cases they had to
be computed from the equations, Results (c.f. Teble 3) for wu/ug at
separations were:

W 4 0.9 0.7

- 0,951 0.949 0C.I947
uy

Ig would appear at first sight that these figures indicate that
d

u
—- 1 -(-3) is nogative at « = 1, but this is most probably
dw w3/ ge

a false Impression due partly to inaccuracies of computation, and
partly to the fact that the leading edge valuss usod for the © = 1
case were almost certainly more accurate than those for the other two
cases, The results are probably a much better gulde to the first
derivative of separetion distance and they show that at © = 1 the
proportional rete of change of separation distance with w,

d u, / u
dw Y3/ sep, Y4/ sep,

is in the region of =0,23.

The time required to compute the case with @ = 0.9 (including
the computation of the leading odge values) was about 24 hours, A slide
rule, not a calculating mechino, was used as great accurecy ws not
required.

3 Cooled Wall Cages with o = o = 1

Finolly two cases with @ = o = 1 and the wall temperature
everywhere kept equal to the datum, frec stroam, tempereturo 63 wore
considereds (i) Mg = 4, and constant adverso external welocity gradient
(i1) My = 2, ond constant adverse pressure gradient. Case (i) wes
computed first roughly by the author and subsoquontly much more accuratoly
by the Mathematics Division, N.P,L. Case (ii) was ontiroly computed by
the Mathematice Division,

The author's computation of case (i) was as follows:
Solutions for q and I vwerc obtained by the itoretion process at the
position w/ugy = 04925, the loading edgo valuss having been computed
from Teble 1 eand Ip frou equation (20). Tho relation used for the
first approximation to the enthalpy distribution was of the fom

I(x,n) = 1(0,m) + x I.(0,n) + Gn + HY

vhore/
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vhore tho constents G end H were chosen to givo the correct velues
of I, and Ip at x. The socond approximation for I didnot
diffor greatly from the first, and the third vas almost identical with
tho .second, so the convergence vwas vory satigfactory.

The results are given in Tablo Lt they were obtained with sbout
3040 hours work, They shew that tho position w/ug = 0,925 must be
a long wey from separation. For ¢ probably varies in very roughly the
.same parsbolic way with x dovnstreeam of the station of intogration as
upstream of it, and the cxtrapolated curve of q at the wall doos not
become zero until w/ug rcaches the region of 0.75.

The Mathematics Division's cstimate of wu/ at separation,
obtained by using many steps of integration, is 0.78 \11:8.03. It is of
course fortuitous that this rosult should be so close to the author's
rough estlimate.

For case (ii) Mathenatics Division find that scparation occurs
at a pressure ratio p/pg = 2.2 0.3,

Thus in both cascs ssparation is very greatly deleyed as
compared with the corresponding insulated vall cases. For if these are
corputed by & combination of the methods of Stowartson and Thwaltes
(Rofeek and 5) it is found that scparation occurs at wuw/ug = 0.9%
and p/pd & 1,65 respectively. As is to be expected, the difference
between the insulated and cooled wll cases is greater at the higher
Mach number. :
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Table 2

Incompressible Case with
Calculated and Truc Values of q at S
(3 Step and 1 Step Calculations).

—
-

- pBx, B constant.
tions of Intcgration.

Station
( - Eﬁ) 0.0375 0,0750Q 041000

U3
n T 3 s;;p Trus 1 step g:’-c.;p 'I'rue-“ 3 s—;;p True‘
0 0,06388 | 0.0640 | 0,0248 |0,02717 |0.0284 | 0.00840 | 0.0096
0.095 0.07029 | 0.C708 0,03906 | 0,0400 | 0.02340 | 0,0247
0.190 0.07555 | 0.0757 0.0471 1 0.04929 | 0,0503 0.03627 | 0.0370
0.285 0,07863 | 0,0789 0,05672 [0.0576 | O.0458 | 0.0L65
0.380 0.07865 | 0.0793 | 0.0592 |0,06058 |0.0617 | 0.,05146 | 0,0530
0.475 0.07490 | 0,0759 0,06029 |0.0619 | 0,05270 | 00545
0.570 0.06597 | 0,0671 0.0546 | 0,05550 {0.0567 0,04926 | 0.0511
0,665 0.05476 | 0,0548 0.04621 | 0,0471 0,04128 | 0.043%
0.760 0.038781 0,0390 | 0.0308 |0.03296 |0.0345 | 0.02936 | 0,0313
0.855 0,02057 | 0.0210 0,01747 { 0.0190 | 0,01484 | 0,0168
0,950 0.00425 [ 0,0045 | 0,0038 { 0,00380 [ 0,0038 | 0.00370 { 0,003k

— .

Tablo 3/
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Table 3
Cases with Mg = 4, 0 = 1,
no Heat Transfer, w, = ug - Bx, P constont
...... prm——— —~ - —
w o= 1 w = 0.9 0w = 0,7 W o= 1 0.9 0.7
A\ ~Lxlg ~q,
n q === q ———— q x3 q q q
| Y Wx Wy
o 0.,1102 0,751 | 0.1011 }|-0.602 [0,08%1 0413 [0.0316 | 0,0335 | 0.0309
0.190 | 0.1030 [0.760 | 0.1005 [40.711 10,0806 [O.573 {0.1279 | 0.1168 {0.,0936
0.380 [ 0,1015 | 1,780 | 0.0930 | 1.610 | 0.0751 | 1.259 [0.1858 | 041671 |0.1321
0.570 | 0,0806 | 2,000 | 0,0751 | 1.813 | 0.0615 [1.432 [0,1817 | 0.1635 | 0,1302
04760 | 0,0452 | 1.294. | 0,0433 | 1,219 | 0.0365 |0,989 |0,1113 | 0,1005 | 0.0818
C.950 | 0.0050 | 0,157 | 0,00504 | 0,150 | 0,00445 | 0,130910,0128 | 0,0118 | 0,0102
- e e el bbb r--—z-'—-—-‘-::;[ ket
u
Lt Leading cdgo At 1 ~--2 = 0,040
!
Tablo 4
Heat Trensfor Case with Mg = Ly @ = ¢ = 1, L. = Ig, u, = ug = Bx,
B constante Station of integration at 1 = == = 0,075
ug,
Leading edge values as per Tablo 1.
Approxdretions
Approxinations for I for q
-——— A I o J\ 3 - )-—.
(1) I, 1 (2) I, 1 (3) I, (1) (2)
n - = - - - - q q
IEL Id. Id Id Id Id
0 1 (417 ] 1 {458( 1 [(4.61(0,1958 0,1878
0,190 | 1.665 | 2,72 | 1.703 | 2.83 | 1,705 | 2.83 {0,272 | 0,2661
0.570 ]| 2,160 (0,14 | 2,184 |-0.19 | 2.185 -0.19 10,3121 | 0,3105
0,760 | 2,003 11,40 | 2,025 |-1.50 | 2,027 {~1.46 | 0,1897 | 0.1887
0,950 | 1,618 3,19 | 1,622 |-2,80 | 1.622 2,82 | 0,0222 | 0,0217
i grrionpise por R Gl ehmiimhalind o M:I‘ T Y
Guoss Computed

JDS.










Crown copyright reserved

Printed and published by
HER MAJESTY’'S STaATIONERY OFFICE

To be purchased from
York House, Kingsway, London w C.2
423 Oxford Street, London w.1
P.0. Box 569, London s E.X
134 Castle Street, Edinburgh 2
109 St Mary Street, Cardaff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3
80 Chuchester Street, Belfast
or through any bookseller

Printed 1n Great Britam

C.P. No. 312

(15,101)
A.R C. Technical Report

8.0, Code No. 23-5010-12

C.P. No. 312



