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Intmduction and Sumnar~ 

A method of intogrsti~ the laminar compressible boundary leyer 
equations is described in Section I. It is assumed that the oxternsl 
velocig at the loading edgo of the boundary layer is not zem, but casts 
dith loading edge stagnation points could. be dealt ~5th on broadly siuilsr 
lims. The method enables msults of fair aocuracy to bo obtained oven 
t;hcn large intorvals of integration am used, and it is thus suitible 
v&om tho computations cm porfomod by moans of a slid0 rule or mOchs.nical 
computing machino. 

Certain solutions obtained by tho method aro pmsontcd in 
Sootion 2. Thoy arc nil conccrrw3. with the position of soporation un&X 
advorao pmssuro gmdionts. Tho moat intomstiing results, in sub-section 3, 
am forti cases ;"ith the ~,a11 cooled to tho fme stmarr, tonpcratum. 
The first is for a Mach nvmbor of 4, o (tho viscosity-tempomtum 
rolntion index) and u (tho Prandtl nunbor) cquel to I, and with constant 
advorsc oxtcrnal wlocity grsaicnt. The second is for a Mach nurmbor of 2, 
0 ana 0 equal to I, and \:ith constant advcrso pressure gradient. In 
both onscs tho boundary layer is found to soparato very much loss readily 
than v'ncn the ~11 is tharwlly insulated. 

SECTION I 

A Method for the Numerical Solution of' Compmssiblc 
Boundary Laycrsdth Non-zero Lead@ Edge Volocitios. 

I. Equations 

The govornin~ equations for the viscous stmss 7 and the 
anthdpy I in tonns of irdop&dnnt variables x, u as used by 
boccp baf.1) am 
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. ..(5) 

(See list of symbols at en&) The boundary oond3.tiom are 

together KL% a condition for I at u e: 0 depending on 
cimumstances. 

Fk transfom to indepondmt variables x,tl There 11: 
The equations bccoma 

dU1. 

Tvrl ’ 
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mm- + - 
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q -- - q%liX --a;- - -- uq 
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and 

VFith the boundary codLtions 

11 = 0, TTq = p.&&. : q = I,' 
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t = 0 
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I =I I 1 Id + - - --- , 
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2. Change of Parameter 

Numerical integration employs finite dif'ference approximations, 
so it is desirable to deal v,ith functions dd.ch are free from singular 
points Them the functions themselves or aw of thoFr lowr derivatives 
bccomo infinite. I is fret from such singularities vtith rcspe C to 
gradients in the x dtiction, but r i3 proportional to I/ J- x near 
the loading edge x = 
and to d/x, 

0 if the external velocity is not scro there, 
- x at the ~11 near the separation point xs. (The latter 

condition UTSS shown probably to a;lply in incompressible flai by Goldstein 
(R&.2), and it can be shov#n by similar argwents that it also probably 
applies in the compressihlo casa.) Hence 

is a moro suitable function to doal with than 7. Equation (6) becomes 
in term3 of q 

4.ml% + ------- r a(Pd --- - 
mq ax 

a(pl.4 ??+ 
Pawd3 

q=%x -u - --- 

I; 

c 0 e..(8) 
a17 ul 

~5th the boundary conditions 

t) E 0, qtl = 
*Up&Y; -------- : 

Pa4Pa3 
ll = I, q = 0. 

In tho numerical solution of this equation and equation (7) for I 
it is found possible, if great accuracy is not required, to use 
big steps of integration in the x direction since v&th smooth press~n, 
distributions q and I usunllysoemto varyrou&lyparnbolical3y 
vd.th x, 

3. Leadiw E*<e Values 

For the first x - 
I, 

step of the integwtion i/e need to know; q, eo 
and Ix at the leadiw edge x I 0. At this position the equations 

for q and qx are less conwnient than those for 
t 

G E ---- so vz wrk dth the latter functions, 
WJd 

from lrhich am easily doduoca. 

The/ 
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The general equation for t is 

X dpd ah4 px+ 
+ --"----- 

PawJd3t i 

q ----- - gsx -, - -;;- = 0. 
ax 

I L 

~~0~13 at the loading odgc, dmro uI = x, I, = Ia, ok*, 

TPH 
*%7011 

+-- = 0 
Pa% 

and 
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I 
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and 

I 
w-1 

tQvm + (1 -u) tt+ - m ;, ( > I, 

= In (I -u) [t$q - tt,l + ; Uiti (t...)“’ (Z; - ?a).$ 

, . ..92) 

Theboundary conditions am 

R = 0, 

I 

tq = 0 ; n = 1, tstxs:o 

tt, = 
%a %rw - ---- -- 

( ) i' 
I = Id, I, = -Yplxd, ' 

ud Id 
1 

Wo oonsidor the solution of those equation3 for various conditions on 
0 axd 0, as follom3: 

3.1 w =u = I 

Equation (9) becomes 

2tl+q +II = 0 

and equation (II) bccomm 

so that 

I = Id 

[ 

1 + (1 - 11") y--"M&a 

I 

'-(I -7) IW' 

Hcncc for equation (10) mu obtain 

. ..(13) 
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vrhilst for equation (12) fc~ obtain 

From (13) a-u: tho bo -&ry con'.itinns for 
8 

t wy ,300 tint t is r? function 
of rj only: q P is giwn 3.n Table I. From (14) and the boundary 
conditions for e, It follow that qr P 2ttr must be of ths f02Ta 

vhere A, B, C are functions of r) on&, whilst from (15) andtho 
boundary conditions for I, it follow that IX is the form 

uixd Ix = -,fuaulxd +DI,+ -;- 

whom D, E, I? are also functions of 1) only. 

ApproxSmate values of the functions A, B, C,D, E, F am 
given In Table I. 

For certain vail temperature conditions lip Md to !Q%X the 
rslation for I,,? it is 

hxd ItlxTi = -1.6&o I.&. - 3.30 -- 1 + ua ‘+L j~$) + + 2.66 :,f :e * 

3.2 Either w or u - 1 

if 
In this case equatxons (9) to (12) oen be solved separately. Thus 

tx, (101, 
0 = l,st$,;ua~~ $r It, (Y), is independent of I and that for 

(11) solved for I, 
Hence t can be found from (91, then 

Ix. Similarly If 
then (IO) Xiolved for tr, and finally (12) solved for 

and that for Ix, 
Q = 1 the aquation for I, (ll), is Independent of t 

(12), is independent of tr, so the equations can again 
be solved successively and independently. 

J.J hatnw w oc e 1uar I 

If mithor 0 nor u is equal to 1 1-83 haw tm pairs of 
siml.atani3cus equations in pairs of u&no\"ns, equations (9) and (II) 
oaoh involting t and I, and (10) and (12) cash imrolvlng 
Homwr if o or u is near I it is pr~l=bly possible to 
equations soperatoly by the folk4ng iteration method: 
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If it is u *ioh is near 1, w put U c 1 in oquation (11) 
and solve the rosultihg equation for a first a prcximationto I. This 
approximation is then 

PM I 

( > 

J 
ubstitutod in equation 7 9) in pLaoo of I in the 

tom --- = -- , and the equation obtainad is sclvd. for a first 
h3.k Id 

apprcxjmation to t. In turn this approximation is substituted for tho t 
terms of equation (II), &ich is thon solved for a second approximation to 
I, and so on. The prcoess sill prcbably bo conwrgont, so that ovontuelly 
a sufficiently close approximation to the true soluticns t and I should 
bo obtainod. The pair of oquaticns (10) and (12) can than be dealt with 
similarly, vdth u first taken as equal to 1 in aquation (12) nndthc 
oquztion solved for a first apprcdmaticn to I,, and so on. 

If it is w d&h is near 1 70 put 0 = 1 in equation (9) 
and solve for a first approximation to t as tho first stop in a similar 
iteration proooss. 

3.4 Othor Cases 

Izitho practical case for air w and u nrebothnaarto I 
so it should normally be possible to solve cquatiolls (9) to (12) by 0~3 
of the mcthcds described above. Howver, If‘ the itelation pr0cw.s of 
sub-section 3.3 fails to convorgo, or if rdthcr w nor d ismarl, 
the mothcd of solution will probably have to be that of laborious con- 
ourwnt integration of pairs of simultaneous equations. 

Having detominod s qx, I, and I, at the leading w&o 
x = 0 w can pmcoed to the first x-step in tho integration of 
equations (8) and (7) for q and I. For a stop fron G to x 

bolng 0 for thr: first stop) 'I,P nnko the finito difforcnco 

qx($xX) = --f--- Mn,x) - qbt),xrJl - cl&,x&) x - x, 

and in gomral w mod also 

Ix(“,X) = --5-- [1($X) - I(n,x&) 1 - IJ%xJ 
X-G 

iihough for tho spooial oaso of u = I, nohoat~ortcthBwl..l, 
VD knw the exact solution for I, 

. ..(I@ 

. ..(I71 

up Y-l 
I = 1, i 1 + ( 1 I $ A ) ---- I@ 1 . 

?iQ 2 

The/ 
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The approximation for q, reduces equation (8) to 

2qQ)q - (9J +Rqn+Sq+T E 0 

and 

. ..(18) 



Th0 approximation for Ix reduces oquation (7) to 

The boundzuy conditions axe 

Thus if vs3 have s01vsa up to x = x4, and knol;- g, 
them, w have ttn, simultanoow cquatzons in the sing10 
variable n but cuch involving tw tiown variables, I ad q. 
Ve consider the solution of these equations in the fol.lor.5ng cases: 

4.1 u E 1, No Heat Transfer to Wall 

In this case I is knov,n as montionsd above so w have a 
single stmightfon.ard oquntion in a sin&c unknown q. 

4.2 Case Where a God Guess can be Made for the Temporaturo Distribution 

In this case w hai i first approximation for I, and can 
substitute it for I in equation (IB), which can then be solved for a 
first npproximation to q. In turn this appmximntion canbe 
substituted for q in equation (IY), ad the resulting oquation solwd 
for a second appmximation to I, and so on, The itoration process WY 
or may not be convergent. 

Circunstanoos under v&ich it shouldbc possible to yess the 
tomparature ilistribution fairly closely are: 

(a) caditions close to the u = 1, no hoat transfer case. The 
knonz solution for the latter case can bo tatin as the first appzwdmation. 
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(b) In heat transfer cases tiers the Ball tsmpemture is knol;n. 
The tempemtwe till also be knows at TI = 1, and by extipolating 
fmn conditions at x, and making suitable adjustients to agree dth 
the end point values a fair approximation to tha tcmperstuw distribution 
can probably be obtained. 

4.3 Other Cases 

It d-ill probably be d5f2'icul.t to make a close guess to tho 
temperature distribution if one temperature boundary condition consists 
of a reletionbetien I and II) at the dll, as d.ll be the case 
%tiore radiation and the conductive properties of the r,all are governing 
factors. In such circunstancos as these, therefore, or If the iteration 
process of sub-section 4.2 does not converge, the equations can probably 
ody be solved by laborious concurrent integration. 

Hating ddcrmined q and I (and hence by mlations (16) 
ad (17) 9~ and 1,) at q, tho end of the first integration step 
for d-&h q = 0, va can take x, as tho value of xe for the second 
step, and s5dLsrly w3 OM pIpceed to successiw steps. 

5. Sunaarv of the Method and a Note onsingdarities at n e I 

In sub-sections 3 alvl 4 it has been shown that in 
favourable circumstsnoes, -&en T.B do not hsvc to intograto pairs of 
equations co ncurrently, the problem of solving the compressible boundary 
layer canbe mducd to that of solving sovoral second order equations 
oath in the single independent variable TI and ono unknc%n (assumed 
values boing taken for nny second morn present) and each hsving one 
boundary oandition specified at t) =' 0 and tha other at n = 1. 
Suoh equations can be solved in a nunbcr of standard days. The author 
used in the original calculations step-by-step methods, but in tho 
subsequent caloulstione, porformod under the supervision of Dr. L. Pox and 
2dr. C, W. ClenshsEby the Xathomatics Division of tho N.P.L., relaxation 
techniques were used. Tho latter have the advantage of being easily able 
to dealdth the singularities at n I 1 in q, q 
respect to grdionts in the 1) direction. ,i rr th st&-;y;:p ?tdgh 
hominver the singularities arc troublesome and accordingly it !ins 
attempted to find adlyticnl solutions for the functions near 1) = I. 
Suoh solutions were found only for oasos vdth U I 1, and as they 
involvu cmbersome expressions it is not mrthkilo to quote thouall 
here. Howww the solution for I,,A (I,, at r) 5: 1) is psrhsps 
riorth statingzattheleadingodge if u = I 

so tklt 
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It is found that olscdmre Itll satisfies the simple first order 
difYemntW eqmtion 

. ..(20) 

which can easily be solwd numerically. 

SECTION II -- 

Calculatad Results 

--- 

A few oases have been calculated by the methods described above. 
Tho principal aim %3.s to detezmino the separation position, rhero Of COW?30 
the viscous stress at the wsllbccomes zero. Tho position of separation =a 
estimated by extrapolsting the parabolic relation asswlod for q(O,x) in 
the Last x - interval of integration to the psition T,hare it indicated 
q to be zero at tb wd.l. 

I. Incompressible Howwth Case 

Fe first condderea the case of an incorqmssiblo boundary lapr 
d.th (~a - n$x constant, for c;hich Howerth (P.ef.3) has obtained an 
aocurntc solution against vhioh th results obtained by using the presont 
mothods %-ii-h large x-steps of intcgrdion could. bo checked. At separation 
u.Ju,=~ is accurately equal to 0.880. The who fodby assdng 

9x(w) = 2, rqhx) - she,] - ~07,O) and solving the equation at the 

position qjud = 0,925 has 0.895. By pcrfoz?z&ng the calculations in 
three steps dth stations of integration at h/% e 0.9625, 0.9250 and 
O.pOOO and q assumed to vary parsbolicnlly in each intervd, the value 
obtained for q/w at soparation ws 0.806. Thus quitti good msults 
for separation distance were obteined ewn dth very lsrge'x-stops of 
integration. The computed stmss distributions iiuro also fairly accurate 
as Table 2 shows. 

2. u c I, o near I. No Heat Tra.nsfer Cases 

A second problem considered \,as that of CompIossiblo bowdry 
x Wers i"i;niww- uJ/ constant, no heat transfer to the I;nll, EiId = 4, 

u E I, = I, 0.9 and 0.7, the a5~.~ being to dotermine the 
proportional changes of scparstion distance due to the changes of 6~. 

The W = 1 case can be solwd by the Stowrtson trensfolmntion 
in conjunction dth Th>aites' approximsto method for incomprcssiblo 
bodry layers (Refs.4, 5), and in this my it ms ostinatOa thnt scpsration 
occurs at ~JLQ q 0.940. By asswing ttit q varies paraboliCally 
dth x over the V&IO~C boundaw layer and intograting at tha position 
dud = 0.960 VQ computed by the present mothods thd separation occurs 
at UJLQ = 0.951. Thus it canbo assumed tfvt such i stop calculations 
give roughly correct results. ~~OI-COVC~ if pmfonmd viith prcoisdy the 
same intervals of integration, etc., ;;-ith the 3 diffcront values of u they 
should give results subject to appmxi-lately the same erTora, so the& the 
ostlu;latcd proportional differences in soparntion distance should be feirly 

oloso/ 
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close to the aotwl proportional differences. kccordingly 1 step 
caloulationssknilar ta those hith 0 = 1 mra perf'oImEdr;;ith 
w = 0.9 ana 0.7, though dth the slight cklfferenoo that for the 
fomer oase 0 = 1 the loading edge mlucs of q, c&, I, and I 
wore estimated from Table I, whereas for ths latter cases they had $0 
be cmputed from tha equations. 
separations m3re: 

F&milts (c.f. Table 3) for &/~a at 

w I 0.9 0.7 

u, 
G 

0.951 0.949 0.947 

$ hmild appear at first sight that these figures indicate that 

is negative at w -Z 1, but this is most probably 

due prtly to imxuz-acies of computation, and 
partly to the fact that the leading edge values used for the W = 1 
casa WXQ almost certainly nom accurate than those for the other tm 
oases. The results are probably a much better guide to the first 
deriVntiv.3 of separation distance and they show that at W = 1 the 
pmportioml rate of change of se~ration distanoe xl.th QJ, 

is in the mgion of -0.23. 

The tim required to compute the case ~~5th w c 0.9 (induti~ 
the computation of the leading edge values) was about 24 hours. A slide 
rule, not a cakd.ating mchino, ms used 8s great aocumoy mrs not 
requima. 

3. Cooled Wall Cases with w = U P 1 

Fimlly txo oases with w c u E 1 andthemlltempenrture 
ovw~re kc3 t equal to the datm, fmo strom, ImipOmtum Ba WJDro 
consiaema: 'ii, Ha = 4, and constant a8mrse external velocity gradient 
(ii) Q = 2, and constant a&3rse pressure grdiant. Case (1) %ias 
conputea first roughly by tho author and subsoqwntly nuchrmm accurately 
by the Nathemtios Division, NSrL. Caso (ii) VEW antiroly computed by 
tho Mathematics Division. 

The author's computation of case (i) ms as fol.bm: 
Solutions for q and I wxe obk&-d by the it&ration process at tho 
position q/w = 0.925, the loading odgo values havingbeen ooquted 
frm Table 1 an& Ir)i fron equation (20). Tho mlation used for the 
first appmximtion to the onthalpy distribution was of the fom 

1(x, 4 = I(O,tl) + x fx(O,n) + cr, + Hrl' 
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t;here the constants G ati H !;cre chosen to givo the correct values 
of 11 and I,, At X. The sound approximation for I dtinot 
dif'fm greatly from the first, and the third vas almost identical dth 
the,socond, so the comergcncg ms wry sntisfsctory. 

The results am given in Tablo 4: they v,cre obtained dith about 
JO-40 hour9 mrk. They shew that tho position u&j z 0.925 umt bo 
A long c,ny from sepamtion. For q probably varies in vary roughly tho 
same parabolic %ay with x dovmtream of the station of integration as 

‘upstream of it, and the oxtrapolatod c- of q at the ~11 does not 
become zero until h/w maches the region of 0.75. 

The Xathemtics Division's cstimto of 
"/% 

At separation, 
obtaimod by using many steps of integration, is 0.78 - .03. It is of 
course fortuitous that this result should be so close to tho author's 
rough estimate. 

For case (ii) Xathemtics Division find that separation OCOUTS 
at a pressure ratio p/pa = 2.2 iO.3. 

Thus inboth cams separation is very greatly delayed as 
conpamd xi.th the cormsponding insulted -call cases, For if those APB 
computed by a conbinstion of the methods of Ste\bartson and Th~fflites 
(h3fS.4 8na 5) it iS fad that SCpArQtiOn OCCURS At ~/I&J = 0.94 

ana P/Pa E 1.65 respectiwly. As is to be cxpocted, the difference 
betmen the insulated and cooled vdl csses is greater At the higher 

Mach nunbar. 
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Table 2 

Incoqx-essiblo Case tith q = 
% 

- px, p constant. 
Calculated and. Trua Values of q at S tions of' Integration. 

(3 Step ad 1 Step Cslculations). 

..--_ --_ - -. 
Station 

_-----_-, 

II 
---_-_---, 

0 

0.095 

0.190 

0.285 

0.380 

0.475 

0.570 

0.665 

0.760 

0.855 

0.950 

w-e-_---. 

.-------------- 

0.0375 

--*. 

------- 

3 step 
.----mm 

0.06388 

0.07029 

0.07555 

0.07863 

0.07865 

0.07490 

0.06697 

0.05476 

0.03678 

0.02057 

0.00425 

.---- 

.-w--w 
TlYlG 

.-m-m-- 

0.0640 

O.C708 

0.0757 

0.0789 

0.0793 

0.0759 

0.0671 

0.0548 

0.0390 

0.0210 

0.0045 

L 

-mm. 

-- 

m-----w 

I step 
----- 

0.0248 

0.0471 

0.0592 

0.0546 

0.0308 

0.0038 

* ---- 

--w-e--m-------. 
3 stop Tm 
--------w-------. 

0.02717 0.0284 

0.03906 0.0400 

0.04929 0.0503 

0.05672 0.0576 

0.06058 0.0617 

0.06029 0.0619 

0.05550 0.0567 

0.04621 0.0471 

0.03296 0.0345 

0.01747 0.0190 

0.00380 0.0038 

-_-- _---- 

- -. 

_-* 

-------------- 

0.1000 

m------. 
3 step 

m-------. 

0.008.!+0 

0.02340 

0.03627 

0.04584 

0.05146 

0.05270 

0.04926 

0.04128 

0.02936 

0.01484 

0.00370 

-Ic 

r w----- 
TP.le 

,--m-e 

0.0096 

0.0247 

0.0370 

O.W5 

0.0530 

0.0545 

0.0511 

0.0431 

0.0313 

0.0168 

0.0034 

-I-- 

Tablo i/ 
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Table 3 

cases d.th Ma = 4, = = I, 
N) Hoat Transfm, u, = w - px, p constcnt 

Tablo 4 

Hont !lhndor Case d.th Q, = 4, W = Q = 

*X% -I-- 9 9 9 

%X 
,------..---_-- -..-I-- 1 
i1.413 0.0316 

0.573 0.1279 

1.259 0.1858 
I 

I.&32 0.1817 0.1635 0.1302 

0.989 0.1113 0.1005 0.0818 

0.130: 0.0128 0.0118 0.0102 

u 
At I - -i = 0.040 

ua 

S constant. Station of intogmtion at 1 - Y- = 0,075 

Leading udgo values as per Tablo ? 

m-e- 

n 

----_ 

0 
0.1yo 

0.380 
0.570 

0.760 

0.950 
--- 

JDS. 

Approxiuations for I 

-c;v’rq 

- -  - -  

I a Id ----------- 

1 4.17 
1.665 2.72 
2.043 1.28 
2.160 -0.14 
2.003 -1.40 

1.618 -3.19 
-_-ec--_--- 

-  - - - - - - -  

Guess 

i 
I  -  

12 I 77 v -- -- 

Id v-m-^, 

1 

I.703 
2.083 
2.lB.k 
2.025 

1.622 

t--zzz - 

Id .----. 
4.58 
2.83 
1.23 

.O.lY 

-1.50 
-2.80 I -we-. .-. .-_--- LB i . -m-m- -- -----a. 

.- --v- -- ---------i 
Coi.1puted 

v- 

Ia Id 
,-_--------. 

1 4.61 
1.705 2.83 

2.086 1.23 
2.185 -0.19 

2.027 -1.46 
1.622 -2.82 

.-_-- 

0.1958 
0.2724 

0.3309 
0.3121 

0.1897 
0.0222 

,--e-s 

0.%'8 
0.2661 

0.3275 
0.3105 

0.1887 
0.0217 

4 







C.P. No. 312 
(15,101) 

A.R C. Technml Report 

Crown mpyrrght reserved 

Printed and pubbshed by 
HER MAJESTY’S S’calIoNe~Y OPPlCS 

To be purchased from 
York How, Kqmay, London w c.2 

qj Oxford Street, London w. I 
P.O. Box 569, London s E.I 

13” Castle Street, Edmburgh a 
mg St Mary Street, CarddT 

39 fing Street, Manchester z 
Tower Lane, Bmtol I 

,, Edmund Street, Bmqham 3 
80 Chxhester Street, Be&t 

or through any bookseller 

S.O. Code No. 23-9010-12 

C.P. No. 312 


