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Geseral I~troductior~.--The four papers comprised in this monograph were written over the 
period 1937 to 1947 and they are printed in chronological order. Each is a study of some of the 
theoretical aspects of experimental work in progress in the Engineering Division of the National 
Physical Laboratory during that period. The greater part of the experimental work related to 
failure of materials by fatigue under alternating stresses and in the theoretical analysis chief 
attention is paid to this mode of failure. At the same time in some respects the theory is capable 
of wider application, and the bearing of the analysis on other modes of failure is therefore 
considered. 

A change or discontimfity of section in a stressed component always results in a concentration 
of stress in its neighbourhood, and failure, particularly failure by fatigue, usually originates by 
a crack starting from such a region. In so far as such changes of  section and discontinuities 
are unavoidable in actual machine parts, information as to their quantitative effect in reducing 
the strength of components is urgently needed by the designer. Since materials differ in their 
susceptibility to stress concentration effects, and since even one material may vary in suscepti- 
bility according to the absolute size of the component, the technical data needed can be acquired 
only by exhaustive tests. 

If the factors which govern failure were better understood, the experimental programme could 
be curtailed, and for this reason alone every effort should be made to analyse the experimental 
results and to correlate them with theory. Analysis by the theory of elasticity need not, however, 
be restricted to stress raisers, such as oil-holes and fillets, which are technically important, because 
it is capable also of affording information as to the effect of suriace irregularities and internal 
faults of microscopic Or even submicroscopic size, provided only that this size is still large by 
comparison with the atomic structure of the material itself. 

Parts II  and IV of this monograph deal primarily with the development of means to compute 
the stress distribution in the neighbourhood of holes, grooves and fillets of diverse forms. In 
respect of direct stresses the results obtained relate only to holes or grooves in infinite or semi- 
infinite blocks under plane stress or plane strain transverse to the axis of the hole or groove. In 
this field theory is no more than supplementary to analogical methods, particularly photo- 
elasticity, which is applicable to pieces of finite size and by the ' frozen stress' technique to parts 
other than flat plates of uniform thickness. 

* EI~. Div. reports 359/48, 361/48, 360/48, 362/48, 444A/50. 
Physical Laboratory. 
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Nevertheless, theoretical analysis has three special merits, (a) tha t  it is better able to show the 
trend of the variation of the stress distribution as one or more individual factors is varied, (b) tha t  
i t  may be applied to cases, such as very sharp notches or very shallow grooves, of which models 
cannot readily be made, and (c) that  it can be used to establish general principles. In respect of 
shear and torsion these merits of theoretical analysis are still more marked, and the use of the soap 
bubble method based on the membrane analogy 1° would appear preferable to the analytical 
methods only in the few cases for which the computational work becomes too heavy. 

One principal conclusion drawn from the analysis in Part  n is tha t  the approximate formula 
for the stress concentration factor under direct s t r e s s , ~ / z  1 + 2(a/Q) 1/2, where a is the depth of 
the notch or half-depth of the hole and ~o is the radius at its root, is seldom very much in error, 
whatever the form of the notch or hole ; but  that  the corresponding formula for the stress concen- 
t rat ion factor in shear ~q = 1 + (a/e) ~/~ is much less reliable. If the latter formula is rewritten 
in the form ~q = 1 + K(a/~) 1/2, the factor K decreases from uni ty  towards about ½ as the groove 
is widened, and for a '  half-groove ', represented for instance, by the fillet at the root of a spline in 
a shaft under torsion, the formula ~q = 1 + ½(a/Q) ~/~ appears often to be a good approximation. 
In both Parts  II  and IV it is demonstrated conclusively that  abrupt changes of curvature in the 
contour of a section do not in themselves cause any concentration of stress. 

Another most useful principle established in Parts II  and IV is tha t  when a slight secondary 
irregulari ty is superposed on a primary one the two separate stress concentration factors are 
multiplicative. This conclusion, supplemented by the observation tha t  a 10w outstanding ridge 
causes a local reduction of stress virtually opposite to the local concentration which would result 
from the equivalent shallow groove, is applied to ' correct ' the stress distribution computed for 
a wavy contour to that  appropriate to the similar contour lacking the waviness. By  this means 
a close approach to a prescribed contour can often be obtained on the basis of a representation 
including only a few terms of a series analogous to a Fourier series. 

By contrast with this process of correction for slight superposed irregularities, in Part  n the 
conditions under which the effect of a sharp secondary irregularity may not be multiplicative 
with the effect of a primary stress raiser is examined, and the results are applied to show how a 
system of small internal flaws may mask the effect of other larger stress raisers. 

Part  I is concerned mainly with the effect of holes and internal flaws on the behaviour of 
materials under complex systems of stress. I t  is there demonstrated tha t  the fatigue resistance 
of testpieces containing diametral drilled holes, when subjected to combined alternating bcnding 
and torsional stresses, conform very closely to the form of relationship predicted by theory;  it 
may  be added here tha t  the evidence presented in respect of seven materials (Fig. 2) has since 
been supplemented by tests on four more and tha t  the agreement wi th  theory is still closer. I t  
is shown further tha t  the behaviour of CAst iron ill fatigue under the same complex stress system 
is entirely concordant with the hypothesis tha t  the graphite inclusions act as internal flaws, and 
the ' typical  shape ' of the flaw~ deduced from the results of fatigue tests is in fair agreement with 
experiment also in respect of the ratio of the compressive to the tensile strength. 

These points are emphasized here because the principal conclusion from Part  I is tha t  the 
behaviour of ductile materials under combined alternating bending and torsion differs radically 
from that  to be expected from any material which Contains internal flaws. This conclusion is 
supported by the analysis in Part  n of the effect of flaws in masking other stress concentration 
effects; although this masking effect accords qualitatively with experimental evidence, to 
achieve quanti tat ive agreement much larger flaws would be needed than could for other reasons 
be accounted possible. 

In  the light of research carried out since these papers were written, the comparison between 
theory and experiment might now be carried considerably further ; this is not at tempted here for 
two reasons. First, experimental data are now being compiled at an increased rate, and, if the 
task of analysing and correlating all data now available were undertaken, there would be a grave 
temptat ion to defer publication month by month in order to include the latest results. Moreover, 
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correlation of experimental data would necessitate a far wider survey of the theory than is here 
made, because, as explained above, in respect of technical stress raisers data obtained by analogical 
processes, such as photoelasticity are often more relevant than those obtained by pure analysis. 

For these reasons the four studies in the theory of stress concentration are here presented 
almost exactly in the forms in which they were first written, and the references made  to experi- 
mental  results should be regarded as illustrations only of the practical sense of the conclusions 
to be drawn from theory. I t  is hoped tha t  in the near future a thorough survey of all existing 
experimental data will be undertaken and that  in this survey the present monograph may assist 
in the task of correlation with theory. 

Some of tile material available for such a survey and tile form which it might take is illustrated 
by Refs. 15 to 18. 

Ack~owledgme=ts.--The work described has been carried out as part  of the research programme 
of the National Physical Laboratory. 
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" P A R T  I 

The Effect of Holes on the Strength of Materials under Complex Stress Systems 

Syn@sis.--In a plane test piece pierced by a cylindrical hole the greatest stress is set up at 
some point in the periphery of the hole. This stress is a principal stress and both the other 
principal stresses, that  normal to the contour of the hole and that  parallel to the axis of the hole 
and normal to the free surface of the test piece, are zero. Therefore, failure of such a test piece 
under any system of applied loading depends almost entirely on the shape of the hole and on the 
properties of the material only in respect of a possible difference between its strengths in tension 
and in compression. 

On this basis criteria are developed for the failure of test pieces containing circular and elliptical 
cylindrical holes under systems of complex stress. The results are applicable to tests on pieces 
pierced by oil holes drilled either perpendicularly to the axis of the test piece or obliquely. The 
resulting criterion for circular holes perpendicular to the plane of stress is compared with some 
experimental results of tests under combined alternating bending and torsion. 

Criteria are also developed for elliptical holes oriented at random, and it is shown that  these 
criteria do not in themselves accord with the results of tests on the majori ty of materials. I t  is 
concluded that  internal flaws are unlikely to account for the mechanical properties of engineering 
materials. 

1.1. I~troductio~¢.--In a test piece containing a hole with its axis perpendicular to the plane 
in which the piece is stressed, the maximum stress or stress range is the circumferential stress at 
some point in the periphery of the hole. This stress is a principal stress and both the other 
principal stresses, that  normal to the contour oI the hole and that  normal to the (free) surface of the 
test piece, are zero. Therefore, if failure of the material is determined by any criterion of stress 
at a single point, failure of such a test piece occurs always under identical conditions, tha t  is, at 
one specific value of the one principal stress, which alone differs from zero. As a result the failure 
of test pieces containing such holes under systems of combined stress may be predicted simply 
from the geometry of the hole without reference to the precise nature of the criterion which 
otherwise, under a system of complex stress, might determine failure. Moreover, in consequence, 
this prediction of behaviour of test pieces containing holes is independent of the nature of the 
material, except in respect of the magnitude and sign of the failing stress. For instance, the ratio 
of the limiting stress under shear to that  under uniaxial tension applied to the test piece as a whole 
depends only on the geometry of the hole and on the nature of the material only in respect of 
a possible difference between the strength of the material under tension and under compression. 

If by experiment actual materials were proved not to conform to this principle, it could only 
be concluded tha t  failure cannot be determined simply by the at tainment of a certain limiting 
stress at a point and that  the rate of variation of stress in the neighbourhood of the point of 
maximum stress must also have a separate influence. That  the ' support ing effect '  of under- 
stressed material adjacent to the region of highest stress may be important  is widely recognized; 
but  the investigators, who have examined this possibility, appear to have disregarded the case 
of the test piece pierced by a hole, by which the possibility should be most readily put to the proof. 

The present report establishes the criteria for failure under combined stress systems of test 
pieces subjected to systems of plane stress and containing elliptical holes with their axes 
perpendicular to the plane of stress. The results are applied to two cases. The first is that  of 
engineering components pierced by relatively large holes, such as oil holes, and the conclusions 
for this case are compared with some few experimental results of failure under combined 
alternating stresses. The second is that  of semi-solid materials in which there is a large number 
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of microscopic holes or flaws roughly all similar in shape but  distributed and oriented at random 
throughout tile body of the material. In this case, since the present analysis is restricted to 
the effect of cylindrical holes all having their axes perpendicular to the plane of stress, comparison 
with the behaviour of actual materials, in which the flaws would be more general in type and not so 
preferentially oriented, cannot be finally reliable. Yet the analysis does indicate certain principles, 
which may be expected to apply more generally regardless of the precise nature of the flaws. 

1.2. Holes of Circular Section.--As a preliminary example it  is convenient to discuss the case 
of the circular hole, particularly with regard to the practicall~ important  case of an oil hole in a 
shaft subjected to combined flexure and torsion. 

T~ie circumferential tensile stress at the periphery of a hole of circular section in an infinite 
plane test piece under a uniform uniaxial tensile'stress f ,  is f -  2fcos 20, where 0 is the angle 
measured from the diameter paralleI to the direction of t h e  stress 1. The tensile stress due to 
a shear stress q on planes parallel and operpendicular to this direction is 4q sin 20. Thus the 
stress due to combined tensile stress f and sheaf stress q; is f - -  2f cos 20 + 4q sin 20 and the 
maximum and minimum values a r e f  q- 2(f" + 4q~) ~/~ at 0 ---=½ tan -1 (-- 2q/f) and a t  right-angles 
to this ~radius. The condition for failure is then f + 2(ff + 4q") 1/2 -~ to, where f0 is the failing 
stress of the material under uniaxial tension. This relation may be expressed in the form 

1 2 4 2 . . . .  16q 2 + 3 ( f  + -~f0) = (~)f0 . . . .  (1) 

which is aft ellipse, having its centre at f _ 1 a f0, q = 0 and intercepts on the axes at f =  ½f0 and 
~-f0 and q = :+ fo/4. This ellipse is shown in Fig. 1. 

Under static load, if the material itself is more than three times stronger under uniaxial 
compression than it is under uniaxial tension, the strength of the piece containing a Circular hole 
should be exactly three times greater in compression than in tension. On the other hand if failure 
actually depends on the maximum shear stress, so tha t  its strength under uniaxial compression 
is the same as tha t  under uniaxial tension, the sign of the applied direct stress becomes irrelevant 
and the failure when f is negative is determined by  the dotted line in Fig. 1. Comparative tests 
on pieces Containing holes under tension and compression will thus show at once whether failure 
of the material depends o n  the  maximum tensile stress or on the maximum shear stress; but 
unfortunately this test is restricted to brittle materials, because plastic deformation alters t h e  
shape of the test piece before failure occurs. 

When the applied stresses alternate between equal  positive and negative values, t h e  signs of 
f and q are, of course, irrelevant, and in that  case failure must be determined by the upper part  
of the curve shown in Fig. 1. This curve is shown in Fig. 2 together with a number of points ~ 
representing the results of fatigue tests under combined alternating flexure and torsion made on 
test pieces containing diametral holes of seven different qualities of steel '~. I t  will be seen that  
the experimental  results all conform quite closely to the theoretical curve; the experimental 
accuracy itself was not better than ___ 5 per cent. 

I:3. Holes qf Elliptical Section.--This case is, of course, a generalization of tha t  discussed in  
Section 1.2, but  at tention i s  for the present restricted to  the instance in which the direct stress 
f is applied paralM1 to one of the  principal axes of the elliptical cross-section of the hole. 

Using elliptic co-ordinates c~ and #, with the contour of the hole represented by c~ ----- s0, the 
circumferential stress ## at/~ is 1 

(sinh 2c~0 + e2 "o cos 2// -- 1) f -- 2e ""° sin 2/~. q 
cosh 2c¢0 -- cos 2/~ . . . . . .  (2) 

where f and q are respectively the direct and  shear stresses applied. 
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vehere 

• The m a x i m u m  and min imum values of/~/~ occur at  the  values of/~ defined by  

As in2 /7  ~ B c o s 2 3 + C = 0  . . . . .  . . . .  ( 3 )  

A =  ( 1 -  08"0 cosh 2c~0- sinl~ 2~0)f = --  4if/(1 --  0) 8 (1 + e) 

:B --  2e 8~0 cosh 2~0 q = --  2(1 + e2)q/(1 --  e) 8 

C , =  2e8=0 q . . . . . .  2(1 + e)Z/(1 - -  e.) 

and e = t anh  ~0 = rat io of- lengths o f  p r inc ipa l  axes of the  elliptical hole .  The corresponding 
values of cos 25 are [--  B C  ± A ( A  8 + B 2 - -  C2)~/2]/[A 8 + B 8] and the  values of sin 2/~ are 
similar  wi th  A for B and - - B  for A. B y  subs t i tu t ion  of these values in fo rmula  (2) after  some 
reduct ion the  m a x i m u m  and min imum stresses c a n b e  expressed in the  form 

• _ _ 0(58 + 20 - -  1 ) f ( f "  + q 8),/2 .-E (1 + 0){5(1 + o)f 8 + (i + 58)q, 8} 
/Tfl = 5 { ( 1 +  ~o2)(f ~ + qzS) t/2 ± (52 -  1)f} 

where qi = (1 + 5 ) q .  ' 

Taking  (f2 + q18)i/,. > 0, the  m a x i m u m  stress is t ha t  given b y  the two plus signs. If this  stress 
is equated  to fo, the  failing stress, the  condit ion for failure under  combined direct stress and shear 
is 

0{(58 + 25 - : 1 ) f  - -  ( l + ~ ) f 0 } ( f o  8 8 + 0 8 ) 1 / ~ + ( 1 + 5 ) { 5 ( 1 + 5 ) f 8 + 5 ( 1  5 ) f f 0 + ( 1 + 5 8 ) q 8 } = 0  

. . . .  (4) 
After  rat ional izing this  relat ion m a y  be expressed in the  form 

{45~f ~ + (1 + o~)~q~8}{5( ~ + 2 ) p +  2offo + (1 + 5)~q~, - 5~¢0 ~} = 0 .  . . . . .  (5) 

The first factor is obviously not  zero; so t ha t  the  condit ion for failure is 

(1 + 5)402 + 5(5 + 2){f  + fo/(e :+ 2)}" = 0(5 :+ 1)~fo=/(5 + 2) . . . . .  . . . .  (6) 

This is an ellipse with ' i ts  centre at q ---- 0 a n d f  = --  fo/(O + 2), the lengths of its semi-axes being 
( f = ) ( o  ,+ 1)f0/(e + 2) and (q = ){5/(5 + 2)}~/2f0/(0 + 1); the  intercepts  on the  axes are 

f ~ 5fo/(5 + 2) and --  f0 and q =  ± 5fo/(5 + 1) 8 • When  e is very  large tile ellipse (6) degenerates 
into an in f in i t e ly  narrow rectangle f : =  _+_f0 and q = ± f  o~5, the  h01e being a narrow crack 
parallel  to the  direction of the  direct stress applied. When  5 is very  small  tile ellipse (6) 
,degenerates into the  parabola  2(sf0)f + q8 = (e j0)=, the  hole being then  a narrow crack t ransverse 
to the  direct ion of tile applied direct stress. A series of curves for in termedia te  values of e is 
shown in Fig. 3*. 

I t  is tedious to prove mathemat ica l ly ,  bu t  on the  lines of Section 1.2 it  m a y  be shown tha t  under  
s tat ic  stresses, the  whole of each contour in Fig. 3 represents  the  condit ion t ha t  the  m a x i m u m  
tensile stress should be f0. For  instance all t he  contours touch at  f = --  f0, because when a piece 
conta ining an elliptical hole is compressed a long  either of the  principal  axes of the  ellipse, the  
greatest  tensile stress is numerical ly  equal  to the  applied stress;  this  tensile stress occurs at  the  
top and bo t tom of tile h01e and in the  direction t ransverse to t h a t  of the  applied compressionS. 

W h e n  the  applied stresses al ternate,  tile signs of f and q become ir re levant  and  the  condit ion 
for failure is represented by  reflecting the upper  port ions of tile contours in Fig. 3 in the  axis of q, 
as represented b y  the  dot ted  line in Fig. 1. I t  is interest ing then  to note the  physical  meaning  
of the cusp on the axis of q. Under  pure shear the  m a x i m u m  stress is set up at  four points,  one 
in each quadran t  Of the  elliptical contour of tile hole. When  direct stress is superposed the stress 

* I t  is interesting.that theocurve for 0 = ~/2 -- 1 is a true circle and that the curves for both higher and lower values 
of e grow progressively more elongated, tending eventually to zero width when 0 = 0 or 1. 

j~ In tensile tests on pieces of thin sheet containing large circular holes the existence of transverse compressive stresses 
above and below the hole is evidenced by buckling of the sheet in these regions. 
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in two opposite quadrants is increased and tha t  in the other two is correspondingly reduced. 
Thus the sign of the direct stress applied in relation to the sign of the shear affects the position of 
the maximum stress. Therefore, if the material round the contour of the hole were differentially 
hardened, so that  in one pair of opposite quadrants it was made stronger than in the other, the 
relative signs of the direct and shear stresses would be reflected by a difference of strength 
according to the quadrant in which the greater stress would be developed. Such differential 
hardening would, therefore, result in a diagram like Fig. 4, even under alternating stresses. 

In practice holes of truly elliptical section are not likely to  be encountered ; but  holes of circular 
section drilled obliquely intersect the axis of a test piece in an ellipse. I t  is possible that  the 
present analysis is applicable to such cases provided that  the obliquity is not very great. 

1.4. Holes of Elliptical Section Oriented at R a n d o m . - - I f  an infinitely large plate pierced by an 
elliptical hole (~ = c~0 as before) is subjected to principal stresses f and f '  in directions making the 
angle 0 with tl~e principal axes of the ellipse, thestress  tiff at/~ in the contour of the hole is ~ 

~ = { ( f ~  + f~) sinh2c~o + ( f ~ _  f2)(e~oocos2p --  1) - -  2qe~"osin2~}/(cosh2~o-- COS2~) . .  (7) 

where 

f l  + f~ = f + f ' ,  f l  - f2 = ( f  - f ' )  cos 20 and 2q = (f  -- f ' )  sin 20. 

Substituting in terms of J and f '  and dropping the suffix 0 from ~ for convenience~ the formula 
(7) may be expressed in the form 

t i f f =  {(f + f ' )  sinh2c< + ( f - - f ' ) ( e  4 ~ -  2e~ cos 2~ + l ) l / 2cos (20+s)} / ( cosh2o~- -cos2p)  ~ (8) 

where tan  s = e 2° sin 2p/(e ~ cos 2~ - 1 )  . 

The maximum and minimum values of tiff are therefore 

( f  + f ')  sinh 2o~ (. 2e~o~ )1/2 
cosh 2 ~ -  cos 2~ -+- ( f  -- f ' )  cosh 2c~ -- cos 2/~ 

(9) 

and this may also be written in the form 

cosh 2c~-- cos2fl + ( f  + f,)1/2 2 sinh 2~ I -- 
( f - - f ' ) ~  e 2. 
( f + f ' )  2 sinh 2~" 

(10) 

Without  loss of generality we may take f > f ' .  
found from (9) and it occurs at fi -- 0, so that  its value is 

( f  + f ' )  coth ~ + ( f  - -  f ' )(e°/sinh ~) . . . . . .  
o r  

( f  + f ' ) /e  + (1 + e) ( f  - - f ' ) / e  . . . . . . . . . .  

where e = tanh c~ is the ratio of the lengths of axes of the ellipse, and ill this application 

Then if f + f '  > O, the greatest tensile stress is 

. .  (11) 

( l la)  

0 < e < l .  

By equating this stress to the limiting stress f0 the condition for failure becomes 

(2 + q)f - e f t =  efo . . . . . . . . . .  
7" 

(12) 



When f + f '  < 0, the greatest tensile stress is from (10) ( f -  f')2 e2= - -  ' _ @  / ( f f )  2sinh2c~ ' 

that:  ( f + j') sinh 2oc ( f -- f')2 e ~ 
-- This formula reduces to cosh 2e -- cos2fi ( f + f ' )  2 sinh 2c~ " 

provided 

provided tha t  
( f - -  f')2 (1 + o ) 2 + 4 o ( f + f ' ) f o = O  .,  

cosh 2c~ -- cos 2fl = ( f  q- f')~ 2 sinh 2 2c~ 
( f  --  f,)~ e = . . . . .  

O (13) 

For real values of/~, this condition restricts the formula (t3) to the range 

o r  

o r  

! 

I f  f sinh2c~ 
cosh  > 

e a 

1 + ~  f + f '  1 -55  
20 " > i f - - f >  2 

- -  .> sinh c~ 

(1 -- o)f' < (1 + 3~o)fand < -- (3 + o)f. 

• • 

m 

e 

¶ ° * • 

(14) 

(14a) 

(14b) 

(1 + 2o~)f--f' = f 0  . . . . . . . . . .  (15a) 

The complete system of conditions (12), (13) and (15a) is shown in Figs. 5 and 6 for the cases 
1 0 = ½ and 0 --+ 0. In the lat ter  case the limiting stress is of the order ~ff0 and therefore, in Fig. 6~ 

this value is represented as fl. In this case also the first condition in (14b) coincides wi:th the line 
f = f '  and the parabola (13) extends over the whole region in which f '  < 1 "5fl. 

If the material fails at a specific tensile stress, the ratio of t he  strength under  uniaxial corn, 
pression of a piece containing a hole to its strength under 'uniaxial  tension is 4(2 + 0)/(t q~ 5)2; 
this ratio varies from 3 to 8 as o ranges from uni ty down to zero. On the other hand, if the strength 
of the parent mater ial  is determined by the  maximum shear stress; the strength of the piece 
containing a hole should be the same under compression as under tension• In relation to a solid 
body containing three-dimensional flaws we may expect-the same general principle to apply" 
that  is, if the strength of the parent material depends on the maximum shear stress, the flawed 
material will be equally strong in tension as in compression ; whereas, if the parent material fails 
always in tension, the flawed material will be considerably stronger under compression than it is 
under tension• For instance, cast iron under compression is abotit five' times stronger than under 
tension; this suggests tha t  the material may fail always in tension and tha t  the internal flaws 
may be equivalent to elliptical cylindrical holes~ Of which the axes are in the ratio 8 : 3. In this 
case, of course, the flaws are probably graphite inclusions. . . . .  

8 

o r  

Since f '  is negative and 0 < 1 the fiirst condition is relevant only when f < O, and similarly the 
second is relevant only when f > O. 

When If + f'] z]> ½(1 + e ) ( f -  f ' ) ,  the maximum tens, i lestress is defined by formula(9)and i t  
occurs at /~ = O, so that  formula (12) applies. When I f ~ f ' l  <l-" (1 + e ) ( f - - f ' ) / 2 e ,  formula (9) 
again applies but now the maximum tensile stress occurs at {~ < ~/2 and tile condition for failure is 

(f + f')~o + ( f - -  f')(1 + e) = f o  - . . . . . . . . . .  (15) 



For  the special case of pieces subjected to combined direct s t ressf  and shear stress q, the values 
of the principal stresses are ½ { f  ± (f2 + 4q2)~/~}. Then, so long a s f i s  positive, condition (! la)  is 
applicable and is 

f + (1 + e)(f~ + 4q2) 1/2 = efo . . . . . . . . . . . . . . . .  (16) 
o r  

0(0 + 2){f + fol(O + 2)} 5 + 4(1 + ~)~ q~ = ~o(0 + 1)~fo~/(e + 2) (cf. formula (6)). .. (16a) 

This formula applies also for f < 0 so long as f / ( p  + 4q~) ~/2 < -- ½(1 + 0) that  is, using (16), so 
long as f > --  fro. Thereafter, the appropriate condition is (13) which reduces to 

(f2 + 4q2)(1 + o)2 + 40ffo = 0 . . . . . . . . . .  (17) 
o r  

{f + 20fo/(1 + o)~} ~ + 4q ~ = 40~fo~/(1 + 0) ~ . . . . . . . .  (17a) 

Formula (17a) applies until  f /(f2 + 4q2)i/2 < _ (1 + o)/20 ; but  the least possible value of the 
left-hand side is -- 1 (when q = 0) and -- 1 > -- (1 + 0)/20 when 0 < 0 < 1. Therefore, the 
complete contour is defined by formulae (16) and (17). Taking efo/(o + 2) = fl, so tha t  f l  is the 
apparent strength under uniaxial tension, the limiting condition for failure is plotted in Fig. 7 for 
values of 0 from 0 to 1. On this diagram as in Figs. 1, 2 and 3, the horizontal and vertical scales 
are the same in terms of shear stress, that  i s f  = f~ represents a shear stress ½f~ due to tension. By 
this method of plotting, the condition (17) is represented by a semicircle with its centre at 
(f/f~) = -- 2(o + 2)/(o + 1) 5 and q = 0, which passes through f = 0, q = 0. The dotted line 
across the curves of Fig. 7 indicates the boundary between conditions (16) and (17); this line 
corresponds to the upper dotted line in Fig. 5 or 6. When failure occurs at a limiting value of 
shear stress, or in any case if the applied stresses alternate, the sign of f becomes irrelevant and 
the whole behaviour is described by the upper quadrants of the curves in Fig. 7. In this case the 
ratio of the strength under pure shear (or torsion) to tha t  under uniaxial direct stress (or bending) 
lies between } and 1. The data for Silal cast iron given in Fig. 8, reproduced from Ref. 3, conform 
to formula (16) with 0 = 0.2 with a mean squared error of 2 per cent. On this evidence we might 
expect that  the strength of Silal cast iron under uniaxial compression should be about six times 
i t s  strength under uniaxial tension ; the actual value of this ratio is just under 5. 

1.5. Comparison with Other Criteria of Failure.--The upper parts of the curves of Fig. 7 all 
represent formula (16), and this formula may be expressed in the form, 

where fl  = ofo/(e + 2) and ql = efo/2(0 + 1). This form is identical with the 'general conic '  
defined in Ref. 3. Moreover, the originalform (16) corresponds to the Guest law 

(~f2 + q,)~/2 + ½Zf= q~ . . . . . . . .  (19) 

if the undetermined parameter ;~ be identified with 3/2(1 + 0), o r 3 ( 2  fi ~/2( fl - -  ~ , , /  ,, ~/, and q, with 

0fo/2(1 + 0) as before. Finally, in the discussion on Ref. 3, Stanfield suggested the criterion 
(S "-~ •P)max : const., where s and p are the shear and normal stress on any plane. This condition 
may be written in the form 

E½f~ + (½f + Zq) sin 20 + (q -- ½f2) cos 201 ..... = const. 
o r  

½f2 + (1 + Z2) ~12 (_~;f2 + q~)1/2 = c o n s t  . . . . . . . . .  (20) 

which again is equivalent to (16) with Z == 1/{0(0 + 2)} tl~ . 
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For any material tested under alternating stresses, the correspondence between the four criteria, 
elliptical holes of characteristic form, the Gough-Pollard general conic, the Guest law and the 
Stanfield criterion is formally complete; but, whereas the last three criteria permit any value of 
the ratio fl/ql at least between 2 and 1, the criterion based on the presence of elliptical holes 
restricts this ratio to values between 1 and .~. In practice values offl/ql exceeding .~ are common 
for ductile materials and not uncommon for brittle ones; therefore, we must conclude that  the 
failure of such materials cannot be due to the presence Of elliptical cylindrical flaWS. I t  is possible 
that  ellipsoidal flaws may permit a wider variation of the ratio fl/q~ i but at least we may conclude 
that  experimental satisfaction under alternating stresses of the relation (16) or (18) neither proves 
nor disproves the existence of holes in the material. To put this question to the proof it is 
necessary to consider the behaviour of the material under static Stresses. 

Under static stresses the Gough-Pollard relation is irrelevant because it was proposed simply as 
an empirical formula to represent (as it does very weU) theresults  of certain fatigue tests 3. On the 
other hand the Guest and Stanfield criteria, which are virtually equivalent, imply that  formula 
(16) or (18) should apply over the whole range o f f  including both positive and negative values. 
Whereas the ' holes ' criterion implies either the complete diagrams of Fig. 7, over the lower part  
of which condition (16) is replaced by condition (17), or only the upper part  of the diagram, 
reflected (for negative values off)  in the axis of q (Fig. 1), according to whether the material fails 
by tension or by shear stress. 

1.6. Conclusion.--The results of Sections 1.2 and 1.3 relate strictly to an infinite plane test piece 
pierced b y  a cylindrical hole with its axis perpendicular to the plane of stress. In applying the 
results to a circularly cylindrical test piece pierced by a radial hole and subjected to bending and 
torsion, allowance must be made for the differences between the two stressing cases. However, 
the comparison made in Fig. 2 suggests that ,  provided tha t  the diameter of the radial hole is 
moderately small in relation to the diameter of the test piece (about 1/10th or less), the differences 
between the actual and idealized stressing cases may have no great effect. In respect of a circular 
hole drilled obliquely the application of the data summarized in Fig. a is more open to question; 
but  at least it may be expected that  these data should represent a first approximation. 

The analysis of Section 1.4 is related entirely to the fundamental question whether the low 
strength of all materials in relation to the estimates of their strengths based on thermodynamic 
data may be explicable by the hypothesis tha t  all materials contain numerous sub-microscopic 
flaws. In respect of cylindrical flaws with their axes perpendicular to the plane of stress the 
present analysis shows clearly that  this hypothesis accords with experimental results neither 
qualitatively nor quantitatively. Quantitatively there remains a possibility tha t  ellipsoidal or 
o the r '  solid ' flaws might result in better agreement with experiment ; but qualitatively it is clear 
tha t  any system of flaws must always lead to a criterion for failure under combined bending and 
torsion which cuts the torsion axis obliquely (Fig. 1). Although some few materials yield experi- 
mental  curves of this type, the majori ty conform' to curves which cut the torsion axis orthogonally 
(ReI. 3). In such cases it is inconceivable that  the materials actually fail at internal flaws. 
Other equally strong evidence against the flaw hypothesis, also based on stress concentration 
effects, is recorded in Part  II. 
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P A R T  II 

Stress Concentration due to Holes and Grooves other than Elliptical in Form 

Synopsis.--In order critically to compare the results of fatigue tests on pieces containing sharp 
V-notches and other abrupt changes of section with tile theoretical values of stress concentration 
factors, a need was apparent for detailed theoretical investigation of the effect of the form of the 
discontinuity of section. 

Following generally established methods of stress analysis the stress distributions round holes 
and grooves of a wide range of forms have been examined both under plane direct stress and 
under shear stress. These analyses have been applied to several particular cases and the results 
have been compared with approximate formulae based on the stress distribution round elliptical 
contours. 

From the results it appears that the approximate formulae based on elliptical holes afford a 
reasonably accurate estimate of the maximum stress at any hole or groove under plane direct 
stress, but that the stress concentration under shear is influenced to a much greater extent by 
the general form of the hole or groove. Under both types of stress system, certain cases of 
anomaly arising from application of the approximate formulae are examined, and it is shown that 
all these anomalies are resolved by the more accurate formulae here derived. Incidentally, in 
this examination it is demonstrated that abrupt changes of curvature of the contour of a hole or 
groove cause no concentration of stress. 

Comparisons are made with some measurements by the soap-film analogy method of the stresses 
at V-notches under shear, and moderately good agreement is found. 

The stress distribution round very narrow ' hair ' cracks is investigated and the possible effect 
of such cracks in masking the stress concentration due to other larger notches and holes is 
examined. It is shown that, although the presence of hair cracks would suffice to explain why 
experimental values of stress concentration factor are usually markedly less than the theoretical 
values, the depth of the hair cracks necessary to have this effect is so great that they ought to be 
easily observable under the microscope; whereas, of course, no sign of such flaws has been 
observed. 

II.  1. I~troductio~.--It is well known that  the actual reduction in strength of a piece containing 
a hole, groove or other discontinuity in comparison with the strength of a plain piece is usually 
very much less than the theoretical value of the ratio of the maximum stress round the 
discontinuity to the stress in tile plain piece under the same load. So long as this discrepancy 
related only to the behaviour of pieces under static stresses, it appeared reasonable to attribute 
the lessened effect of the hole or notch in practice to the effect of yielding (with perhaps strain 
hardening of the material) in the regions of maximum stress round the hole. I t  is indeed 
doubtful whether this view was ever really justified, even in relation to static stresses, but, if tile 
same argument be advanced as an explanation of the similar discrepancy between theory and 
experiment observed in fatigue tests, its insufficiency can be demonstrated fairly easily. I t  is 
not proposed here to at tempt  this demonstration in detail ; but  briefly the rejection of this 
explanation is based on the following arguments. 

(a) Yielding cannot change the shape of the hole  so appreciably that  the theoretical stress 
concentration factor is reduced to the experimental value. 

(b) If yielding of the material in the regions of high stress occurs at each stress maximum in 
the load cycle, there is a priori no reason why similar yielding should not occur all over the regions 
o2 high stress in a plain piece; but, if this were the case, the strength of materials under 
alternating flexural stress should be co~¢siderably greater than the strength under alternating 
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direct stress uniform over the cross section. Moreover, continuous yielding, since it must involve 
dissipation of energy, should be reflected in increased damping of notched pieces in vibration; 
this increase has not been observed. 

(c) if  the material in the regions of high stress is strain hardened by repeated, but  gradually 
diminishing, yield, the material must finally be brought into a state in which it can withstand the 
full theoretical range Of stress. If this state Can be reached at the botfom of a notch, why cannot 
it be reproduced throughout the piece ? 

The first argument (a) may be Substantiated fairly easily by reference to anypar t i cu la r  form 
of notch. I t  will be found that  reduction of the curvature in one region, of high stress is always 
accompanied by an increase in another. 

The two latter arguments (b) and (c) present the essential dilemma. The material in the regions 
of high stress is either brought into an elastic condition or it  remains plastic. If i t  is rendered 
elastic, it must also be rendered superstrong; if it  remains plastic, it must be credited with a 
property hitherto unrecognized. In either case, it is clear that  the mere statements that  the 
material strain hardens or that  it yields continuously cannot be regarded as sufficient, 'and tha t  
the meanings of these statements must be further examined. 

In the discussion above, it has been tacit ly assumed tha t  the material may be regarded as a 
continuous medium. If it is not a continuous medium, the theory of elasticity based on the 
average properties of a large bulk of material is applicable only to stress distributions which are 
sensibly uniform over regions large in comparison with the fine structure of the material;  if the 
stresses vary  more rapidly the  effect of the fine structure must be taken into account. On this 
basis, Griffith ~ sought to explain the differences between the theoretical estimates of the strength of 
materials based on their other physical properties and their actual practical strengths by postulating 
the presence in practical materials of numerous fine cracks or flaws of very small size ; the same 
explanation has been advanced to account for the differences between theoretical and practical 
stress concentration factors due to discontinuities. This ' crack hypothesis ' is not now held in 
such favour as it was some years ago; but in relation to metals it has in some sense been super- 
seded by the dislocation theory, and therefore, examination of the sufficiency of such hypotheses 
of discontinuities to the reconciliation of theoretical and experimental results is not out of place. 

In at tempting to review these and other possible explanations of the discrepancy between 
theoretical and practical values of stress concentration factors, it soon became apparent tha t  the 
state of theoretical knowledge was insufficient. This was particularly remarked in considering 
the results of the fatigue tests carried out by Gough and Pollard 5 on pieces containing sharp 
V-grooves. From the results of these tests it appeared tha t  the radius at the bottom of the 
notch had only a secondary effect on the fatigue strength, whereas according to the arguments 
advanced by Inglls 1 the stress concentration factor should vary in proportion to the root of this 
radius. On the other hand Inglis' conclusions were based entirely on results obtained for a hole 
of elliptical form and the application of these results to holes of other forms and to notches was 
supported only by general arguments, of which the validity was uncertain. Accordingly the 
possibility remained that  the form of the hole or notch might have greater influence than Inglis 
considered, and tha t  in certain cases this influence might predominate over that  of the radius 
of curvature at the bottom of the hole or notch. 

In this paper, therefore, an at tempt  is made to extend the analysis developed by Inglis to holes 
of forms more general than the ellipse and particular.ly to notches of quite arbitrary forms. At 
the same time, this more generM analysis is applied to some cases of combinations of holes or 
notches and finehair  cracks, generally representative of the Griffith crack hypothesis ill its original 
form. 

II.2. Synopsis of Ana ly s i s . - -The  analysis is presented in eight sections. In Section II.3 the 
nature and some of the properties of the general epicyclic conformal transformation 

x + iy --- ~ ~e  -~C°+~ 

are explained; in Section 11.4 the device representing the hair crack is introduced; and in 
Section 11.S the use of  t he  epicyclic series to represent a groove of arbitrary form is developed. 
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In Section 11.6 the stress distribution round an infinitely long cylindrica! h01e in  a n  infinite block 
due to shear parallel to the axis of the hole is worked out ; and in Section II.7 the stress distribu- 
tion round the same hole due to states of stress in planes  perpendicular to the axis of the  hole, 
and uniform at infinity, is found. In Section II.8 the results are applied to  a class of holes 
differing appreciably from the elliptical form, and some general conclusions with regard to the 
relative importance of curvature and general form are 'drawn;  in Section 11.9 the effect of hair 
cracks in reducing the apparent stress concentration factors below the theoretical values is 
considered. General conclusions mainly relating to practical application of the results and to 
the use of the results in further examination of the criteria of fatigue failure are collected in 
Section II.10. 

The general method of analysis used in Section II.7 follows tha t  adopted by Inglisl;  but the 
presentation has been considerably simplified and shortened. The analysis was first developed 
in terms exactly analogous to those used by Inglis, but it was quite obvious from the form of the 
results tha t  they could be presented more simply. • This simplification was eventually effected 
b y  adoption of complex variables throughout, and. the work had been brought just to this 
stage when a paper by  Stevenson 6 on the use o f  the complex variable in problems of 
elasticity was received. The first part  of Section II.7 could now be omi t ted  and the results 
quoted from Stevenson's paper or from other publications on the use of the complex variable in 
stress analysis 7'8. On the other hand the complex variable method i s n 0 t  yet  very well known, 
and therefore, for the sake of completeness the analysis of Sec,ti0n II.7 has been allowed to stand. 
For more complete and rigorous t reatment  Refs. 6, 7 and 8 should be consulted. I t  is, perhaps, 
worth adding tha t  by  Inglis' method, one arrives at 3s -- 1 simultaneous equations involving 
only 2s -- 1 unknowns, but s of the equations prove to be redundant.  I t  was this fact, 
combined with the fact tha t  Poisson's  Ratio, which is involved .throughout the early part  of the 
analysis, later disappe~/rs from the results, which suggested tha t  a more simple presentation must  
be possible. 

11.3. The Ge~ceral Epicyclic Tra~sformatio~.--(a) Nature of the Transformation. In an  infinite 
block of material take Cartesian axes OJcyz and transform to the curvitinear system of co-ordinates 
~/~y by the conformal transformation" 

x + iy = Z ~4~e -'~c~+~l , 

Z ~ y ,  

where ~¢ takes all values both positive and negative and the 4 's  are arbitrary. ~ Then 

x 27 (a_,,e "~ + ,, , cos 
and 

y = E (4 e ~° -- 2;~e -''°) sin ~¢/~ 

Any line of constant c¢ is, ,therefore, an epicyclic cylinder about  the axis Oz. By suita.ble choice 
of the values of 4,~ and X_,~ any pair of such cylinders may be represented by the contours 
ct = ~ cq* and therefore, if the values of the stresses aa, aS and fa  may be made to  assume 
assigned values at ct = _+_ cq, the general expressions for these stresses and the corresponding 
expressions for the remaining stresses fi/7, f f  and fif represent the distribution of stress throughout 
the tube enclosed between the contours c~ ~ :J: cq under ~the, action of the assigned surface 
tractions. In  the present paper at tention will be resfricted to the effect of holes in infinite blocks 
and therefore we take ~ 21 1 and 4_~(~ > 1) 0.  In this case wheri e--~ oo, x-->e" cos ~ and 
y ---> e" sin/~, so tha t  the. c~-co-ordinate system tends to the circularly cylindrical. If of 4,, only 41 
i s  different from zero, x -~ (e" + 1~e -°) cos/3 and y = (e" -- 4~e -") sin/~. Defining ttie contour 
of the hole as c~ = 0, this system makes lines of constant ~ vary  from the ellipse 

x = (1 + ~1) cos $ a n d y  = (i -- 41) sin 

at the contour of the hole to the circle x = e" cos $, y = e" sin/~ as c~-->oo. This is the System 
of co-ordinates used by Inglis (loc. cit.) . 

* O r  o:[  ' c o u r s e  c~ = c~ 1 a . i l d  c~ = c¢ 2. 
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(b) The Scale 

Writ ing 
x +  
X ~  

Then  
~x+i  

and 
.~x --  i 

Factor h . - -  

iy = ¢ ( ~ +  ~ )  --¢(~) 

iy = ¢ ( ~ -  i~) ~ ¢(¢) 

~y = ¢ ' (~) (~  + i ~ )  

(Definition) 

(Definition) 

where a pr ime denotes differentiation wi th  respect to the  complete  a rgument  ~ or ¢, so t ha t  
(~s) ~ = (~x) ~ + (~y)~ = ¢'(~)¢'(~){(~.)~ + (08?'} = h"{(~) ~ + (~8)~}. 

The parameter  h = {¢'(~)¢'(¢)}~/~ is thus the  scale factor describing the  length  represented by 
uni t  change in ~ or 8. Fur ther  comments  on the  general characteristics of the  ~p system of 
co-ordinates are made  in Section IV.2. When  ¢(~). = ~ ~ e  -~e , 

h ~ = Z n ~ e  -~  Z,~ mZ~e - ~  

= z ~ : e - ~ °  + 2 z ~ ~ e - < ~  ~'° cos (~  --  ~)8, ~ > ~.  

r ~ = X ~,e -~  E ~,,e - '¢ 

- -2ha  = Z;~,~e ~ 2 Z,, X, Z~Jl,e -('+~1~ cos (m - -  n)fl, m > n .  

1 ~h~ (see Section IV.2) so tha t  and the  curvature  (l/q) of a line of constant  e is 2h ~ ~c~ 

I~l/o I = { z ,~z:e  -~oo + z z ,~,~(,~ + ,~) a,.zoe -<o+">" cos (~  - ,~)n}ln:. ~ > n .  

An impor tan t  class of contour  is t ha t  of regular n-sided polygons for which apart  from the  initial 
t e rm ~-i, only ~,-1, ~ - 1 ,  Zs,~_~, etc., differ f rom zero. 

II.4. The Hair  Crack . - -To  the  t ransformat ion x + / y  = ¢(~) represent ing any given hole at 
= 0, let  the  ext ra  terms (d/n)(e -~ + e - ~  + e -~  + . .  • e-(2"+~/~) be added ;  x is then  

increased by (din) {cos /7 + cos 38 + • . • + cos (2n --  1)8} = d sin 2nfl /2n sin/7 ; and y by  
- -  (d/n) {sin 8 + sin 38 + • • • sin (2n --  1)8}---- --  d(1 - -  cos2nf l ) /2n  sin 8 • 

If n is large, the  change in y is everywhere  smalt, a n d  the  change in x is also small provided 
t h a t  8 is not  small. As/7--~ 0, however,  the  change in x tends to d. Using the  results of 
Section II .3 (b), the  radius of curvature  at  8 = 0 m a y  be found. The complete t ransformation,  
therefQre, m a y  be used to represent  a hair  crack of dep th  d and radius of curvature  at  its end 

(1 - z mac  - n d ) : /  {1 + z re"x,. + (dla)(4n" - -  1)} 

(at /7 = 0 in the  contour  of the  hole defined b y  x + / y  = e* + ~ a.,e -~) . 

The extent  to  which the  crack affects the  contour  of the  hole in regions remote  from 8 = 0 
depends upon the  value of n, the  general form of the  hole being the  be t te r  main ta ined  the  higher  
the  value of n. For  the  radius of curvature  at  the  end of the  crack to be  posit ive nd must  be less 
t han  1 - -  2: m~,,. In  order than  n should be large, d must  therefore be small  in comparison wi th  
1 - -  Z m~,,, this condit ion implies t ha t  the  dep th  of the  crack can b e  on ly  a smal l  fraction of the  
wid th  1 --  2: 4,, of the hole (at 8 = ~/2). 

To deeper cracks the  general me thod  of the  following Section II.5 m a y  be applicable. 
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11.5. Representation of a Groove of any Form by an Epicyclic Series.--(a) General method of 
representing a groove.--The contour  of the  hole is represented by the  series : 

X z 

y = :  

Or, writing, ~1 = 

X ~  

y---- 

(X-l .+ ~1') cos ~ + a2cos3~ + . .  * 

(~-1 - -  ~1') s i n / 3  - -  ~2 s i n  3 ~  + . . .  

~ l c o s / ~ + ~ c o s 3 ~ + . .  

2 ~ _ l s i n ~ - - ( ~ s i n f i + ~ 2 s i n 3 / 3  + . . .  ) .  

If  al, z2, etc., be so chosen tha t  the  function i l  cos $ q- 12 cos 3/~ + . . . ,  etc., is finite over the  
ranges 

Y'C 9~ :re $g 

2 ( 2 n - -  1) ~ fl < 2 ( 2 n - -  1) and ~ --  2(2n --  1) < /3< ~ + 2 ( 2 n _  1) 

and zero in between,  where n is large, then  within these ranges 

x = ~ i c o s / ~ + ~ c o s 3 / ~ + . . .  

and approximate ly  y = {2~_1 --  2 (2r --  1)~}/3. 

And, if il ,  12, etc., be small in comparison with 1_ ,  outside these ranges x ---- 0 and approximately  
y ---- 2~_1 sin/3. Obviously the  accuracy of the  two approximate  formulae for y is l imited, but  
the  error in the  form for y when x - 0 does not  ma t t e r  at  all, whilst  the  error in the  other  form 
for y affects only values for which ~ --+ +_ ~/2(2n --  1) . I t  will be seen later that ,  by  the  me thod  
of use of these approximate  forms here developed, the effect of this error is slightly to round off 
the  edges of the  groove. The width  w of the  groove (neglecting the rounding of the  outer  edges) is 
{ 2 1 _ 1 - - E  (2 r - -  1)~} {a/(2n --  1)}, a n d i t s  dep th  a = ~ 1~ ; t h e  radius of curvature  at fl = 0 (the 

(2n - 1) ~ w ~ z ~,. 
bo t t om of the  groove) e = ~2 a X ( 2 r -  1) 2 ~ 

(b) Representation of given form ofgroove.--Suppose the  groove to be defined by Fourier  Series 

( ~y 3~y ) 
x = a K1 cos + K~ cos + . . . with Z 14.,,, -- 1 

72) W ' 

= a ~ K , ~ c o s ( 2 m -  1 ) ( 2 n -  1)~ i n t h e r a n g e  --  2 ( 2 n -  1) < fl < 2 ( 2 n - - 1 )  

and zero elsewhere in the  range - - ~ / 2  < /~ < ~ /2 .  

Denot ing by i .... the  contr ibut ion of the K,, term to 2,., 

L.,~ -- ~ --~I2(~,~-, K,,0 cos (2m --  1)(2n --  1) ~ cos (2r --  1) ~ d/~ 

_ . [ --  1 ) ( 2 n -  1) + ( 2 r -  1)}{~/2(2n-  1)}] 
= 2aK,~,~ sin [{(2m (2m --  1)(2n --  1) + (2r --  1) 

sin [ { ( 2 m -  1 ) ( 2 n -  1 ) -  ( 2 r -  1 )} (z /Z(2n-  1)}] 
+ (2m --  1 ) ( 2 n -  1) - - ( 2 r - - ' 1 )  ] 

= (_ 1),,,-14aK,,, ( 2 . , -  1) { 2 r -  } 
( 2 m - -  1)2(2n-- 1) ~ - ( 2 r -  1) 2 cos 2 n - - 1 2  " 

* In this section, ,~, is used in place of ~2,-1 for brevity. 
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Of course, b y  definition X ~ ..... cos (2r --  1)/~ -- aK,,, cos (2m --  1)(2n - -  1)~ over the  range of 
in tegra t ion ; so tha t ,  subs t i tu t ing  ~ --- 0, X ~ ..... -- aK,,, ~. This result follows also by  forming the 
sum 2:Z~,~. Moreover, _ r , L =  X ~ X  .... ---- 2 : X Z  .... = 2 : a K , , = a ,  because X K , , - -  1 

Then  

" ( - 2 ~ -  l) ~ ( 2 ~ -  l) ~ - ( 2 ~ -  l) ~ cos 9 , ~ _  1 2  

= ( - - 1 )  .... ,4aK, - - ( 2 m -  1 ) (2n-  l) 

2: ( 2 m -  1 ) ( 2 n -  1 ) -  { ( 2 m -  1 ) ( 2 n -  1 ) -  ( 2 r -  1)} 
( 2 m - -  1) ~ ( 2 n -  l) ~ -  ( 2 r - -  1) ~ 

2 r - -  1 ~ }  
COS 

t 2 n - -  12  

= ( 2 m -  1 ) ( 2 n -  l) X ~ ..... + ( - -  1) " ~ ( 2 m -  1 ) ( 2 n -  1) × 

4aK., X cos [{(2m --  1)(2n --  1) @ (2r - -  1)}{z/2(2n --  1)} --  (2m --  1)(u/2)] 

~= ( 2 m -  1 ) ( 2 n -  1)aK,, 

( 2 m -  1 ) ( 2 n -  1) -t- ( 2 r -  1) 

-- ( 2 m -  1 ) (2n-  1 ) -  

where ~ ---- { ~ / 2 ( 2 n -  1)} 

4aK,. 2 sin { ( 2 m -  1 ) ( 2 n -  1) -+- ( 2 r -  1)} s 

---- ( 2m --  1)(2n --  1)(4aKJ~) [(~/4) --  Z {(sin2rs)/2r} + 2: 
1 1 

{(sin 2re)/2r}] 

---- ( 2 m -  1 ) ( 2 n -  1)(4aK,,,/~) 2 
1 

co 

{(sin 2re)/2r}, because Z {(sin 2re)/2r} = (~/4) 
1 

= (2m --  1) (2n --  1) (4aK,,/~) X f cos 2rO dO, using 0 as current  variable 
1 0 

= (2m- -  1) (2n- -  1)(4aK,]~) o( 2: cos2r0) dO, assuming absolute convergence 
I 

= (2m --  1)(2n --  1)(4aK,]~) f l  [{sin (2m --  1)(2n --  1)0 --  sin 0}/2 sin 0.] a~O. 

If  s is very  small,  tha t  is if n is large, 

f i{sin (2,~ - 1)(2~ - ,)O/sin o} do is approximately equal to 

f i{s in  ( 2 ~ -  1 ) ( 2 n -  1)0/0} do = S i { ( 2 m -  1 ) ( 2 n -  1)e} 

- s i  { ( 2 ~  - 1 ) ( . / 2 ) }  
and s is negligible in comparison. 

Hence X ( 2 r -  1)2 ..... = ( 2 m -  1 ) ( 2 n -  1)(2aK,. /a)Si{(2m- 1)(~/2)}. 
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Also 

Z(2r --  1) ~ Z .... 
= ~ ( - - 1 )  .... ~4aK,,, (2m - - 1 )  (21¢ --  l) (2r - - 1 )  ~ cos 1 2 r - - l ~ }  

• ~ ( 2 m -  1 ) 2 ( 2 n -  l f l - - ( 2 r -  1) ~ l ( ~ n - 1 2  

= (_1),,_~ 4aK,, (2m --  1) 3 (2n --  1) ~ 
7~ 

( 2 m -  1) ~ ( 2 n -  1) ~ -  ( 2 r -  1) ~ -  ( 2 m -  1) ~ ( 2 n -  1) ~ 
2 r - -  1=} 

cos ~ 7  1 

tha t  E (2r --  1)22 ..... /(2n --  1) ~ ---- (2m --  1)2aK,,,, the  second te rm being negligible in corn- So 
parison with the  first. 

(c) Summary of Results.--Collecting these results, the  wid th  of the  groove, 

w = { 2 2 _ ~ -  ~ ( 2 r -  1)2~} { ~ / ( 2 n -  1)} = {2=2_~/'(2n --  1 ) } - - 2 a f  ( 2 m - -  1)Si{(2m --  1)=/2}K,, 

and the  curvature  (l/e) at the  root is {~a 2 (2m --  1) ~ K,,}/w ~ , 
where a = E 2,. is the  dep th  of the  groove, and its shape is defined by  the  Fourier  Series 

x = a X K,,, cos (2m --  1)(~y/w). 

Also 
4a { 2 r -  1 ~  ] ~),,,_i ( 2 m -  ~ ) ( 2 n -  1) 

~, = Z ~ ..... _ ~ cos  2 ~ , -  1 ~ / ~ ( -  K,,, (2 , ,  - -  l)" (2~ - -  1) ~ - -  (2r - -  l) ~ 

and 

~ ( 2 r -  1)2~ ~-- Z ~ (2r --  1)£.,,---- (2a(2n --  1)/x} ~ ( 2 m -  1)Si { ( 2 m -  1)(~/2)}K,, 
but  the  m summat ions  cannot  be performed unt i l  the  K's  be specified. 

11.6. Stresses round a Hole Due to Uniform Shear Parallel to the Axis of the Hole.--(a) Solution 
of Stress Equation of Equilibrium.--One of the three stress equat ions of equil ibrium (Ref. 8, 
Section 58, page 89) is 

hlh2h~ 

) _ ) ) +pah~hl~ ~ ~ N--aah~h1~ ~ = 0 .  

In  our case, the  stress dis tr ibut ion mus t  be independent  of ~, h3 is constant ,  and hl = h2 = 1/h in 
our nota t ion  ; the  equation, therefore, reduces to 

But  fi~ =Geav and pa = Ge~, whilst  e~y h ~fl and eva --  h 0c~" 

(Ref. 8, Section 20; h, u~ and uB are all independent  of ~,.) 

Therefore 

~ + ~  u ~ = 0 .  

Using the  solutions uv = E A,~ cosh m~ sin mfi and similar terms 
fl~? = (G/h) E mA,, cosh mc~ cos mfl and Ca = (G/h) ~ mA,~ sinh mc~ sin mfl .  

17 
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(b) Case of Uni form S h e a r . - - A s  o~-+ 0% h - +  e ~ ( t ak ing  2 - t  = 1), so t h a t  to  m a k e  t h e  s t ress  a t  
i n f i n i t y  f ini te,  we  m a y  t a k e  m = 1 only .  I f  t h e  s t ress  s y s t e m  at  i n f in i ty  is y = q a n d  22 = q', 
t h e  a p p r o p r i a t e  so lu t ions  are  

~ = 2(q/h) cosh  c~ cos ~ + 2(q'/h) cosh  u. sin/~ 

:fa = 2(q/h) s inh  c~ sin fi + 2(q'/h) s inh  c~ cos fi , 

c o n f o r m i n g  to  t h e  a d d i t i o n a l  c o n d i t i o n  pa = 0 a t  ~ = 0 ( the c o n t o u r  of t h e  h o l e ) .  I f  q '  = 0, a t  
/~ = (~/2), tip = 0, so t h a t  t he  b lock  m a y  be  cu t  t h r o u g h  t h e  p l a n e  ~ = (~/2) t o  l eave  a semi-  
in f in i t e  b lock  scored  b y  a g r o o v e  d o w n  one  face and  s h e a r e d  b y  forces  t e n d i n g  to  d i s t o r t  th i s  face. 

T h e  p o s i t i o n  of t h e  m a x i m u m  s t ress  d e p e n d s  b o t h  on  t h e  r a t io  of q to  q'  a n d  on  t he  v a l u e s  of 
t h e  Z's. H o w e v e r ,  if q '  0 a n d  t h e  c u r v a t u r e  of ~ = 0 is a m a x i m u m ,  t h e  s t ress  will  n o r m a l l y  
be  a m a . x i m u m  a t  th i s  p o i n t  in  t h e  c o n t o u r  of t h e  hole  (c~ = 0 and /~  = 0). I n  th i s  case t h e  s t ress  
c o n c e n t r a t i o n  f a c t o r  

~e = (~lq)o=o,~=o - -  2/{1 - -  ~ rL} = 2/(1 - -  a~ - -  2 z ~ -  - . . .  ) . 

B u t  e a t  ~ ---- 0 (Sec t ion  3) = (1 - -  ~1 - -  2 ~  - - . . .  )2/(1 -t- ~ + 4Z~ + . . . ) a n d  a, t h e  r a d i u s  
of t h e  hole  a t  ~ = 0, = 1 + ~ + ,~ + . . . , so t h a t  if ~2, ~3, etc. ,  are  zero, #~ ----- 2/(1 - -  ~ )  --=- 1 + 
(1 + 2-d/(1 - -  ~)  = 1 + ~v/(a/e), t h e  u s u a l  f o r m u l a  f0r  t h e  ellipse. F u r t h e r  e x a m p l e s  of s t ress  
c o n c e n t r a t i o n  in  shea r  are g iven  in  Sec t ion  I I .S  a n d  s u b s e q u e n t  sec t ions .  

(c) Stress Concentration _Factor for  General Groove.- - In  t h e  case of t h e  gene ra l  g roove  d i scussed  
in Sec t ion  11.5, t h e  s t ress  c o n c e n t r a t i o n  f ac to r  in  shea r  t% = 2 ~ _ 1 / { ~ _ ~ -  27 ( 2 r -  1 ) ~ } ,  b u t  
t h e  v a l u e  of 2~ to  be  u s e d  in th i s  f o r m u l a  is t h e  s u b s t a n t i v e  v a l u e  ~ '  (Sec t ion  11.5 (a)). S u b s t i t u t i n g  
for  ~ '  = ~ - -  ~_~, ~¢ = 2~_~/(2~_~ - -  27 (2r - -  1 )L} ,  w h e r e  t h e  v a l u e s  of ~ are n o w  those  u s e d  
in  t h e  r e m a i n d e r  of Sec t ion  11.5. I t  t h e n  fol lows t h a t  

y¢ = 2 ~ _ ~ / { 2 ~ _ ~ -  X ( 2 r -  1)~.~} 

= 1 + { z / ( 2 n -  1)w} X ( 2 r -  1)L 

= 1 + (2a/w) X (2m - -  1) Si ( (2m - -  1)(z/2)}K,,~ 

or  u s ing  t h e  r e l a t i on  a/e = (~a/w) ~ X (2m - -  1) ~ K,~ 

yq = 1 + 2 (~l/g ~ (2m - -  1) Si ( (2m - -  1)(:71:/2)}gm '~ 

",5- ( 2 m -  1 )"K, . }"  

As an  e x a m p l e ,  if t h e  g roove  a p p r o x i m a t e s  to  a t r i a n g u l a r  n o t c h  of w i d t h  w, and d e p t h  a i ts  a p e x  
be ing  r o u n d e d  to  a r ad iu s  5, K,~ m a y  be  t a k e n  as {8/z2(2m - -  1) 2} for  v a l u e s  of m u p  to  M a n d  zero  
for  all h i g h e r  v a l u e s  of M .  T h e  a p p r o p r i a t e  v a l u e  of M is def ined b y  t h e  r e l a t i on  

= ff  ( 2 m  - 1)" K,,o = M. 

T h e n  t% = 1 + JM(a/5) I/2, w h e r e  

JM - -  ~2 \ M /  X 2m - -  1 
m = l  

* If K~  = 1 where M is large and all the other K ' s  are zero, Si{(2M - -  1)(a/2)} --> (a/2) and t% + 1 + (alP) 112. 
A cont inuous sinusoidal serration thus gives the same stress concentrat ion as a single (half) elliptical groove having the 
same depth and  same radius of curvature  at its root, cf. Par t  I I I .  

18 



Values of J u  for values of M from 1 to 13 are given in Table 1 below. 

T A B L E  1 

Values of JM 

M 

J~ 

1 

0" 785 

2 

0"773 

3 

O" 732 

4 

0"699 

5 

0.669 

6 7 

0.644 0.622 
[ 

8 

0.604 

9 

0-587 

10 11 

0"572 0-559 

i 

0.546 

13 

0-535 

For a semi-elliptical groove, the  nominal  value ot M is ½ and of c o u r s e  J u  = 1 " this accords with 
the values for higher values of M listed in Table 1. For a given value of a/o, M increases with 
w/a. Thus as w/a increases, ale being main ta ined  constant  JM is reduced;  this shows the  effect 
of widening the  groove. For a 90 deg notch w/a = 2 and M = a/2o ; values of**~ = 1 + JM(a/o~) ~/~ 
for this case and for 60 deg and 120 deg notches are shown in Fig. 9 in comparison wi th  the  
approximate  formula ,% = 1 + (a/o) ~/~. On the  same diagram are shown results obta ined by  
A. A. Griffith by the use of the  soap-film method  *°. Wi th  reference to the grooves used by Gough 
and Pollar& taking a = 0.02 in., o ---- 0-0002 in., w/2a = tan  55 deg/2, M = about  13.5 and 
& = 6 .3  in comparison wi th  the  approximate  value 11.0. 

II.7. Stresses round a Hole Due to Systems of Uniform Plane Strain in the Plane Perpendicular 
to the Axis  of the Hole.--(a) General Formulae for  Stresses and S t ra ins . - -By  the  general stress-strain 
equat ions (1 -- a)A + (1 --  2a)co ma y  be any function of c~ + i/~. If u,  and ua are the  dis- 
placements  along the  ~/~ co-ordinate lines respectively and if u --  uo/h and v = uAh, 

( a ~ ) ( 1 )  1 {a(h~u) O(h~v)} 
au av 2h u + v = - -  

and 
1 ! ~(h ~v) a (h ~ u) 

a~ / 

Subst i tu t ing U = u + iv, V = u --  iv, ~ = ~z + i~ and ~ = c~ --  i3, 

~/Ou. = ~la~ + aloe and ~/a/3 = i(Ola~ --  ~/a¢) 

and therefore, 
1 {a(a'u) a(a=v) } 1 /a(a'v) 

A = ~  aFT-- + ~ and co--2ih2 [ O~ 
a(h~v) 

~$ }" 

1 f ~(h~U) 
Thus (1 --  ,~)A + i(1 --  2~)a~ / - - 2 h  ~ P ~: 

1 { ~(h~u) 
and (1 --  ~)A --  i(1 - -  2~)~ = 2 ~  ~ 

Therefore, 

( # 3 _  1) 

and 

( p ~ -  1) 

a(h=v) } _f(~) 

a~ 

--  2h~{pf(~) --f(~)} . .  

_ 21,,{pf(,) - f(})} .. 

A ---- (2/(1 + p)}{f(~) + f ( $ ) } .  

19 

where f is any function and 
p = 3 - -  4~ (a constant) 

. . . . . . . .  (21) 

. . . . . . . .  (22) 

.- . . . . . . .  (23) 



Moreover 

and 

so t ha t  

e~a - -  
8~t 8v 8V aU 

eee --  ac~ aft --  St + a-~ 

av au ( a V  a u )  

aU 

(24) 

(25) 

aV 
or 2 a~- . . . . . . . . . . . . .  (26) 

For  the  stress values, we have  

a(, + ~ = E A / ( 1  

and aa - -  tiff - -  

2 E  

- - 1 + ~  

q- a)(1 --  2~) = {E/2(1 --  ~)(1 --  2~)}{f(¢) + f(¢)} (27) 

2 E  ~ V  
OU and ~ respectively.  . .  (28) 
O~ 1 + ~  . . . .  

If  the  co-ordinate sys tem be defined by  x + iy = ¢(,) ,  so tha t  h ~ = 4'(~)4'(¢) 
write f(~) = F ' ( ~ ) / ¢ ' ( ~ ) .  Then  from equat ion (21) 

~(;~'u) _ 2 
a~ # ~ -  1 {p¢'(~)F'(~) - ¢ '(~)F'(0}, 

and 

]¢~U - -  

and  

(Section II.3), 

2 
p 2  1 {p¢ ' (QF( , )  - -  ¢ (~)F ' (Q + ~(¢)} where ~p is any function, 

u = p .  2 { F(~) 
~ - 1  ~ 4'(,) 

¢(t)F'(¢) v,(¢) 
¢,(~)4,(¢) + ¢,(t)4,(¢) (29) 

Hence  finally, 

aa + t/~ = 2(1 --  ~)(1 --  2~) ~ + ¢ - ' ~  . . . . . . .  (30) 
and using equat ion (28), 

E F'(~) 1 0 
a a -  ~ B + 2 i a ~  2(1 ~)'(1 2~) [ -  ¢(~) a = - - ~ ¢'(~) 5¢ ¢ - ~  

. . . . . .  (31) 

Since F and ~p are ent i re ly  arbi t rary ,  these expressions m a y  he expressed in the simpler forms" 

aa + tiff =- G(~) + G(Q . . . . . . . . . . . .  (30a) 
and 

aa - -  ~fi + 2iad = {-- ¢(~)G'(Q + H(Q}/¢ ' (~ ) ,  • . . . . . . .  (31a) 

bu t  the forms given by  (30) and (31) are be t ter  adapted  to our present  purpose. 

We note tha t  aa + ia B is proport ional  to 

F'(~) + ¢,(;) ~ ¢ 9  } " (32) 

* Expressions for u ,  and u~ m a y e a s i i y  be writ,ten down, but they are needed only in problems involving specified 
displacements. 
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(b) Solutions Appr@riate  to E2bicycIic Contours.--We have  ¢(~) = ~ 2~e -'e, where  r takes  the  
values  def ined in Sect ion 11.3, t h a t  is 2_~ = 1 and  2_~ (r > 1) = 0 ,  and  we take  

E 
2(1 - -  ~2)(1 - -  2~) F'(~) = ;~ (A. + iC.)e -'~ 

E 
2(1 - -  (~)(1 - -  2a) F ' (¢ )  = Z ( A , , -  iC,,)e - '~* 

E 
2(1 - -  ~)(1 - -  2~) ~0(¢) = S (B,, + iD~)e -0'-~/~ 

a, A, B, C and  D be ing  all real  numer ica l  constants .  

where  n m a y  t a k e  all in tegra l  va lues  b o t h  
posi t ive  and negat ive ,  

(c) Stresses at In f in i ty . - -As  c~----~oo, aa + f i~-+ 2A_~ + e ~ ( terms in A_~, A_~, etc.). Since the  
stresses are to r ema in  finite at  inf ini ty  we t ake  A_~, etc., zero. Fo r  the  same reason we t ake  B ~ ,  
D_2, etc., zero, w h e n  as c~--+oo, 

aa --  tiff + 2aft-+ (B_t + iD_x)e (¢-~) = (B_~ + iD_~)e -2~a . 

But,  as c~-+oo,  

aa--~f' cos2fl + f s i n  2 fl + 2q sin ~ cos/3 

tiff - -+f '  sin2/3 -¢- f cos ~ fi - -  2q sin/3 cos 

aft--+ ( i f - - f )  sin/3 cos fl + q(cos2/3 - -  sin '~ ~) 

or + flfl f + f' 

and  aa --  tiff + 2ia~--+ { ( f ' - - f )  + 2iq}(cos 2/3 - -  i sin 2/3). 

Hence  A_I = 1_([ + f,) ,  B_~ = f '  --  f an d  D_~ ----- 2q .  

where  f ' ,  f and  q are the  values  of £~, 
..99 and  235 respect ively,  at  infinity.  

(d) Stresses at the Edge of the Hole (c~ = 0).--It is requi red  to render  b o t h  aa and  aft ident ica l ly  
zero over  the  con tour  c~ = 0; th is  is done  mos t  conven ien t ly  by  render ing  aa -¢- iafi iden t ica l ly  
zero. At  c~ = 0, ~ = - -  ¢ = i/~. an d  it is conven ien t  to wri te  i/~ = 0. 

Then,  omi t t i ng  signs of s u m m a t i o n  wi th  respect  to n, aa + ia~ at  c~ = 0 is p ropor t iona l  to 

(A, + iC,)e -'° + (A,~ - iC~)e ''° ZzrZ,e-'°rLe "° Z2"e- '°  d {(A,--Z rZ,e ,°iC'̀ )e'° } 

Z r2~e~ ° 
o r  

de  -''° d e "° z 1 e("-l)° / . 

Therefore,  we have  to m a k e  

~ [ l  (A,~ + iC,)e-'~° Z rLe'° + (A -- iC,,)e,~O Z 2~e-~O_ (B,~ + iD,)eO,-~)o 1 

iden t ica l ly  zero.~ 

* When q is changed to ~ the sign of C,, must be changed, so that  F'(*) + F'(¢) shall be entirely real. 
Or strictly a multiple of Zr2,e,o. 
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Obviously the A B  and CD solutions are entirely separate. 
Of e s°, we  h a v e :  

B s + ,  = Z r - -  s 

Equating to zero the coefficients 

D,+I=Xr (r r A~C,_s--Z,C~+,) 
- - S  

but the structure of these relations is better shown in tabular form below. In this table (Table 2*) 
the individual equations are represented in vertical columns; ~he B coefficients, each of which 
enters into one equation only are shown in the second row, whilst the coefficients of each individual 
A in the separate equations are shown in the succeeding rows, 2_~ has been taken equal to unity 
as before. 

TABLE 2 

Relations between A and B coefficients 

e -1°° e -8°  e -6° e -4°  e -2°  1 e 2° O ° e Go e 80 O00 

- - B _ I  --B1 - -B 8 - - B ~  - - B 7  --B9 - -Bn  

2~ 22 2~ 28 21 1 
A-1 

1 --21 --3~a --5 h --7 Z 7 --9 29 

2,1 29 27 ' 2a 2 3 ~ 1 
A1 

• - -  1 21 3 2 a 5 2 5 7 ~t~ 9 ~o 11 I n 

2,8 2,1 29 22 ~5 28 21 1 
A8 

--1/3 1/32, 28 5/325 7/322 9/3,~ 9 11/32,, 13/3 .Z,8 

215 Zi8 2~1 29 27 25 28 Z1 1 
A5 

--1/5 1/521 3/528 k s 7/522 9/529 11/5all 13/S212 15/5215 

2~7 2~5 2,a 21~ 29 27 25 2 a 2, 1 
AT 

--1/7 1/721 3/722 5/725 27 9/729 11/72,~ 13/72,a 15/72,5 17/72,v 

219 217 ~15 213 211 29 27 25 28 21 1 
A9 

--1/9 1/921 3/923 5/925 7/92 v 29 11/9211 13/92,8 15/9~25 17/921 , 19/9.~,9 
i 

The table for the CD solution is similar, except that the first row of coefficients for each A 
becomes negative. As a result the coefficients of all the C's in the centre column became zero, 
and D1 is therefore always zero. 

If 2~s-1 is the highest order 2 to be included, the negative powers of e ° give s relations between the 
s unknowns A, to A.,,_1 and the two known coefficients A_1 and B_I ; the remaining s + 1 equations 
give the values of the s + 1 unknowns B1 to B~s+,, and it will be noticed that  B2,+, = 0 in all 
cases. Table 22 indicates the limits of the table when s = 5. 

* This table and the greater part of the subsequent discussion is restricted to 2's of odd orders ; it will be seen that 
the inclusion of 2's of even order necessitates the insertion in Table 2 of rows and columns in between those shown, 
but from the structure of the table it is clear that if the 2's of even order be omitted, the AB coefficients of even order 
also disappear. On the other hand, if ~'s of even order only are included, the AB coefficients of odd order, do not disappear. 
This is due to the coefficient -- 1 for A 1 in the column headed e-~°, since this column includes the coefficient B_I(=f ' - - f ) ,  
A 1 can never be identically zero. 
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TABLE 2a 

Relations between A and B coefficients 

e-ZOO e-SO e -Go e -a° e -2° 1 e 2° e 4° e 6° e 8° el°° 

- -B_  1 --B~ - - B  a - - B  5 --B7 --B9 --Bll 

2 9 2 7 2 5 2 a 21 1 

1 --~1 - -3~3  - -5  25 - -7  2 7 - - 9  ~9 

~9 ~7 25 23 Zl 1 

- -1  ~'1 3 2 a 5~5 7 2 7 9~0 

2 9 27 25 h a 21 1 

1/3 I/3 ~ ~8 5/3 ~5 7/3 27 9/3 ~ 

29 ~7 25 Z~ ~1 1 

-1/s  1 / s2~  3/s2~ ~ 7/s~ 9/s2~ 

~9 27' 25 23 21 1 

- -1 /7  1/721 3/723 5/725 27 9/729 

2~ 2 7 2 5 2 3 21 1 

- -1 /9  1/9 2~ 3/9 2~ 5/9 2~ 7/9 2~ 2 9 

1-1  

A1 

A3 

A.~ 

A7 

A9 

The determination of the values of the A's and B's  (or C's and D's) for any given set of numerical 
values of the 2's is straightforward, and in Tables 3 and 4 below the values are given in terms of 
A_I and A~ for Z's up to ~5 ; but  if higher order 2's are included, this general solution becomes 
very cumbersome. However, if all the 2's of order higher than 21 and up to a certain higher 
order (X~,,_~, say) are equal to e, where e is small, an approximate solution is possible. On the 
other hand, if only one of the higher order 2's is different from zero, the exact solution is easy. 
These speciM solutions are described below. 

TABLE 3 

Relations between the A aud B coefficients for Z's up to ~5" 

1 _  1 A1 

A 5 525 

A 3 3(~3-1-21~5) 325 

B_ 1 Z, +2223-1-32r~.5~ + 6~32~ +21 ~2~ - -  1+~a-¢-2125-[-32~ 2 

B1 2 +6Xa ~ + 10252 + 621Xj~ 5 2 Z 1 +6232 a 

B 3 - -  ~1+ 3XIXa+521252+ 102~25 + 3  21~25 1--t-3Za-l-3XlZh-k 5252 

B a. 821h 8;t5 

* Note : When only ;'1 differs from zero, the AB coefficients correspond with those in Inglis'  solution with the following 
substitutions : -  

Present Solution : ~1 A- I  A1 B-1 BI Ba 
Inglis'  Solution : e-2a0 A_I  A1 e-2a° - - B - a  - -B-1  e-~°  --Ble-4a°" 

23 



T A B L E  4 

Relations between the C and D coefficients for ~'s up to ~ 

C_1 C1 

C~ --5Z 5 

C 3 - - 3  (Z3 ~-Zl,~5) --3Z 5 

D _ 1 -- ~1 -- ~ + 3~-~;~ ~-  ~Z5 -- 1 -- ~3 -- ~Z~ + 3;t~ ~ 
D 3 - -  ~,1 ~ - 3  ~t 1 Jt a -  5~,12~5~ -~3~,12~,5 - -  1 +3Xa-t- 3AlZs-- 5X5 ~" 
Ds 8Zjta 825 

(e) Stress Concentration Factors .--For t h e  va lue  of t h e  s t ress  {7/7 a t  t h e  edge  of t h e  hole ,  we  h a v e  

X A,~e -"~ X A e '"~ 
tiff = aa + ~ (since aa = O) --  -Xr2~e_~,~ + _ Xr3.~e~5 • 

T h e  va lue  of /~$ at  ¢/ = 0 is t h e n  - - 2  X A,J x rL, • 

Example. 

a n d  

Z A , ,  

a n d  

T h e r e f o r e  

I f  o n l y  ~ is d i f fe ren t  f r o m  zero 

A1 = i l A _ 1  - -  B_I  ( f rom Tab l e  3), 

= A_I  + A t =  (1 -t- 21)A_~ - -  B _ I =  ½(1 + . ~ l ) ( f + f ' )  - - ( f ' - - f )  

= 1_(3 + z )f + - 1)f'  

r 

/7/7~=o = {(3 -1- 2~)/(1 + ~ ) } f - - f '  = {1 + 2 ( a / b ) } f - - f '  or {1 + 2(a/q)~/2} f - - f  ' w h e r e  
2a a n d  2b are t h e  l e n g t h s  of t he  m a j o r  a n d  m i n o r  axes  of t h e  ellipse, so t h a t  

a/b ---- (1 - / 21 ) / (1  - -  Zl) = (a/o~) I/~ (see Sec t ion  11.3). 

F o r  a n y  g iven  set  of i ' s  t h e  va lues  of ~g a t  c~ = 0 a n d  ~ ---- 0 m a y  easi ly  be  found ,  a n d  t he  v a l u e  
a t  o t h e r  va lues  of /3 can  be  ca l cu l a t ed  w i t h o u t  m u c h  d i f f icu l ty ;  to  ca lcu la te  t h e  va lues  of t he  
s t resses  a t  va lues  of , d i f fe ren t  f r o m  zero  (away  f r o m  t h e  c o n t o u r  of t h e  hole) is c o n s i d e r a b l y  
m o r e  difficult .  

11.8. Stresses round Special Types of Hole.--(a) Simple Polygonal Holes.--(i) Geometry of H o l e . -  
T h e  t r a n s f o r m a t i o n  x + {y ---- e * -}- Z, e -~* r ep re sen t s  a series of p o l y g o n a l  holes  w i t h  r -}- 1 sides 
( inc lud ing  t h e  ell ipse as a specia l  case, w h e n  r--= 1). T h e  m a x i m u m  a n d  m i n i m u m  radi i  are 
1 ± ~, a n d  t h e  c o r r e s p o n d i n g  rad i i  of c u r v a t u r e  are r e s p e c t i v e l y  ( 1 -  rL,)"/(1 + r~ , )  a n d  
(1 + rL)~/(1 -~ r"L) (Sec t ion  II.a). 

(ii) Stress Concentration under Shear Parallel to Ax i s  of Hole . - -The  s t ress  c o n c e n t r a t i o n  f a c t o r  
a t  ~ = 0 u n d e r  shea r  a long  t he  axis  of t h e  hole  para l l e l  to  t he  p l a n e  /~ - -  0 is (Sect ion  1I.6),  

2 

U s i n g  t he  r e l a t i on  (1 + ~)(1  -~ r2~,.)/(1 - -  r~ )  2 - -  a/~ to  e l i m i n a t e  ~ ,  we  f ind 

/~q = 1 + {1/(r + 1)}{4r(a/o~) + (r --  1)~} 1/~ 

-~ 1 + [1 + 4r{(a/~) --  1}/(r + 1)~] 1/~. 

I f  r = 1,/,¢ = 1 + (a/e) 1/~ as p r e v i o u s l y  for  t h e  ellipse. 
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In general, as r - +  oo, ~,q ~ 2 independent ly  of a/e so long as a/e remains finite. In the  special 
case where ,~, = 1/r ~, a/o = 2(1 q- #)/(r --  1) 2 and the  other  principal radius of curvature  is 
infinite, so tha t  the  hole consists of a polygon wi th  nearly flat sides and rounded corners;  in 
this case ~¢ = 2r/(r --  1) or 1 + {(a/0) --  1} :/2. As r - +  0% ~q--+ 2, whereas a/o -+  2 so tha t  
1 q- (a/o):/~--+ 1 + %/2. In  this case, therefore, the  approximate  formula for/% overest imates  
its value by  20 per cent. Comparison of f,¢ and 1 q- (a/o.) ~/~ for other  shapes of flat-sided holes is 
afforded in Table 5 below. The error of the  approximate  formula in other  more general cases is 
i l lustrated in Fig. 10. In  this figure the dotted line connects the series of flat-sided holes (for 
which 2, = I y )  ; to the  left of this do t ted  line the contours of the  holes are rounded,  to the right 
they  are re-entrant .  

(iii) Stress Conce~¢tratio1¢ u~der Direct Stress across Hole . - -The stress concentrat ion factor at 
/~ = 0 under  direct stress ( f )  across the plane ¢? = 0 is 2 Z A,/(1 --  r£) ,  where A_:  = f/2, 
B_: = --  f and the  remaining A's  have  to be found from Table 2'. F rom this table, it is clear that ,  
if r be odd, A~ = r £ A : , A , _ ~  = ( r -  2)2:A:, Z,A , . .~ -  A~--= B__: and all the other  A's  are zero. 
The stress concentrat ion factor is t h e n  

 i={l 1 - ( r -  (1 - 

In  this case el iminat ion of £ does not  lead to a simple expression for ~9; but  when ,~, = 1/r ~ , 

{ 2 r ~ ( r ~ + r - - 2 ) } / ( r -  1) and, as r_+  co. ,us_> 3 ' 
~ I =  r + l +  r 4 _ r + 2  

whereas 1 + 2(a/o):/~--+ 1 + 2-V/2. Values of ~9 for the  range of flat-sided polygonal holes are 
given in Table 5, together  with the  corresponding values of 1 + 2(a/~) 1/~ . 

The vah:es of f9 for the  whole class of simple polygonal  holes are shown in Fig. 11 ; this figure 
is to be compared with Fig. 10. The do t ted  line in the lower par t  of the  diagram again marks  
the  division be tween rounded and re-entrant  contours;  the  sketch in Fig. 11 illustrates a typical  
example  of the la t ter  type,  of which an enlarged view is given in Fig. 12. 

Comparison of Figs. 10 and 11 affords a good indicat ion of the  relative impor tance  of the form 
of the  hole in relation to the approximate  formulae 1 + (a/q) :/2 for shear and 1 + 2(a/o) :/~ for 
direct stress. "V\~en r is large a good approximat ion to ,'9 is afforded by  the  formula 

3{r + (a/Q)}. 

TABLE 5 

Values of ¢i and/.% for fiat-sided polygonal holes 

Description of Hole Square Hexagon Octagon Decagon Dodecagon 

Value of r 

('Value of/~ 

l: 

f 
Value of ~ 

: 

3 

5"375 

5-472 

3-000 

3"236 

5 

4.314 

4.608 

2"500 

2"804 

7 

3-910 

4.333 

2 '333 

2.667 

9 

3 '697 

4.201 

2-250 

2.600 

11 

3"564 

4.124 

2.200 

2.562 

O0 

3 

3.828 

2 

2"414 
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(b) Deep Grooves.--A class of hole which il lustrates still more clearly tile relat ive impor tance  
of cu rva tu re  and general  form is t ha t  defined by  the three  coefficients 2~, & and & under  the  
condit ions : 

1 --  21 + 9~-a - -  2525 = 0 

1 + 2~ + & + & = K(1 --  & + 2~--  L ) ,  

where  K is a constant .  

The former condi t ion provides t ha t  the curva tu re  at  fl = ~/2 shall be zero, the  la t te r  t ha t  the  
rat io of the dep th  of the  hole.a to its wid th  b Shall be K.  If K is fairly large, the  (half) hole takes 
the  form of a deep nar row groove, wi th  a radius of curva tu re  at its end, t~, defined by" 

a 
- (1 + 21 + & + &)(1 + 2~ + 9 &  + 2 5 & ) / ( t  - 21 - -  32~ - 5&) '~ . 

Q 

By assigning suitable values to & and by  using the two condit ions to de te rmine  & and &, a series 
of grooves wi th  almost  parallel sides is defined, for which the ratio a/b ( =  K) is constant ,  bu t  in 
which the  rat io a/o can be var ied  at  will. A series of such grooves, corresponding to K = 10 is 
shown in Fig. 13, and the stress concent ra t ion  factors ,~q and #I for these grooves are p lo t ted  in 
Fig. 14, where  the  values are compared  wi th  the  values 1 -k (a/o) ~/2 and  1 + 2(a/e) 1/~ appropr ia te  
to t rue  elliptical holes. 

I t  will be seen t ha t  under  direct  stress the  approximate  formula  **I = 1 + 2(a/o) 1/~ affords a 
ve ry  close es t imate  of the  t rue  m a x i m u m  stress, bu t  t h a t  in shear the  approx imate  formula  
1 + (a/~.) :/2 is far f rom accurate .  In  fact, up to a value of (a/o~) :/2 of about  10, the  t rue  value of 
,% is approx imate ly  m i d w a y  be tween the  values 1 + (a/e) 1/2 and  1 + (a/b) ( =  11 in this case). 

(c) Square Holes . - -Any  square  hole wi th  rounded  corners m a y  be represented  to any  desired 
accuracy  by  the  following means.  Using the  t ransformat ion  of Section I I .3  (b), we have  

x = 2_1 cos ~ + 2a cos3/3 + Q cos 7/~ -k 211 cos l i f t  + . . .  

Y = )o-1 sin/3 - -  2~ s in3~  - -  & sin 7/~ --  211 sin 11~ - -  . . 

and  the  perpendicular  distance of a point  on this curve from the  line x + y = 1 is 

2_i (cos/~ + sin/3) + 2~ (cos 3/3 --  sin 3/3) + . . . - -  1 . 

Squaring this perpendicular  distance,  in tegra t ing  from 0 to ~/2 and then  differentiat ing wi th  
respect  to 2_1, 2a, etc., in succession and equat ing  to zero, the condit ions are found tha t  the  curve 
x + iy = Z 2,e ~ should conform as closely as possible to the  line x + y = 1. These condit ions 
are sufficient to define the values of all the  2's up to the  highest  order 2 included,  so tha t  the  radius 
of curva tu re  at x = 0* is also determined.  In  order  to make  the radius of cu rva tu re  at  x = 0 
t ake  some assigned value,  two ' best  fi t t ing ' sets of 2's are taken,  the  first set including 2's up to 
&r-l,  the  second including one more  2, name ly  &,+~. F rom these two sets a new set is formed by  
tak ing  the  sum of an a rb i t r a ry  proport ion X of the  first and  a proport ion (1 --  X) of  the  second. 
The expression for the  radius of curva tu re  ~ then  takes the  form ~ = (A + BX)2/(C + DX) ,  
where  A, B, C and D are known constants .  Given the  value of ~ (or more convenient ly  of ale) 
the  appropr ia te  value of X and the  composite  set of 2's corresponding to this value of X m a y  
thus  be found;  this composite  set of 2's represents  the  best possible approach using 2's up to 
&,.+~ to a square hole with  corners rounded  to a specified radius. A similar procedure  is obviously 
applicable to any  regular  polygonal  hole;  bu t  for i rregular  polygons the  appropr ia te  l imits of 
in tegra t ion  for t3 have  to be found by  tr ial  and error. 

The numer ica l  work  has been carried out  for a set of 2's up to &o. The contours of one quad ran t  
of the  holes thus  defined are shown in Fig. 15. The approach to a s t ra ight  lille b o u n d a r y  is 
in general so good tha t  in the  complete  diagram, Fig. 15a, only the  worse case, corresponding to 

* Or  y = O, t h e  t w o  r a d i i  i n  t h i s  case  are,  of course ,  i d e n t i c a l .  
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a value  of a/o = 0 at /3 = 0, is shown. I n  the  d iagram Fig. 15b, the  detail  of the  contours  near  
the corner of the  square is shown for values of a/o~ f rom 0 to 144 to a scale 10 t imes larger than  t ha t  
of Fig. 15a. For  values of (a/o) ~/~ greater  t han  5, the  approx imat ion  afforded to the  prescribed 
form of the  hole appears  qui te  sufficiently close. For  low values of a/o, the  m e t h o d  is real ly 
inappropr ia te ,  because it seeks to make  the contour  follow the  line x + y = 1 well into the  corner 
of the  hole ; as a result  at  low values of a/o, the  m a x i m u m  curva tu re  of the  contour  occurs away  
from the  actual  corner (see Fig. 15b). For  values of (a/o) ~/2 less t h a n  5, a be t te r  representa t ion  
is afforded by  the  simple polygonal  hole discussed in Section (a) above;  this representa t ion  is 
mos t  accura te  at  (a/o) ~/2 = 2. 236, for then  the  contour  is flat at ~ = z / 4 .  

Calculated values of #i  and  #q for this range of square holes wi th  rounded  corners are shown 
plo t ted  against  values of (a/o) ~/~ in Fig. 16. Al though cont inuous curves over the  whole range of 
(a/o) ~/~ down to zero are shown, it mus t  be r emembered  t ha t  these values represent  the  stresses at  
p = 0 in the  contours  shown in Fig. 15b. In  Fig. 16, the  values of #j and ,aq for simple polygonal  
holes are also shown, and for values of (a/o) ~/~ less t han  5, these curves represent  a be t t e r  
approximat ion  to the .prac t ica l  case of a square hole wi th  rounded corners;  the  two asterisks in 
Fig. 16 mark  the values of/~s and ~q for a simple square hole wi th  flat sides (e = oo at  $ = ~/4). 
For  comparison the  curve of ~q against  (a/o) ~/~ derived by  the  method-of  Section II.6(c) is also 
reproduced  in Fig. 16 (from Fig. 9). The discrepancy be tween these values of #q and those now 
found appears  surprisingly large ; bu t  the  range (around (a/~) 1/~ = 2 t o  3) over which comparison 
m a y  fairly be made  is too short  to permit  close analysis. 

Al though the  contours  of Fig. 15b for values of (a/o) ~/~ less t han  5 are not  of much  pract ical  
interest ,  t hey  do provide a good i l lustrat ion of a class of hole for which the  approximate  formulae 
1 + (a/o) ~/~ and 1 + 2(a/o) ~/~ are very  inaccurate .  The t rue  stress concentra t ions  are at least as 
great  as those shown in Fig. 16, for still greater  stresses m a y  be set up near  the  points of m a x i m u m  
curva tu re  ; this is, of course, a result  of the  general  shape of the  contour,  which differs so radical ly 
from an ellipse. 

11.9. Hair  Cracks.--(a)  Stress Concentration in Shear . - -For  a given form of hole or groove, 
a - - - 1  + Z2,,, 0 = (1 --  S rZ~)"/(1 -}- Zr~Z~)and~q = 2/(1 --  E ri~) . The radius of cu rva tu re  0' 
at  the  end of a hair  crack, defined by  n and  d, at  the  root  of this groove is (Section 11.4) 
( 1  - -  Zr2~ --  dn)"/{1 + Zr"2~ + (d/3)(4n ~ - -  1)} and  the new stress concent ra t ion  factor  
~,q = 2/(1 - -  Zr2~ - -  dn). The ' o r d e r '  n '  of a hair  crack having  the  same depth  d and the  same 
radius  of curva tu re  o' a t  its root  in a plain test  piece* is defined by  the  equat ion  
0' = 3(2 --  dn')~/d(4n '~ - -  1); the  stress concent ra t ion  factor  for this case is ,-o = 2/(2 - -  dn').  
Since n and  n '  are assumed to be large, un i ty  m a y  be neglected in comparison wi th  either 4n ~ or 
4n '~. Wi th  this approximat ion  it m a y  be shown tha t  the  apparen t  stress concent ra t ion  factor  

( 
/zqa = = [ { ( / z  o - 1 )  2 (3d/4 o)/zo(u o - -  2 ) }  1 /2  - -  1.7 

or approximate ly ,  if ~0 be large, ~¢~ = #,/{1 + (3d/4Q)} 1/~ , and  if (d/o)--+ O, #q~-+/,q. 

For  a semi-elliptical groove, #q~ = {1 + (a/o)l/~}/{1 + (3d/4o)} ~/~. The m a x i m u m  value of 
this approximate  expression for ,,.,q~ for var ia t ion of 0 when  the  values of d and a are specified 
occurs when  0 = 9d2/16a and is (~,q~) .... = {1 + (4a/3d)} ~/~ . Values of ~q~ for values of (a/0) ~/~ 
down to 5 and  for values of d/a from 0.05 to 0" 40 are shown in Fig. 17. 

(b) Stress Concentration under Direct S t ress . - -The  de te rmina t ion  of the  stress concent ra t ion  
due to a complex hole or groove is ve ry  m u c h  more complicated in the  case of direct  stress t han  
in tile case of shear. Accordingly  in the  case of direct  stress considerat ion is res t r ic ted to grooves 
of elliptical form;  previous examples  (Section II.8(b) and  (c)) suggest t ha t  under  direct stress, 
the  stress concent ra t ions  due to holes far from elliptical ill form do not  differ much  from the  

* Tile surface of a plane test  piece is represented by  put t ing  21 = - -  1, giving all infinitely long narrow eliipse with its 
ma jor  axis lying along /~ = a/2. 
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concentrations due to the equivalent ellipses. In what follows ~._~ is taken as unity (as previously), 
is written for & and all the other 2's of odd orders up to G, 1 are put equal to s = d/n 

(Section II.4). 

By inspection of Table 2, it will be seen that  A~,_~ is equal to (2n -- 1)SA_l. Since e = d/n 
is of the order 1/n ~ (nd being comparable with unity), A~,~_I is of the order (1/n)A_l. The contri- 
bution of each of the A terms, when they are multiplied by e, is thus of the order (1/n~)A_~, and 
the sum of n such terms is of the order (1/n~)A1, which is negligible in comparison with A-1. 
Accordingly Table 2 may be rewritten. 

- -1  

- -1  

,% 

TABLE 6 
B_ 1 

s ~ s ,% A _  1 

s s s - -1  A 1 

1 --1 z ~ Aa 

1 A5 - -1  ,% g 

1 
X ~ A  v 

1 
§ A9 

By adding Z times the first (left-hand) colmnn to the second column, then adding Z times the 
new second column to the third, etc. 

TABLE 7 
B -  1 

I--,%"-2 l - -a  " - I  
(1 +`%) s (1@2-I-Z2) e . . . . . . .  1~--~--  e l _ ~ S  ,% A 1 

1 __,%,,-a 1 --A '~-2 
s (1-l-)~) 8 1 - - a  ~ l _ _ ~ s  - -1  A a 

1 Aa -1  ,% g 

1 
- -1  ~ A 5 

So that  

and 

- -1  

- -1  1 
2 n - - 5  A2"-5 

- - 1  1 
2 n - - 3  A2"-a 

1 
2ra--1 A2"-1 

A~,~_~.+I = (2 .  --  2r + 1)~ {(1 --  ~')A_I + (1 --  ; : - l )Ad/(1  --  ~),  

A ~ + A ~ + . . . . 4 ~ , ~ _ ~ = I _ z  ~ - - 1 +  ( 1 - - ~ ) ~  A_~ 

+ [ ( n  - I) ~ + (1 - a)~ & + 
(2z - 1)(1 + ~ ) (A~  + & ) ]  

( 1 -  z) ~. 
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Since 4 is less t han  1, we m a y  neglect 4" and neglecting also un i ty  in comparison with n, 
A~ + A~ + . . . A,~,_~ is approximate ly  equal  to 

e{n ~ + (24 --  1)(1 + 4)/(1 --  4)=}(A_, q- #~)/(1 --  4) ,  

so tha t  approximate ly  

I nd [ 1 +  ( 2 ~ - - l ) ( l + 4 ) I I ( A _ ~ + A ~ )  
A _ ~ + A ~ + A . ~ + . . . A o . , , _ I =  1-} 1 - - 4  ~ " ( 1 - - 4 )  ~ i " 

Moreover, B_~ = ,tA_~ --  At + 1/3 4A~, and Aa = 3e(A_~ + A~)/(1 --  4) approximately.  

Thus, approximate ly  

B _ l =  /~,{1 -t- 8 / (1  - -  4 ) } A _  1 - - { 1  - -  4 8 / ( 1  - -  4)}A 1 . 

Provided 4 does not  approach unity,  1 --  ~ may  be regarded as comparable  with rid. 
in e are then  of order 1/u" and m a y  be neglected. Hence A, = 4A _, --  B_, and 

2(A_~ + A~) = (4 --  1 ) f +  (3 + 4 ) f ' ,  

as for the  groove wi thout  the  hair  crack. 

The terms 

The te rm (24 --  1)(1 + 4)/~¢ '~ (1 - -  4) = in the  expression for Z A may  be wri t ten  (24 --  1)/n=e, 
where ~ = (1 --  ;~)2/(1 + 4) is the  radius of curvature  at the  root of the  elliptical groove (ignoring 
the  hair crack). We are interested in cases for which Q is of the  same order as d, so t ha t  this 
te rm m a y  be regarded as of order (2,~ --  1)/n~d or (24 --  1)/n(1 --  4). This te rm is of order higher 
than  1/u but  unless 4 be very  nearly equal to unity,  it  may  probably  safely be neglected. 

The stress concentrat ion factor ~s' ( for the stress f )  is then  

~ / =  (a + ~){1 + ~ d / ( 1  - 4 )} / (1  - 4 - ~ a ) .  

If nd is zero, the  value Cj = (3 + 4)/(1 --  4) is t ha t  for the  semi-elliptical groove alone, whilst  
if ~ < --  1, the  factor 

~,o = (2 + ~ ' ~ ) / ( 2  - ~ ' d )  

is t ha t  for a hair  crack of order n '  and dep th  d in the surface of a plain test  piece. 

If the  radius of curvature  at tile root of the  hair crack is the  same in the  two cases, 

(2 - ~ ' d )  ~ - (1 - ~ - ~ ) ~  (1 - 4 - ~d)  ~ 
(4/3)n'2d ~ {1 + 4 ~ + (4/3)n2d}d - (1 --  4)~(d/Q) + (4/3)n2d 2" 

El iminat ing  4 and n 'd  by use of the  relations 1 --  4 ----- 4/(~: + 1) and n 'd  ----- 2(~0 --  1)/(#0 + 1) 
and writ ing ~d/(1 - -  4) = m ,  

( 1  - -  m)~l{(3dl%) + m~} = 4I(~,0 --  1)" and ~s'l~s = (1 + ~)/(1 - ~ ) .  

Then,  by  el iminat ion of m ,  
! 

~ , o ( ~ o -  2) - ( s d / 4 ~ )  

and ! 
#i  

/*f~-- /% 

(if (d/~)-+ 0,  ~ j o - - ~ j )  . 

{(~o - -  1) ~ + (3d/4~o)(~o - -  3 ) (~o  + 1)} ~ / ~ -  1 + ( 3d /4~ )  

~ , ~ , o -  2 -  ( 3 g / < o  ~,o)} 
{(~o --  1) 2 -t-- (3d/4~o)(~o --  3)(~o -+- 1)} ~/2 - -  1 + (3d/4e) 
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If ~0 -+ oo, ~:~-+ #:/{1 + (3d/4~)} ~/2, a form similar to that  found for the case of shear. Putt ing 
u: = 1 -¢- 2(a/o) ~/2, the maximum value of ~:~ for variation of e, when the values of a and d are 
specified, occurs when ~ = 9d2/64a and is (/~:~)m~ ---- {1 + (16a/3d)} :/~ . Values of :,:~ for values 
of (ale) :/~ down to 5 and for values of d/a from 0.05 to 0-40 are shown in Fig. 18. 

The many approximations that  have had to be made m deriving an expression for u:~ render 
it extremely difficult to judge the accuracy of the result or to delimit its range of application. 
Strictly, these approximations would appear to invalidate the results over practically the whole 
field covered by Fig. 18; but by analogy with the shear case, for which the results are exempt 
from similar doubt, it appears that  the final results may be reasonably close to the truth. At 
least it is thought that  the curves of Fig. 18 express a qualitative truth, that the effect of hair 
cracks will be to reduce the apparent stress concentration and to render its value less sensitive 
to changes in the ratio ale . 

II.10. Conclusions.--(a)  Effect of  General F o r m  of H o l e . - - T h e  types of hole for which stress 
concentration factors have been worked out are all included in the general class of polygonal 
holes; but the results suffice to indicate the nature and order of the differences between the 
true concentration factors and the approximate values 1 + (a/~.):/" and 1 q- 2(a/o) :/~. Generally 
it appears that the latter value is a far better approximation to the true value under direct stress 
than the former is to the true concentration factor in shear. Nevertheless, the error of the form 
~: = 1 4,- 2 (a/e) :/~ may be considerable, particularly for holes in which the radius of curvature 
varies rapidly round the contour near the point of maximum stress. This point is illustrated by 
Fig. 16 at low values of a/Q ; but it is brought out most clearly in the case of a simple polygonal 
hole with an infinite number of sides. In this case the hole is indistinguishable from a true circle 
and the stress factor ~: takes the value 3, as would be expected ; but in fact the radius of curvature 
of the contour oscillates indefinitely rapidly between a/2 and infinity, so that  the value of 
1 + 2 (a/o~) ::/~ oscillates between 1 and 1 q- 2 V'2. 

The reason why the approximation/~q = 1 + (a/o) :/~ should usually be so much more in error 
than the approximation ~: = 1 + 2 (a/o~) :/~ is not apparent;  but it appears to be generally so 
(@ Part III). 

(b) Appl icat ion to Specific Forms  of H o I e . - - T w o  practicable methods for successively 
approximating to a given form of hole by the transformation x + iy = 2; 2,e -~ have been 
described. Unfortunately neither of these methods is automatically applicable to any given 
case; but certain artifices are available to meet special difficulties. Another general method is 
outlined in Part IV. 

(c) Effect of  Ha i r  Cracks . - -The  analysis of the effect of hair cracks on the apparent value of ~ 
appears to be reliable within ascertainable limits; but the estimate of the apparent value of :,: 
is much less certainly established. It  does, however, appear safe to conclude that  the presence 
of hair cracks will reduce the apparent values of ~ and/~: and render these values less sensitive 
to changes in the ratio a/~ (in comparison with the approximate formulae /~q = 1 + (a/Q) :/2 
and :,: = 1 + 2 (a/~):/2). On the other hand, in order to explain on this basis the whole 
discrepancy between theoretical and experimental results it would be necessary to admit the 
existence of hair cracks of quite considerable depth ; these necessary depths of hair cracks appear 
to be much greater than would by other evidence appear admissible. 
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PART III 
The Effect of Surface Irregularities on Fatigue Strength 

Synops i s . - - I t  is perhaps not generally recognized tha t  the approximate formulae 1 + ~/(a/e) 
and 1 + 2~/(a/e) for the stress concentrations under shear and under direct stress due to a groove 
of depth a and root radius 5 are applicable not only when the ratio ale is large but  equally when 
it is small; indeed the accuracy of these approximate formulae improves as ale decreases. This 
is demonstrated by computation by exact theory of the stress concentration due to a continuous 
nearly sinusoidal undulation of the surface of a test piece, and it is shown incidentally tha t  when 
a and e are both negative, so tha t  the groove is inverted into a protrusion, tile ' de-concentration ' 
of stress is represented very closely by the approximate formulae 1 -- ~/(a/e) and 1 -- 2~/(a/Q). 
I t  is shown further tha t  these factors applied as corrections to computed stress factors under 
torsion for an approximation to a square shaft with rounded corners suffice to reconcile these 
results to the established solution for a square shaft under torsion. 

The presence of the radfcal in the approximate formulae implies that  long shallow grooves 
cause appreciable stress concentration; for instance a groove of which the depth is only one 
hundredth of the radius at its root increases the local value of applied direct stress in the ratio 
1.2 : 1. Such shallow grooves are present on the surface of every practical test piece and therefore 
this purely geometrical effect of surface condition on the fatigue strength may be important.  
Certain actual surface finishes are analysed in this aspect and their relative merits are reviewed. 
I t  is concluded that  substantial improvement of the geometrical factor by  ordinary methods of 
machining may be difficult to achieve, but tha t  it is likely to result from other treatments,  which 
are generally thought  to improve the fatigue resistance by  entirely different means. 

III.1. In troduct ion .~The  stress at the end of the principal axis 2a of an elliptical cylindrical 
hole in an infinite block under direct stress perpendicular to this axial plane is 1 + 2(a/b), where 
2b is the other principal axis of the ellipse ; the shear stress at the same point due to shear parallel 
to the principal axial plane in the direction of the axis of the hole is 1 -}- (a/b). These formulae 
apply equally whether a >b or b >a.  Since the radius of curvature e at the end of the principal 
axis 2a is b~/a, the formulae may be written 1 + 2~/(a/e) and 1 + ~v/(a/e). 

These formulae, which relate strictly only to elliptical holes, are in fact applicable much more 
widely. Several comparisons are made in Part  n between stress concentration factors accurately 
computed for divers types of holes and grooves and the values indicated by the approximate 
formulae. Apart from one or two rather extreme cases the differences are seldom large. On the 
other hand, for complex forms of hole or groove, although the meaning of e is always specific, 
the interpretation to be placed on a, ' t h e  depth of the groove, or half-depth of the hole ', is 
sometimes not obvious. In order, therefore, to demonstrate the validity of the approximate 
formulae for long shallow grooves, when the ratio ale is small, it appears desirable to derive the 
formulae afresh on the basis of all appropriate example accurately computed. 

111.2. Stress Concentration due to a Continuous Undulation of the Surface of a Test P iece . - - I t  is 
shown in Sections n . s  (ii) and (iii), tha t  the stress concentrations at $ = 0 caused by a cylindrical 

• hole 
x = Rcos  ~ + a c o s n ~  

y = R s i n  ~ - - a s i n n $  . . . . . . . .  (33) 

for which r ~- = X ~ + y2 = R" ~- a ~ + 2Ra cos (n + 1) $ 

a r e  #q = 2/{1 -- (haiR)} under shear on the plane x = 0 in the direction parallel 
to the axis of the cylinder (34) • • • • . 

a n d ~  = [1 + (ha~R) + 2{1 -~ ( n -  2)(a/R)} /{1--  ( n -  2)(a/R)~}]/{1 --  (ha~R)} 
under  direct stress perpendicular to the plane x = 0 . . . .  (35) 
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The maximum and minimum radii of the hole are 

R + a a t /3  = O, 2~/(n + 1), 4zc/(n + 1), etc. 

and R --  a at  /3 ---- ~z/(n + 1), 3~/(n + 1), etc. 

At  these points  x = R cos {~/(n + 1)} + a  cos {n~/(n + 1)} ----- (R --  a) cos {x/(n + 1)} 

y = R sin { l(n + 1)} - -  a sin + ])}  = ( R  - -  a) s i n  +. ] )}  

so t h a t  0 ----- t an  -1 (y/x) ----~l(n + 1), etc. 

and  the half  wavelength  == RO = xR/(n + 1). 

The radius of curvature  Q at /3  ==-0 is R{1 --  (na/R)}~/{1 + (n2a/R)} and tha t  a t /3  x / ( n +  1) 
is R{1 + (na/R)}~/{1 --(n2a/R)}, the  la t te r  value corresponding to tha t  at  /~ = 0 is a if made 
negative.  

If  we make  

( a / e )  = 

and (---a/e) == 

R and n bo th  tend to infinity,  wh i l s t  the rat io R/n remains finite, we have 

(na/R)~/{1 -- (na/R)} ~ at  /3 = 0 

(na/R)~/{1 + (na/R)}~at fl =~/ (n  + 1) 

Then  ,% = 2/(1 - - ( h a ~ R ) } =  2{1 + ~(a /e )}  a t /3  = 0  ) 

or 2/{1 + (ha~R)} --=- 2{1 --  ~ / ( - -  a/e)} at /3  ---- =/(n + 1) J . .  (36) 

and # i = 3 { l + ( n a / R ) } / { 1 - - ( n a / R ) } = 3 { l + 2 1 / ( a / e ) } a t / 3 = O .  } 
or 3{1 --  (na/R)}/{1 + (na/R)} = 3{ 1 - - 2 1 / ( -  a/e)} at/3 = =/(n + 1) . .  (37) 

Now, since R is indefini tely large and since toO(= m~/(n + 1), where m is finite) is indefini tely 
small,  the  par t  of the  contour  including a n y  finite number  of undula t ions  is in effect based on a 
flat surface, and the  whole of the  mater ia l  in the  region round /3 --= 0 is subjected to twice the  
nominal  shear  stress and three t i m e s t h e  nomina l  direct stress due to the  concentrat ions caused 
b y  the  (infinitely large) circular hole. Thus the separate  local stress concentrat ions  due to the  
undula t ions  are represented by  the  formulae 1 + !/(ale), etc. 

The form of the  undula t ion  is not  quite sinusoidal. Wri t ing  ~ = n/3 so tha t  ~ is finite, the  
formulae (33) reduce to 

X - -  R -m- a c o s  0¢ ] 

and y ----- a{(R/na)~ -- sin ~} = a{(~/a)(o~/~) -- sin ~} I . . . . . .  (38) 

where ,% = ~R/n is the  ha l f  wavelength  of the  undulat ion.  If ~/a is ve ry  large, approx imate ly  
c~ --. ~y/~ and x --  R -~ a cos (~y/~) ; but  if ~/a is comparable wi th  ~, the  t rough of the undula t ion  
is narrower than  the  crest. This is i l lustrated in Fig. 19, which shows the forms of the  undula t ion  
for Z/a ~- 4, 8, 16 a n d  32. For  values of a/a >30  the  undula t ion  does not  differ appreciably  from 
a t rue  sine curve. 

Al though s t r ic t ly  formulae (36) and (37) are applicable only to the  special form of undula t ion  
represented by  formula (38) and Fig. 19, it seems probable t ha t  the  forms 1 + ~v/(a/e) should 
be modera te ly  accurate in applicat ion to more general  forms. For  such applicat ion it appears 
t h a t  the  depth  a should be measured from the  median  line of the  undula t ing  surface and tha t ,  
disregarding the signs of a and ~o, the  local stress concentra t ion factors are approx imate ly  
ffj = 1 -¢- 2v ' (a /e  ) and ff~ = 1 -+- ~v/(a/e), the  positive s ign  being used for a t rough and  the  
negat ive  sign for a crest. 

111.3. Application of Local Stress Concentration ]7actors to the Torsion of a Square Section 
Shaft.--In order to test  this  hypothesis ,  reference is made to aso lu t ion  of the  torsion problem for a 
near ly  square sha f t  With rounded corners. This solution, described in Pa r t  IV, is exact,  bu t  the  
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sides of the shaft as represented by the analytical form are not truly plane ; the undulating form 
of the section boundary is shown in Fig. 20. The values of the shear stress along the section 
boundary computed for this actual undulating contour are given as values of q in Table 8; the 
values of a and e computed from the analytical form of this contour are also listed, together with 
the values of a/~ and w/(a/t~), the latter being taken as negative when both a and ~o are negative. 
The corrected values q' of the stress found by dividing q by the appropriate value of local stress 
concentration factor 1 ~_ w/(a/e) define a reasonably smooth curve of which the value near 
t? = 0 agrees quite closely with the value q' = 1.351 found for a square shaft by another 
method ~°. 

TABLE 8 

Shear stress distribution in a square section shaft under torsion 

0 5 10 15 20 25 30 35 40 45 

100a 

a/e 

q 
q' 

+0-500 
+0-118 

0-0425 
0-206 
1-624 
1-348 

--0"352 
--0-411 

0"008~ 
--0"092 

1-235 
1-360 

--0.428 
--0"327 

0"013 
- -0 '114 

1.192 
1"344 

+0.631 
+0 .114  

0.055 
0"236 
1.617 
1.308 

--0"335 
--0"570 

0.006 
- -0 '077 

1.200 
1.301 

- -0 '823 
- -0 '287 

0'029 
--0"170 

1"041 
1"252 

+1"016 
+0"136 

0'075 
0"273 
1.482 
1"163 

- -0 '378 
- -1 '945 

0 '002 
--0"045 

0.919 
0"961 

--2"263 
--0-356 

0"064 
--0"252 

0-693 
0"927 

+8.341 
--0- 381 

0-637 
0-637 

By this test the formulae (36) and (37) appear likely to be widely applicable; their implications 
in respect of ordinary surface finishes of engineering components are examined below. 

Ill .4.  Stress Concentration due to the Geometry of Surface Fi~ishes.--The methods available 
for the measurement of roughness of machined surfaces do not afford a complete and accurate 
record of the surface profile ; for instance, where an exploring probe is used, the point of the probe  
cannot penetrate intQ a groove which may be narrower than the probe itself. On the other 
hand the measurements available do afford conservative estimates of the depths of the larger 
irregularities and of their ' wavelengths '. A depression of depth a and length Z corresponds to a 
value of 5/(a/o~) = K(a/2), the value of the coefficient K depending upon the form of the groove ; 
it is least for a circular profile, for which Q = (2~/8a), so that  K = 2W/2; for a sinusoidal profile 
of half amplitude a and half wavelength 2, K = ~ ; and for practical grooves of less regular form 
considerably greater values of K are to be expected. In order, therefore, to form a conservative 
estimate of the stress concentrating effect of some-typical surface finishes, we may take values of 
a and 2 from the records available ~ and then assume ~/(a/f) = 4(a/2). The values of the stress 
concentration factors thus found (Table 9) are probably all very much less than the true values, 

TABLE 9 

Minimum stress concentration factors due to typical surface finishes 

Reference 
Description of (Fig. Nos. 
Surface Finish 

of Ref. 12) 

Rough ground . . . .  
Fine ground . . . .  
Fine ground . . . .  
Honed . . . . . .  

6 
19 
6 

20 

(10 -6 in.) 

60 
10 
10 
3 

Microns 

1 "52 
0"25 
0"25 
0"08 

(10 .6 in.) 

400 
130 
200 
120 

Microns 

10.1 
3-4 
5-1 
3-0 

#f 

2.2 
1.6 
1.4 
1-2 

1.6 
1.3 
1.2 
1.1 
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but at least these values serve to show that  the stress concentrations due to the geometry of the 
surface are bv no means negligible. The stress concentrating effect of a surface finish depends 
as much on t~he length 1 of the irregularities as on their depth a. For that  reason a t reatment  
which reduces the value of a is ineffective if at the same time it reduces t in the same proportion. 
Thus the difference between rough and fine grinding may not be marked if the shape of the abrading 
particles on coarse and fine wheels is much the same. It is notable that  the honed finish with an 
average roughness of only 1½- micro-inches still causes a stress concentration under direct stress 
of at least 1.2. This is due to a few rather deeper grooves, which are widely spaced but rather 
narrow. Such grooves may well differ markedly from the circular or sinusoidal form and the 
estimated values of the stress concentration factors are probably far too low. 

A rolled surface may be appreciably better than a machined one, not principally because the 
irregularities may b e  shallower but rather because they are likely to be wider. Unfortunately 
no records of rolled surfaces are available for analysis. 

Although there is also a lack of records of shot-peened surfaces, in this case we know the 
approximate value of o and we may guess the value of a. The radius ,o is presumably greater 
than the radius of the shot used and a may be slightly less than the penetration of the individual 
shot into the surface. Shot 0.1 inch in diameter indenting to a depth of 0.001 inch may thus 
leave a surface roughness of 500 micro-inches and yet cause a stress concentration of no more 
than 1- 2 under direct stress ; this value is comparable with that  resulting by polishing or honing. 

For optimum shot-peening in this aspect the shot should be as large as possible and their speed 
of impact should be such that  they indent to a depth greater but not much greater than the depth 
of the irregularities in the original surface. Very light peening with large shot of a surface 
previously honed or polished might be expected to afford the highest possible fatigue resistance. 
For instance a surface roughness not exceeding 20 micro-inches produced by peening with shot 
0.1 inch in diameter should cause a stress concentration under direct stress of about 1.04. 

Detailed analysis of  records of surface roughness and perhaps more accurate analysis of the 
stress concentrations due to particular wave forms would be required in order to render the 
survey strictly quantitative. On the other hand, the few cases quoted all represent minimum 
estimates, and they afford sufficierit evidence in support of the claims that  the stress concentration 
due to the geometry of the surface is vitally important and that  allowance for this effect must be 
made before the other effects of special surface treatments may be properly assessed. 

It should be added that, although the surface irregularities left by machining are small they 
are nevertheless large enough in relation to the atomic structure for the application of the ordinary 
theory of elasticity to be valid. On the other hand there is evidence to indicate that  materials 
are relatively insusceptible to such highly localized concentrations of stress. 

\ 
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P A R T  IV 

Stress Concentration in Twisted Shafts 

S y n @ s i s . - - A  straightforward method for computing the stress distribution in a twisted shaft 
of specified cross-section is developed, and the method is illustrated by application to a round 
shaft with a single flat on one side and to a six-splined shaft. In these applications use is made of 
the process of correction for local irregularities described in Part  III ,  and some general comments 
are made on the means to represent complex boundaries by  analytical forms, which supplement 
the techniques described in Part  II. An approximate formula for the concentration of shear 
stress in the fillet at the root of the spline of a splined shaft under torsion is proposed and the 
accuracy of this formula is tested by three examples. One example of a hollow shaft with a lobed 
external contour and a wide variation of wall thickness is worked out; and it is shown that  over 
the smooth inner boundary the shear stress is very nearly inversely proportional to the wall 
thickness, whereas at the lobed outer boundary marked concentration of stress occurs at the 
grooves between the lobes. 

IV. 1. Introduct ion.--The problem of torsion of a cylindrical shaft is usually stated by reference 
to rectilinear axes Oxyz, Oz being parallel to the axis of the cylinder : that  is, a solution is sought 

02~0 ah0 0 subject to the condition that  ~0 = ~}z(x ~ + y 2) over to the differential equation bT~ + 02-~ = 

the boundary of the shaft, where T is the angle of twist in unit length. Subsequently the stresses 

are evaluated from the formulae ~2 G ( 
8 ~o 

= -  b-x + 
(Refs. 9, 11, 13, 14). 

This method of approach is that  originally devised by St. Venant, and it has been applied by 
St. Venant himself and by  many  others to the solution of the torsion problem for a wide range of 
particular shapes of boundary. Yet the method has two disadvantages; one is that  it appears 
rather indirect and tha t  the physical meaning of the torsion function ~ is not emphasised; the 
other is tha t  the solution of the problem in elasticity is not clearly separated from the process of 
transformation into the special co-ordinate system appropriate to each particular boundary. 
The latter fault of the St. Venant method becomes most apparent when the problem concerns 
some specified boundary. There appear to be no straightforward means to define the appropriate 
form for ~, and there seems to be no alternative to a process of trial and error. 

By the method of approach described below the problem is stated from the outset by  reference 
to curvilinear axes, chosen to conform to the specified boundary. The solution in terms of shea r  
stress is derived directly from the conditions of equilibrium and from the boundary conditions, 
so tha t  the appropriate form for ~o can be written down by inspection. Moreover, the physical 
meaning of ~ is made clear and its relation to the warping of cross sections is emphasised. By 
this approach it is made apparent that  the solution of the torsion problem for any boundary 
consists merely in defining a suitable system of curvilinear co-ordinates; once the co-ordinate 
system has been defined, the remainder of the solution is straightforward computation. 

IV.2. General Cylindrical Co-ordinates. (See also Section I I .3) . - -Any system of curvilinear 
cylindrical co-ordinates may be defined intrinsically without reference to any other co-ordinate 
system; but  the intrinsic formulation merely relates t h e  curvature of each co-ordinate line to 
distance measured along that  line, so that  th~s method of representation does not afford a ready 
picture of the shape of the system. For that  reason and also for ease of satisfaction of the condition 
that  the co-ordinate lines shaft intersect at right-angles, it is convenient to relate the orthogonal 
curvilinear system (~, ~) to a rectilinear system (x,y) by  specifying x + iy = $(~ + i/~), where 6 is 
any continuous function. Then also x --  iy = ¢ ( ~ -  i$), and r 2 =  x ~ -¢-y~ = $(~+i/~).$(~--i/~).  
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Moreover, Ox + ioy ---- ¢'(c~ + i~). (~c~ + id~), where the  prime denotes differentiation with 
respect to the complete a rgument  c~ + i~, and dx --  toy = ¢'(c~ --  i/~)(Oc~ --  i4/~). Hence,  
ds ~ = dx ~ ,4- ~y~ --_ ¢'(0~ + ifi).¢'(c~ --  i/3)(dc~ ~ + ~/~) = h~(~  ~ _ff d~).  Thus uni t  change in 
or ~ represents a length h, and the value of the  space factor h, which is equal to 
{vh'(~ + ifl). ¢'(c~ -- ifl)} ~/~, varies over the field in a manner  de termined simply by  the  form of 
the  function ¢. 

~ - ~  

/ 

\ 

\ 
\ 

The length of the  s-line between fl and fi + ~¢~ is then  h Off and the  length of the  c~ -}- O~-line 

be tween the  same limits is h + ~ d~ Off ; but  the  lines c~ and a + dc~ are h dc~ apart,  so tha t  

the  tangents  to the  lines ,B and ~ q- d fl meet  at  a distance R., such tha t  h ~ Oh 
! 1 oh R~ - -  Ocz ~c~ ~ / h  &~, 

or R~ --  h 2 Oc~" Since the  c,. and fi lines intersect at right-angles*, R~ is the  radius of curvature  

1 1 0h 
of the  cMine. Similarly Ra --  h ~ 0~ ,where Ra is the  radius of curvature  of the /~-line. These 

are, in fact, the  intrinsic formulae to which reference was made  above and t h e y  alone could be 

used as definitions of the co-ordinate system. In  the  slightly simpler forms R~ --  ~ ,~ and 

R B --  0/~ it is apparent  tha t  ~ =g-d~ - ~  ; this restriction results from the  

condit ion tha t  the  ~ and/~ lines shall be orthogonal.  I t  is perhaps worth noticing tha t  in general 
1.  
f¢ is not a plane harmonic  function. 

IV.3. The Torsion of a C y l i n d e r . - -W e  assume tha t  the  section dis tant  z from one end of the  
shaft rotates wi thout  distort ion through an angle f(z) about  an axis parallel to the  generators 
of the  cylinder;  for the  present there is no restriction on the  form of the  function f(z).  Then 
the  displacement  of any point  in the plane Of the section is rf(z) normal  to the  radius vector  r 
from the  centre of rotation,  and the  displacements along the  c~ and fl co-ordinate lines are 

r 3r r ~r 10u~ 
u~ = - - ~ - @  f(z) and u~ - -  h ~ f ( z ) .  (It can readily be checked tha t  the strain Ga = ~ ~----~ 

U a Oh 
+ h~ S/~ is zero, as also are the  strains eaa and Gz ; but  of course this is clear from the  nature  of 
the  displacement  specified). 

* The tangent  to the E-line at c~, /~ has the slope (S - -  1)/i(S + 1), where S : ¢'(~ + i/~)/¢'(c~ - -  i/~) and the slope 
of the tangent  to the ~-line is similar with - -  S for S. Thus the product  of the two slopes is - -  1 and the lines cut at 
right-angles. 

Some authors (@, for example, Ref. 8) define h by the reciprocal of the definition here adopted. Neither definition 
appears markedly more convenient than the other • but it is a p i ty  tha t  both are used, becausecare needs to be exercised 
to avoid confusion. 
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(X.* '[~ OL 

I 

I ~- fin~ 

"q. I 

cos O= h bo~ 

If the  displacement  out  of the  plane of the  section parallel to the  axis Oz is w, the shear stresses 
and  strains 

(a o ) 
~ = Geo, = G \ ~ -  z + 

( au a aw ) 
and /~ = Gee~ --= G \ -~- q- 

or, b y  subst i tu t ion for uo and  ua 

{ r ~r , ~w } 
a i = G  - - ~ f ( z )  + ~  and = h (z) + } (39) 

If we assume now tha t  azv/az-- const., the  stresses ga, a/7, ET/~ and ~ are all independent  o f  
c~ and f.  Then  for equi l ibr ium a~/az = 0 and  a~/az = 0, which mere ly  demands  f"(z) = 0; 
thus  f'(z) = ~ and  mus t  be constant .  F ina l ly  for equi l ibr ium a(h.  ~)/a0~ - /  a (h .  /~)/a/3 = 0 

~2w a=w 
which r e q u i r e s - ~  + a f t= - -0" ,  so t ha t  w is a plane harmonic  function. 

Wi th  w we m a y  therefore associate its harmonic  conjugate  w such t ha t  aw/ac,.-- a~p/at~ and  
aw/af -- --~/~o:,  and of course A=~v = 0. Then  formulae (39) m a y  be re-wri t ten 

a~ = G ; (~0 --  ½~r ~) and #~ = --  G ; ~ (~p --  ½~r ~) . . . . . . . . .  (40) 

* Tile space function h takes care of all curvature effects, so that A 2 has the same form in the ~/~ system as in 

Cartesians. It may readily be shown that ~c~ + i  a-~ = 2~' (~-- i#)  (~x + i a ) ~  and t h a t ~  -- i ~a = 2~'(c~ +i/~) 

--i~-~ . Hence~-72+~-~ = 4 h  2 + . Note, however, that ~-~a+ ay=/ = ~-~ ~ +  

f 1 ( a ,  a=,~\ \ ~  ~ + ~ } f  , so that (A=) = is not invariant (see Section II.7). 
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If a5 is zero round  the  contour  of the  cylindrical  surface defined by  c~ = constant ,  ~0 --  ½r# 
is constant  ( independent  of ~) round  tha t  contour.  Bu t  r" is defined as a funct ion of fl for the  
given value of e by  the  relat ion r ~ = ¢(~ + i ~ ) .  ¢(c~ - -  i/~), so t ha t  the  plane harmonic  (torsion) 
funct ion ~ m a y  at  once be wr i t ten  clown by  inspect ion;  the values of ft.; and  w (the warping) 
follow. 

The value of the  torque t r ansmi t t ed  is 

1 Or 
where  cos 0 - -  

hO~ 
l o t  

- -  - -  and  sin 0 = --  ~ ~-~ (see diagram, page 37). 

Subs t i tu t ing  for /J~ and  a~ from formulae (40), ±he formula m a y  be wr i t ten  in the  form 

3r 2 3r ~ 
(41) 

IV. 4. Periodic Co-ordinate S y s t e m s . - - T h e  b o u n d a r y  of the section of anv  cylindrical  shaft  is 
of course a closed curve ; therefore,  if this be represented  by  ~ ---- s0, !he co-ordinate  sys tem mus t  
be periodic in /~. A wide range of co-ordinate systems satisfying these condit ions m a y  be 
represented in the  form x -4- iy = ¢(~ + i/~) = 2:~ ~ e  '~/~+ial, where the  coefficients ~ are a rb i t r a ry  
constants .  I t  is indeed probable  t ha t  any closed curve m a y  be represented in this form, subject  
only to l imitat ions as to con t inu i ty  similar to those governing expansions in Fourier  series. The 
general s imilar i ty  to Four ier  series is of course apparent ,  bu t  the  differences are such as to render  
proof of the general  proposit ion far from easy. However ,  in  pract ice the  form ~ ~,,e n/~+ia/may 

be adj usted fairly readi ly  to approximate  to prescribed forms of b o u n d a r y  by  par t icular  m e t h o d s  
based on Fourier  forms, and  in respect  of stress analysis rules for complete  expansion in infinite 
series would not  be of much  pract ical  use for a reason which will appear  later  (Section IV.9). 

If the  shaft  be solid, the  co-ordinate  sys tem mus t  include the  point  x = 0, y ---- 0 which is 
t aken  wi th in  the  shaft  contour ;  for solid shafts, therefore,  we are l imited* to negat ive values of 
ei ther n or ~. It is convenient  to take  ~ and/3  always positive and  to represent  a solid shaft  by  
the  form x q: iy  = 2:~ ~_~ e -<~+~1, so t ha t  the  point  x == 0, y =- 0 corresponds to c¢-+ co. Then  

r 2 =  X 2:~ a=,fl_~e -~'+~/~ cos ( m -  n)~, bo th  m and  n being t aken  over complete  ranges, or 

r ~ = ~ ,~_~2 ~-2"° 4-. 2 2',~ 2:~ ,~_,~Z_,~e -/'~+'/~ cos (m --  n) ~, where m > n. At the  b o u n d a r y  it is 
convenient  to take  c~ = 0 and then  r ~ --  const. + 2 2: 2: ;C,, ~_,, cos (m --  n)fl, m > n, so tha t  
the  torsion tunct ion  ~ 0 = ~  ..r X ~ a ~-i ..... I~ '~(m n)fi, m ~-n ,  - _ ~ - _ ~  cos - -  and the  warping 
w = ,  Z,,~ 2:~ 2 .... ,~_,~e-( ..... >~ sin (m --  n) ~, m > n .  The te rms wi th  e I ...... /~ are excluded by  the  
condit ion tha t  ~ and w mus t  remain  finite at  x = 0, y --= 0 (when c~--~ co). 

If the  shaft  be hollow, the  pole x ----, 0, y = 0 ' m a y  be t aken  wi th in  the  inner  b o u n d a r y  and need 
not  be included by  the  c~/~ co-ordinate  system. Then  the  complete  t ransformat ion  x + i F 
= 2:,~ Z,~e "1~+~¢/may be used wi th  bo th  positive and  negat ive values of n, and the  par t  of the  
formula  for r 2, which depends on fi, becomes 

2 ~ ~ {X .... Z-~e -(~+~ + X,fl~e/'~+~/~} cos (m --  n)/?, m > n. 

* The ellipse is an exception to this rule. 
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The torsion funct ion is then  

V , = ~  ~ { X ¢  ...... ' ~ +  Ye -~ ...... '° } cos (.~ --  n) ~. 

where the  values of X and Y are defined b y  the  equat ions 

Xe(,.-,~)=, q- ye-I,,,--)., = ~,. ~.e("+")~* + ~ .... 2_,,e -(''+'°"* 

and Xe("+'~)°= + Y e  -('~-'*)"= = 2., ;t,, e (" .... )~" 4- ,l_,. ;t_,,e -('*')~= 

and  c~ = ~ ,  and  c~ = c~ define the  inner  and outer  boundar ies  of the  hollow shaft.  

There  are still degrees of f reedom and  of restr ict ion in respect  of choice of the values of ~ and c~, 
bu t  this concerns only the  representa t ion  of  the two boundar ies  in the  form x + iy = ~ 3.,,e .... 
(cos n~ + i sin nil) and  does not  affect the  torsion problem itself. The range of double boundar ies  
which m a y  thus  be represented  is l imited,  b u t  for any  t ha t  can be represented the  torsion problem 
is solved by  the  formulae above. The same conclusion is valid also for any  mul t ip ly-connec ted  
sect ion;  once a co-ordinate sys tem has been found by  which  all the  boundaries  are represented  
by  curves belonging all to one of the  two co-ordinate families, the  solution of the  torsion problem 
follows automat ica l ly .  Represen ta t ion  of mul t ip ly-connec ted  regions b y  a single sys tem of 
co-ordinates is seldom s t ra ight forward  and the  subject  will be pursued  no fur ther  here ;  one 
example  of a hollow shaft  is worked  in Section IV. 11. 

IV.5. The Stress System in a Twisted Polygonal Solid Shaf t . - -For  convenience the  general  
~ = c o  

t r ans format ion  will be rewr i t ten  as x + iy = 27 &e -''("+~) and  the external  contour  will be 

t aken  at  ~. = 0. 

Then  r ~ = X ~,2e-"'" q- 2 Z E a,,,2,e -('+')" cos (m --  n)fl, m > n 

= ~  ~ r , L , & e - (  ..... )~ cos (m --  n) /~, m > n .  

G O  

GT 

+ x z + - - . . . . . .  } c o s  - i 

and  h ~ = Z n ~ ; t . % - 2 " ~ +  2 Z Z m n ; . , f l . e  - ( '+ ' )~  c o s  ( m  - -  n ) f l ,  m > n .  

At the  boundary ,  ~ = 0  

f i z l =  G , (Z  n;~. z + 2 Z 2 n2,,)., cos (m --  n) ,e}/{ 2 n22,,2 

#~ ~ '/4 . .  ( 4 2 )  

. .  ( 4 3 )  

+ 2 Z Z mn~,fl, c o s  ( m  - -  n ) f i } l /2 ,  't~/~ > ~ . . . . . . . . . . .  (44)  

The area  of section is a Z ha,". B y  applying formula  (41), the  modulus  of section m a y  be 

f o u n d  from the  torque  T t r ansmi t t ed  in the  form 

- -  n G , + , & + , &  + 8 2 Z ~ n~+s&+s&,& (45) 

where  m > n and  in the  last t e rm (n 4- s) > m. (A slightly more  concise form m a y  be wri t ten ,  
bu t  t ha t  given emphasises the four types of p roduct  which contr ibute  to the  torque) .  
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IV.6. Tw o -T e rm  Contours . - - In  order to i l lustrate the  appl icat ion of formula  (44), it is 
convenient  to consider the  class of contours  for which only Xt and  ,~ differ f rom zero. The 
contour  ~ = 0 is t hen  3.1 ~ -+- 22 + 2,h2,~ cos (n --  1)fl ; the  m a x i m u m  and m i n i m u m  radii  are 
2~ i 2~, and t hey  are spaced at angular  intervals  x / (n  - -  1). The shafts are thus regular  polygons 
wi th  (n --  1) sides : when n --  2 the  shaft  is more or less circular wi th  a slightly f la t tened region 
at  one side. Along the  b o u n d a r y  c~ = 0, h ~ --  41 ~ + n~2~ ~ + 2n4~,L, cos ( n - -  1)/~ and the  
m a x i m u m  and m i n i m u m  of h --  2~ -¢- n,~ correspond wi th  the m a x i m u m  and m i n i m u m  of the  
radius r. The value of the  shear stress is 

fi2 = G,{~I ~ + n~,~ 2 + 2Z12,, cos (n --  1) fl}/{,~ + n24,, '~ + 2nZlX,~ cos (n --  1) fl}l/2 
the  torque T --  ½-uGr(21 ~ 4,- 441~Z,~ ~ + n,L~), the  area of section is ~(41 ~ + n4,, ~) and  the  radius of 
curva tu re  of the  contour  is 

e = {Zl" + n~2,~ ~ + 2n214, cos (n --  1)/~} ~/2/{41 ~ + naZ,f + n(n + 1)41Z,, cos (n --  1~}. 

The principal  values of /75 and  ~ are 

a~ Radius (r/Z1) 

/ 3 = 0  l + d  

f l = z / ( n - -  1) 1 - - d  

Shear stress (f~/G~2l) 

(1 + 2d + nd~)/(1 + nd) 
(1 - 2 ~  + ~ ) / ( 1  - ha) 

where d = 2,~/Z 1 

Rad ius  of curva ture  
(~/z~) 

(1 + n~)~/(1 + ~d) 
(1 - ~ ) ~ / ( 1  - ~ d )  

When  d < 1/n ~ the  contour  of tile shaft  is everywhere  convex outwards"  when  d = 1/n 2 the  
contour  has a flat in tile middle  of each side: when  d > 1/n ~ the  shaft  is grooved" and when 
d--> 1/n, the  groove sharpens into a cusp. The  values of the  stresses for the series of flat-sided 
shafts when  d = 1In ~ are 

Number  of sides : 1 2 3 4 5 6 7 8 9 10 co 

[3"-z I Max. 1.250 1.222 1.187 1.160 1.139 1-122 1.109 1.099 1-090 1.083 1 

G ~  [ Min. 1-083 0.944 0.912 0-907 0 .909 0 .913 0-918 0 . 9 2 3  0 .928 0-933 1 

I t  should tile higher stress occurring at  the middle  of the  flat side, and the  lower at the corner. 
be not iced t ha t  a shaft  wi th  a very  large number  of flats having  between these flats a radius of 
cu rva tu re  equal to half its own radius has no concent ra t ion  of stress under  torsion (cf. Section II.8). 

If nd = 1 --  e, where s is small, the  value of the  stress at  the  bo t tom of the nar row groove is 
approx imate ly  1 + ( 1 -  1/n)/e. The value of .the radius of curva tu re  (4) here is about  
(~ 2/(n --  1) = d(e ~/(1 --  l /n),  since nd is approx imate ly  uni ty .  Therefore,  the  stress 
concent ra t ion  factor  1 + (1 --  ! /n)/e = 1 + {(1 --  1/n)(d/e)} ~/~ which approximates  to 1 + (d/o) ~/~, 
when  n is large (cf. Section III .2.)  

IV.7. The Square S h a f t . - - T h e  square shaft  in Section IV.6 above has corners ve ry  well rounded,  
the  diagonal  wid th  being only ~,zth greater  t han  the width  across the flats. A be t te r  approach 
to the  square shaft  m a y  be achieved by  Using the series 41, ~ ,  4~, 418, etc., and by  mak ing  
t l  cos ~ + 45 cos 5t~ + 49 cos 9~ + . . . ,  etc., fit as closely as possible to u n i t y  over  the range 
0 < ~ < u/4. The best fit afforded by  the  first six terms of this series has 41 = 1. 080, ~ --  - -  0. 109, 
49 --=- 0.046, ~13 = --  0. 027, ~17 --  0 .019 and Z2t = --  0. 014. Using these values in formula  (44), 
the  dis t r ibut ion of shear  stress is at  /3 (deg). 

0 5 . 10 15 20 25 30 35 40 45 

G-~ 1.624 1.235 1-192 1.617 1-200 1.041 1-482 0 .919 0-693 0.637 

and the torque is 1- 4384(a/2) GT. 
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• The appa ren t ly  erratic var ia t ion of fi2 along the  fiat side of t h e  shaft  is ac tual ly  quite  regular  
and the  var ia t ion is due to local stress concentrat ions.  The form defined b y  the values of the 
a's listed above differs f rom a t rue  square wi th  corners rounded  to a radius of about  }th of the  
side of the  square by  less t h a n  2 per cent  over the  whole contour.  On the  other  h a n d  the 
cu rva tu re  varies much  more,  and  these local var ia t ions  of cu rva tu re  are responsible for marked  
local concentra t ions  of stress. The process of correction for the  effect of these local irregulari t ies 
has been described in Section I I I .3  and  is i l lus t ra ted b y  Fig. 20. 

IV.8. The Round Shaft with a Single _Flat.--As a fur ther  i l lustrat ion of the  process of correct ion 
of stress factors in respect  of local undula t ions  we t ake  the case of a round shaft  wi th  a single fiat. 
I f  we take  ~2 = - -  0"32.1 

(fi2/G~Z~) = (1-18 - -  0 .6  cos ~)/(1.36 - -  1.2 cos/~)1/2 

(o/X1) = (1.36 - -  1.2 cos/~)*/~/(1.72 --  1 .8  cos fl) 

and (a/,11) = cos fl - -  0 .3  cos 2~ --  0.7080. 

the  t e rm 0.7080 being the  mean  dis tance of the flat f rom the origin. Then  as before 

fl 0 5 10 15 20 25 30 35 40 45 

lO0(a/;q) --0-80 --0.72 --0.51 - -0 .19 0.19 0-55 0.80 0-86 0.59 --0.10 

(~/Zl) --0-800 --0.912 --1.430 --4.841 3"931 1.603 1-127 0-943 0"858 0.818 

lO0(a/e) 1-000 O. 803 0.356 0-039 0.048 0.343 O. 710 0.911 0.688 

(a/~)~/2 O" 100 0.090 0.060 0.020 --0"022 --0.059 --0"084 --0-095 --0.083 - -  

(flz"--/Gv~) 1.450 1.435 1.396 1.340 1-278 1-219 1.166 1-121 1.085 1.057 

(~z/G~l) 1.318 1.317 1.316 1.314 1.307 1.295 1.273 1.238 1.183 (1.057) 
1+ (a/~) ~ 

The  torque t r ansmi t t ed  is 1.376(a/2 G~14). The stress in a round  shaft  of radius t l  unde r  
this torque would be 1-376G,~1; the stress in a round  shaft  of radius 1.15 11, t h a t  is the  shaft  
shown in Fig. 21 wi thou t  the  fiat, would  be 0. 905G,~1. The stress in a round  shaft  of the  same 
area  under  the  same torque would be 1-074G, A1, and  by  this comparison the  flat m a y  be said 
to cause a stress concent ra t ion  of 1 .318/1.074 = 1.227. 

Al though  in this example no other  solution is available for comparison,  it wilt be seen t h a t  the  
corrected stress values form a smooth  series and  t h a t  the  stress in the  middle  of the  fiat region 
varies only ve ry  slowly. The shape of the section and  tile dis t r ibut ion of shear  stress round  its 
b o u n d a r y  are shown in Fig. 21. 

Correction b y  means  of the  formulae 1 -1- (a/~) in is feasible only so long as the  ampl i tude  
a of the  undula t ion  is small, say 1 to 2 per  cent  of the  mean  radius of the  shaft. For  larger  
ampl i tudes  the  choice of the  mean  height  of the  undu la t ing  surface becomes ra ther  vague,  and  
the  es t imate  of shear  stress is l ikely to be inaccurate .  

A fur ther  example  of the  dis t r ibut ion of shear stress in a round  shaft  with a flat on one side is 
described in Fig. 22 ; again tile values of the  stresses after correct ion for the  effect of local cu rva tu re  
form a smooth  series. 

IV.9. Representation of Splined Shafts.--Shafts of technical  impor tance  in engineering pract ice 
are usual ly  circular over the  greater  pa r t  of their  contours,  and thei r  greatest  and least radii  
seldom differ ve ry  greatly.  A typical  class is t ha t  of splined shafts, wi th  heights of splines 5 to 10 
per cent  of the  mean  shaft  diameter .  

The radius r of the  contour  c¢ = 0 of the  sys tem x + iy = Z ~e -'I~+ial is given b y  
n 

r 2 =  2 ~ , 2 + 2  2 2: ~ ).~ cos  (m - -  n) /~, m > n .  
n f;¢ 
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If 11 is considerably greater than t3 43 etc. (say about tell times) this formula differs only slightly 
from 

r ~ = const. + 291 Z 1~ cos (n -- 1)8 . :: 

because the terms 4~4~, where neither m nor n is unity, are ten times smaller than the terms 
41 4,. Moreover, to the same order of accuracy r = i l  + X 4~ cos ( n - -  1)8, so tha t  the variation 
of r is represented by the Fourier series 2~1. cos (n -- 1)8. 

If, then, we take the sequence tl, 4,+1, t~,+1, etc., we define a regular n-sided shaft of which the 
shape between fl -- 0 and ~ = 2~/n is represented approximately in terms of ~ by the Fourier 
series 2s t~,+1 cos sn$, provided that  ~s,+1/11 is moderately small (about one-tenth,  say). By 
writing 1, for 1,,~+~ and ? for nt~, we may apply the same Fourier series 2 1, cos s? to any polygonal 

S 

shaft merely by  assigning the appropriate value to n. T h e  distort ion of the form due to the 
difference between ? and 0(-- tan -~ (y/x)) will be discussed later; but it may be mentioned here 
tha t  this distortion tends to narrow the groove, to reduce the radius of hurvature at its sides, to 
widen the spline and to round its edges. In some measure it is practicable to anticipate these 
effects by  so choosing the basic Fourier series 2 4, sin s~ tha t  the subsequent distortion results 

S , 

in the actual contour required ; but  sharp outstanding edges cannot readily be represented. 

If the Fourier series 2 1, cos s~ represents a function having a finite number of discontinuities 
S 

in the range 0 to ~, the coefficients ~, eventually converge as the s'equence'l/s. By each integration 
the eventual order of convergence improves, so tha t  a function, which may be differentiated 
m times before discontinuities appear, eventually converges as 1/s~+k In order, therefore, to 
achieve a satisfactory degree of eventual convergence, so tha t  no great ~number of Fourier terms 
shall be required to approximate closely to a specified function, it is desirable first to represent 
the function by abrupt changes not in itself but in some moderately high order differential. 

On the other hand it can be shown that  if a "function has discontinuities in its ruth differential, 
the coefficient of the sth term in the Fourier series representing the function is of the order 
-sin ~ s~/s"+% where c~ is least distance between di.scontinuities (the whole period of the function 
being 2~), Thus when ~ is small, as it must be if the changes of hMght of the function itself are 
to be abrupt, the first terms in the Fourier series are small and the eventual order of convergence 
a s  1/s "~+~ is scarcely established until s reaches values comparable with ~/~. 

The latter effect more than offsets the former, so tha t  a greater number of terms in the Fourier 
series is needed when the transitions of the function are smoothed than when they are made 
abrupt. At the same time the actual convergence to the smoothed function is decidedly better 
,than tha t  to the unsmoothed. I t  is essential to smooth at least to the extent of relegating actual 
discontinuities to the second differential, because otherwise the curvature of the contour varies 
erratically, and curvature has immediate effect upon stress. Discontinuities of curvature do not 

:in themselves affect the stress distribution.(see Seal:ions IV.6 and II.S); so that  this degree of 
smoothing suffices; but  a considerable im rovement in ~eneral . .  . . . .  p ~ smoothness may be achieved 
b y  relegating dlscontmmtles to the fourth differential. In practice, except for special purposes, the 
choice extends no further;  because the number of Fourier terms required increases by  about 

:50 per cent for each double differentiation. Whereas, using the lesser degree of smoothing six 
or seven terms may often suffice, with the greater smoothing nine or ten m a y b e  required, and the 
volume of computation increases roughly in proportion to the square of the number of Fourier 
terms. 

: T w o  examples of splined forms represented by these means are illustrated in Figs. 23 and 25. 
T h e  first is based on a function discontinuous in  it s second differential and is represented by  five 
t e rms  of the Fourier series; although these five are in effect nine because by symmetry  four 
intermediate terms are identically zero, the actual basis may be regarded as seven, because the 
last one of the five is almost negligible.- The second example is based on a function discontinuous 
in its fourth differential and is represented by {en terms of the Fourier series. The basic function 
for the first example has its second differential zero from ¢~ = 0 to 10 deg and from 20 to 30 deg, 
uni ty  from 10 to 15 deg and negati-ve uni ty  frdm i5 to 20 deg. When this symmetrical form is 
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' wrapped '  round the circular shaft the width of the spline is increased at the expense of the width 
of the groove and the outstanding corner is rounded to a large radius, whilst the inner corner is 
sharpened. These effects are accentuated the greater the height of the spline in relation to the 
diameter of the shaft, and a limit is reached when the inner corner becomes a cusp. The basic 
function for the second example has its fourth differential zero from fl = 0 to 5 deg and from 
15 to 30 deg, 24 from /~ = 5 to 6 deg, -- 40 from 6 to 7 deg, 5 from 7 to 11 deg and -- 1 from 
11 to 15 deg. This asymmetrical function limits both the rounding of the outstanding corner and 
the sharpening of the inner corner and results in near equality between the widths of spline and 
groove. The particular height of spline chosen is that  which renders the inner end of the side of 

the spline radial. 
These two examples illustrate the scope and indicate some of the limitations of the means 

proposed for the representation of specified forms. A nmch more elaborate exposition would be 
needed in order fully to demonstrate the possibilities of the method. The relative widths of spline 
and groove may be fixed fairly easily by  fixing the final limit of all the discontinuities (fi = 20 deg 
in the first example and fl = t5 deg in the second) ; but the relative radii of curvature of the 
two corners are much less easy to fix, because they are influenced much more by the height of 
the spline. Although certain principles may be established, their statement would be wearisome 
save to those who migh t  actually seek to apply them, and these few may be left to find their 
own enjoyment in discovering these (and probably other) principles for themselves. 

The two examples suffice as they stand to point certain general conclusions in respect of stress 

distribution. 

IV.10. Stresses in sp l ined  Sha f t s . - -Once  the form of the shaft in terms of the Z's has been 
decided, evaluation of the stress distribution proceeds by direct application of formula (44). 
The complete stress distribution over the bound ary of the section illustrated in Fig. 23 is shown 
in Fig. 24, but  in Fig. 25 only the peak of stress round ~ = 12 deg is illustrated, together with the 
values of the stress at /~ = 0 deg and ~ = 30 def. The latter values have been corrected for the 
effect of the slight undulations of the nearly circular contour in this region in the manner described 
in Section IV.7; but  here of course the effective ' rad ius  of local curvature '  is the reciprocal 
of the difference between the cm-vatures of the actual contour and the true circle. In the 
region fl = 0 deg to 2 deg of Fig. 25, the radius of the contour varies by  about ___ 0.2 per cent, 
and the resulting variation of stress is about q: 7 per cent; in the region ~ = 28 to 30 deg, 
the radius varies by  about ~ 0.025 per cent and the resulting variation of stress is ~ 1.2 per cent. 
The corrected stress values vary  by less than 0.05 per cent in the range fi = 28 to 30 deg and the 
total  variation of 2.1 per cent over the range B = 0 to 2 deg represents in part a real variation 
(cf. Fig. 24), so tha t  the actual accuracy is probably about 0" 04 per cent. 

In Fig. 24, the inset diagram shows the actual stress values adjacent to the inner corner of the 
spline compared with the formula 1 + ½(ale) 1/~ where a is the t~eight of the spline and e is the 
radius of local curvature. For this comparison unit  stress is taken to be tha t  at the surface of a 
circular shaft of the same median radius subjected to the same twist ; the basis for this comparison 
is discussed further below. For the second example the maximum stress is 4.45, whereas on the 
same basis the expression 1 + ½(a/~o) l j2 = 4.90. In  a third example (not illustrated) the maximum 
stress was 2.79 and the value of 1 + ½(ale) ~j~ was 3.27. These values of 1 + ½(a/o) ~/~ are, 
however, based on the local values of 1/o actually at the point of maximum stress. If instead we 
substitute the average value of 1/,o over the whole corner, that  is from fi = 12 deg to fi = 13 deg 

1 1/~ in Fig. 25, the corresponding values of 1 q- v(a/o) become 4.37 for the case shown in Fig. 25 
and 2.87 for the third case not illustrated. For the case illustrated in Figs. 23 and 24 the similar 
comparison gives 1 q- ~(a/o) ~1~ = 2.36 (actual maximum value 2.43) ; the correction to average 
curvature makes less ~lifference in this case because the curvature round the corner is fairly 
uniform. 

/0/~,1 ~2 affords a very fair approximation These comparisons indicate tha t  the expression 1 + ~-v~: ~j 
to the value of the maximum stress ; but  the comparison would be both more soundly based and 
more useful in practice, if unit stress could readily be defined otherwise, for instance as the stress 
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at the  surface of a circular shaft of the  same area of section under  the  same torque. In  order to 
evaluate this stress, however,  it would be necessary to compute  the  value of the  torque from 
formula (45), and in the  second example (Fig. 25) this expression comprises over 100 quart ic 
terms. Al though a great m a n y  of these terms are negligibly small, the computa t ion  of the  torque 
is still very  tedious, and, since the  value of the' uni t  stress as thus defined is unlikely to differ 
appreciably from tha t  previously adopted,  the  extra  computa t ion  has not  been thought  wor th  
while. On the  evidence here presented, it suffices to claim tha t  the inner corner of a spline, 
representing as it does a sort of half groove, causes a stress concentrat ion of about  1 -4- ~(a/0) 
where a is the  height  of the  spline and 0 is the  average radius of curvature at its root, leaving uni t  
stress to be defined in any convenient  manner.  More precise s ta tement  would really be pointless, 
because if greater  precision were needed it wou!d be unwise to rely on any approxi~ma[e formula. 

IV. 11. H o l l o w  S h a f t s . - - T h e  method  of dealing with hollow shafts has already been explained 
in Section IV.4 and it was remarked there tha t  the  only real difficulty is to specify a suitable 
co-ordinate system. Following the  procedure outl ined in Section IV.9 the outer contour might  be 
represented as closely as desired in the  form x -4- @ --  2 Z,,e--(,+~e/; if then  the  inner boundary  
were circular and not  too close to the  outer one, it might  suffice to use this form unaltered,  because 
the  t ransform x - ] - / y  = ,Z~,,e--/~+ie/ rapidly approaches a t rue circle as c~ increases. For 
instance in the  case of the  shaft i l lustrated in Fig. 25, the  contour  c,. = logo 2 differs from a true 
circle by  about  ~ 1 per cent, so tha t  a hollow shaft with this external boundary  and a circular 
bore not more than  half the  median  d iameter  of the outside could reasonably be t rea ted  in this way. 

The torsion function 1o must  still include exponentials  with positive indices, because wi thout  
these terms the  condit ion a5 --= 0 cannot  be satisfied at both  boundaries. Yet  this a m e n d m e n t  to 
the  analysis makes comparat ively  litt le difference to the stress distribution, because as t h e  contour  

= constant  approaches a circle, so also does ae: approximate  more and more closely to zero. 
In  effect, therefore, for hollow shafts in which the  bore is circular and fairly small, say less than  
half the  median  d iameter  of  the  external  contour, it is permissible to apply the  results for a solid 
shaft  of the  same external  form ; but  of course the torque-twist  relationship is affected and must  be 
recomputed.  

For hollow thin  Walled shafts the relationship between the  transforms for the  inner and outer 
boundaries is too close for the  simple mode of t r ea tmen t  outlined and it becomes essential to 
re-specifv~ the  t ransform in the  comt)iete_ form x --4- ivj = ;;.r/l,,e / + e/ --~L ..... ~ e -'~'*+iel. For instance, 
in the  case where the  inner boundary  is circular the  e lementary  form 

x + i y - -  e-('~-~el + ,t~e-,~lo+~el +/1,,_~eO,-~l Io+~el 

leads to r ~ : X 2 @ 1,z = e -2 , ,  _[_ /1 ~e-2,,(~_[_ ;t,,_2~e2(,,-~) 

-P- (2Z-, ,  e-('-I-'>° -I--2/1,,_~e(("-3/-) cos (~ - -  1)/~' 
+ 2,l_,, Z,,_2e -2" cos 2(~ --  1)/~. 

Then we ma y  choose the  values of 2_,, and /1,,_~ so tha t  the  coefficient of cos (¢z -- 1)/3 in the  
formula for r 2 disappears over the inner boundary  (at cz = cq), and, since Z_,, and /1,,-2 are 
necessarily of order 1/¢~ or less, the  variat ion of r over this boundary  is thus reduced to order 
1/~ = or less. Application of this procedure is i l lustrated in Fig. 26, which relates to the shaft 
defined by x -4- iv = e -(~+ee/_4_ 0" le  -7(=+~e/_ 0. 025e 5(,+~e/with outer boundary  at ~ = 0 and 
inner  boundary  at  ~. = (1/6) logo2. The two boundaries are then  

r0 ~ = 1.010625 n L 0" 15 cos 6/~ --  0 .005 cos 12/~ 
and ~q2 = 0-7937(1 "005 --  0"005 cos 12/~) 
and r~ varies by  ± 1 per cent only. 

The form of this shaft section is shown in Fig. 26 together  with the  distr ibution of shear stress. 
I t  is interest ing to note  tha t  the product  of the  stress at  the  inner boundary  with the  local wall 
thickness varies only about  ± 20 per cent over the whole range of/~ ; but  the effect of t /be  stress 
concentrat ion as opposed to load concentrat ion is of course much  greater over the  outer boundary.  
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IV.12. Conclusions . - -The principal purpose oi this paper has been to demonstrate tha t  the 
solution of the torsion problem for any arbitrary section depends solely upon the specification of an 
appropriate system of co-ordinates• Once the co-ordinate system has been devised the remainder 
of the work is straightforward computation. Methods of constructing peculiar co-ordinate 
systems have been described; but  no a t tempt  has been made to devise a comprehensive system 
(on the lines of the Schwarz-Christoffel transformation), because in stress analysis a comprehensive 
system would be virtually useless on account of its singularities. In place of a comprehensive 
method for exact representation of specified contours, a procedure for correction of stress distribu- 
tions in ±airly rough approximate forms has been devised. This process of correction can be 
carried through very quickly and tile corrected results are likely to be highly accurate• 

From the one or two examples worked out in illustration of the general method, it appears 
tha t  a fillet of radius o at tile foot of a change of section of depth a will cause a stress concentration 
under shear of about 1 + ½(ale) ~/2. Several more examples need, of course, to be worked in order 
to test the accuracy of this formula more thoroughly; but from the three cases computed its 
accuracy seems likely to be better than ± 5 per cent. 
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FIG. ]3. Forms of deep narrow groove. 
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