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Four Studies in the Theory of Stress Concentration

By
H. L. Cox, M.A., F.R.Ae.S., A.M.L.Mech.E,,
of the Engineering Division, N.P.L. ST

Reports and Memoranda No. 2704

January, 1950

General Introduction.—The four papers comprised in this monograph were written over the
period 1937 to 1947 and they are printed in chronological order. Each is a study of some of the
theoretical aspects of experimental work in progress in the Engineering Division of the National
Physical Laboratory during that period. The greater part of the experimental work related to
failure of materials by fatigue under alternating stresses and in the theoretical analysis chief
attention is paid to this mode of failure. At the same time in some respects the theory is capable
of wider application, and the bearing of the analysis on other modes of failure is therefore
considered. :

A change or discontinuity of section in a stressed component always results in a concentration
of stress in its neighbourhood, and failure, particularly failure by fatigue, usually originates by
a crack starting from such a region. In so far as such changes of section and discontinuities
are unavoidable in actual machine parts, information as to their quantitative effect in reducing
the strength of components is urgently needed by the designer. Since materials differ in their
susceptibility to stress concentration effects, and since even one material may vary in suscepti-
bility according to the absolute size of the component, the technical data needed can be acquired
only by exhaustive tests.

If the factors which govern failure were better understood, the experimental programme could
be curtailed, and for this reason alone every effort should be made to analyse the experimental
results and to correlate them with theory. Analysis by the theory of elasticity need not, however,
be restricted to stress raisers, such as oil-holes and fillets, which are technically important, because
it is capable also of affording information as to the effect of surtace irregularities and internal
faults of microscopic or even submicroscopic size, provided only that this size is still large by
comparison with the atomic structure of the material itself.

Parts IT and IV of this monograph deal primarily with the development of means to compute
the stress distribution in the neighbourhood of holes, grooves and fillets of diverse forms.  In
respect of direct stresses the results obtained relate only to holes or grooves in infinite or semi-
infinite blocks under plane stress or plane strain transverse to the axis of the hole or groove. In
this field theory is no more than supplementary to analogical methods, particularly photo-
elasticity, which is applicable to pieces of finite size and by the ‘ frozen stress * technique to parts
other than flat plates of uniform thickness.

* Eng. Div. reports 359/48, 361/48, 360/48, 362/48, 444A/50. Published with the permission of the Director, National
Physical Laboratory.
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Nevertheless, theoretical analysis has three special merits, (a) that it'is better able to show the
trend of the variation of the stress distribution as one or more individual factors is varied, (b) that
it may be applied to cases, such as very sharp notches or very shallow grooves, of which models
cannot readily be made, and (c) that it can be used to establish general principles. In respect of
shear and torsion these merits of theoretical analysis are still more marked, and the use of the soap
bubble method based on the membrane analogy™ would appear preferable to the analytical
methods only in the few cases for which the computational work becomes too heavy.

One principal conclusion drawn from the analysis in Part II is that the approximate formula
for the stress concentration factor under direct stress,u; = 1 + 2(a/0)*/?, where a is the depth of
the notch or half-depth of the hole and ¢ is the radius at its root, is seldom very much in error,
whatever the form of the notch or hole; but that the corresponding formula for the stress concen-
tration factor in shear p, = 1 4 (@/o)'/* is much less reliable. If the latter formula is rewritten
in the form p, = 1 + K{(a/¢)'”, the factor K decreases from unity towards about 4 as the groove
is widened, and for a ‘ half-groove ’, represented for instance, by the fillet at the root of a spline in
a shaft under torsion, the formula u, = 1 + #(a/e)"/* appears often to be a good approximation.
In both Parts IT and IV it is demonstrated conclusively that abrupt changes of curvature in the
contour of 'a section do not in themselves cause any concentration of stress.

Another most useful principle established in Parts II and IV is that when a slight secondary
irregularity is superposed on a primary one the two separate stress concentration factors are
multiplicative. This conclusion, supplemented by the observation that a low outstanding ridge
causes a local reduction of stress virtually opposite to the local concentration which would result
from the equivalent shallow groove, is applied to ‘ correct ’ the stress distribution computed for
a wavy contour to that appropriate to the similar contour lacking the waviness. By this means
a close approach to a prescribed contour can often be obtained on the basis of a representation
including only a few terms of a series analogous to a Fourier series.

By contrast with this process of correction for slight superposed irregularities, in Part II the
conditions under which the effect of a skarp secondary irregularity may not be multiplicative
with the effect of a primary stress raiser is examined, and the results are applied to show how a
system of small internal flaws may mask the effect of other larger stress raisers.

Part I is concerned mainly with the effect of holes and internal flaws on the behaviour of
materials under complex systems of stress. It is there demonstrated that the fatigue resistance
of testpieces containing diametral drilled holes, when subjected to combined alternating bending
and torsional stresses, conform very closely to the form of relationship predicted by theory; it
may be added here that the evidence presented in respect of seven materials (Fig. 2) has since
been supplemented by tests on four more and that the agreement with theory is still closer. It
is shown further that the behaviour of cdst iron in fatigue under the same complex stress system
is entirely concordant with the hypothesis that the graphite inclusions act as internal flaws, and
the “ typical shape ’ of the flaws deduced from the results of fatigue tests is in fair agreement with
experiment also in respect of the ratio of the compressive to the tensile strength.

These points are emphasized here because the principal conclusion from Part I is that the
behaviour of ductile materials under combined alternating bending and torsion differs radically
from that to be expected from any material which contains internal flaws. This conclusion is
supported by the analysis in Part II of the effect of flaws in masking other stress concentration
effects; although this masking effect accords qualitatively with experimental evidence, to

achieve quantitative agreement much larger flaws would be needed than could for other reasons
be accounted possible. ‘

In the light of research carried out since these papers were written, the comparison between
theory and experiment might now be carried considerably further; this is not attempted here for
two reasons.  First, experimental data are now being compiled at an increased rate, and, if the
task of analysing and correlating all data now available were undertaken, there would be a grave
temptation to defer publication month by month in order to include the latest results, Moreover,
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correlation of experimental data would necessitate a far wider survey of the theory than is here
made, because, as explained above, in respect of technical stress raisers data obtained by analogical
processes, stuch as photoelasticity are often more relevant than those obtained by pure analysis.

For these reasons the four studies in the theory of stress concentration are here presented
almost exactly in the forms in which they were first written, and the references made'to experi-
mental results should be regarded as illustrations only of the practical sense of the conclusions
to be drawn from theory. It is hoped that in the near future a thorough survey of all existing
experimental data will be undertaken and that in this survey the present monograph may assist
in the task of correlation with theory.

Some of the material available for such a survey and the form which it might take is illustrated
by Refs. 15 to 18. - ' :

Acknowledgments.—The work described has been carried out as part of the research programme
of the National Physical Laboratory.




. PART I
The Effect of Holes on the Strength of Materials under Complex Stress Systems

Synopsts.—In a plane test piece pierced by a cylindrical hole the greatest stress is set up at
some point in the periphery of the hole. This stress is a principal stress and both the other
principal stresses, that normal to the contour of the hole and that parallel to the axis of the hole
and normal to the free surface of the test piece, are zero. Therefore, failure of such a test piece
under any system of applied loading depends almost entirely on the shape of the hole and on the
properties of the material only in respect of a possible difference between its strengths in tension

and in compression.

On this basis criteria are developed for the failure of test pieces containing circular and elliptical
" cylindrical holes under systems of complex stress. The results are applicable to tests on pieces
pierced by oil holes drilled either perpendicularly to the axis of the test piece or obliquely. The
resulting criterion for circular holes perpendicular to the plane of stress is compared with some
experimental results of tests under combined alternating bending and torsion.

Criteria are also developed for elliptical holes oriented at random, and it is shown that these
criteria do not in themselves accord with the results of tests on the majority of materials. It is
concluded that internal flaws are unlikely to account for the mechanical properties of engineering
materials.

I.1. Introduction.—In a test piece containing a hole with its axis perpendicular to the plane
in which the piece is stressed, the maximum stress or stress range is the circumferential stress at
some point in the periphery of the hole. This stress is a principal stress and both the other
principal stresses, that normal to the contour of the hole and that normal to the (free) surface of the
test piece, are zero. Therefore, if failure of the material is determined by any criterion of stress
at a single point, failure of such a test piece occurs always under identical conditions, that is, at
one specific value of the one principal stress, which alone differs from zero. As a result the failure
of test pieces containing such holes under systems of combined stress may be predicted simply
from the geometry of the hole without reference to the precise nature of the criterion which
otherwise, under a system of complex stress, might determine failure. Moreover, in consequence,
this prediction of behaviour of test pieces containing holes is independent of the nature of the
material, except in respect of the magnitude and sign of the failing stress. For instance, the ratio
of the limiting stress under shear to that under uniaxial tension applied to the test piece as a whole
depends only on the geometry of the hole and on the nature of the material only in respect of
a possible difference between the strength of the material under tension and under compression.

If by experiment actual materials were proved not to conform to this principle, it could only
be concluded that failure cannot be determined simply by the attainment of a certain limiting
stress at a point and that the rate of variation of stress in the neighbourhood of the point of
maximum stress must also have a separate influence. That the ‘ supporting effect * of under-
stressed material adjacent to the region of highest stress may be important is widely recognized ;
but the investigators, who have examined this possibility, appear to have disregarded the case
of the test piece pierced by a hole, by which the possibility should be most readily put to the proof.

The present report establishes the criteria for failure under combined stress systems of test
pieces subjected to systems of plane stress and containing elliptical holes with their axes
perpendicular to the plane of stress. The results are applied to two cases. The first is that of
engineering components pierced by relatively large holes, such as oil holes, and the conclusions
for this case are compared with some few experimental results of failure under combined
alternating stresses. The second is that of semi-solid materials in which there is a large number
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of microscopic holes or flaws roughly all similar in shape but distributed and oriented at random
throughout the body of the material. In this case, since the present analysis is restricted to
the effect of cylindrical holes all having their axes perpendicular to the plane of stress, comparison
with the behaviour of actual materials, in which the flaws would be more general in type and not so
preferentially oriented, cannot be finally reliable. Yet the analysis does indicate certain principles,
which may be expected to apply more generally regardless of the precise nature of the flaws.

1.2. Holes of Circular Section.—As a prelimindry example it is convenient to discuss the case
of the circular hole, particularly with regard to the practically important case of an oil hole in a
shaft subjected to combined flexure and torsion. _ S :

" The circumferential tensile stress at the periphery of a hole of circular section in an infinite
plane test piece under a uniform uniaxial tensile stress f, is f — 2f cos 20, where 0 is the angle
measured from the diameter parallel to the direction of the stress’. The tensile stress due to
a shear stress ¢ on planes parallel and.perpendicular to_this direction is 4¢sin 26. Thus the
stress due to combined tensile stress f and shear stress ¢, is f'— 2f cos 26 + 4¢ sin 260 and the
maximum and minimum values are f 4 2(f* + 4¢%)*/? at 6 =%Ltan~" (— 2¢/f) and at: right-angles
to this radius.. The condition for failure is then f -+ 2(f* + 4¢*'/* = f,, where f; is the failing
stress of the material under uniaxial tension. This relation may be expressed in the form

16¢° + 8(f + 3/ = (3)f T {§

which is an éllips-é, having its centre at f = — } f,, ¢ = 0 and intercepts on the axesat f= ¥/, and
«— foand ¢ = 4 fo/4. This ellipse is shown in Fig. 1.

Under static load, if the material itself is more than three times stronger under uniaxial
compression than it is under uniaxial tension, the strength of the piece containing a circular hole
should be exactly three times greater in compression than in tension. On the other hand if failure
actually depends on the maximum shear stress, so that its strength under uniaxial compression
is the same as that under uniaxial tension, the sign of the applied direct stress becomes irrelevant
and the failure when f is negative is determined by the dotted line in Fig. 1. Comparative tests
on pieces containing holes under tension and compression will thus show at once whether failure
of the material depends on the maximum tensile stress or on the maximum shear stress; but
unfortunately this test is restricted to brittle materials, because plastic deformation alters the
shape of the test piece before failure occurs. :

When the applied stresses alternate between equal positive and negative values, the signs of
£ and g are, of course, irrelevant, and in that case failure must be determined by the upper part
of the curve shown in Fig. 1. This curve is shown in Fig. 2 together with a number of points
representing the results of fatigue tests under combined alternating flexure and torsion made on
test pieces containing diametral holes of seven different qualities of steel”. It will be seen that
the experimental results all conform quite closely to the theoretical curve; the experimental
accuracy itself was not better than 4- 5 per cent. '

1.3. Holes of Elliptical Section.—This case is, of course, a generalization ot that discussed in
Section 1.2, but attention is for the present restricted to the instance in which the direct stress
£ is applied parallel to one of the principal axes of the elliptical cross-section of the hole.

Using elliptic co-ordinates « and §, with the contour of the hole represented by « = oy, the
circumferentiai stress 8f at g is’

(sinh 2a, + e*ocos 28 — 1) f — 2e**sin 28. ¢
-cosh 2¢y — cos 28

(2)
where f and ¢ are respectively the direct and shear stresses applied.
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. The maximum‘ and minimum values of BB ocdur at the values of g defined by

Asin28 ¥ Bcos28+-C=0. .. Lo (8
where o _ ‘ - . ' ,
A = (1 — e*0 cosh 2a, — sinh 20,)f = — 4of/(1 — ¢)? (1 + o)
‘B=—2cosh20g "~ =21+ g/l — o)
C=2¢mg =20+ o)gl(l—0)

and ¢ = tanh o, = ratio of lengths of principal axes of the elliptical hole.. The corresponding
values of cos 28 are [— BC 4 A(4* + B* — C*'*)/[4* + B* and the values of sin 28 are
similar with 4 for B and —. B for 4. By substitution of these values in formula (2) after some
reduction the maximum and minimum stresses can be expressed in the form

o(e® + 2 — 1) F(f* + ¢ + (1 + ofo(1 + o)f* + (1 + 0%g.%)
oL+ )+ a7 £ (@ = 1)f}

| BB =
where ¢, = (1 4+ o)g .
© Taking ( fé + %)% > 0, the maximum stress is that given by the two plus signs. If this stress

is equated to f;, the failing stress, the condition for failure under combined direct stress and shear
1S 2 '

of{e* + 20 — 1) — (1+ ) f}(f* + g + (1 + oe(l + )f* + el — )ffs + (1 + &g =0

B o : . .. .. (4)
After rationalizing this relation may be expressed in the form .

4o+ (1 + o V'Hele + 2/ + 20/ + (1 + o)’ — ¥} = 0. R )

The first factor is obviously not zero, so that the condition for failure is :

(L+0)¢" + ele + 2{f + folle -+ 2 = ele + V(e + 2) . R

‘This is an ellipse withits centreat ¢ = Oand f = — f,/(¢ + 2), the lengths of its semi-axes being
(f=. e+ Df/le +2) and (g = ){e/(e + 2)}*”* fo/(e -+ 1); the intercepts on the axes are
J=efol(e + 2)and — fyand ¢ = = ofy/(e + 1)*. When p is very large the ellipse (6) degenerates
into an infinitely narrow rectangle f'= 4 f, and ¢ = + fi/e, the hole being a narrow crack
parallel to the direction of the direct stress applied. When ¢ is very small the ellipse (6)
degenerates into the parabola 2(ofo)f + ¢* = (ef,)? the hole being then a narrow crack transverse
to the direction of the applied direct stress. A series of curves for intermediate values of o is
shown in Fig. 3*.

_ It is tedious to prove mathematically, but on the lines of Section I.2 it may be shown that under
static stresses, the whole of each contour in Fig. 3 represents the condition that the maximum
tensile stress should be f;. For instance all the contours touch at f = — f,, because when a piece
containing an elliptical hole is compressed along either of the principal axes of the ellipse, the
greatest tensile stress is numerically equal to the applied stress; this tensile stress occurs at the
top and bottom of the hole and in the direction transverse to that of the applied compressiont.

--When the applied stresses alternate, the signs of fand ¢ become irrelevant and the condition
for failure is represented by reflecting the upper portions of the contours in Fig. 3 in the axis of g,
as represented by the dotted line in Fig. 1. It is interesting then to note the physical meaning
of the cusp on the axis of g. Under pure shear the maximum stress is set up at four points, one
in each quadrant of the elliptical contour of the hole. When direct stress is superposed the stress

© %It is interesting that the curve for ¢ = 4/2 — 1is a true circle and that the curves for both higher and lower values
of ¢ grow progressively more elongated, tending eventually to zero width when ¢ = 0 or 1.

T In tensile tests on pieces of thin sheet containing large circular holes the existence of transverse compressive stresses
above and below the hole is evidenced by buckling of the sheet in these regions. -
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in two opposite quadrants is increased and that in the other two is correspondingly reduced.
Thus the sign of the direct stress applied in relation to the sign of the shear affects the position of
the maximum stress. Therefore, if the material round the contour of the hole were differentially
hardened, so that in one pair of opposite quadrants it was made stronger than in the other, the
relative signs of the direct and shear stresses would be reflected by a difference of strength
according to the quadrant in which the greater stress would be developed. Such differential
hardening would, therefore, result in a diagram like Fig. 4, even under alternating stresses.

In practice holes of truly elliptical section are not likely to be encountered ; but holes of circular
section drilled obliquely intersect the axis of a test piece in an ellipse. It is possible that the
present analysis is applicable to such cases provided that the obliquity is not very great.

1.4. Holes of Elliptical Section Oriented at Random.—If an infinitely large plate pierced by an
elliptical hole (e = «, as before) is subjected to principal stresses fand f* in directions making the
angle 6 with the principal axes of the ellipse, the stress f§ at § in the contour of the hole is

BB ={(f. + f2) sinh 2uy 4 (f — fo) (€% cos 28 — 1) — 2ge* sin 2}/(cosh 20ty — cos 28) .. (7)
where ' '
fitfo=f+f, fi—fo=(f—F)cos20 and 29 = (f — f’) sin 26.

Substituting in terms of f and f’ and dropping the suffix 0 from « for convenience, the formula
(7) may be expressed in the form :

BF = {(f +f) sinh 2 + (f — f)(e** — 2e™ cos 28 -+ 1)/* cos (26+¢)} /(cosh 2« — cos 26)  (8)

where tan ¢ = €% sin 28/(e* cos 28 — 1) .

The maximum and minimum values of 3§ are therefore

(f + /') sinh 2e nl 26
Cosh2oc—C0525i(f—f)<Cosh20c——0052ﬁ " . = 9

1/2%

and this may also be written in the form

[ (f 4+ f') sinh 22« /2 (f—f) el 1/2 2 (f — F)? 2¢
[10051’120(——C052ﬁ} 4 (f+f’)1/2{251nh 2“} ] - (f_l_f/) 255111205' .. .. (1())

Without loss of generality we may take f > f'. Thenif f 4 f' > 0, the greatest tensile stress is
found from (9) and it occurs at § = 0, so that its value 1S

(f + ) coth o + (f — f)(e%/sinh o) R ¢ B
(f+Me+ 1+ (f—S)e N ¢ 3 €Y

where ¢ = tanh « is the ratio of the lengths of axes of the ellipse, and in this application

or

O<pox 1.

- By equating this stress to the limiting stress f, the condition for failure becomes

@4 of —of =ofe e e (1)




. . - o - i ! A2a
When f + f' < 0, the greatest tensile stress is from (10) — =) ¢

(FTf) 2smh2« » Provided
;(f‘t‘f')sinhZc( _(f_fl)g ot . ‘ ‘ : |
that cosh 2¢ —cos2p ~ (f + /') 2sinh 2a° This formula reduces to

(F =P (L4 o) + 4elf +)fo =0 L

provided that

cosh 20 — cos 28 = %jfp i ;32 2 sn;zti 2

For real values of g, this condition restricts the formula (13) to the range

| f -+ f'| sinh 2a

>sinho .. .. .. .. (14

cosha>|f 7 e
or :
1 o
29 }”“ff 2+9 L e
or ' : S
(1— ) <( —]—30)fand<—(3—|— )f T T (14b)

Since f is negative and ¢ < 1 the first condition is relevant only when f < O and 51m11ar1y the
second is relevant only when f>0.

When [f+ | 3> $(1 + ¢)(f — f'), the maximum tensile stress is defined by formula(9) and it
occurs at g = 0, so that formula (12) applies. When |f 4 f'| < (1 4 0)(f — f)/2e, formula (9)
again applies but now the maximum tensile stress occurs at § < /2 and the condition for failure is

(f+f')9_Hf_f')(l{é,),,—‘_fo_‘ D oo (15)

or o '
(14 2)f—F =/ P L (152)

The complete system of conditions (12), (13) and (15a) is shown in Flgs 5 and 6 for the cases
o = % and ¢ — 0. In the latter case the limiting stress is of the order }of, and therefore, in Fig. 6,
this value is represented as f;. In this case also the first condition in (14b) coincides Wlth the line
f = f and the parabola (13) extends over the whole reglon in which f < 1-5f.

If the material fails at a specific tensile stress, the ratlo of the. strength under uniaxial com-
pression of a piece containing a hole to its strength under uniaxial tension is 4(2 + o}/(1 < o)?;
this ratio varies from 3 to 8 as ¢ ranges from unity downtozero. Ontheotherhand, if the strength
of the parent material is determined by the maximum shear stress; the strength of the piece
containing a hole should be the same under compression as under tension. In relation to a solid
body containing three-dimensional flaws we may expect the same general principle to apply:
that is, if the strength of the parent material depends on the maximum shear stress, the flawed
material will be equally strong in tension as in compression; whereas, if the parent material fails
always in tension, the flawed material will be considerably stronger under compression than it is
under tension. For instance, cast iron under compression is about five times stronger than under
tension; this suggests that the material may fail always in tension and that the internal flaws
may be equivalent to elliptical cylindrical holes; of which the axes are in the ratio 8: 3. . In this
case, of course, the flaws are probably graphite inclusions. -
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For the special case of pieces subjected to combined direct stress f and shear stress g, the values
of the principal stresses are 4 { f + (f* + 4¢%)"/*}. Then, so long as f is positive, condition (11a) is
applicable and is .

FHA+ A =0f o (18)
oo + D{f + flle + DF + 41 + 0 = ele + 1)*ffle + 2) (¢f. formula (6). .. (16a)

or

|

This formula applies also for f < 0 so long as f/(f* + 4¢*)'* < — 41 + ¢) that is, using (16), so
long as f > — pf,. Thereafter, the appropriate condition is (18) which reduces to

(24 4¢)(1 + ) + 4offe =0 . . . . .. (17)
{F + 2efo/(1 + )"} + 49" = 4o%f5°/(1 + 2)* .. = - .. (17a)

Formula (17a) applies until f/(f* + 4¢*)** < — (1 + ¢)/2¢; but the least possible value of the
left-hand side is — 1 (when ¢ = 0) and — 1 > — (1 + ¢)/20 when 0 < ¢ < 1. Therefore, the
complete contour is defined by formulae (16) and (17). Taking ofo/(¢ + 2) = fi, so that f; is the
apparent strength under uniaxial tension, the limiting condition for failure is plotted in Fig. 7 for
values of ¢ from 0 to 1. On this diagram as in Figs. 1, 2 and 3, the horizontal and vertical scales
are the same in terms of shear stress, that is f = f; represents a shear stress $f; due to tension. By
this method of plotting, the condition (17) is represented by a semicircle with its centre at
(flIf) = — 2(e + 2)/(e + 1)* and ¢ = 0, which passes through f =0, ¢ = 0. The dotted line
across the curves of Fig. 7 indicates the boundary between conditions (16) and (17); this line
corresponds to the upper dotted line in Fig. 5 or 6. When failure occurs at a limiting value of
shear stress, or in any case if the applied stresses alternate, the sign of f becomes irrelevant and
the whole behaviour 1s described by the upper quadrants of the curves in Fig. 7. In this case the
ratio of the strength under pure shear (or torsion) to that under uniaxial direct stress (or bending)
lies between 2 and 1. The data for Silal cast iron given in Fig. 8, reproduced from Ref. 3, conform
to formula (16) with ¢ = 0-2 with a mean squared error of 2 per cent. On this evidence we might
expect that the strength of Silal cast iron under uniaxial compression should be about six times
its strength under uniaxial tension; the actual value of this ratio is just under 5.

or

1.5. Comparison with Other Criteria of Failure—The upper parts of the curves of Fig. 7 all
represent formula (16), and this formula may be expressed in the form,

];1—1)(£>2+(2—£>@+Z:>2=1 O O 1

where f; = ofo/(e + 2) and g, = ofo/2(e + 1). This form is identical with the ‘ general conic’
defined in Ref. 3. Moreover, the original form (16) corresponds to the Guest law

G4+ 4+ Lf=q .. .. .. .. (19)
if the undetermined parameter 2 be identified with 3/2(1 + o), 0r3<2 — ]—;1—> / 2<’£i ), and ¢, with

ofo/2(1 + o) as before. TFinally, in the discussion on Ref. 3, Stanfield suggested the criterion
(s + Ap)mex = const., where s and p are the shear and normal stress on any plane. This condition
may be written in the form

(172 + (3f + 2g) sin 20 4 (g — % f4) cos 26],,., = const.
or
Lfa 4 (1 4 2322 (L f2 + ¢%)'/2 = const. . . . o (20)
which again is equivalent to (16) with 2 = 1/{e(¢ -+ 2)}*/*.
' 9




- _For any material tested under alternating stresses, the correspondence between the four criteria,
elliptical holes of characteristic form, the Gough-Pollard general conic, the Guest law and the
Stanfield criterion is formally complete; but, whereas the last three criteria, permit any value of
the ratio fi/g, at least between 2 and 1, the criterion based on the presence of elliptical holes
restricts this ratio to values between 1 and 4. In practice values of f,/g; exceeding # are common
for ductile materials and not uncommon for brittle ones; therefore, we must conclude that the
failure of such materials cannot be due to the presence of elliptical cylindrical flaws. It is possible
that ellipsoidal flaws may permit a wider variation of the ratio fi/g,; but at least we may conclude
that experimental satisfaction under alternating stresses of the relation (16) or (18) neither proves
nor disproves the existence of holes in the material. To put this question to the proof it is
necessary to consider the behaviour of the material under static stresses. ‘

Under static stresses the Gough-Pollard relation is irrelevant because it was proposed simply as
an empirical formula to represent (as it does very well) the results of certain fatigue tests®. On'the
other hand the Guest and Stanfield criteria, which are virtually equivalent, imply that formula
(16) or (18) should apply over the whole range of f including both positive and negative values.
Whereas the  holes * criterion implies either the complete diagrams of Fig. 7, over the lower part
of which condition (16) is replaced by condition (17), or only the upper part of the diagram,

reflected (for negative values of f) in the axis of ¢ (Fig. 1), according to whether the material fails
by tension or by shear stress.

L.6. Conclusion.—The results of Sections 1.2 and 1.3 relate strictly to an infinite plane test piece
pierced by a cylindrical hole with its axis perpendicular to the plane of stress. In applying the
results to a circularly cylindrical test piece pierced by a radial hole and subjected to bending and
torsion, allowance must be made for the differences between the two stressing cases. However,
the comparison made in Fig. 2 suggests that, provided that the diameter of the radial hole is
moderately small in relation to the diameter of the test piece (about 1/10th or less), the differences
between the actual and idealized stressing cases may have no great effect. In respect of a circular
hole drilled obliquely the application of the data summarized in Fig. 3 is more open to question;
but at least it may be expected that these data should represent a first approximation.

The analysis of Section 1.4 is related entirely to the fundamental question whether the low
strength of all materials in relation to the estimates of their strengths based on thermodynamic
data may be explicable by the hypothesis that all materials contain numerous sub-microscopic
flaws. In respect of cylindrical flaws with their axes perpendicular to the plane of stress the
present analysis shows clearly that this hypothesis accords with experimental results neither
qualitatively nor quantitatively. Quantitatively there remains a possibility that ellipsoidal or
other * solid * flaws might result in better agreement with experiment ; but qualitatively it is clear
that any system of flaws must always lead to a criterion for fajlure under combined bending and
torsion which cuts the torsion axis obliquely (Fig. 1). Although some few materials yield experi-
mental curves of this type, the majority conform to curves which cut the torsion axis orthogonally
(Ref. 3). In such cases it is inconceivable that the materials actually fail at internal flaws.

Other equally strong evidence against the flaw hypothesis, also based on stress concentration
effects, 1s recorded in Part II. '
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PART II

Stress Concentration due to Holes and Grooves other than Elliptical in Form

Synopsis.—In order critically to compare the results of fatigue tests on pieces containing sharp
V-notches and other abrupt changes of section with the theoretical values of stress concentration
factors, a need was apparent for detailed theoretical investigation of the effect of the form of the
discontinuity of section. :

Following generally established methods of stress analysis the stress distributions round holes
and grooves of a wide range of forms have been examined both under plane direct stress and
under shear stress. These analyses have been applied to several particular cases and the results
have been compared with approximate formulae based on the stress distribution round elliptical
contours. :

From the results it appears that the approximate formulae based on elliptical holes afford a
reasonably accurate estimate of the maximum stress at any hole or groove under plane direct
stress, but that the stress concentration under shear is influenced to a much greater extent by
the general form of the hole or groove. Under both types of stress system, certain cases of
anomaly arising from application of the approximate formulae are examined, and it is shown that
all these anomalies are resolved by the more accurate formulae here derived. Incidentally, in
this examination it is demonstrated that abrupt changes of curvature of the contour of a hole or
groove cause no concentration of stress.

Comparisons are made with some measurements by the soap-film analogy method of the stresses
at V-notches under shear, and moderately good agreement is found.

The stress distribution round very narrow  hair ’ cracks is investigated and the possible effect
of such cracks in masking the stress concentration due to other larger notches and holes is
examined. It is shown that, although the presence of hair cracks would suffice to explain why
experimental values of stress concentration factor are usually marKkedly less than the theoretical
values, the depth of the hair cracks necessary to have this effect is so great that they ought to be
easily observable under the microscope; whereas, of course, no sign of such flaws has been
observed. '

11.1. Introduction.—It is well known that the actual reduction in strength of a piece containing
a hole, groove or other discontinuity in comparison with the strength of a plain piece is usually
very much less than the theoretical value of the ratio of the maximum stress round the
discontinuity to the stress in the plain piece under the same load. So long as this discrepancy
related only to the behaviour of pieces under static stresses, it appeared reasonable to attribute
the lessened effect of the hole or notch in practice to the effect of yielding (with perhaps strain
hardening of the material) in the regions of maximum stress round the hole. It is indeed
doubtful whether this view was ever really justified, even in relation to static stresses, but, if the
same argument be advanced as an explanation of the similar discrepancy between theory and
experiment observed in fatigue tests, its insufficiency can be demonstrated fairly easily. It is
not proposed here to attempt this demonstration in detail ; but briefly the rejection of this
explanation is based on the following arguments. '

(a) Yielding cannot change the shape of the hole so appreciably that the theoretical stress
concentration factor is reduced to the experimental value.

(b) If yielding of the material in the regions of high stress occurs at each stress maximum in
the load cycle, there is a priori no reason why similar yielding should not occur all over the regions
of high stress in a plain piece; but, if this were the case, the strength of materials under
alternating flexural stress should be considerably greater than the strength under alternating
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direct stress uniform over the cross section. Moreover, contintous yielding, since it must involve

dissipation of energy, should be reflected in increased damping of notched pieces in vibration;
this increase has not been observed.

(c) If the material in the regions of high stress is strain hardened by repeated, but gradually
diminishing, yield, the material must finally be brought into a state in which it can withstand the

tull theoretical range of stress. * If this state can be reached at the bottom of a notch, why cannot
it be reproduced throughout the piece ?

The first argument (a) may be substantiated fairly easily by reference to any particular form
of notch. It will be found that reduction of the curvature in one region: of high stress is always
accompanied by an increase in another. | :

The two latter arguments (b) and (c) present the essential dilemma. The material in the regions
of high stress is either brought into an elastic condition or it remains plastic. If it is rendered
elastic, it must also be rendered superstrong; if it remains plastic, it must be credited with a
property hitherto unrecognized. In either case, it is clear that the mere statements that the
material strain hardens or that it yields continuously cannot be regarded as sufficient, and that
the meanings of these statements must be further examined. ‘

In the discussion above, it has been tacitly assumed that the material may be regarded as a
continuous medium. If it is not a continuous medium, the theory of elasticity based on the
average properties of a large bulk of material is applicable only to stress distributions which are
sensibly uniform over regions large in comparison with the fine structure of the material ; if the
stresses vary more rapidly the effect of the fine structure must be taken into account. On this
basis, Griffith* sought to explain the differences between the theoretical estimates of the strength of
materials based on their other physical properties and their actual practical strengths by postulating
the presence in practical materials of numerous fine cracks or flaws of very small size; the same
explanation has been advanced to account for the differences between theoretical and practical
stress concentration factors due to discontinuities. This  crack hypothesis’ is not now held in
such favour as it was some years ago; but in relation to metals it has in some sense been super-
seded by the dislocation theory, and therefore, examination of the sufficiency of such hypotheses
of discontinuities to the reconciliation of theoretical and experimental resulfs is not out of place.

~_In attempting to review these and other possible explanations of the discrepancy between
theoretical and practical values of stress concentration factors, it soon became apparent that the
state of theoretical knowledge was insufficient. This was particularly remarked in considering
the results of the fatigue tests carried out by Gough and Pollard® on pieces containing shar

V-grooves. From the results of these tests it appeared that the radius at the bottom of the
notch had only a secondary effect on the fatigue strength, whereas according to the arguments
advanced by Inglis' the stress concentration factor should vary in proportion to the root of this -
radius. On the other hand Inglis’ conclusions were based entirely on results obtained for a hole
of elliptical form and the application of these results to holes of other forms and to notches was
supported only by general arguments, of which the validity was uncertain. Accordingly the
possibility remained that the form of the hole or notch might have greater influence than Inglis
considered, and that in certain cases this influence might predominate over that of the radius

of curvature at the bottom of the hole or notch.

In this paper, therefore, an attempt is made to extend the analysis developed by Inglis to holes
of forms more general than the ellipse and particularly to notches of quite arbitrary forms. At
the same time, this more general analysis is applied to some cases of combinations of holes or

notches and fine hair cracks, generally representative of the Griffith crack hypothesis in its original
form. '

11.2. Sy.nopsz's of Analysis.—The analysis is presented in eight sections. In Section II.3 the
nature and some of the properties of the general epicyclic conformal transformation
' %+ iy = X jerlerd

are explained; in Section II.4 the device representing the hair crack is introduced: and in
Section IL.5 the use of the epicyclic series to represent a groove of arbitrary form is developed.
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In Section II.6 the stress distribution round an infinitely long cylindrical hole in an infinite block
due to shear parallel to the axis of the hole is worked out; and in Section II.7 the stress distribu-
tion round the same hole due to states of stress in planes perpendicular to the axis of the hole,
and uniform at infinity, is found. In Section IL.8 the results are applied to a class of holes
differing appreciably from the elliptical form, and some general conclusions with regard to the
relative importance of curvature and general form are drawn; in Section 11.9 the effect of hair
cracks in reducing the apparent stress concentration factors below the theoretical values is
considered. General conclusions mainly relating to practical application of the results and to
the use of the results in further examination of the criteria of fatigue failure are collected in
Section II.10. i

The general method of analysis used in Section IL.7 follows that adopted by Inglis'; but the
presentation has been considerably simplified and shortened. The analysis was first developed
in terms exactly analogous to those used by Inglis, but it was quite obvious from the form of the
results that they could be presented more simply. ~This simplification was eventually effected
by adoption of complex variables throughout, and.the work had been brought just to this
stage when a paper by Stevenson® on the use of the complex variable in problems of
elasticity was received. The first part of Section IL.7 could now be omitted and the results
quoted from Stevenson’s paper or from other publications on the use of the complex variable in
stress analysis®®. On the other hand the complex variable riethod is not yet very well known,
and therefore, for the sake of completeness the analysis of Section I1.7 has been allowed to stand.
For more complete and rigorous treatment Refs. 6, 7 and 8 should be consulted. It is, perhaps,
worth adding that by Inglis’ method, one arrives at 3s — 1 simultaneous equations involving
only 25 — 1 unknowns, but s of the equations prove to be redundant. It was this fact,
combined with the fact that Poisson’s Ratio, which is involved throughout the early part of the
analysis, later disappéars from the results, which suggested that a more simple presentation must
be possible.

11.3. The General Epicyclic TM%sformation.—(a) Nature of the Transformation. In an infinite
block of material take Cartesian axes O#%yz and transform to the curvilinear system of co-ordinates
ofy by the conformal transformation:

%+ gy = 2 Ae?

2=y, .
where » takes all values both positive and negative and the A’s are arbitrary. = Then

x =2 (A_e" -+ A,e7"%) cosnp
and
y=Z(A_e" — e ") sinng .

Any line of constant .« is, therefore, an epicyclic cylinder about the axis Oz. By suitable choice
of the values of 4, and 4_,any pair of such cylinders may be represented by the contours
& = 4 a,* and therefore, if the values of the stresses @a, af and @ may be made to assume
assigned values at o = 4 o;, the general expressions for these stresses and the corresponding
expressions for the remaining stresses §§, 77 and B7 represent the distribution of stress throughout
the tube enclosed between the contours « = -+ o, under the action of the assigned surface
tractions. In the present paper attention will be restricted to the effect of holes in infinite blocks
and therefore we take 2-; = land 2_,(n > 1) = 0. In this case when «—>w, x—>e*cos § and
v — e sin $, so that the af-co-ordinate system tends to the circularly cylindrical. If of 4, only 4,
is different from zero, x = (e® + 4,679 cos g and ¥ = (e* — A4,e”%) sin f. Defining the contour
of the hole as « = 0, this system makes linés of constant « vary from the ellipse '

x= (14 2)cos pandy = (1 — 4,) sin §

at the contoﬁr of the hole to the circle x = e*cos 8, ¥ = e*sin f as o« —>o0 . This is the system
of co-ordinates used by Inglis (loc. cit.) S : ‘

% Or of course o = oy and « = a,,
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(b) The Scale Factor h.—

Writing
%+ 2y = ¢(a+ i) = $(&) (Definition)
‘ x — 1y = ¢(a— i) = $(¢) (Definition)
Then
5% + 6y = ¢'(&)(da + £ 8B)
and

bx — 23y = ¢'(5)(ba —208) , ‘
where a prime denotes differentiation with respect to the complete argument & or ¢, so that
(8s)" = (9%)" + (8)* = ¢"(6)$"(O){(8e)* + (88)%} = A*{(6e)* + (88)% . |

The parameter s = {$'(£)$'()}'/* is thus the scale factor describing the length represented by
unit change in « or p. Further comments on the general characteristics of the «f system of
co-ordinates are made in Section IV.2. When ¢(¢).= X 4,e ™, ‘

W= Znde™ 2 ml,em™
n m
=2 n'ale e 42 2 X MA A, A e~ cos (m — n)B, m > n .
e T Ae ™ T e
n w
— %’yﬂne—Zna + 2 é’ ‘15_:‘ Am,’lne—(m+n)u COS:. (m . n)ﬁ, m>n.

2

LY
and the curvature (1/¢) of a line of constant « is?z% 3a (see Section IV.2) so that

[1/e| = {Z w*h,le™™ + Z X mnlm + n) A~ cos (m — m) B3/H2, m >n.

An important class of contour is that of regular #-sided polygons for which apart from the initial
term A_,, only 4,_;, As,_1, Asu_1, etc., differ from zero.

11.4. The Hair Crack.—To the transformation x -+ 7y = ¢(&) representing any given hole at
o =0, let the extra terms (d/n)(e~* +e % +e ™ + ... e ™) be added; x is then
increased by (d/n) {cos § -+ cos 38 + . . . 4 cos (2n — 1)p} = d sin 2nf/2n sin §; and y by
— (d/n) {sin g +sin3p + . .. sin (2n — 1)} = — d(l — cos 2np)/2n sin § .

If % is large, the change in y is everywhere small, and-the change in x is also small providéd

that g is not small. As g — 0, however, the change in x tends to 4. Using the results of

Section I1.3 (b), the radius of curvature at § = 0 may be found. The complete transformation,
therefore, may be used to represent a hair crack of depth 4 and radius of curvature at its end

(1 — Zmh, — nd)?}f {1 + = m*2, + (2/3)(4n* — 1)}
(at # = 0 in the contour of the hole defined by » + 7y = & + X 4,e77) .

The extent to which the crack affects the contour of the hole in regions remote from g = 0
depends upon the value of #, the general form of the hole being the better maintained the higher
the value of #. For the radius of curvature at the end of the crack to be positive nd must be less
than 1 — X m4,. In order than » should be large, 4 must therefore be small in comparison with
1 — X ma4,, this condition implies that the depth of the crack can be-only a small fraction of the
width 1 — Z 4, of the hole (at g = =/2). ‘ o

To deeper cracks the general method of the following Section I1.5 may be applicable.
14




11.5. Representation of a Groove of any Form by an Epicyclic Series.—(a) General method of
representing a groove.—The contour of the hole is represented by the series:

¥ = (A_,+ 4 )cos g+ A,cos38 + . . . *
y=(h_y— 4')sin f— A,sin3p + . . .

Or, writing, 4, = 1_, + 4,",
%= 2A,c08 8 + A,cos3p + . ..
y=24_,sinpg — (4sinf - A,sin3 + ... ).

If A, 4,, etc., be so chosen that the function 4; cos 8 -+ A,cos 38 + . . ., etc., is finite over the
ranges

T T JT T

— 2(—21;—_—1)'< B < mandn—z—(—%——_—l)< 5<75—]—m
and zero in between, where # 1s large, then within these ranges
%= 2,08 B+ A, cos 3p +. ..
and approximately y = {24_, — 2 (2r — 1)A,} 8 .

And, if 4,, 2,, etc., be small in comparison with 4_,, outside these ranges ¥ = 0 and approximately
y =24 _;sin g. Obviously the accuracy of the two approximate formulae for v is limited, but
the error in the form for y when x = 0 does not matter at all, whilst the error in the other form
for y affects only values for which g — + =/2(2%n — 1) . It will be seen later that, by the method
of use of these approximate forms here developed, the effect of this error is slightly to round off
the edges of the groove. The width w of the groove (neglecting the rounding of the outer edges) 1s
{24, — 2 (Zr — 1)A.} {=/(2n — 1)}, and its depth @ = X' 2, ; the radius of curvature at § = 0 (the

@n— 12w T,
e T (r— 1)

bottom of the groove) ¢ =

(b) Representation of given form of groove.—Suppose the groove to be defined by Fourier Series
. 5 .
X = a(chos% -~ K, cos %y 4. ) , with .’%’K,,L =1

24

. T
=a K, cos (2m — 1)(2n — 1) g in the range — 5@ — 1) <p < 2(%n — 1)

and zero elsewhere in the range — /2 < f <=zn/2.

Denoting by 4, ,, the contribution of the K, term to 1,

2@ 7[2(20n—1)
Dom = f_ﬂ/mn_]) K, cos(2Zm — 1)(2n — 1)fcos (2r — 1) dp
20K, [sin H(2m — 1)(2n — 1) 4 (2r — D}=/2(2n — 1)}
T @ 2m — 1)(2n — 1) + (Zr — 1)
sin [{(2m — 1)(2n — 1) — (2r — D)H=/2(2n — 1)}]]
- @m — D@n —1) — (@& — 1)
g daK, 2m — 1)(2n — 1) Zr — 1=a
Bl Y el P | v |y P LR { =12 } :
* In this section, 4, is used in place of 4,._; for brevity.
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Of course, by definition 2 dyw o8 (2r — 1) = akK,, cos (2m — 1)(2n — 1) over the range of
integration; so that, substituting g = 0, 2 A, = aK,. This result follows also by forming the
sum 2 2,,, . Moreover, X1, = 2 X Ay = 2 2 2y, = 2 aK, = a, because 2K,=1.

¥ m

Then

B s 40K, (2m— )20 — 1)(2r — 1) {27 —1a I
FE D = F (=) P2 — 1F — @& — 12 (2r =12

(— 1)”1—14—“5—'" (2m — 1)(2n — 1)

Il

(2m — 1)(2 — 1) — {(2m — 1)(2n — 1) — (2r — 1)) U —1a
¥ (2m—1)2(;%14—4—1)2—?21’—1)2 - COS{ZW..Q]

= (2m — 1)(2n — 1) T 4,,, +(— 1) (@m — 1)(@2n — 1) x

4aK,, 5 cos [{(2m — 1)(2n — 1) + (2 — D}z /2(2n — 1)} — (2m — 1)(=/2)]
T 2m — 1)(2n — 1) + (2 — 1)

= (2m — 1)(2n — 1)akK,

el

| 4aK, "~ sin {(2m — 1)(2n — 1) + (2 — D)}e
= (2m = 1)2n— 1) = ,flsnfz%’f’- 1)(2%%~ 1)+(2:— 1

where & = {n/2(2n — 1)}

203 —an—1n

= (2m — 1)(2n — 1)(4aK,jx) [(=/4) — %o'{(sin 21’8)/27’} + Zl’ {(sin 2 &) /27}]

= (2m — 1)(2n — 1)(4aK,,r) %’ {(sin 27¢)/27}, because } {(sin 27¢)/2r} = (w/4)

2mn—m—n ce
= (2m —1)(2n — 1)(4aK,Jr) = J , €0s 270 d0, using 0 as current variable
1 .

€ 2mn- m—mn

= (2m — 1)(2n — 1)(4aK,Jx) JO( 2 cos2r0)do, assuming absolute convergence

1

= (2m — 1)(2n — 1)(4aK,,/x) J: [{sin (2m — 1)(2n — 1)6 — sin 6}/2 sin ] d6 .

If & is very small, that is if % is large,
fs{sin (2m — 1)(2n — 1)0/sin 0} do is approximately equal to
0

ﬁ{sin (2m — 1)(2n — 1)06} 46 = Si{(2m — 1)(2n — 1)<}

— Si{(2m — 1)(/2)}
and ¢ is negligible in comparison.

Hence Z (2 — 1)2,, = (2m — 1)(2n — 1)(2aK,,[fz) Si{(2m — 1)(=/2)} .
16




R o 4aK,  (2m — 1)(2n — 1)(2r — 1)° [2r — ln}
2@ = 1) de= 2 (= )" G — ) 2 — 1 — (@ — 1 P (=12
— (_l)m—l Z%{ﬂ (2m . 1)3 (271 . 1)3
, 1 B 1 oS {27 — 172}
@m0 @ — = @r— 1 (@m— 1) (@e— 1) %12

4aKm 27’ — 1 T
C=(2m — 1) (2 — 1) Z A, + (— 1) (2m—1)(2n — 1) Zcos [2%— 1 2‘] '

So that X (2r — 1)2 4, ,./(2n — 1)* = (2m — 1)*aK,, the second term being negligible in com-
parison with the first.

(c) Summary of Results.—Collecting these results, the width of the groove,
w={2\_, — 2 (2r — 1)2,} {n/(2n — 1)} = 2mA_s[(2n — 1)} — 2a 2 (2m — 1) Si{(2m — 1)=/2}K,,
and the curvature (1/g) at the root is {z*a z (2m — 1) K, }[w®,
where @ = X' 4, is the depth of the groove, and its shape is defined by the Fourier Series
x=a X K,cos (2m — 1)(zy/w) .

- Also

fa ¥ —1a) (2m — 1)(2n — 1)
b= L= 008 g3 2 (- U K g e — 1 — (& — 1
and
22 — )i, = Z Z(2r — 1)A,,, = {2a(2n — 1)} 2 (2m — 1)Si{(2m — 1)(=/2)}K,
but the m summations cannot be performed until the K’s be specified.

11.8. Stresses round a Hole Due to Uniform Shear Pavallel to the Axis of the Hole.—(a) Solution
of Stress Equation of Equilibrium.—One of the three stress equations of equilibrium (Ref. 8,
Section 58, page 89) is

+ a2 (5) — B o (5 ) ahohn 5 (7)=0.

In our case, the stress distribution must be independent of y, %, is constant, and 4, = %, = 1/Ain
our notation; the equation, therefore, reduces to

0 0 -

20 179) + 55 (hBy) = 0.

ou,

- -0
But g7 = Ges, and ya = Ge,,, whilst ¢, = h—g}; and ¢,, = 77 .

(Ref. 8, Section 20; 7%, %, and #, are all indepehdent of y.)
Therefore
0® 0®
_a-oc_z + 8—/3—2> un, = 0.
Using the solutions #, = X A, cosh mo sin mp and similar terms
§y = (G/h) Z m4,, cosh ma cos mp and 7a@ = (G/h) Z mA,, sinh ma sin mp .
17
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(b) Case of Uniform Shear.—As a—> o0, h— e° ({aking A_; = 1), so that to make the stress at
infinity finite, we may take m = 1 only. If the stress system at infinity is 9% = ¢ and 2% = ¢’,
the appropriate solutions are

B7 = 2(g/h) cosh a cos B + 2(q’/h) cosh o sin §
7a = 2(g/h) sinh a.sin § - 2(g' /%) sinh o cos § ,

conforming to the additional condition 7& = 0 at « = 0 (the contour of the hole). If ¢’ =0, at
p = (#/2), By = 0, so that the block may be cut through the plane g = (#/2) to leave a semi-
infinite block scored by a groove down one face and sheared by forces tending to distort this face.

The position of the maxnnum stress depends both on the ratio of ¢ to ¢’ and on the values of
the 2’s. However, if ¢" = 0 and the curvature of g = 0 is a maximum, the stress will normally
be a maximum at this point in the contour of the hole (x = 0 and g = O) In this case the stress
concentration factor:

g = (B7/Q)uvp0 = 2/{1 — Zvd} =2/(1 — 4, — 24, — Bis — . . .).

Butgat f = 0 (Section3) = (1 — 4, — 22, — . . . )¥/(1 + 4, + 42, -+ . . .) and a, the radius
of theholeat § =0,=1-+ 4, 4+ 2, + . . .,sothatif 4,, ,, etc., are zero, u, = 2/(1 — ;) =1 +
(I + 2, /(1 — 4) = 1 + +/(afe), the usual formula for the ellipse. ~Further examples of stress
concentration in shear are given in Section I1.8 and subsequent sections.

(c) Stress Concentration Factor for General Groove.—In the case of the general groove discussed
in Section II.5, the stress concentration factor in shear p, = 22_1/ Ay — 2 (2r — 1)3,}, but
the value of 4; to be used i 1n this formula is the substantive value 4," (Section II.5 (a)). Substituting

for 4, =4, — A_y, p, =24 _,/{24_, — X (2»r — 1)4,}, where the values of 2, are now those used
in the remamder of Sectlon I1.5. It then follows that

py =20 _4J{2h_, — 5 (2r — 1)1}
= 1+ {#/{2n — Nw} 2 (2r — 1)1,
=1+ (2afw) Z (2m — 1) Si{(2m — 1)(=/2)}K,,

or using the relation a/o = (zajw)* 2’ (2m — 1)* K,

9 2 X (2m — 1) SL{(2m — 1)(=/2)}K,,
pp=1+2 () = @n — 1P K"

As an example, if the groove approximates to a triangular notch of width w, and depth a its apex
being rounded to a radius ¢, K,, may be taken as {8/=*(2m — 1)*} for values of m up to M and zero
for all higher values of M. The appropriate value of M is defined by the relation

ale = (wajw)* 2 (2m — 1)* K,, = 8(ajw)* M.
Then p, = 1 + Jy(a/e)'/?, where

ve i {(2m — 1)(/2)
T = 2<M> 5 {(;%m_%(/ b,

*If Ky =1 where M is large and all the other K’s are zero, Si{(2M — 1)(n/2)} - (#/2) and u, > 1 + (a/p)¥2
A continuous sinusoidal serration thus gives the same stress concentration as a single (half) elliptical groove having the
same depth and same radius of curvature at its root, ¢f. Part ITII.
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Values of J,, for values of M from 1 to 13 are given in Table 1 below.
TABLE 1
Values of Ju

M’1’2‘3 4‘5678\910’11'12\13
Tu ‘0-785|O-773‘0-732 0-699‘0-669 0-644 | 0-622 O-604\0-587 0-572]0-559’0-546i0;535

For a semi-elliptical groove, the nominal value of M is % and of course J,, = 1: this accords with
the values for higher values of M listed in Table 1. For a given value of a/e, M increases with
wja. Thus as w/a increases, a/e being maintained constant [, is reduced ; this shows the effect
of widening the groove. Fora 90 deg notchw/a = 2and M = a/2g ; valuesofu, = 1 + Jy(a/o)'"
for this case and for 60 deg and 120 deg notches are shown in Fig. 9 in comparison with the
approximate formula u, = 1 -+ (a/0)/%. On the same diagram are shown results obtained by
A."A. Griffith by the use of the soap-film method®. With reference to the grooves used by Gough
and Pollard® taking a = 0-02in., ¢ = 0-0002 in., w/2¢ = tan 55 deg/2, M = about 13-5 and
#, = 6-8 in comparison with the approximate value 11-0.

I1.7. Stresses vound a Hole Due to Systems of Uniform Plane Strain in the Plane Perpendiculay
to the Axis of the Hole.—(a) General Formulae for Stresses and Styains—By the general stress-strain
equations (1 — )4 + (1 — 20)o may be any function of « +78. If %, and #; are the dis-
placements along the af co-ordinate lines respectively and if u = %,/h and v = w/h,

A=§—§§+§_;_zh(ztaioﬁv%)(;&):%{a(?;u)+a(§;v)
1 (a(ktv)  o(hPw)) .
w:TkZl oz 08 }

and

Substituting U = u + 49, V=0 — v, § = « -+ if and { = a — 14,
830 = 8/2£ 4 8/3¢ and 8/ap = i(d/o& — 2/0¢)

and therefore,

1 [o(h?*U) | o(hV) 1 (a(*U) o(h*V)
d=pl"2E T ] and a’zzz‘hﬁ{ 2 ot ]
iy 1 9V — 1 o(rrl) |, o(hV) _
Thus (1 4+ z(1 20) 2K { ? 0& * ¢ ] 7e) where f is an(y function and
2 2 $ = 3 — 40 (a constant)
and (1 — o)4 — i(1 — 20)o — g3 | 20Dy SOV _ ).
Therefore, i '
SR

(#* — 1) ‘7(85 ) ompfe) — S} .. e (21)

(p2—1) a(g»;V) = 27 pf(C) — (&)} .. o . .. (22
and .

A= @0+ PHAD +AD} o . ()
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Moreover
0w 0v oV oU

Coa ™ 008 = 3y T Bp T BE o (24)
and
eV U
8ry+_ﬁ_ % ot .. .. .. .. .. (25)
so that
. oU eV
em—eﬂﬂizeaﬁ=28—501’2¥. .. . e .- .. (26)

For the stress values, we have
ad + FB = EA[(1 4 o)(1 — 20) = {E2(1 — o)(1 — 20)}{ () +/(0)}  (27)
and aa — Bf — 2iaf = {E[(1 + 0)} (Cua — €55 1 7€)
2F aU q 2E aV

=713 o0z @ 115 respectlve]y .. .. .. (28)

If the co-ordinate system be defined by x + 2y = $(&), so that A* = ¢'(£)¢(¢) (Section IL.3),
write f(£) = F'(¢)/4'(¢§) . Then from equation (21)

T = e O () — $EF )

and
R = 52__2;__1 {po'(£)F (&) — ¢?(§)F’(C) + »(£)} Where p is dny function,
and ‘ :
2 F(e)  $(E)F'(L) v(€) ¥
U= mot e eEee Tedeal o o o @
Hence finally, 5 Fle)  F)
B =y g el - 60

dd_ﬁﬁ“idﬁ:za—ozjfu—%)[‘if(é;%{?@"ﬂsl o]

£) o¢
(31)
Since F and y are entirely arbitrary, these expressions may be expressed in the s1mpler forms:
aa + pf = ()—i—G() . .. .. . .. .. (30a)
and _
ad — BB + 2af = {— $(&)G'(¢) + H(0)}¢'(£) , e e e .. (319)

but the forms given by (30) and (81) are better adapted to our present purpose.

We note that aa -+ 4af is proportional to
: F'{8)$'(¢) KRR 19
F'(&) + =5 $(4) ac{qs,@) } +a§{¢,@)}. e (39

* Expressions for #, and may easﬂy be written down, but they are needed only in problems involving specified
displacements.
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(b) Solutions Appropriate to Epicyclic Contours.—We have ¢ (&) = X 4,67, where 7 takes the
values defined in Section II1.3, thatis A, = land A_, ( > 1) = 0, and we take

E ’ : —
2(1 — o*)(1 — 20) F(&) = Z (4, +1C,)e™

E , v where 7 may take all integral values both
2(1 — o®)(1 — 20) () = 2 {4y —dC)em® positive and negative,

2(1 — o‘z)ﬁ —2q) ¥ w(¢) = & (B, +¢D,)e "1

1, 4, B, C and D being all real numerical constants.

(c) Stresses at Infinity—As a—>o0, aa + ff—2A4_; + e (terms in A_,, A_s, etc.). Since the
stresses are to remain finite at infinity we take A4 _,, etc., zero. For the same reason we take B_,,
D_,, etc., zero, when as «—>0 ,

ai — pf + 2af — (B_, +iD_))e 9 = (B_; + 1D_))e %",

But, as > ,
aa — f' cos’f + fsin® B + 2¢ sin B cos B
7 7 r a2 2 . where f’, f and ¢ are the values of £,
PP—J"sin'fi + fcos® f — 2g sin f cos f 49 and %y respectively, at infinity.
af— (f'—f)sinpcos B + g(cos*p — sin? p)

or @i -+ f—f+f

and a@ — BB -+ 2af —{(f — f) + 2ig}(cos 2 — ¢ sin 28) .

Hence A_, = ¥{f+f), BL=f —fand D_; =2g.

(d) Stresses at the Edge of the Hole (« = 0).—It is required to render both da and &
zero over the contour « = 0; this is done most conveniently by rendering aa + ¢a
zero. At o =0, £ = — ¢ = {8, and it is convenient to write 18 = 6.

identically
identically

T
Fde i

Then, omitting signs of summation with respect to #, aa + 4af at « = 0 is proportional to

Zrhe d { (4, — iC,)e }

—r0
2.6 Zrie’

N —nb ; 7
(An _l— ch)e + (An - ZC%) € o 21’2,676 - 7 d@

[ ( 7 —I— iDn)e(”_l)o}
+ 76 | Zrie’ ’
or

1 . de—uo . d ene 2 276—76 . d e(;z—«l)ﬂ
- ’;/11 (An + 'LCH) d@ - (An - 'LCH) d—e [ PN 7’}.,676 } —1_ (Bn + 7’—D1z) OE { X 7’1«,,61'6}

Therefore, we have to make

1 .
2 [7—% (A4, +C,)e " Zrie® 4+ (4, — iC)e" X A,e "0 — (B, + iD,)el—10 ]

identically zero.}

* When & is changed to ¢ the sign of C, must be changed, so that F'(£) 4+ F'(¢) shall be entirely real.
T Or strictly a multiple of Zrie,.
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Obviously the AB and CD solutions are entirely separate. Equating to zero the coefficients
of e, we have:

Ve
Bs+1: ;(

Yy — 8

ArAr—s _l_ 11A7+s

. 7
. D‘H']‘ - Ar\:' (7, — 3 ﬂ'rcr—s - Arcr—l-s

but the structure of these relations is better shown in tabular form below. In this table (Table 2%)
the individual equations are represented in vertical columns; the B coefficients, each of which
enters into one equation only are shown in the second row, whilst the coefficients of each individual
4 in the separate equations are shown in the succeeding rows, A_, has been taken equal to unity
as before.

TABLE 2 »
Relations between A and B coefficients
6-100 e—SO - e—Gﬂ e—49 6—20 1 e29 e49 eGG 689 6109
—'B—l —Bl ——B:i _‘BS _B7 —_BS —Bll
A4 P A5 2 VA 1
44
1 —A | =84 | =5 | =72, | —91,
2‘11 2‘9 ;]'7 2'5 }‘3 ‘Z'l 1
4y
—1 A 31, 5 7h | 97, 11 4y
Ais Iy A 1 g A M 1
—13 | 134 | 4 534, | 734, | 931, | 1134, 13/3 2,4 4
s Ay by A 2 a5 Iy A 1 p
5
—1/5 | 154 | 352 | 4 754, | 953 | 11/54y | 13/5, | 15/5 Ay
Mg A5 My Ay A Iy a5 Ay A 1 )
7
—1/7 | Yy7a | 874 | 571 A 972 | 1170y, | 18/7 2 | 15/7 25 | 17/7 34
Ao Ay s Jyg I Iy %, 2 Ay X 1 )
9
—1/9 | 19N | 894 | 5925 | 794, | A | 11/94y | 1894, | 1594, | 17/94y | 19/0 2,

The table for the CD solution is similar, except that the first row of coefficients for each A4
becomes negative. As a result the coefficients of all the C’s in the centre column became zero,
and D, is therefore always zero.

If 25, is the highest order 1 to be included, the negative powers of ° give s relations between the
s unknowns A4, to 4,,_; and the two known coefficients A_, and B_, ; the remaining s + 1 equations
give the values of the s 4+ 1 unknowns B, to B,,,,, and it will be noticed that By, = 01in all
cases. Table 2z indicates the limits of the table when s = 5.

* This table and the greater part of the subsequent discussion is restricted to A’s of odd orders ; it will be seen that
the inclusion of 1's of even order necessitates the insertion in Table 2 of rows and columns in between those shown,
but from the structure of the table it is clear that if the 4’s of even order be omitted, the 4B coefficients of even order
also disappear. On the other hand, if 's of even order only areincluded, the 4B coefficients of odd order, do not disappear.
Thisis due to the coefficient — 1 for 4, in the column headed e—2?, since this column includes the coefficient B —(=f"—1),
A, can never be identically zero.

22



TABLE 2a

Relations between A and B coefficients

e—lOB 6—89 e—GB 6—40 e-—29 1 620 e49 666 eSB 6100
_B—l _Bl _B3 —BS _B7 —B9 _Bll
J 2 % A A 1
. A_l
1 A, | —8a | =5 | —Ti | —9
% IR A A N 1
_ 4,
—1 Py 32 5 71 91,
A A A 2 A 1
A A,
—1/3 | 1/31 IR 5/3% | 7/3% | 9/37
% 2 A A Py 1
4y
—1/5 |V 1/54, | 354 | A 757 | 952
N A A A N 1
4,
—1/7 | 1y7a, | 874 | 5/74 | X 9/7 4
Ay IR A IR iy 1
4,
—1/9 | 194 | 394 | 594 | 794 | i

The determination of the values of the 4’s and B’s (or C’s and D’s) for any given set of numerical
values of the A’s is straightforward, and in Tables 8 and 4 below the values are given in terms of
A_,and A, for M’sup to 15; but if higher order 1's are included, this general solution becomes
very cumbersome. However, if all the 1’s of order higher than 2, and up to a certain higher
order (4,,_,, say) are equal to ¢, where ¢ is small, an approximate solution is possible. On the
other hand, if only one of the higher order 4’s is different from zero, the exact solution is easy.
These special solutions are described below.

TABLE 3
Relations between the A and B coefficients for ’s up to A5*
A, 4,
A; | 5,
A, 3(A;42,45) 34
B_, Ay AAg -8, A2 6k -1, 2Ag S Y . 7
B, 9+64,2+ 10452+ 61,4, 94, +6Aghs
By  —M+34A+50,252 10425 +8 1,2, F+-84,+84, A +52.2
By 81,4 8i,

* Note : When only 4, differs from zero, the AB coefficients correspond with those in Inglis’ solution with the following
substitutions :— :
Present Solution : A A4 Ay - B_; B; B,
Inglis’ Solution : e 2% A4 Aem2% —B_, —B_je"2%  —Bemi%,
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TABLE 4
Relations between the C and D coefficients for 2’s up to Ag

C_, C,
Cs —57,

Cs —3(A3+445) —34

D_, — A — A A+ 34,2 —A %A —1—Ag—AA5--34,2
Dy — A 432, A5—54,A 243425 —1-+34,5434;4;,—54;2
Dy 84,4 82

(e) Stress Concentration Factors.—For the value of the stress gf at the edge of the hole, we have

- - ZA,e 2 A.em
fB = aa + Bp (since da@ = 0) = —5~ : :

The value of Bf at § = Ois then —22 4,/ X 74, .

l
+

Example. If only 4, is different from zero

A, = 1, A_; — B_, (from Table 3),
and

%An :A—1+A1: (1 + Z’I)A—l_ B—Iz%( }“)(f_l‘f’) h (f, "—f)
= $8 + 4)f + $(4 — 1)f
and
Sri,=—1+1.
Therefore

BByo = {8 + A)I(L + A} — F' = {1 + 2Aafo)}f — /" or {1 + 2Aafe)}f — /' where

2a and 2b are the lengths of the major and minor axes of the ellipse, so that
afb = (14 A)/(1 — 4;) = (a]o)"/* (see Section I1.3).

For any given set of A’s the values of f at « = 0 and g = 0 may easily be found, and the value
at other values of g can be calculated without much difficulty; to calculate the values of the
stresses at values of o different from zero (away from the contour of the hole) is considerably
more difficult,

11.8. Stresses vound Special Types of Hole.—(a) Stmple Polygonal Holes.—(1) Geometry of Hole.—
The transformation x - 7y = e* 4+ 2, e™"* represents a series of polygonal holes with # + 1 sides
(including the ellipse as a special case, when # = 1). The maximum and minimum radii are
1 + 4, and the corresponding radii of curvature are respectively (1 — 74,)*/(1 4 #*4,) and
(1 + A ) (1 — #%4,) (Section I1.3).

(ii) Stress Concentration under Shear Pavallel to Axis of Hole.—The stress concentration factor
at f = O under shear along the axis of the hole parallel to the plane p = 0 is (Section 11.6),

2
B=T—7,
Using the relation (1 4 4,)(1 + #°4,)/(1 — #4,)* = a/e to eliminate 4,, we find
p, =14 {1)(r + D}dr(ajo) + (r — 1)*12
= 14 [1 + 4#{(a/o) — 1}/(r + 1)7]*/2.
If r =1, 4, =1 4 (a/e)"* as previously for the ellipse.
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In general, as 7 — o, ¢, — 2 independently of a/e so long as a/e remains finite. In the special
case where 4, = 1/7*, afo = 2(1 + #*)/(r — 1)* and the other principal radius of curvature is
infinite, so that the hole consists of a polygon with nearly flat sides and rounded corners; in
this case p, = 2r/(r — 1) or 1 + {(a/o) — 1}'/®. Asv-—> oo, u,— 2, whereas afo — 2 so that
1 + (a/e)*’*— 1+ 4/2. In this case, therefore, the approximate formula for y, overestimates
its value by 20 per cent. Comparison of ¢, and 1 + (a/g)*/? for other shapes of flat-sided holes is
afforded in Table 5 below. The error of the approximate formula in other more general cases is
illustrated in Fig. 10. In this figure the dotted line connects the series of flat-sided holes (for
which 1, = 1/¢"); to the left of this dotted line the contours of the holes are rounded, to the right

they are re-entrant.

(iil) Stress Concentration wnder Direct Stress across Hole—The stress concentration factor at
p = 0 under direct stress (f) across the plane g =01is 2 2 4,/(1 — r4,), where 4_, = f/2,

B_,; = — fand the remaining 4’s have to be found from Table 2. From this table, it is clear that,
if » beodd, 4, =74,4_,, 4, y=(r— 2)1,4,, ,A, ,— 4, = B_,and all the other A4’s are zero.
The stress concentration factor is then

14+ (r—2)a,
“f:{l_l_ﬁ’_l;zl—((r——Z))/’lz}/(l_M’)'
In this case elimination of 2, does not lead to a simple expression for x;; but when 1, = 122,

%0 v — 2|
w={r 414 20 2R

/(1' — 1) and, as 7 —> 0, u;—> 3,

whereas 1 -+ 2(afe)**— 1 + 24/2. Values of u, for the range of flat-sided polygonal holes are
given in Table 5, together with the corresponding values of 1 + 2(a/o)'/* .

The values of u, for the whole class of simple polygonal holes are shown in Fig. 11; this figure
is to be compared with Fig. 10. The dotted line in the lower part of the diagram again marks
the division between rounded and re-entrant contours; the sketch in Fig. 11 illustrates a typical
example of the latter type, of which an enlarged view is given in Fig. 12.

Comparison of Figs. 10 and 11 affords a good indication of the relative importance of the form
of the hole in relation to the approximate formulae 1 4 (a/o)*/? for shear and 1 -+ 2(a/e)'’* for
direct stress. When 7 is large a good approximation to «, 1s afforded by the formula

3{r + (ale)}fir — (afo)} .

TABLE 5
Values of u; and p, for flat-sided polygonal holes

Description of Hole Square Hexagon Octagon Decagon Dodecagon —
Value of # .. .. 3 5 7 9 11 o0
{Value of p; .. .. 5-375 4-314 3-910 . 3-697 3-564 3
il —[—2\/2 . . 5-472 4-608 4-333 4-201 4-124 3-828
I’Value of u, .. . 3-000 2-500 2-333 2-250 2200 2
11 —}~\/g .. .. 3-236 2-804 2-667 2-600 2-562 2-414
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(b) Deep Grooves.—A class of hole which illustrates still more clearly the relative importance
of curvature and general form is that defined by the three coefficients 1, 4; and A, under the
conditions: :
1— 2, +92, — 251, =0

1+21+ﬂ'3+}‘5 =K(1"‘21+13“‘}~5):
where K is a constant.

The former condition provides that the curvature at g = =/2 shall be zero, the latter that the
ratio of the depth of the holea to its width & shall be K. If K is fairly large, the (half) hole takes
the form of a deep narrow groove, with a radius of curvature at its end, o, defined by :

o= (L & Ao 2)(1+ & 945 + 252)/(1 — & — 3, — 54)".

By assigning suitable values to 4, and by using the two conditions to determine 1, and i,, a series
of grooves with almost parallel sides is defined, for which the ratio /b (= K) is constant, but in
which the ratio a/o can be varied at will. A series of such grooves, corresponding to K = 10 is
shown in Fig. 18, and the stress concentration factors x, and u, for these grooves are plotted in
Fig. 14, where the values are compared with the values 1 + (2/0)"/* and 1 4 2(a/e)*/* appropriate
to true elliptical holes.

It will be seen that under direct stress the approximate formula u, = 1 4 2(a/e)*/* affords a
very close estimate of the true maximum stress, but that in shear the approximate formula
1 + (a/e)'”? is far from accurate. In fact, up to a value of (a/0)'/? of about 10, the true value of
#, 1s approximately midway between the values 1 + (a/¢)*/* and 1 4 (/) (= 11 in this case).

(c) Square Holes.—Any square hole with rounded corners may be represented to any desired
accuracy by the following means. Using the transformation of Section II1.3 (b), we have

¥ =2A_yc08 B -+ 2;¢c0838 + A,cos78 -+ Ay cosllp 4. ..
y=12_sinf — A3sin38 — 4,sin7f — Ay sinllp — . ..
and the perpendicular distance of a point on this curve from the linex 4+ v = 1is

A_y(cos 4 sin B) + 45 (cos3f —sin3p) +. .. — 1.

Squaring this perpendicular distance, integrating from 0 to =/2 and then differentiating with
respect to A_,, 4;, etc., In succession and equating to zero, the conditions are found that the curve
x + 1y = X A,e” should conform as closely as possible to the line x 4~y = 1.  These conditions
are sufficient to define the values of all the 4’s up to the highest order A included, so that the radius
of curvature at ¥ = 0* is also determined. In order to make the radius of curvature at x = 0
take some assigned value, two ‘ best fitting * sets of A’s are taken, the first set including 4’s up to
A1,_1, the second including one more 4, namely 4,,,,. From these two sets a new set is formed by
taking the sum of an arbitrary proportion X of the first and a proportion (1 — X) of the second.
The expression for the radius of curvature ¢ then takes the form ¢ = (4 4+ BX)?*/(C + DX),
where A, B, C and D are known constants. Given the value of ¢ (or more conveniently of a/g)
the appropriate value of X and the composite set of A’s corresponding to this value of X may
thus be found; this composite set of A’s represents the best possible approach using 4’s up to
A4 13 To a square hole with corners rounded to a specified radius. A similar procedure is obviously
applicable to any regular polygonal hole; but for irregular polygons the appropriate limits of
integration for g have to be found by trial and error.

The numerical work has been carried out for a set of ’s up to 4,,. The contours of one quadrant
of the holes thus defined are shown in Fig. 15. The approach to a straight line boundary is
in general so good that in the complete diagram, Fig. 15a, only the worse case, corresponding to

*0r y =0, the two radii in this case are, of course, identical.
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a value of /g = 0 at § = 0, is shown. In the diagram Fig. 15b, the detail of the contours near
the corner of the square is shown for values of /o from 0 to 144 to a scale 10 times larger than that
of Fig. 15a. TFor values of (a/o)*/? greater than 5, the approximation afforded to the prescribed
form of the hole appears quite sufficiently close. For low values of a/o, the method is really
inappropriate, because it seeks to make the contour follow the line x + y = 1 well into the corner
of the hole; as a result at low values of /e, the maximum curvature of the contour occurs away
from the actual corner (see Fig. 15b). For values of (a/e)'/* less than 5, a better representation
is afforded by the simple polygonal hole discussed in Section (a) above; this representation is
most accurate at (a/)'/® = 2236, for then the contour is flat at f ==/4.

Calculated values of u, and g, for this range of square holes with rounded corners are shown
plotted against values of (a/¢)'/?in Fig. 16. Although continuous curves over the whole range of
(a/0)*/* down to zero are shown, it must be remembered that these values represent the stresses at
A = 0 in the contours shown in Fig. 15b. In Fig. 16, the values of 4, and g, for simple polygonal
holes are also shown, and for values of (a/g)'/® less than 5, these curves represent a better
approximation to the-practical case of a square hole with rounded corners; the two asterisks in
Fig. 16 mark the values of 4, and u, for a simple square hole with flat sides (¢ =« at § = =/4).
For comparison the curve of u, against (a/¢)'/* derived by the method: of Section I1.6(c) is also
reproduced in Fig. 16 (from Fig. 9). The discrepancy between these values of x, and those now
found appears surprisingly large; but the range (around (a/¢)"/* = 2 to 3) over which comparison
may fairly be made is too short to permit close analysis.

Although the contours of Fig. 15b for values of (a/¢)'/* less than § are not of much practical
interest, they do provide a good illustration of a class of hole for which the approximate formulae
1 + (a/e)**and 1 + 2(afo)*'* are very inaccurate. The true stress concentrations are at least as
great as those shown in Fig. 16, for still greater stresses may be set up near the points of maximum
curvature; thisis, of course, a result of the general shape of the contour, which differs so radically
from an ellipse.

11.9. Hair Cracks.—(a) Stress Concentration in Shear.—For a given form of hole or groove,
a=14+Z4,0= (01— Z72)(1 + Z#4,)andg, = 2/(1 — Zr4,). Theradius of curvature ¢’
at the end of a hair crack, defined by # and d, at the root of this groove is (Section II.4)
(1 — Zra, — dn)*/{1 4+ X%, + (d/3)(4n* — 1)} and the new stress concentration factor
i, =2/(1 — Zyd, —dn). The ‘order’ »’ of a hair crack having the same depth d and the same
radius of curvature o’ at its root in a plain test piece* is defined by the equation
o' = 3(2 — dn')?/d(4n’* — 1); the stress concentration factor for this case is uy = 2/(2 — dn’).
Since # and #’ are assumed to be large, unity may be neglected in comparison with either 4#* or
4n". With this approximation it may be shown that the apparent stress concentration factor

“ (: ’lfi,> — (1“0 - 2)!“4
"N e/ T [l — 0P F (8d/Ao)uolus — 2F7 — 1]

or approximately, if u, be large, u,, = g, /{1 + (3d/40)}'/* , and if (d/0) — O, po—> p,-

For a semi-elliptical groove, u, = {1 + (a/o)**}{1 + (8d/4¢)}*/*. The maximum value of
this approximate expression for u,, for variation of ¢ when the values of d and a are specified
occurs when g = 94%/16a and is (gg0)me = {1 + (4a/3d)}*/*. Values of u,, for values of (a/¢)/
down to 5 and for values of d/a from 0-05 to 0-40 are shown in Fig. 17.

(b) Stress Concentration under Direct Stress.—The determination of the stress concentration
due to a complex hole or groove is very much more complicated in the case of direct stress than
in the case of shear. Accordingly in the case of direct stress consideration is restricted to grooves
of elliptical form; previous examples (Section IT.8(b) and (c)) suggest that under direct stress,
the stress concentrations due to holes far from elliptical in form do not differ much from the

* The surface of a plane test piece is represented by putting 4, = — 1, giving an infinitely long narrow eHipse with its
major axis lying along g = #/2.
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concentrations due to the equivalent ellipses. In what follows 4_, is taken as unity (as previously),
2 1s written for A, and all the other A’s of odd orders up to 1,4, are put equal to ¢ = d/n
(Section II.4).

By inspection of Table 2, it will be seen that 4,, , is equal to (2% — 1

(
is of the order 1/n* (nd being comparable with unity), A4,,_, is of the orde

Jed_,. Since ¢ = d/n
bution of each of the 4 terms, when they are mult

r (1/n)A_,. The contri-

plied by e, is thus of the order (1/#%A4_,, and
the sum of # such terms is of the order (1/n*A_,, which is negligible in comparison with 4 _,.
Accordingly Table 2 may be rewritten.
TABLE 6
B,
€ & F e A 44
£ € £ —1 Ay
1

—1 i 3 4s

1 2 14,

. ”

S L,

By adding 4 times the first (left-hand) column to the second column, then adding 2 times the
new second column to the third, etc.

TABLE 7
B-
1—»—2 1—ar-1
132
& (1+Me (A4+24+2e ... .. .. ¢ =3¢ A A
1__/11:—3 1__;1n—2
£ (1-+24) e =7 ¢ T ¢ —1 4
—1 2 -13-A3
1
—1 5 Ay
1
—! Zn—5 ‘s
1
-1 2 s
1
—1 I—1 A2n—1
So that

Aspzeps = (2n — 2r + Ve {(1 — A, + (1 — ATH44/(1 — ),
and

At — gartt
A3—|—A5—i—...Az,,ﬂ————l—_s_—;t“#—l—l—(—l_ﬂ—)z}ﬁq

-+ T fa o & ey L VIR
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Since 4 is less than 1, we may neglect 2* and neglecting also unity in comparison with 7,
Ay + Ay + ... A,,_, is approximately equal to

ot (22 — (1 + D/ — DA+ A1 — 2,

so that approximately

nd (22 — 1)(1 + 1))
A—1+A1—|‘A3’|‘---Aenmlz[l_{"m{l_l_ %2(1_‘1)2 J}(A~1+A1)~

Moreover, B_, = AA_, — A, + 1/824,, and A, = 3e(4_, + 4,)/(1 — A) approximately.

Thus, approximately
B_ =21+ ¢f(1 — A, — {1 —igf(1 — A)}4,.

Provided 4 does not approach unity, 1 — 4 may be regarded as comparable with #d. The terms
in ¢ are then of order 1/#* and may be neglected. Hence 4; = 44 _; — B_;and

2040+ 4) =@ —-Df+ @+ A,
as for the groove without the hair crack.
The term (24 — 1)(1 4 2)/#* (1 — 4)* in the expression for ¥ 4 may be written (21 — 1)/n,
where ¢ = (1 — 2)?/(1 - 2) 1s the radius of curvature at the root of the elliptical groove (ignoring
the hair crack). We are interested in cases for which ¢ is of the same order as 4, so that this

term may be regarded as of order (24 — 1)/n*d or (24 — 1)/n(1 — ). This term is of order higher
than 1/« but unless 2 be very nearly equal to unity, it may probably safely be neglected.

The stress concentration factor g, ( for the stress f) is then

uf = (3 + D1+ ndj(1 — WY1 — 4 — nd) .

If nd is zero, the value u, = (3 + 2)/(1 — 4) is that for the semi-elliptical groove alone, whilst
if 2 < — 1, the factor

po = (2 + nd)(2 — w'd)
is that for a hair crack of order #»’ and depth 4 in the surface of a plain test piece.

If the radius of curvature at the root of the hair crack is the same in the two cases,

@—w'dr (1 —i—nd* (1 — 2 — nd)?
@B — I+ 2 + @@R)wdd (1 — 2 (dfe) + ARnd*

Eliminating 4 and #'d by use of the relations 1 — 4 = 4/(u; + 1) and #'d = 2(u, — 1)/(o + 1)
and writing #d/(1 — 1) =m,

(1 — mf{(3df4e) + m®} = 4f(uo — 1)* and p'fuy = (1 + m)/(1 — m).

Then, by elimination of

vy _ polpo — 2) — (3d/4e)
1 pr o A(we — 1)* 4 (3d/40)(re — 3)(mo + 1)}'/* — 1 + (3d/4e)
an
# phpe — 2 — (3d/40 po)}

e = o (o — D7 F (32/A0) ko — B){uo + DI — T+ (3d/4e)
(i (d/0) = 0, pra—> ) -
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If po—> 0, ppy—> p, {1 - (3d[40)}'*, a form similar to that found for the case of shear. Putting
uy =1+ 2(afo)'”*, the maximum value of u, for variation of ¢, when the values of 2 and d are
specified, occurs when ¢ = 94°/64a and i (#/)m. = {1 + (164/3d)}/2. Values of p,, for values
of (a/e)"* down to 5 and for values of dja from 0-05 to 0-40 are shown in Fig. 18.

The many approximations that have had to be made m deriving an expression for gz, render
it extremely difficult to judge the accuracy of the result or to delimit its range of application.
Strictly, these approximations would appear to invalidate the results over practically the whole
field covered by Fig. 18; but by analogy with the shear case, for which the results are exempt
from similar doubt, it appears that the final results may be reasonably close to the truth. At
least it is thought that the curves of Fig. 18 express a qualitative truth, that the effect of hair
cracks will be to reduce the apparent stress concentration and to render its value less sensitive
to changes in the ratio a/o .

I1.10.  Conclusions.—(a) Effect of General Form of Hole.—The types of hole for which stress
concentration factors have been worked out are all included in the general class of polygonal
holes; but the results suffice to indicate the nature and order of the differences between the
true concentration factors and the approximate values 1 + (a/o)"/* and 1 + 2(a/o)*’%. Generally
it appears that the latter value is a far better approximation to the true value under direct stress
than the former is to the true concentration factor in shear. Nevertheless, the error of the form
py =1+ 2 (afe)*’* may be considerable, particularly for holes in which the radius of curvature
varies rapidly round the contour near the point of maximum stress. This point is illustrated by
Fig. 16 at low values of a/e; but it is brought out most clearly in the case of a simple polygonal
hole with an infinite number of sides. In this case the hole is indistinguishable from a true circle
and the stress factor u, takes the value 3, as would be expected ; but in fact the radius of curvature
of the contour oscillates indefinitely rapidly between @/2 and infinity, so that the value of
1 -+ 2 (a/o)'"® oscillates between 1 and 1 + 2 4/2.

The reason why the approximation u, = 1 + (a/¢)*/* should usually be so much more in error

than the approximation pu; = 1 4 2 (a/p)*/* is not apparent; but it appears to be generally so
(¢f. Part ILI).

() Application to Specific Forms of Hole—Two practicable methods for successively
approximating to a given form of hole by the transformation x + 2y = 2 ke have been

described. Unfortunately neither of these methods is automatically applicable to any given
case; but certain artifices are available to meet special difficulties. Another general method is
outlined in Part IV.

(c) Effect of Hair Cracks.—The analysis of the effect of hair cracks on the apparent value of g,
appears to be reliable within ascertainable limits; but the estimate of the apparent value of 4,
is much less certainly established. It does, however, appear safe to conclude that the presence
of hair cracks will reduce the apparent values of x, and x4, and render these values less sensitive
to changes in the ratio a/¢ (in comparison with the approximate formulae u, = 1 4 (a/o)*
and p; = 1+ 2(afe)"’®). On the other hand, in order to explain on this basis the whole
discrepancy between theoretical and experimental results it would be necessary to admit the
existence of hair cracks of quite considerable depth; these necessary depths of hair cracks appear
to be much greater than would by other evidence appear admissible.
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PART III
The Effect of Surface Irregularities on Fatigue Strength

Synopsis.—It is perhaps not generally recognized that the approximate formulae 1 + 4/(a/o)
and 1 4 24/(a/e) for the stress concentrations under shear and under direct stress due to a groove
of depth a and root radius g are applicable not only when the ratio /¢ is large but equally when
it is small; indeed the accuracy of these approximate formulae improves as a/¢ decreases. This
is demonstrated by computation by exact theory of the stress concentration due to a continuous
nearly sinusoidal undulation of the surface of a test piece, and it is shown incidentally that when
a and o are both negative, so that the groove is inverted into a protrusion, the * de-concentration ’
of stress is represented very closely by the approximate formulae 1 — 4/(a/e) and 1 — 24/(a/e).
It is shown further that these factors applied as corrections to computed stress factors under
torsion for an approximation to a square shaft with rounded corners suffice to reconcile these
results to the established solution for a square shaft under torsion.

The presence of the radical in the approximate formulae implies that long shallow grooves
cause appreciable stress concentration; for instance a groove of which the depth is only one
hundredth of the radius at its root increases the local value of applied direct stress in the ratio
1-2: 1. Such shallow grooves are present on the surface of every practical test piece and therefore
this purely geometrical effect of surface condition on the fatigue strength may be important.
Certain actual surface finishes are analysed in this aspect and their relative merits are reviewed.
Tt is concluded that substantial improvement of the geometrical factor by ordinary methods of
machining may be difficult to achieve, but that it is likely to result from other treatments, which
are generally thought to improve the fatigue resistance by entirely different means.

I11.1. Introduction.—The stress at the end of the principal axis 2a of an elliptical cylindrical
hole in an infinite block under direct stress perpendicular to this axial plane is 1 4 2(a/b), where
2b is the other principal axis of the ellipse; the shear stress at the same point due to shear parallel
to the principal axial plane in the direction of the axis of the hole is 1 + (a/b). These formulae
apply equally whether 2>b or 6 >a. Since the radius of curvature ¢ at the end of the principal
axis 2a is b*/a, the formulae may be written 1 4- 24/(a/o) and 1 + +/(a/oe).

These formulae, which: relate strictly only to elliptical holes, are in fact applicable much more
widely. Several comparisons are made in Part II between stress concentration factors accurately
computed for divers types of holes and grooves and the values indicated by the approximate
formulae. Apart from one or two rather extreme cases the differences are seldom large. On the
other hand, for complex forms of hole or groove, although the meaning of ¢ is always specific,
the interpretation to be placed on a, ‘ the depth of the groove, or half-depth of the hole’, is
sometimes not obvious. . In order, therefore, to demonstrate the validity of the approximate
formulae for long shallow grooves, when the ratio /¢ is small, it appears desirable to derive the
formulae afresh on the basis of an appropriate example accurately computed.

111.2. Stress Concentration due to a Continuous Undulation of the Surface of a Test Piece—Tt is
shown in Sections I1.8 (ii) and (iii), that the stress concentrations at § = 0 caused by a cylindrical
‘hole . :
¥ = Rcos f +acosnf
y = Rsin § — a sin nf .. . .- .. (33
for which #* = x* + y* = R®* -+ a* + 2Ra cos (v + 1)8

are u, = 2/{1 — (na/R)} under shear on the plane x = 0 in the direction parallel
\ to the axis of the cylinder - : .

and s, — [1 + (na/R) + 21 + (n — (/R — (1 — Y(&/RIJ{1 — (rafR)}
. under direct stress perpendicular to the plane x = 0 .. .. (35
31

(53510) C




The maximum and minimum radi1 of the hole are
R+ aat p=0,2x/(n—+1),4n/(n 4 1), etc.
and R —aat g =a/(n+ 1), 3z/(n + 1), etc.
At these points x = R cos {m/(n + 1)} 4+ a cos {nzj(n + 1)} = (R — a) cos {zf(n 4+ 1)} |
y = Rsin {n/(n 4+ 1)} — a sin {nz/(n + 1)} = (R — a) sin {n/(n + 1)}
so that § = tan™ (y/x) = =/(n + 1), etc.
and the half wavelength = R0 = =R/(n -+ 1).

~ The radius of curvature ¢ at # = 0 is R{1 — (na/R)¥/{1 + (#w*a/R)} and that at f =« /(n + 1)
is R{1 + (na/R)}[{1 — (n*a/R)}, the latter value corresponding to that at g = 0 is a if made
negative.
If we make R and # both tend to infinity, whilst the ratio R/n remains finite, we have
(a/e) = (naJR)*/{1 — (na/R)}*at g =0
and (— afe) = (na/R)*/{1 + (na/R)}*at p = =/(n + 1)

Then g, = 21— (na/R)} = 2{1 + v/iefe)}at =0
o1 2/{1 + (nafR)} = 2{1 — +/(— afe)} at § — /i + 1) } (36)
and = 8{1+ (Rl — (nafR)} = 3 {1 +2+/(afe)} at § — 0.
or {1 — (na/R)}1 + (na/R)} = 3{1—2/(— afe)} at § — n/(n + 1) } @)

Now, since R is indefinitely large and since m6(= mn[(n + 1), where m is finite) is indefinitely
small, the part of the contour including any finite number of undulations is in effect based on a
flat surface, and the whole of the material in the region round § = 0 is subjected to twice the
nominal shear stress and three times -the nominal direct stress due to the concentrations caused

by the (infinitely large) circular hole. Thus the separate local stress concentrations due to the
undulations are represented by the formulae 1 + 1/(a/e), etc.

The form of the undulation is not quite sinusoidal. Writing « = %8 so that « is finite, the
formulae (33) reduce to ' , :

x— R=acosa ‘
and y = a{(R/na)e — sin a} = a{(A/a)(x/z) — sin o} " i - (38)

where 1 = aR/n is the half wavelength of the undulation. If A [a is very large, approximately
a=ay/iand ¥ — R = a cos (wy/1) ; butif i/a is comparable with x, the trough of the undulation
is narrower than the crest. This is illustrated in Fig. 19, which shows the forms of the undulation

for Aja = 4, 8, 16.and 32. For values of 4 /a >30 the undulation does not differ appreciably from
a true sine curve.

Although strictly formulae (36) and (37) are applicable only to the special form of undulation
represented by formula (38) and Fig. 19, it seems probable that the forms 1 + 4/(a/e) should
be moderately accurate in application to more general forms. For such application it appears
that the depth & should be measured from the median line of the undulating surface and that,
disregarding the signs of a and ¢, the local stress concentration factors are approximately

ps =14 2+/(ale) and p, =1 + 4/(a/e), the positive sign being used for a trough and the
negative sign for a crest. »

I11.3. Application of Local Stress Concentration Factors to the Torsion of a Square Section
Shaft.—In order to test this hypothesis, reference is made to a-solution of the torsion problem for a
nearly square shaft with rounded corners. This solution, described in Part IV, is exact, but the
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sides of the shaft as represented by the analytical form are not truly plane; the undulating form
of the section boundary is shown in Fig. 20. The values of the shear stress along the section
boundary computed for this actual undulating contour are given as values of ¢ in Table 8; the
values of a2 and ¢ computed from the analytical form of this contour are also listed, together with
the values of a/¢ and 4/(a/¢), the latter being taken as negative when both a and ¢ are negative.
The corrected values ¢’ of the stress found by dividing ¢ by the appropriate value of local stress
concentration factor 1 -4 4/(a/¢) define a reasonably smooth curve of which the value near
p = 0 agrees quite closely with the value ¢’ = 1-351 found for a square shaft by another
method™.

TABLE 8
Shear stress distribution in a square section shaft under tovsion

B 0 5 10 156 20 25 30 35 40 45
100z .. |+0-500 |—0-352 |—0-428 |}-0-631 |—0-335 |—0-823 |+1-016 |—0-378 |—2-263 |1-8-341
e .. |40-118 |—0-411 |—0-327 |+0-114 |—0-570 |—0-287 |+0-136 |—1-945 |—0-356 |—0-381
alo .| 0-042; | 0-008; 0-013 0-055 0-006 0-029 0-075 0-002 0-064 —
A(afe) .. | 0-206 |—0-092 |—0-114 0:-236 |—0-077 |—0-170 0-273 |—0-045 |—0-252 —
q .. 1-624 1-235 1-192 1-617 1-200 1-041 1-482 0-919 0-693 0-637
q .. 1-348 1-360 1-344 1-308 1-301 1-252 1-163 0-961 0-927 0-637

By this test the formulae (36) and (87) appear likely to be widely applicable; their implications
in respect of ordinary surface finishes of engineering components are examined below.

II1.4. Stress Concentration due to the Geometry of Surface Finishes.—The methods available
for the measurement of roughness of machined surfaces do not afford a complete and accurate
record of the surface profile; for instance, where an exploring probe is used, the point of the probe.
cannot penetrate into a groove which may be narrower than the probe itself. On the other
hand the measurements available do afford conservative estimates of the depths of the larger
irregularities and of their * wavelengths ’. A depression of depth @ and length 4 corresponds to a
value of 4/(afo) = K(a/4), the value of the coefficient K depending upon the form of the groove;
it is least for a circular profile, for which ¢ = (2?/84), so that K = 24/2; for a sinusoidal profile
of half amplitude a and half wavelength 2, K = = ; and for practical grooves of less regular form
considerably greater values of K are to be expected. In order, therefore, to form a conservative
estimate of the stress concentrating effect of some.typical surface finishes, we may take values of
a and 2 from the records available™ and then assume +/(2/0) = 4(a/4). The values of the stress
concentration factors thus found (Table 9) are probably all very much less than the true values,

TABLE 9
Minimum stress concentration factors due to typical surface finishes
a A
Description of %}e;fger?\?o cSe by p
Surface Finish of Ref. 12) | (10-%in.) Microns (10-%in.) Microns !
Rough ground .. .. 6 60 1-52 400 10-1 2-2 1-6
Fine ground .. .. 19 10 0-25 130 3-4 1-6 1-3
Fine ground .. .. 6 10 0-25 200 5-1 1-4 1-2
Honed .. .. .. 20 3 0-08 120 3-0 1-2 1-1
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but at least these values serve to show that the stress concentrations due to the geometry of the
surface are by no means negligible. The stress concentrating effect of a surface finish depends
as much on the length 4 of the irregularities as on their depth a. For that reason a treatment
which reduces the value of a is ineffective if at the same time it reduces 1 in the same proportion.
Thus the difference between rough and fine grinding may not be marked if the shape of the abrading
particles on coarse and fine wheels is much the same. It is notable that the honed finish with an
average roughness of only 14 micro-inches still causes a stress concentration under direct stress
of at least 1-2. This is due to a few rather deeper grooves, which are widely spaced but rather
narrow. Such grooves may well differ markedly from the circular or sinusoidal form and the
estimated values of the stress concentration factors are probably far too low.

A rolled surface may be appreciably better than a machined one, not principally because the
irregularities may be shallower but rather because they are likely to be wider. Unfortunately
no records of rolled surfaces are available for analysis.

Although there is also a lack of records of shot-peened surfaces, in this case we know the
approximate value of ¢ and we may guess the value of 4. The radius ¢ is presumably greater
than the radius of the shot used and 2 may be slightly less than the penetration of the individual
shot into the surface. Shot 0-1 inch in diameter indenting to a depth of 0-001 inch may thus
leave a surface roughness of 500 micro-inches and yet cause a stress concentration of no more
than 1-2 under direct stress; this value is comparable with that resulting by polishing or honing.

For optimum shot-peening in this aspect the shot should be as large as possible and their speed
of impact should be such that they indent to a depth greater but not much greater than the depth
of the irregularities in the original surface. Very light peening with large shot of a surface
previously honed or polished might be expected to afford the highest possible fatigue resistance.
For instance a surface roughness not exceeding 20 micro-inches produced by peening with shot
0-1 inch in diameter should cause a stress concentration under direct stress of about 1-04.

Detailed analysis of records of surface roughness and perhaps more accurate analysis of the
stress concentrations due to particular wave forms would be required in order to render the
survey strictly quantitative. On the other hand, the few cases quoted all represent minimum
estimates, and they afford sufficiert evidence in support of the claims that the stress concentration
due to the geometry of the surface is vitally important and that allowance for this effect must be
made before the other effects of special surface treatments may be properly assessed.

It should be added that, although the surface irregularities left by machining are small they
are nevertheless large enough in relation to the atomic structure for the application of the ordinary
theory of elasticity to be valid. On the other hand there is evidence to indicate that materials
are relatively insusceptibl\e to such highly localized concentrations of stress.
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PART IV

Stress Concentration in Twisted Shafts

Synopsis.—A straightforward method for computing the stress distribution in a twisted shaft
of specified cross-section is developed, and the method is illustrated by application to a round
shaft with a single flat on one side and to a six-splined shaft. In these applications use is made of
the process of correction for local irregularities described in Part I1I, and some general comments
are made on the means to represent complex boundaries by analytical forms, which supplement
the techniques described in Part II. An approximate formula for the concentration of shear
stress in the fillet at the root of the spline of a splined shaft under torsion is proposed and the
accuracy of this formula is tested by three examples. One example of a hollow shaft with a lobed
external contour and a wide variation of wall thickness is worked out, and it is shown that over
the smooth inner boundary the shear stress is very nearly inversely proportional to the wall
thickness, whereas at the lobed outer boundary marked concentration of stress occurs at the
grooves between the lobes.

IV.1. Introduction.—The problem of torsion of a cylindrical shaft is usually stated by reference

to rectilinear axes Oxyz, Oz being parallel to the axis of the cylinder: that is, a solution is sought
0? 0® :

to the differential equation 8715 + @ﬁ = 0 subject to the condition that » = Jv(x* + »*) over

the boundary of the shaft, where 7 is the angle of twist in unit length. Subsequently the stresses

- a?/) . 81/)
are evaluated from the formulae 2% = — G ( 3y -+ ry) and 2 = G <é}2 + m.)
(Refs. 9, 11, 13, 14).

This method of approach is that originally devised by St. Venant, and it has been applied by
St. Venant himself and by many others to the solution of the torsion problem for a wide range of
particular shapes of boundary. Yet the method has two disadvantages; one is that it appears
rather indirect and that the physical meaning of the torsion function g is not emphasised; the
other is that the solution of the problem in elasticity is not clearly separated from the process of
transformation into the special co-ordinate system appropriate to each particular boundary.
The latter fault of the St. Venant method becomes most apparent when the problem concerns
some specified boundary. There appear to be no straightforward means to define the appropriate
form for v, and there seems to be no alternative to a process of trial and error.

By the method of approach described below the problem is stated from the outset by reference
to curvilinear axes, chosen to conform to the specified boundary. The solution in terms of shear,
stress is derived directly from the conditions of equilibrium and from the boundary conditions,
so that the appropriate form for y can be written down by inspection. Moreover, the physical
meaning of v is made clear and its relation to the warping of cross sections is emphasised. By
this approach it is made apparent that the solution of the torsion problem for any boundary
consists merely in defining a suitable system of curvilinear co-ordinates; once the co-ordinate
system has been defined, the remainder of the solution is straightforward computation.

IV.2. Geneval Cylindrical Co-ordinates. (See also Section II.3).—Any system of curvilinear
cylindrical co-ordinates may be defined intrinsically without reference to any other co-ordinate
system; but the intrinsic formulation merely relates the curvature of each co-ordinate line to
distance measured along that line, so that this method of representation does not afford a ready
picture of the shape of the system. For that reason and also for ease of satisfaction of the condition
that the co-ordinate lines shall intersect at right-angles, it is convenient to relate the orthogonal
curvilinear system (e, 8) to a rectilinear system (x, y) by specifying x + 4y == ¢(« + ¢p), where ¢ 1s
any continuous function. Thenalso x — 4y = ¢(x — ¢f),and 7* = 2* + 3* = d(at18).¢(a—2p).

35




Moreover, 6x + 28y = ¢'(x -+ if). (6o + 168), where the prime denotes differentiation with
respect to the complete argument « 42§, and éx — 58y = ¢ (o0 — 18)(6ec — 268). Hence,
0% = 0x" + 0y* = ¢'(a0 + 28).¢ (ot — 1) (0 + 6p%) = h*(So® + 68%. Thus unit change in «
or f represents a length %, and the wvalue of the space factor A, which is equal to
{¢'(e + 18). ¢'(« — ip)}*7, varies over the field in a manner determined simply by the form of
the function ¢.

<h+88—% 8a)dp ﬁ&ﬂ

g+da

N
\

|
|
|
le— Ra
|
|
N

The length of the «-line between g and 8 + ¢ g is then % 64 and the length of the « 4- da-line

e oh . *
between the same limits is (h -+ e 6oc> 6f; but the lines « and « + d« are % o apart, so that

. hép ok
the tangents to the lines # and g - 68 meet at a distance R,, such that Tﬁ = -a—; do 6B /h de,

1 1 2h . . . . . .
Of =735 - Since the o and f lines intersect at right-angles*, R, is the radius of curvature

10k : . :
of the «-line. Similarly —1—%— = R3g ;where R, is the radius of curvature of the g-line. These
5

are, in fact, the intrinsic formulae to which reference was made above and they alone could be

. . 1 o 71
used as definitions of the co-ordinate system. In the slightly simpler forms R = " ia ( }—) and
2 2/ 1 2 /1 ’
—]%; = =% ( %)T it is apparent that 2p <Fa ) =3 (E> ; this restriction results from the

condition that the « and g lines shall be orthogonal. It is perhaps worth noticing that in general

1. . .
7 1s not a plane harmonic function.

IV.3. The Torsion of a Cylinder —We assume that the section distant z from one end of the
shaft rotates without distortion through an angle f(z) about an axis parallel to the generators
of the cylinder; for the present there is no restriction on the form of the function f(z). Then
the displacement of any point in the plane of the section is 7f(2) normal to the radius vector
from the centre of rotation, and the displacements along the « and 8 co-ordinate lines are

? 9 ’
u, — __%a_j; F(z) and u, = 2— 5%: J&). (It can readily be checked that the strain e,, — %%
ug O .

-+ 7F 5p 18 ZerO, as also are the strains e, and e,;; but of course this is clear from the nature of
the displacement specified).

* The tangent to the f-line at «, f# has the slope (S — 1)/i(S + 1), where S = ¢'(« + 48)/¢'(= — ¢8) and the slope
of the tangent to the «-line is similar with — S for S. Thus the product of the two slopes is — 1 and the lines cut at
right-angles.

T Some authors (cf., for example, Ref. 8) define # by the reciprocal of the definition here adopted. Neither definition

appears markedly more convenient than the other ; butitisa pity that both are used, because care needs to be exercised
to avoid confusion.
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o - line

B ~line -

If the displacement out of the plane of the section parallel to the axis Oz is w, the shear stresses
and strains

0 0
0
and fZ = Ge, = G <Mﬂ—l—haﬂ

or, by substitution for #, and #,

¥ oy ¥ o7

. 0 o , dw
dzzG{ haﬁf()"l‘h_gv&}andﬁer %-@f(z)—{—h—aﬂ . .. .. .. (39

If we assume now that dw/0z = const., the stresses aa, af, ff and #Z are all independent of -
« and g. Then for equilibrium 2aZ/3z = 0 and 9p%/0z = 0, which merely demands f"'(z) = 0;
thus f'(2) = v and must be constant. Finally for equilibrium (% . az)/aoc + o(h. p2)[op = 0
a 2
which requires = + rw Ey T = 0*, so that w is a plane harmonic function.

With w we may therefore associate its harmonic conjugate » such that 9w/6c == 8¢/08 and

ow/op = — 0y/oa, and of course 4%p = 0. Then formulae (89) may be re-written
. 19 Lo . 10 1os
azzGﬁ%(w—gw)andﬁz=:— ;La—a(zp———gw). .. .. .. .. (40)
* The space function % takes care of all curvature effects, so that 42 has the same form in the «f system as in
Cartesians. It may readﬂy be shown that —]— ¢ = /3 = 2¢" (& — 1) <ax+ ¢—> and thataa 8%3 = 2¢"(x -+ 2 )
0 . 0 02 22 \? 1 82 02
(é_x > Hence — 2 - 8/32 = 4} (8_962 - 8—2 . Note, however, that (8762 @—2> = 5+ 852>
J1 PN\

2
i 8&2 + 57 ) S so that (42?2 is nof invariant (see Section 11.7).
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If aZ is zero round the contour of the cylindrical surface defined by o = constant, y — Lvs?
is constant (independent of §) round that contour. But #*is defined as a function of B for the
given value of « by the relation 7* = ¢(a - i8) . ¢(a — 3 p), so that the plane harmonic (torsion)

function y may at once be written down by inspection; the values of fz and w (the warping)
follow.

The value of the torque transmitted is
T:f j (BZcos 6 + azsin6) .7 . hdo. hdp
alp

12 12
Whgre cos 0 = Za_i and sin 0 = — 7 —; (see diagram, page 37).

Substituting for f% and aZ from formulae (40), the formula may be written in the form

0 or? 0 o7
T:—%Gfajﬁ{a—“(w_%wz)éf;Jr@(9—%172)5% dedf .. .. (41

IV. 4. Periodic Co-ordinate Systems.—The boundary of the section of any cylindrical shaft is
of course a closed curve; therefore, if this be represented by « = «,, the co-ordinate system must
be periodic in . A wide range of co-ordinate systems satisfying these conditions may be
represented in the form x 4- iy = ¢(x 4 18) = 2 2,6+ where the coefficients 1, are arbitrary

constants. It is indeed probable that any closed curve may be represented in this form, subject
only to limitations as to continuity similar to those governing expansions in Fourier series. The
general similarity to Fourier series is of course apparent, but the differences are such as to render
proof of the general proposition far from easy. However, in practice the form 22, may

be adjusted fairly readily to approximate to prescribed forms of boundary by particular methods .
based on Fourier forms, and in respect of stress analysis rules for complete expansion in infinite
series would not be of much practical use for a reason which will appear later (Section IV.9).

If the shaft be solid, the co-ordinate system must include the point x = 0, ¥ = 0 which is
taken within the shaft contour; for solid shafts, therefore, we are limited* to negative values of
either # or o It is convenient to take « and f always positive and to represent a solid shaft by
the form x + 7y = X 4_, e™*“**, 50 that the point x = 0, y = 0 corresponds to «—>c. Then

2= 2 A _,em % cos (m — n)B, both m and = being taken over complete ranges, or

m

=2 e 28 XA, A_e " cos (m — n)B, where m >mn. At the boundary it is
convenient to take « = 0 and then #* = const. +2 X S 1_, i_, cos (m — n)B, m > n, so that

w n

the torsion function » =71 % Z hwh_ye" ™% cos (m — n)B, m >mn, and . the warping

W

w=7 2 2A_,A """ sin (m — n)p, m >n. The terms with e” "¢ are excluded by the

k(2

condition that y and w must remain finite at x = 0, y == 0 (when «— o)

It the shaft be hollow, the pole x = 0, ¥ = 0 may be taken within the inner boundary and need
not be included by the «f co-ordinate system. Then the complete transformation x -+ 4y
= 2 2,&"**" may be used with both positive and negative values of #, and the part of the

formula for #*, which depends on g, becomes

22 X {A_,A_emmte L3 2,et e cog (m — n B, m > n.

k3 n

* The ellipse is an exception to this rule.
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The torsion function is then
—_ b (m—n)a —(m—n)a -
p =17 X 2 {Xe + Ye } cos (m — n)B.
where the values of X and Y are defined by the equations
Xe(m—n)al + Ye—(m—n)al —_ Z’m zne(m+n)a1 + l_mz_ne—(m—i-n)a]_
a‘nd Xe(m'l'ﬂ)ﬂg + Ye—(m—7l)a2 = }-m ln e(m_”)az _l" zz_.m 1_1;6“(”‘+")“2

and « = oy, and « = o, define the inner and outer boundaries of the hollow shatt.

There are still degrees of freedom and of restriction in respect of choice of the values of «; and «,,
but this concerns only the representation of the two boundaries in the form x + 2y = X 1,e"™

(cos #f + ¢ sin %) and does not affect the torsion problem itself. The range of double boundaries
which may thus be represented is limited, but for any that can be represented the torsion problem
is solved by the formulae above. The same conclusion is valid also for any multiply-connected
" section: once a co-ordinate system has been found by which all the boundaries are represented
by curves belonging all to one of the two co-ordinate families, the solution of the torsion problem
follows automatically. Representation of multiply-connected regions by a single system of
co-ordinates is seldom straightforward and the subject will be pursued no further here; one
example of a hollow shaft is worked in Section IV.11.

1V.5. The Stress System in a Twisted PoZygonal Solid Shaft.—For convenience the general
transformation will be rewritten as x 4+ 7y = X 1,e7*# and the external contour will be

n=1

taken at « = 0.
Then #* = x A,eme 2 z X Aphn€ "M cos (m — n)B, m >n

p=17 2 X Aph,e=me cos (m — n)p, m > n.

"

B = 55 3" — ¥)
G
—_ %7': [g: %2”26—2%(1
+ 2 T A, {(m A+ m)em™ I — (m— mjem M Y cos (m —m)] om >n .. (42)
and #* = %‘ n?a, e e 2 %’ %’ mnl, e~ cos (m — n)B, m > n. .. .. .o (43)

At the boundary, &« = 0
| Bz| = Go{Z nd,? + 2 5 X wd,d, cos (m — n) BY{ T n'A,°

-+ 2 2 X mnd,d, cos (m — n) Y%, m >n. .. .. .. .. .. (44

The area of section is # Z'#4,”. By applying formula (41), the modulus of section may be
found from the torque 7 transmitted in the form

T
J=&= g_ Tudt 4 Z T ud 2 44 D 5 eid e + 8 F E L b dduds | (45)

s

where m > % and in the last term (# - s) > m. (A slightly more concise form may be written,
“but that given emphasises the four types of product which contribute to the torque).
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IV.6. Two-Term Contowrs—In order to illustrate the application of formula (44), it is
convenient to consider the class of contours for which only 1, and 4, differ from zero. The
contour « = 0 is then 1,* 4- 1,2 -+ 24,4, cos (m — 1)#; the maximum and minimum radii are
-4y A 4,, and they are spaced at angular intervals #/(n — 1). The shafts are thus regular polygons
with (# — 1) sides: when » == 2 the shaft is more or less circular with a. slightly flattened region
at one side. Along the boundary o =0, 4* = A + #*A,* 4~ 2na A, cos (w — 1) and the
maximum and minimum of 4 = 1, 4 %4, correspond with the maximum and minimum of the
radius 7. The value of the shear stress is

Bz = Gr{1;* + na,? + 21,4, cos (n — 1) B}/{A* 4 n*A,% + 2nyA, cos (n — 1) By

the torque 7 = InGv(A,* 4+ 42,222 + nd,*), the area of section is #(1,* + #4,2) and the radius of
curvature of the contour is

e = {A" + #*A,% + 2mi, 2, cos (n — DBPE (A2 + n*2,2 4+ n(n + 1)2,4, cos (n — 18}

The principal values of §% and ¢ are

at Radius (#/4;) Shear stress (Bz/Gra) Radius of curvature
(e/h)

B=0 144 (1 + 22 + #d?) /(1 + nd) (1 + na)?/(1 + n2d)

B=af(n — 1) 1—4d {1 — 24 + nd®/(1 — nd) (1 — #nd)?/(1 — #2d)

where d = 4,/4,

When d < 1/n* the contour of the shaft is everywhere convex outwards: when d = 1/#* the
contour has a flat in the middle of each side: when d > 1/u? the shaft is grooved : and when

d— 1/n, the groove sharpens into a cusp. The values of the stresses for the series of flat-sided
shafts when d = 1/»® are

Number of sides : 1 2 3 4 5 6 7 8 9 10 )

pz | Max. 1-250 1-222 1-187 1-160 1-139 1-122 1-109 1-099 1-090 1-083 1
Gva, | Min. 1-083 0-944 0-912 0-907 0-909 0-913 0-918 0-923 0-928 0-933 1

the higher stress occurring at the middle of the flat side, and the lower at the corner. It should
be noticed that a shaft with a very large number of flats having between these flats a radius of
curvature equal to half its own radius has no concentration of stress under torsion (¢f. Section I1.8).

If nd = 1 — ¢, where ¢ is small, the value of the stress at the bottom of the narrow groove is
approximately 1 - (1 — 1/n)/e. The value of the radius of curvature (e) here is about
(e(n — 1) =d(e*(1 — 1/n), since =nd is approximately unity. Therefore, the stress
concentration factor 1 4- (1 — 1/n)/e = 1 -+ {(1 — 1/n)(d/o)}*"* which approximates to 1 4 (d/g)",
when # is large (¢f. Section II1.2.)

IV.7. The Square Shaft.—The square shaft in Section IV.6 above has corners very well rounded,
the diagonal width being only 2th greater than the width across the flats. A better approach
to the square shaft may be achieved by using the series 2;, 4;, 4o, Ay, etc., and by making

A €08 B+ A;C08 58 4 A, c08 98 + . . ., etc., fit as closely as possible to unity over the range
0 < p <w/4. The best fit afforded by the first six terms of this series has 4, = 1-080, 4, = — 0- 109,
Ay = 0-046, 1,; = — 0-027, 1), = 0-019 and i, = — 0-014. Using these values in formula (44),
the distribution of shear stress is at g (deg).
0 5 10 15 20 25 30 35 40 45
g;: 1-624 1-235 1-192 1617 1-200 1-041 1-482 0-919 0-693 0-637

and the torque is 1-4384(=/2)Gr.
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" The apparently erratic variation of fZ along the flat side of the shaft is actually quite regular
and the variation is due to local stress concentrations. The form defined by the values of the
1’s listed above differs from a true square with corners rounded to a radius of about }th of the
side of the square by less than 2 per cent over the whole contour. On the other hand the
curvature varies much more, and these local variations of curvature are responsible for marked
local concentrations of stress. The process of correction for the effect of these local irregularities
has been described in Section III.8 and is illustrated by Fig. 20.

IV.8. The Round Shaft with a S‘z'ngle Flat.—As a further illustration of the process of correction
of stress factors in respect of local undulations we take the case of a round shaft with a single flat.
If we take A, = — 0-34,

(Bz/Gzd,) = (1-18 — 0-6 cos £)/(1-36 — 1-2 cos §)*/*
(e/2;) = (1-36 — 1-2cos £)**/(1-72 — 1-8 cos g)
and (a/4;) = cos f — 0-3 cos 28 — 0-7080.
the term 0-7080 being the mean distance of the flat from the origin. Then as before

i 0 5 10 15 20 25 30 35 40 45
100(afl) —0-80 —0-72 —0-51 —0-19  0-19  0-55  0-80 08  0-59 —0-10
(/) —0-800 —0-912 —1-430 —4-841 3-931 1-603 1-127 0-943 0-858  0-818

100(a/e) 1-000 0-803 0-356 0-039 0-048 0-343 0-710 0-911 0-688 —
(a/o)1/? 0-100 0-080 0-060 0-020 —0-022 —0-059 —0-084 —0-095 —0-083 —
. (Bz/G=hy) 1-450 1-435 1-396 1-340 1-278 1-219 1-166 1-121 1-085 1-057

_(BeGh) . : : : . : ) _ _ .
1 (afe)* 1-318  1-317 1-316  1-314  1-307 1-295 1-273  1-238  1-183  (1-057)

The torque transmitted is 1-876(=/2 Gz4,%). The stress in a round shaft of radius 4, under
this torque would be 1-376Gvi,; the stress in a round shaft of radius 1-15 4,, that is the shaft
shown in Fig. 21 without the flat, would be 0-905Gz4,. The stress in a round shaft of the same
area under the same torque would be 1-074Gz4,, and By this comparison the flat may be said
to cause a stress concentration of 1-318/1-074 = 1-227.

Although in this example no other solution is available for comparison, it will be seen that the
corrected stress values form a smooth series and that the stress in the middle of the flat region

varies only very slowly. The shape of the section and the distribution of shear stress round its
boundary are shown in Fig. 21.

Correction by means of the formulae 1 4 (a/¢)/* is feasible only so long as the amplitude
a of the undulation is small, say 1 to 2 per cent of the mean radius of the shaft. For larger
amplitudes the choice of the mean height of the undulating surface becomes rather vague, and
the estimate of shear stress is likely to be inaccurate.

A further example of the distribution of shear stress in a round shaft with a flat on one side is

described in Fig. 22 ; again the values of the stresses after correction for the effect of local curvature
form a smooth series.

IV.9. Representation of Splined Shafts.—Shafts of technical importance in engineering practice
are usually circular over the greater part of their contours, and their greatest and least radii

seldom differ very greatly. A typical class is that of splined shafts, with heights of splines 5 to 10
per cent of the mean shaft diameter.

The radius # of the contour « = 0 of the system x + 4y = X A,e=*# is given by
rPr=2A4"+22 24 Acos(m—mn)p, m>n.
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If 2, is considerably greater than 1, 4, etc. (say about ten times) this formula differs only slightly
from .

7 = const. + 24, 22, cos (n—1)p

because the terms 1,4,, where neither m nor # is unity, are ten times smaller than the terrﬁs
43 %,. Moreover, to the same order of accuracy r = 4, + 2 4, cos (w — 1), so that the variation

of 7 is represented by the Fourier series Z,4, cos (n — 1)8.

If, then, we take the sequence 1,, 4,.,,, Asui1, €tc., we define a fegular n-sided shaft of which the
shape between g = 0 and g = 2=/n is represented approximately in terms of g by the Fourier
series 2" A1 cos snf, provided that 2,.,/4, is moderately small (about -one-tenth, say). By

writing 4, for 4,,,, and y for n8, we may apply the same Fourier series 2 A cos sy to any polygonal

shaft merely by assigning the appropriate value to #. The distortion of the form due to the
difference between y and §(= tan= (y/x)) will be discussed later; but it may be mentioned here
that this distortion tends to narrow the groove, to reduce the radius of curvature at its sides, to
widen the spline and to round its edges. In some measure it is practicable to anticipate these
effects by so choosing the basic Fourier series 2 Jssin sy that the subsequent distortion results

in the actual contour required; but sharp outstanding edges cannot readily be represented.

If the Fourier series X A, cos sy represents a function having a finite number of discontinuities

in the range 0 to =, the coefficients 1, eventually converge as the sequence1/s. By each integration
the eventual order of convergence improves, so that a.function, which may be differentiated
m times before discontinuities appear, eventually converges as 1/s”+*. In order, therefore, to
achieve a satisfactory degree of eventual convergence, so that no great number of Fourier terms
shall be required to approximate closely to a specified function, it is desirable first to represent
the function by abrupt changes not in itself but in some moderately high order differential.

On the other hand it can be shown that if a function has discontinuities in its mth differential,
the coefficient of the sth term in the Fourier series representing the function is of the order
-sin” so/s"**, where « is least distance between discontinuities (the whole period of the function
being 2z). Thus when « is small, as it must be if the changes of height of the function itself are
to be abrupt, the first terms in the Fourier series are small and the eventual order of convergence
as 1/s™** is scarcely established until s reaches values comparable with s /.

The latter effect more than offsets the former, so that a greater number of terms in the Fourier
series is needed when the transitions of the function are smoothed than when they are made
abrupt. At the same time the actual convergence to the smoothed function is decidedly better
-than that to the unsmoothed. It is essential to smooth at least to the extent of relegating actual
discontinuities to the second differential, because otherwise the curvature of the contour varies
erratically, and curvature has immediate effect upon stress. Discontinuities of curvature do not
in themselves affect the stress distribution.(see Sections IV.6 and IL.8), so that this degree of
smoothing suffices; but a considerable improvement in general smoothness may be achieved
‘by relegating discontinuities to the fourth differential. In practice, except for special purposes, the
choice extends no further; because the number of Fourier terms required increases by about
:50 per cent for each double differentiation. Whereas, using the lesser degree of smoothing six
oor seven terms may often suffice, with the greater smoothing nine or ten may be required, and the

volume of computation increases roughly in proportion to the square of the number of Fourier
terms.

* Two examples of splined forms represented by these means are illustrated in Figs. 23 and 25.
The first is based on a function discontinuous in its second differential and is represented by five
terms of the Fourier series; although these five are in effect nine because by symmetry four
intermediate terms are identically zero, the actual basis may be regarded as seven, because the
last one of the five is almost negligible. The second example is based on a function discontinuous
in its fourth differential and is represented by ten terms of the Fourier series. The basic function
for the first example has its second differential zero from g = 0 to 10 deg and from 20 to 30 deg,
unity from 10 to 15 deg and negative unity from 15 to 20 deg. When this symmetrical form is
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“ wrapped ’ round the circular shaft the width of the spline is increased at the expense of the width
of the groove and the outstanding corner 1s rounded to a large radius, whilst the inner corner is
sharpened. These effects are accentuated the greater the height of the spline in relation to the
diameter of the shaft, and a limit is reached when the inner corner becomes a cusp. The basic
function for the second example has its fourth differential zero from f = 0 to 5 deg and from
15 to 30 deg, 24 from § = 5 to 6 deg, — 40 from 6 to 7 deg, 5 from 7 to 11 deg and — 1 from
11to 15 deg. This asymmetrical function limits both the rounding of the outstanding corner and
the sharpening of the inner corner and results in near equality between the widths of spline and
groove. The particular height of spline chosen is that which renders the inner end of the side of

the spline radial.

These two examples illustrate the scope and indicate some of the limitations of the means
proposed for the representation of specified forms. A much more elaborate exposition would be
needed in order fully to demonstrate the possibilities of the method. The relative widths of spline
and groove may be fixed fairly easily by fixing the final limit of all the discontinuities (f = 20 deg
in the first example and f = 15 deg in the second); but the relative radii of curvature of the
two corners are much less easy to fix, because they are influenced much more by the height of
the spline. Although certain principles may be established, their statement would be wearisome
save to those who might actually seek to apply them, and these few may be left to find their -
own enjoyment in discovering these (and probably other) principles for themselves.

The two examples suffice as they stand to point certain general conclusions in respect of stress
distribution.

IV.10. Stresses in Splined Shafts.—Once the form of the shaft in terms of the A’s has been
decided, evaluation of the stress distribution proceeds by direct application of formula (44).
The complete stress distribution over the boundary of the section illustrated in Fig. 23 is shown
in Fig. 24, but in Fig. 25 only the peak of stress round g = 12 deg is illustrated, together with the
values of the stress at § = 0 deg and g = 30 deg. The latter values have been corrected for the
effect of the slight undulations of the nearly circular contour in this region in the manner described
in Section IV.7: but here of course the effective ‘ radius of local curvature ’ is the reciprocal
of the difference between the curvatures of the actual contour and the true circle. In the
region g = 0 deg to 2 deg of Fig. 25, the radius of the contour varies by about 4= 0-2 per cent,
and the resulting variation of stress is about 4- 7 per cent; in the region g = 28 to 30 deg,
the radius varies by about -+ 0-025 per cent and the resulting variation of stress is 4- 1-2 per cent.
The corrected stress values vary by less than 0-05 per cent in the range f = 28 to 30 deg and the
total variation of 2-1 per cent over the range § = 0 to 2 deg represents in part a real variation
(cf. Fig. 24), so that the actual accuracy is probably about 0-04 per cent.

In Fig. 24, the inset diagram shows the actual stress values adjacent to the inner corner of the
spline compared with the formula 1 4- L(afo)'"* where a is the height of the spline and ¢ is the
radius of local curvature. For this comparison unit stress is taken to be that at the surface of a
circular shaft of the same median radius subjected to the same twist ; the basis for this comparison
is discussed further below. For the second example the maximum stress is 4-45, whereas on the
same basis the expression 1 + H(a/¢)'* = 4-90. Ina third example (not illustrated) the maximum
stress was 2-79 and the value of 1 - 4{afe)'”” was 3:27. These values of 1 + %(afe)'”* are,
however, based on the local values of 1/e actually at the point of maximum stress. If instead we
substitute the average value of 1/¢ over the whole corner, that is from g = 12 deg to ff = 13 deg
in Fig. 25, the corresponding values of 1 + 1(ao)'”* become 4-37 for the case shown in Fig. 25
and 287 for the third case not illustrated. For the case illustrated in Figs. 23 and 24 the similar
comparison gives 1 + }{a/e)'/* = 2-36 (actual maximum value 2-48); the correction to average
curvature makes less difference in this case because the curvature round the corner is fairly

uniform.

These comparisons indicate that the expression 1 + I(a/g)*" affords a very fair approximation
to the value of the maximum stress; but the comparison would be both more soundly based and

more useful in practice, if unit stress could readily be defined otherwise, for instance as the stress
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at the surface of a circular shaft of the same area of section under the same torque. In order to
evaluate this stress, however, it would be necessary to compute the value of the torque from
formula (45), and in the second example (Fig. 25) this expression comprises over 100 quartic
terms. Although a great many of these terms are negligibly small, the computation of the torque
is still very tedious, and, since the value of the unit stress as thus defined is unlikely to differ
appreciably from that previously adopted, the extra computation has not been thought worth
while. On the evidence here presented, it suffices to claim that the inner corner of a spline,
representing as it does a sort of half groove, causes a stress concentration of about 1 + Hajo) 2,
where a is the height of the spline and ¢ is the average radius of curvature at its root, leaving unit
stress to be defined in any convenient manner. More precise statement would really be pointless,
because if greater precision were needed it would be unwise to rely on any approximate formula.

IV.11. Hollow Shafts.—The method of dealing with hollow shafts has already been explained
in Section IV.4 and it was remarked there thatf the only real difficulty is to specify a suitable
co-ordinate system. Following the procedure outlined in Section IV.9 the outer contour might be
represented as closely as desired in the form x + gy = 2 2,e~"+# if then the inner boundary

were circular and not too close to the outer one, it might suffice to use this form unaltered, because
the transform x - 4y = 2 A7+ ? rapidly approaches a true circle as o increases. For
instance in the case of the shaft illustrated in Fig. 25, the contour o — log, 2 differs from a true
circle by about 4- I per cent, so that a hollow shaft with this external boundary and a circular
bore not more than half the median diameter of the outside could reasonably be treated in this way.

The torsion function v must still include exponentials with positive indices, because without
these terms the condition a7 = 0 cannot be satisfied at both boundaries. Yet this amendment to
the analysis makes comparatively little difference to the stress distribution, because as the contour
o = constant approaches a circle, so also does a2 approximate more and more closely to zero.
In effect, therefore, for hollow shafts in which the bore is circular and fairly small, say less than
half the median diameter of the external contour, it is permissible to apply the results for a solid

shaft of the same external form ; but of course the torque-twist relationship is affected and must be
recomputed, ,

For hollow thin walled shafts the relationship between the transforms for the inner and outer
boundaries is too close for the simple mode of treatment outlined and it becomes essential to
re-specify the transform in the complete form x - 7y = 2 A,emet® 4 3, e =+ TFor instance,

in the case where the inner boundary is circular the elementary form
x + 7:_)/ = e (et if) + l_ne‘”(”"”f” _I_ ,111*26(;1—2) (a+18)
leads to ,},2 — x.?. _IL .,yZ — e—2a + l—n2e—2na+ '14;_2292("'4)
+ (24 7"t 4 27, e("¥9) cos (n — 1)p
+ 22y dy_se™® cos 2(n — 1)p.
Then we may choose the values of 4_, and A,_s SO that the coefficient of cos (n — 1)B in the
formula for #* disappears over the inner boundary (at « = &), and, since /i_, and A,_, are
necessarily of order 1/n or less, the variation of 7 over this boundary is thus reduced to order
1/n* or less. Application of this procedure is illustrated in Fig. 26, which relates to the shaft
defined by x 4- 4y = e ~+# 1 (. ]e —7=+i#8 _ 0.(025e 5o+ with outer boundary at o = 0 and
inner boundary at o = (1/6) log,2. The two boundaries are then
7,t = 1-010625 4+ 0-15 cos 68 — 0-005 cos 128
and 7,* = 0-7937(1- 005 — 0-005 cos 128)
and 7, varies by 4 1 per cent only.
The form of this shaft section is shown in Fig. 26 together with the distribution of shear stress.
It is interesting to note that the product of the stress at the inner boundary with the local wall

thickness varies only about - 20 per cent over the whole range of §; but the effect of true stress
concentration as opposed to load concentration is of course much greater over the outer boundary.
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1V.12. -Conclusions.—The principal purpose of this paper has been to demonstrate that the
solution of the torsion problem for any arbitrary section depends solely upon the specification of an
appropriate system of co-ordinates. Once the co-ordinate system has been devised the remainder
of the work is straightforward computation. Methods of constructing peculiar co-ordinate
systems have been described; but no attempt has been made to devise a comprehensive system
(on the lines of the Schwarz-Christoffel transformation), because in stress analysis a comprehensive
system would be virtually useless on account of its singularities. In place of a comprehensive
method for exact representation of specified contours, a procedure for correction of stress distribu-
tions in fairly rough approximate forms has been devised. This process of correction can be
carried through very quickly and the corrected results are likely to be highly accurate.

From the one or two examples worked out in illustration of the general method, it appears
that a fillet of radius ¢ at the foot of a change of section of depth a will cause a stress concentration
under shear of about 1 + %(a/e)*%. Several more examples need, of course, to be worked in order
to test the accuracy of this formula more thoroughly; but from the three cases computed its
accuracy seems likely to be better than 4 5§ per cent.
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F1e. 1. Limiting condition for failure of a test piece containing a circular hole.

e Description of Materials Tested .

! 04 carbon steel (normalised)

————— ’ - 2 3% nickel steel, low carbon (0.H.8T.)
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Fiz. 2. Comparison of fatigue test data on test pieces containing circular holes with theoretical curve.
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Fic. 4. Effect of differential hardening round a circular hole.
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F1c. 8. Limiting conditions for failure of test pieces
containing elliptical holes, stressed parallel to axes of hole.
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Fic. 5. Limiting condition for failure of test pieces containing elliptical holes oriented at random

(ratio of axes of elliptical hole 2: 1).
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F16. 6. Limiting condition for failure of test pieces containing elliptical holes oriented at random

(infinitely narrow elliptical hole).
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F1c. 7. Limiting conditions for failure
under combined direct stress and shear of
test pieces containing elliptical holes
oriented at random.
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F16. 8. Results of fatigue tests under combined alternating

bending and torsion on ‘ silal ’ cast iron.
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F1c. 13. Forms of deep narrow groove.
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Fic. 15. Approximate representations of square holes
with rounded corners.
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Fic. 17.  Apparent values of stress concentration factors in shear as affected by depth of hair cracks.
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F16. 18. Apparent values of stress concentration factors in direct stress as affected by depth of
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Fic. 19. Forms of continuous tndulations to which the basis formulae for stress concentrations are
strictly applicable.
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'F16. 20. Stress distribution round square shaft with rounded corners under torsion.
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Fic. 21. Distribution of shear stress in a round bar with a flat.
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Fic. 22. Distribution of shear stress in a round bar with a flat.
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Fic. 24. Distribution of shear stress round the periphery of the six-splined shaft shown in Fig. 23.
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F16. 26. Distribution of stress in a hollow lobed shaft.
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