

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Low-Speed Wind'Tumnel Tests on

 Two 45 deg Sweptback Wings of Aspect \mathbb{R} acios 4.5 and 3.0 (Models \mathbb{A} and \mathbb{B})By
J. Trouncer, M.A.
and
G. F. Moss, B.Sc.

Crown Copyrighs Reserved

IONDON: HER RIAJESTY'S STATIONERY OFFICE 1953
PRICE IIS 6 NET

Low-Speed Wind-Tunnel Tests on Two 45 deg Sweptback Wings of Aspect Ratios 4.5 and 3.0 (Models \mathbb{A} and \mathbb{B})
 By
 J. Trouncer, M.A.
 and
 G. F. Moss, B. Sc.

Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

> Reports and Memoranda No. 2710 June, 1947^{*}

- Summary.-Introduction.-A general programme of tests on sweptback wings is being made in the high and lowspeed wind-tunnels of the Royal'Aircraft Establishment to supplement existing data.

Range of Investigation.-Low-speed stability tests have been made on two wings of aspect ratio 4.5 and 3.0 (Models A and B). Both wings were of 45 deg sweepback, $4: 1$ taper ratio and 14 per cent thickness ratio.

The present report covers the tests made on these wings and is given in three parts:-
Part I Stability tests on the two wings without body or tail unit.
Part II ," ,",",", with a body, fin and tailplane fitted (varying tail angle).
Part III Tests made with two types of nose flap on Model A (aspect ratio 4.5).
Results.-The results give the effect of aspect ratio on longitudinal, lateral and directional stability for a ' wing alone ' and a wing, body and tail unit combination. They also give the value of the downwash at a constant distance behind the two wings.

The nose flaps tested on Model A did not prove effective as a means of improving the stability.

1. Introduction.-Before the advantages of sweepback at high Mach number were realised the only tests on sweptback wings were made on models of low-speed tailless aircraft where the sweepback did not normally exceed 40 deg and the aspect ratios were of the order of 6.0 .

Since wings of larger sweepback and smaller aspect ratio are likely to be incorporated into many of the future aircraft designed to operate at high Mach number, a series of tests is being made in the high and low-speed wind-tunnels of the Royal Aircraft Establishment to supplement the existing data.

The low-speed tests are being made on four models :-
(1) Model A, sweepback 45 deg, aspect ratio $4 \cdot 5$.
(2) Model B, sweepback 45 deg , aspect ratio $3 \cdot 0$.
(3) Model C, sweepback 59 deg, aspect ratio 3.5.
(4) A half-wing model of Model A built for testing suction devices. The taper ratio of all these wings is $4: 1$ and the section is a 14 per cent thick symmetrical section.
The programme on Models A and B includes stability tests with and without a body and tail unit and some tests with nose flaps on Model A. The tests on Model C are mainly of pressure plotting to check the application of the linear perturbation theory. The half-wing model is being

[^0]used to investigate the possibility of improving stability and maximum lift by applying suction in various ways.
2. Range of Investigation.-The present report gives the results of the tests made on Models A and B. These will be dealt with in three parts:-
(1) Tests on the wings without body or tail unit.
(2) Tests with body, fin and tailplane (varying tail angle).
(3) Tests with nose flaps on Model A.

All these tests were made in the No. 1, 111 $\frac{1}{2} \mathrm{ft}$ Wind Tunnel at a windspeed of $120 \mathrm{ft} / \mathrm{sec}$. The corresponding Reynolds numbers (based on mean chord) are 1.4×10^{6} and 1.7×10^{6} for Models A and B respectively. A list of the symbols and definitions used in the report is attached.

Part I. Tests on Wings A and B without Body, Fin or Tailplane

3. Details of Tests.-Details of the two wings are given in Table 1 and the wing planforms are shown in Figs. 1a and 1b. Ordinates of the section used, a high-speed section designed by H. B. Squire, are given in Table 2. The original section was 10 per cent thick, but this was scaled up to 14 per cent to give a more reasonable value of the maximum lift coefficient at the Reynolds number of the tests.

Both wings were fitted with 20 per cent chord split flaps which covered 50 per cent of the span and were hinged in two alternative positions, at. 60 per cent and 80 per cent of the chord. When open the angle along wind was 60 deg. Further details are given in Table 1.

The pitching moments for all tests on the wing alone are given about an axis through the mean quarter chord point of the wing.
4. Range of Investigation.-The tests included longitudinal stability measurements with flaps 0 deg and flaps 60 deg hinged in the two alternative positions and elevon angles of 0 deg and -10 deg. Lateral and directional stability measurements were also made over an incidence range with flaps 0 deg and flaps 60 deg hinged in the rear position.
5. Results.-The results of these tests provide a comparison between two wings of different aspect ratio, other factors being kept constant.
5.1. Lift and Longitudinal Stability (Tables 5 and 6, Figs. 4 to 12).-5.1.1. Flaps 0 deg.The lift curves for the two wings are given in Figs. 4 and 5 and the basic curves with elevons 0 deg are shown compared in Fig. 10. The corresponding pitching-moment curves are given in Figs. 6, 8 and 11.

It will be seen that the reduction in aspect ratio-from 4.5 to 3.0 causes a decrease in the lift slope at low angles of incidence from $d C_{L} / d \alpha=0.056$ per deg to $d C_{L} / d \alpha=0.052$ per deg. In both cases there is a change in slope of the lift curve at an incidence of about $\alpha=18$ deg due to the development of a tip stall.

This tip stall is also evident from the pitching-moment curves particularly in the case of model A (aspect ratio 4.5) when the resulting instability is very pronounced above $C_{L}=1 \cdot 0$. The wing of smaller aspect ratio (Model B) shows initial instability followed by increased stability just before the stall. No theoretical explanation has been advanced for this secondary stability, but it is consistent that it should occur on the wing of small aspect ratio if one considers the limiting case of a delta wing of the same taper ratio and approximately the same sweepback angle (46.5 deg) but with an aspect ratio of 1.33 (wing D.T. $\frac{1}{4}$ of Ref. 1). In this case the instability was eliminated altogether and there was an increase in stability at high lift coefficients (Fig. 6 of Ref. 1).

The changes in lift and pitching moment, flaps 0 deg , due to 10 deg of negative elevon angle are given below at two angles of incidence, showing the slight reduction in elevon effectiveness that occurs on both wings at high angles of incidence (Figs. 6 and 8).

TABLE A
ΔC_{L} and ΔC_{M} due to 10 deg of negative elevon angle

	ΔC_{L}		$\Delta C_{\Delta 0 \cdot 25 \bar{c}}$	
α deg	Model A	Model B	Model A	Model B
5	-0.09	-0.10	0.075	0.059
10	-0.07	-0.08	0.059	0.052

The neutral point at $C_{\dot{L}}=0$, flaps 0 deg, is given by $h_{n}=0.35$ for both wings, but at higher angles of incidence the neutral point on Model A is ahead of that on Model B. This result is surprising since, on a straight wing with no sweepback the neutral point tends to move back with increase of aspect ratio.
5.1.2. Flaps 60 deg.-The chief advantage obtained from opening the flaps is the reduction in the stalling angle from $\alpha=27$ deg to $\alpha=17$ deg or 18 deg . The actual gain in maximum lift is small or even negative (see Figs. 4 and 5), but the lift is obtained at a useable incidence.

Table B gives the lift increments and the values of maximum lift with flaps down for the two positions of the flap hinge line.

TABLE B
Lift increments and values of $C_{L \max }$ with flaps down (untrimmed values)

Flaps hinged at 80 per cent chord		Flaps hinged at 60 per cent chord		
	C_{L} at $\alpha=5 \mathrm{deg}$	$C_{L \text { max }}$	C_{L} at $\alpha=5 \mathrm{deg}$	$C_{L \max }$
Model A	0.48	1.32	0.36	1.15 approx.
Model B	0.44	1.31	0.31	1.17

Fig. 12, which is reproduced from Ref. 2, shows the order of decrease in maximum lift increment due to split flaps which may be expected with increasing angle of sweepback. The wings in this case had no taper and were of aspect ratio $4 \cdot 8$. It is clear from this that for wings of sweepback greater than 45 deg it is difficult to design a split flap that will give a positive increment in maximum lift.

The pitching-moment curves for the two flap positions are given in Figs. 7 and 9. From these and from Fig. 11 we can obtain the changes in trim due to the flaps at $\alpha=5 \mathrm{deg}$ and the elevon angles required to trim out these changes assuming the elevon power to be linear up to $\eta_{W}=-20$ deg. These are given in Table C.

TABLE C

Changes in trim due to flaps and elevon angles required to retrim at $\alpha=5 \mathrm{deg}$

	Flaps hinged at 80 per cent chord		Flaps hinged at 60 per cent chord	
	$\begin{aligned} & \Delta C_{3 x \cdot 25 \bar{c}} \\ & \text { due to flaps } \end{aligned}$	$\Delta \eta_{W}$ deg to trim	$\begin{aligned} & \Delta C_{3 \cdot 25 \bar{c}} \\ & \text { due to flaps } \end{aligned}$	$\Delta \eta_{\mathrm{F}}$ deg to trim
Model A Model B	$\begin{aligned} & -0.10 \\ & -0.12 \end{aligned}$	$\begin{aligned} & -12 \\ & -21 \end{aligned}$	$\begin{aligned} & -0.03 \\ & -0.04 \end{aligned}$	-4 -7

The result of having to apply such large angles of elevon to trim out the negative pitching moment due to the flaps lessens the effective lift from the flaps considerably. The net increases in lift due to the flaps can be obtained from Tables A, B and C and are given below in Table D.*

> TABLE D
> Net increases in trimmed lift due to flaps at $\alpha=5$ deg

	Flaps hinged at 80 per cent chord	Flaps hinged at 60 per cent chord
Model A	0.37	0.32
Model B	0.24	0.24

These figures show that on Model A the flaps at 80 per cent of the chord are more effective at a constant incidence while on Model B there is little to choose between the two positions. The same conclusion is reached if the values of maximum lift shown in Figs. 7 and 9 are considered.

The neutral point with flaps down is at about $0.365 \bar{c}$ in both cases at $\alpha=0$ deg but, at higher incidences, as with the flaps up, the neutral point of Model A is ahead of that of Model B.
5.2. Lateral and directional stability (Tables 7 and 8, Figs. 13 to 19).--At low angles of incidence the yawing moments and rolling moments due to sideslip increased linearly. The values of n_{v} and l_{v} calculated between $\beta= \pm 5$ deg are plotted in Figs. 17 and 18. The sideforce measurements were small and tended to be scattered, but mean values of y_{v} have been plotted in Fig. 19 to give an indication of their order. The effect of aspect ratio was negligible except on n_{v} which, at angles of incidence above 9 deg showed higher values for the wing of smaller aspect ratio (Fig. 17).

At high angles of incidence, particularly on Model B the yawing moment and sideforce curves became very unsymmetrical and, at some angles of yaw unstable as shown by the curves of Figs. 13 and 14.

To investigate the cause of this a separate series of tests were made on Model B. The details of these tests have already been given in Ref. 3 and the results will only be summarized briefly here.

It was found that between $\alpha=17 \mathrm{deg}$ and $\alpha=19 \mathrm{deg}$ (the incidence at which the tip stall was evident from the change in slope of the lift curve) a secondary curve could be obtained of the type shown in Figs. 15 and 16. This effect was most evident on yawing moment, sideforce and drag and was caused by an early stall which occurred at the starboard tip if the model was disturbed. It was concluded from these tests that on any sweptback wing there is probably a critical incidence range of about 2 deg just below the tip-stalling incidence, over which range the lateral and directional curves will become unsymmetrical and unstable if disturbed. The result one would expect to obtain on a completely symmetrical wing in perfect flow would consist of a basic symmetrical curve and two alternative 'loops' according as one or the other tip is caused to stall prematurely. On Model B one loop only could be obtained because of the tendency due to accumulative small errors, for the starboard wing tip to stall first even if undisturbed.
On Model A yawing moments were not measured beyond $C_{L}=0.88$ whereas the tip stall was not apparent from the lift curve until $C_{L}=1 \cdot 0$. The only sign of asymmetry in this case was the increasingly large positive yaw at $\beta=0 \mathrm{deg}$ (see Fig. 13).

Part II. Tests on Wings A and B with Body, Fin and Tailplane

6. Details of Tests.-The body used for these tests was circular in cross-section. The tailplane was 10 per cent thick, of aspect ratio 3.0 and with its quarter-chord line sweptback at 45 deg (see Table 1). The fin was equivalent to half the tailplane. Elevators were represented but no

[^1]rudders. A sketch of the body, fin and tailplane combination is shown in Fig. 2 and details of the body ordinates and of the tailplane section are given in Tables 2 and 3.

As the same body was used on both wings a greater portion of wing span was covered by the body in the case of Model B than Model A. The wing chord was set along the centre-line of the body and the position of the body relative to the wings was fixed by keeping the distance of the nose of the body ahead of the wing mean quarter-chord point the same in both cases.

The flaps used in these tests were the same as those used for the tests with wing alone, except that they were of reduced span to allow clearance for the body. The resulting flaps spans were 36 per cent and 32 per cent of the semi-span for Models A and B respectively. In each case only the rear position of flap was tested, i.e., the hinge lines were at 80 per cent of the chord.

For the tests with body, all the pitching moments have been referred to $0 \cdot 45 \bar{c}$ and, in cases where the curves for wing alone are needed for comparison, these have been transferred from $0 \cdot 25 \bar{c}$ to the further aft c.g. This been done mainly to simplify the presentation of the results but also because the tunnel c.g. had to be moved to $0 \cdot 45 \bar{c}$ for the tests with tailplane because of limitations on the balance.

The symbol η_{E} has been adopted throughout for elevator angles to avoid confusion with η_{W} which is the normal symbol for elevon angles on sweptback wings when these are defined along wind.
7. Range of Investigation.-Longitudinal measurements were made on the wings with body both with and without the fin and tailplane. The following tail settings relative to the body centre-line were used :-

Model A	Flaps 0 deg	$\eta_{T}=+1.5 \mathrm{deg}, 0 \mathrm{deg}$ and -1.4 deg
	Flaps 60 deg	$\eta_{T}=+1.5 \mathrm{deg}, 0 \mathrm{deg}$ and -1.4 deg
Model B	Flaps 0 deg	$\eta_{T}=0 \mathrm{deg},-1.4 \mathrm{deg}$ and $-2 \cdot 9 \mathrm{deg}$
	Flaps 60 deg	$\eta_{T}=+1.5 \mathrm{deg}, 0 \mathrm{deg},-1.4 \mathrm{deg}$ and -2.9 deg

On Model A elevator angles of 0 deg, -5 deg, and -- 10 deg were tested at one tail setting ($\eta_{T}=0 \mathrm{deg}$).

Brief tests were also made to find the effect of the fin and tailplane on n_{v}, l_{v} and y_{v} at $C_{L}=0$.
8. Results.-From these tests we can obtain the body effect and the mean downwash at a given distance behind the wing mean quarter-chord point for two wings of different aspect ratio.
8.1. Lift and Longitudinal Stability (Tables 9 and 10, Figs. 20 to 29).-8.1.1. Effect of the body on stability. -The body effect on lift is negligible for the wing of small aspect ratio, Model B (Fig. 21) but on Model A the body causes a slight increase in the value of $d C_{L} / d \alpha$ (Fig. 20).

The body effect on stability is also small in both cases. It causes a backward shift of the neutral point of $\Delta h_{n}=0.026$ in the case of Model A (Fig. 22) and of $\Delta h_{n}=0.010$ in the case of Model B (Fig. 23).

In a recent note ${ }^{4}$ Professor Schlichting has given a simple theoretical method for calculating the neutral point shift due to a body on sweptforward and sweptback wings. In this he shows that the forward shift of about $\Delta h_{n}=5$ per cent to 8 per cent of the mean chord that normally occurs with straight wing combinations is greatly increased when the wing is sweptforward and decreased when it is sweptback, becoming a backward shift if the angle of sweepback is great enough. The examples given in this note are based on two series of wings of aspect ratio 5 and taper ratios of $5: 1$ and $1: 1$ with the angle of sweepback varying from - 30 deg to +45 deg . The results show that the small backward shift of the neutral point measured on Models A and B is consistent with theory and of the right order. It is clear from the tunnel results on the two wings that changes in aspect ratio give only relatively small changes in the movement of the neutral point due to the body.
8.1.2. Effect of the tailplane on stability. - The problem of longitudinal stability on a sweptback wing when this is part of a wing, body and tail unit combination is very different from the problems that arise when the wing is considered as an all-wing aircraft. For instance, the effect of a tip stall which is so serious on the longitudinal stability of the wing alone is overridden by the stable moment from the tailplane and is only evident by a slight decrease in the stability at some incidences.

This does not mean that such a tip stall can be tolerated on a wing, body and tail unit combination since it will still seriously affect both the aileron power and the lateral stability of the aircraft. The pitching-moment curves for Models A and B with body and tailplane are plotted in Figs. 22 and 23 (flaps 0 deg) and in Figs. 24 and 25 (flaps 60 deg) for various tail settings. The neutral point positions obtained from these curves are $h_{n}=0.55$ and $h_{n}=0.45$ for Models A and B respectively with an increasing backward shift, particularly on Model B as the lift coefficient increases up to the tip stalling incidence. Comparison of Figs. 11 and 26 shows that, the backward shift of the neutral point due to the tailplane is considerably more for Model A than for Model B, this being due to the larger downwash that occurs at the tailplane behind Model B (see section 8•13).

The effect of elevator movements of 5 deg and 10 deg on the pitching moment curves for Model A are given in Fig. 22. Over the range $\alpha=0$ deg to $\alpha=15$ deg the mean increments in lift and pitching moment due to 10 deg of negative elevator are $\Delta C_{L}=-0.064$ and $\Delta C_{M}=0 \cdot 165$.
8.1.3. Dowweash.-The mean downwash behind the two wings at the tailplane position has been calculated over the incidence ranges $\alpha=0$ deg to $\alpha=16$ deg (flaps 0 deg) and $\alpha=0 \mathrm{deg}$ to $\alpha=17.5 \mathrm{deg}$ (flaps 60 deg). The results for the two cases are shown plotted in Figs. 27 and 28 and the values of $d \varepsilon / d \alpha$ at low incidences are given below in Table E.

TABLE E
Downwash at the tailplane position

	$d \varepsilon / d \alpha$	
	Flaps 0 deg	Flaps 60 deg (hinged at 80 per cent chord)
Model A	0.55	0.55
Model B	0.59	0.63

These values of $d \varepsilon / d \alpha$ are rather surprisingly large in view of the only German data available on the downwash behind sweptback wings. In a series of tests on wings of aspect ratio $5 \cdot 0$ H. Trienes ${ }^{5}$ obtained the variation of $d \varepsilon / d \alpha$ with angle of sweepback shown in Fig. 29. It will be seen that from these curves the downwash one would expect to obtain behind Model A would be of the order of $d \varepsilon / d \alpha=0 \cdot 43$. The higher value actually obtained is probably due to the effect of the body on Model A there being no body present in the German tests.

The reduction in $d \varepsilon / d \alpha$ with angle of sweepback shown in Fig. 29 is due to the fact that sweepback causes a reduction in the lift loading at the centre of the wing and an increase at the tips. The higher value of $d \varepsilon / d \alpha$ obtained on Model B compared with Model A is due to the normal effect of a decrease of aspect ratio on downwash.
8.2. Lateral and Directional Stability (Tables i1 and 12). -The values of n_{v}, l_{v} and y_{v} at $C_{L}=0$ were measured on the two wings with body both with and without the tail unit. Comparison with the results for wing alone (allowing for the change of c.g. position) gives the following table of increments.

TABLE F

Effect of body and tail unit on n_{v}, l_{v} and y_{v} (c.g. at $\left.0 \cdot 45 \bar{c}\right)$

		$\Delta n_{\text {o }}$	Δl_{v}	Δy_{0}
Body	Model A Model B	$\begin{aligned} & =0.066 \\ & -0.076 \end{aligned}$	-0.005	$\begin{aligned} & -0.029 \\ & -0.019 \end{aligned}$
Fin and tailplane	Model A Model B	$\begin{aligned} & 0.159 \\ & 0.187 \end{aligned}$	-0.014	$\begin{aligned} & -0.141 \\ & -0.127 \end{aligned}$

It can be assumed that these increments will be roughly constant over the incidence range at least up to the tip stall and the curves of n_{0}, l_{v} and y_{v} with body and tail unit can be obtained from the curves for wing alone of Figs. 17, 18 and 19 if correction is made to the yawing and rolling moments for the change in c.g. position.*

Part III. Tests with Nose Flaps on Model A

9. Introduction.-On the tailless aircraft of Ref. 6, which had a 10 per cent thick wing sweptback at 40 deg, tests showed that nose flaps were an effective means of ensuring stability over the whole incidence range. It was decided, therefore, to try the effect of similar nose flaps on Model A.
10. Details of Tests.-Two types of nose flap were tested :-
(a) Flat plate nose flaps of constant chord (1.81 in .) set at an angle of 135 deg to the wing chord (see Fig. 3a).
(b) Nose flaps of similar chord but curved to fair into the wing surface and set at an angle to the wing chord which varied along the span, ranging from 140 deg at the tip to 125 deg at 50 per cent of the span (see Fig. 3b).
These angles were chosen by the aid of the German results on nose flaps given in Ref. 7.
Both types of nose flap were designed to extend inboard from the tip to cover 40 per cent or 50 per cent of the span.

The pitching moments for these tests are all given relative to the mean quarter-chord point of the wing to provide direct comparison with the ' wing alone ' results without nose flaps.
11. Range of Investigation.-Longitudinal measurements with nose flaps fitted were made on the wing alone and on the wing and body both with flaps 0 deg and with flaps 60 deg hinged at 80 per cent of the chord.
12. Results (Table 13, Figs. 30, 31).-The initial tests were made with the flat plate type of nose flap, similar to the type described in Ref. 6. It was found, however, that on Model A these gave no improvement to the stalling characteristics as can be seen from the curves of Fig. 31. It seemed probable that this might be due to the thicker section of Model A (14 per cent as compared with 10 per cent) causing too sudden a change of curvature at the junction of the wing and nose flap. It was also thought that the use of a constant angle combined with a constant chord nose flap might be proving too great a simplification since it was known from German tests that the optimum setting varies with the chord length and, in the case of Model A the nose flap-chord/local-chord ratio varied from 20 per cent at the tip to 8 per cent at 50 per cent of the span.

[^2]For these reasons the second type of nose flap was developed, with a curved surface faired into the wing and an angle to the wing chord which varied along the span and was designed to give the optimum setting at each point, based on the ratio of nose flap chord/local chord.

Tests made with this second type of nose flap showed that, although they increased the maximum lift obtainable with positive stability by $\Delta C_{L} \bumpeq 0 \cdot 12$, the wing still became unstable at the final stall. Observation of the flow with tufts showed that, even with the nose flaps fitted, there was still considerable outflow near the trailing edge at the tip and there was also a breakaway which tended to form off the inboard end of the nose flap.
An upper surface fin of the type shown in Fig. 1a was fitted along the chord at 50 per cent of the span to check the outflow and the inboard end of the nose flap was faired into the wing. Although the fin changed the form of the pitching-moment curve it gave no improvement in the stalling characteristics of the wing (Fig. 31).

The body effect with nose flaps was again very small.
In view of these results one can only conclude that there is a limit to the type of sweptback wings for which effective nose flaps can be designed. Although they proved successful on the aircraft of Ref. 6 there are differences between that model and Model A, i.e., increased wing thickness, higher taper and greater sweepback, all of which tend to make the tip stall more severe and so increase the difficulty of finding any effective means of delaying it.

A further difference between the two models is the design of the wing body junction. On the aircraft of Ref. 6 the wing near the body was thickened up to include entries and, as a result, the root stalled at about $\alpha=18 \mathrm{deg}$, whereas, on Model A the root is still unstalled by $\alpha=26$ deg. This means that, if a stable stall is to be achieved on Model A then the tip stall must be delayed to a considerably higher angle of incidence than was necessary on the other model.

There is no evidence from German tests to suggest that the results obtained on Model A are pessimistic or that the Germans themselves have designed an efficient nose flap on a comparable wing. The systematic German tests on nose flaps were mostly made on straight wings, apart from the tests reported in Ref. 7 which were made on a 10 per cent to 12 per cent thick wing of only 35 deg sweepback, and which are, therefore, hardly comparable. Some tests with nose flaps were made on a highly tapered thick wing of 45 deg sweepback ${ }^{8}$, but for these tests the nose flaps covered the whole span and were considered as a means of increasing the maximum lift rather than as a means of improving the stability and no pitching-moment curves are included in the report.

It seems probable, therefore, that on highly tapered wings of large sweepback such as Models A and B some new means of curing the tip stall will have to be employed if these wings are to be a practical proposition at low speeds.

List of Symbols and Definitions

S	Wing area $=\frac{1}{2} \times b\left(c_{r}+c_{t}\right)$
b	Wing span (tip chord to tip chord)
\bar{c}	Mean chord $=S / b$
A	Aspect ratio $=\bar{b} / \bar{c}$
c_{r}	Root chord, i.e., chord on centre-line
c_{t}	Tip chord
S^{\prime}	Tailplane area $=\frac{1}{2} \times b^{\prime}\left(c_{r}^{\prime}+c_{t}^{\prime}\right) N . B$. This is not the standard definition
b^{\prime}	Tailplane span (tip chord to tip chord)
c_{r}^{\prime}	Tailplane chord on centre-line
c_{t}^{\prime}	Tailplane tip chord
V	Tunnel speed
ρ	Air density
$\alpha \mathrm{deg}$	Incidence of wing chord line and body centre-line
β deg	Angle of sideslip
C_{L}	Lift $/ \frac{1}{2} \rho V^{2} S$
C_{D}	Drag $/ \frac{1}{2} \rho V^{2} S$
C_{M}	
C_{n}	Yawing moment $/ \frac{1}{2} p V^{2} S b$, used for the tests with and
C_{7}	Rolling moment $\left(\frac{1}{2} \rho V^{2} S b \quad\right.$ without body
C_{Y}	Side force $/ \frac{1}{2} \rho V^{2} S$, ${ }^{\text {d }}$
n_{0}	$d C_{H} / d \beta \quad(\beta$ in radians)
l	$d C_{l} / d \beta$
y_{v}	$\frac{1}{2} \times d C_{Y} / d \beta$
η_{w} deg	Elevon angle (defined in a chordwise direction)
$\eta_{E} \mathrm{deg}$	Elevator angle (defined in a chordwise direction)
$\eta_{T} \mathrm{deg}$	Angle of tailplane relative to wing chord and body centre-line
ε deg	Mean downwash at mean quarter-chord of tailplane
h_{n}	Neutral point position as percentage of mean chord

REFERENCES

TABLE 1
 Model Data

[^3]This is equivalent to half the tailplane set in a vertical plane with its centre-line chord coinciding with the centre-line chord of the tailplane.
net area (i.e., area outside the body) 1.247 sq ft
Nose Flaps (for Model A only)-details given in Figs. 3a and 3b
Upper Surface Fin (for Model A only)
position-along rearmost 67 per cent of chord at 50 per cent span area (each) 0.32 sq ft
$N . B$. The areas of the wings and tailplane are the areas between the two tip chords, i.e., ignoring the radiused tip. The mean chords and spans, etc., are given with the same convention.

TABLE 2
Ordinates of Wing Section for Models A and B 14 per cent Thick Symmetrical Section (Section B of Aero Memorandum 27)

Distance from L.E. (per cent chord)	Half ordinate (per cent chord)
0	0
0.5	$1 \cdot 219$
.0 .75	$1 \cdot 490$
1.25	1.916
2.5	$2 \cdot 684$
5.0	3.723
7.5	$4 \cdot 468$
10	$5 \cdot 050$
15	$5 \cdot 908$
20	$6 \cdot 483$
25	$6 \cdot 839$
30	$6 \cdot 996$
35	6.935
40	6.721
45	$6 \cdot 392$
50	$5 \cdot 974$
55	$5 \cdot 486$
60	$4 \cdot 943$
65	4.362
70	3.753
75	$3 \cdot 130$
80	2.504
85	1.878
90	1.252
95	0.626
100	0

Nose radius $=1.5$ per cent chord.

TABLE 3
Ordinates of Body for Models A and B

Distance from nose (in.)	Body radius (in.)
0	0
0.573	1.040
1.720	1.800
2.868	2.323
5.735	3.268
11.470	4.545
17.205	$5 \cdot 423$
22.940	6.065
28.675	6.535
34.43	6.905
40.148	7.168
45.883	7.350
51.618	7.463
57.353	7.500
63.088	7.463
68.833	7.345
74.558	7.138
80.293	6.833
86.028	6.423
91.763	5.900
97.00	5.245
103.233	4.400
108.970	3.063
119.480	0

TABLE 4
Ordinates of Tailplane Section for Models A and B
10 per cent Thick Symmetrical Section

Distance from L.E. (per cent chord)	Half ordinate (per cent chord)
0	0
0.5	0.863
0.75	1.059
1.25	1.357
2.5	1.911
5.0	2.655
7.5	3.190
10	3.601
15	4.214
20	4.625
25	4.881
30	5.000
35	4.964
40	4.803
45	4.565
50	4.274
55	3.916
60	3.524
65	3.107
70	2.774
75	2.244
80	1.792
85	1.339
90	0.887
95	0.452
100	0

12

TABLE 5

Lift, Drag and Pitching-Moment Coefficients on Model A Wing alone, i.e., no body or tail unit

$\eta_{W}=0 \mathrm{deg}$				$\eta_{W}=-10 \mathrm{deg}$			
α deg	C_{L}	$\cdots C_{D}$	$C_{\text {in } 0.25 \bar{c}}$	α deg	C_{L}	C_{b}	$C^{31}{ }_{0} \cdot 25 \bar{c}$
Flaps							
$0 \cdot 3$	$0 \cdot 11$	$0 \cdot 0072$	+0.0015	$4 \cdot 5$	$0 \cdot 183$	0.0119	+0.0520
$4 \cdot 6$	0.283	0.0137	-0.0261	$8 \cdot 8$	$0 \cdot 439$	$0 \cdot 0255$	+0.0218
$8 \cdot 9$. 0.523	$0 \cdot 0312$	-0.0426	$13 \cdot 1$	0.694	0.0545	-0.0040
$11 \cdot 0$	$0 \cdot 630$	$0 \cdot 0430$	-0.0465	15.25	0.824	0.0842	-0.0245
$13 \cdot 15$	0.747	0.0623	-0.0540	$17 \cdot 35$	0.933	0.1297	-0.0242
$15 \cdot 3$	0.885	0.0979	-0.0703	$19 \cdot 45$	1.014	$0 \cdot 1768$	-0.0069
$17 \cdot 45$	1.000	$0 \cdot 1439$	-0.0732	21.5	1.086	$0 \cdot 2474$	+0.0091
19.5	1.083	$0 \cdot 1990$	-0.0577	23.6	$1 \cdot 142$	$0 \cdot 3080$	+0.0091 +0.0177
21.6	$1 \cdot 155$	0.2533	-0.0440	$25 \cdot 65$	$1 \cdot 190$	$0 \cdot 3691$	$+0.0234$
23.7	1.222	0.3224	-0.0356	26.65	$1 \cdot 199$	$0 \cdot 4025$	$+0.0295$
$25 \cdot 3$	1.253	$0 \cdot 3823$	-0.0348				
$26 \cdot 25$	1.280	$0 \cdot 4242$	-0.0302				
26.75	1.280	$0 \cdot 4485$	-0.0207				
Flaps 60 deg (hinged at 80 per cent chord)							
0.95	0.557	- 0.0952	-0.1012	0.8	$0 \cdot 450$	$0 \cdot 1020$	
$5 \cdot 2$	0.802	0.1185	-0.1292	$5 \cdot 1$	0.696	$0 \cdot 1192$	-0.0443
$9 \cdot 45$	1.032	$0 \cdot 1504$	-0.1473	$9 \cdot 35$	0.948	$0 \cdot 1467$	-0.0766
$13 \cdot 7$	1.246	$0 \cdot 2241$	-0.1575	13.65	$1 \cdot 178$	0.2080	-0.1077
15.75	$1 \cdot 304$	0.2821	-0.1392	17.7	1.246	0.3338	-0.0528
$17 \cdot 8$	1.318	$0 \cdot 3628$	-0.0918		1246	$0 \cdot 338$	-0.0528
19.75	$1 \cdot 300$	$0 \cdot 4218$	-0.0739				
Flaps 60 deg (hinged at 60 per cent chord)							
0.8	0.438	0.0953	-0.0283				0.0528
$5 \cdot 05$	0.669	$0 \cdot 1085$	-0.0568	4.95	0.567	$0 \cdot 1098$	0.0215
$9 \cdot 3$	0.873	$0 \cdot 1295$	-0.0748	$9 \cdot 2$	0.788	$0 \cdot 1262$	-0.0093
$13 \cdot 5$	1.071	$0 \cdot 1751$.	-0.0923	13.45	1.020	$0 \cdot 1652$	-0.0459
15.55	$1 \cdot 130$	0.2168	-0.0786	17.55	$1 \cdot 105$	$0 \cdot 2569$	-0.0089
17.6	$1 \cdot 157$	0.2695	-0.0448				

TABLE 6
Lift, Drag and Pitching-Moment Coefficients on Model B
Wing alone, i.e., no body or tail unit

$\eta_{W}=0 \mathrm{deg}$				$\eta_{w}=-10 \mathrm{deg}$			
$\alpha \mathrm{deg}$	C_{L}	C_{D}	$C_{\text {M }}^{0.25 \bar{c}}$	α deg	C_{L}	C_{D}	$C^{\mathbf{N 0} 0.25 \bar{c}}$
0.35	0.026	$0 \cdot 0067$	-0.0041	$0 \cdot 2$	-0.076	0.0101	$0 \cdot 0565$
*2.45	$0 \cdot 150$	$0 \cdot 0093$	-0.0165	$4 \cdot 45$	$0 \cdot 155$	0.0115	0.0359
$4 \cdot 6$	$0 \cdot 257$	0.0143	-0.0255	8.7	0.382	$0 \cdot 0259$	0.0117
8.8	0.483	0.0345	-0.0459	12.95	0.616	0.0537	-0.0150
13.05	0.695	0.0657	-0.0644	$15 \cdot 1$	0.738	0.0747	-0.0371
15.2	0.811	0.0891	-0.0825	17.25	0.858	$0 \cdot 102$	-0.0573
17.3	0.939	$0 \cdot 121$	-0.1098	$19 \cdot 35$	$0 \cdot 947$	$0 \cdot 158$	-0.0662
$19 \cdot 4$	1.021	$0 \cdot 181$	-0.1120	$21 \cdot 4$	1.000	0.219	-0.0646
$21 \cdot 45$	1.060	$0 \cdot 244$	-0.1028	$23 \cdot 45$	1.048	0.280	-0.0707
$23 \cdot 5$	$1 \cdot 104$	0.303	-0.1074	$25 \cdot 5$	1.082	0.342	-0.0785
25.55	$1 \cdot 129$	0.367	-0.1130	27.5	1.098	$0 \cdot 431$	-0.0799
27.55	$1 \cdot 155$	$0 \cdot 467$	-0.1178				
28.55	$1 \cdot 144$	0.489	-0.1219				
Flaps 60 deg (hinged at 80 per cent chord)							
0.85	0.512	$0 \cdot 106$	-0.1269	$0 \cdot 75$	$0 \cdot 420$	$0 \cdot 123$	-0.0695
$5 \cdot 1$	0.731	$0 \cdot 134$.	-0.1521	$5 \cdot 0$	0.633	$0 \cdot 135$	-0.0916
$9 \cdot 35$	0.946	0.172	-0.1776	$9 \cdot 2$	0.850	$0 \cdot 167$	--0.1181
$13 \cdot 55$	$1 \cdot 162$	0.221	-0.2054	$13 \cdot 45$	1.074	$0 \cdot 210$	-0.1518
$15 \cdot 65$	$1 \cdot 264$	0.248	-0.2234	$15 \cdot 6$	$1 \cdot 181$	$0 \cdot 237$	-0.1730
16.75	1.312	0.265	-0.2268	$17 \cdot 6$	1.204	$0 \cdot 309$	-0.1665
$17 \cdot 6$	1.211	$0 \cdot 369$	-0.1768	19.55	$1 \cdot 171$	$0 \cdot 378$	-0.1433
Flaps 60 deg (hinged at 60 per cent chord)							
0.75	0.393	0.106	-0.0449				
$4 \cdot 95$	0.597	$0 \cdot 123$	-0.0683				
$9 \cdot 15$	0.785	$0 \cdot 147$	-0.0899				
$13 \cdot 35$	0.978	$0 \cdot 178$	-0.1123				
$15 \cdot 45$	1.065	$0 \cdot 200$	-0.1293				
$16 \cdot 5$	$1 \cdot 123$	0.213	-0.1387				
17.05	$1 \cdot 141$	$0 \cdot 219$	-0.1431				
$17 \cdot 6$	$1 \cdot 174$	$0 \cdot 234$	-0.1140				
$18 \cdot 5$	$1 \cdot 103$	0.279	-0.1117				

[^4]TABLE 7
Lateral and Directional Coefficients and Derivatives on Model A Wing alone, i.e., no body or tail unit
(c.g. at $0.25 \bar{c}$)

$\alpha \mathrm{deg}$	$\begin{gathered} C_{L} \\ (\beta=0 \mathrm{deg}) \end{gathered}$	β deg	$10^{3} C_{n}$	$10^{3} C_{Y}$	$10^{3} C_{l}$	n_{v}	y_{v}	$l v$
Flaps 0 deg	$0 \cdot 007$							
		10		-1.0				
		5	$0 \cdot 08$	-0.4	-3.58			
$0 \cdot 3$		0 -5	0.02 -0.05	${ }_{0}^{0}$	-2.89	0.001	-0.003	-0.008
		-5 -10	-0.05	0.6 1.2	-2.20 -1.84			
			-0.12					
$4 \cdot 6$	$0 \cdot 287$	15	$1 \cdot 24$	-1.4	$-20 \cdot 16$			
		10	0.83	0	-14.95			
		5	$0 \cdot 28$	0.5	$-9 \cdot 12$			
		0	-0.37	1.0	-3.32	0.006	-0.004	-0.067
		-5	-0.81	1.7	$2 \cdot 61$			
		-10	-1.35	$2 \cdot 2$	$8 \cdot 84$			
		-15	-1.84	$3 \cdot 1$	14.96			
$8 \cdot 9$	0.523	10	3.33	-1.4	-22.93			
		5	1.57	-0.4	-12.62			
		0	-0.30	$0 \cdot 6$	-0.99	0.021	-0.004	-0.132
		-5	-2.05	$1 \cdot 1$	$10 \cdot 36$			
		-10	-3.67	1.8	$20 \cdot 72$			
11.0	0.635	10	4.52	-2.5	-24.01			
		5	$2 \cdot 27$	-2.5	-11.90			
		0	0.54	-1.7		0.023	-0.003	-0.141
		-5	-1.66	-1.5	$12 \cdot 67$			
		-10	$-3 \cdot 44$	-0.7	22.78			
$13 \cdot 15$	0.750	10	$5 \cdot 25$	$-3 \cdot 9$	-20.80			
		5	$3 \cdot 17$	$-4 \cdot 6$	-9.72			
		0	1.68	-5.7	1.22	0.016		-0.126
		-5	$0 \cdot 35$	$-5 \cdot 8$	12.33			
		-10	-1.64	-4.9	21.66			
$15 \cdot 3$	$0 \cdot 872$	15	6.76	-7.5	-24.60			
		10	$5 \cdot 70$	-8.9	-12.31			
		5	$4 \cdot 80$	$-10 \cdot 2$	-4.97			
			$3 \cdot 48$	-8.2		$0 \cdot 014$		-0.080
		-5	$2 \cdot 30$	-6.7	9.05			
		-10	$0 \cdot 93$	-5.8	$14 \cdot 98$			
		-15	-4.07	-2.3	29.79			

TABLE 7-continued

$\alpha \mathrm{deg}$	$\begin{gathered} C_{L} \\ (\beta=0 \mathrm{deg}) \end{gathered}$	$\beta \mathrm{deg}$	$10^{3} C_{n}$	$10^{3} C_{F}$	$10^{3} C_{l}$	n_{0}	y_{0}	l_{v}
Flaps 60 deg (hinged at 80 per cent chord)								
$2 \cdot 0$	$0 \cdot 620$	$\begin{array}{r} 10 \\ 5 \\ 0 \\ -5 \\ -10 \end{array}$	2.86 0.85 -0.59 -2.24 -4.31	$\begin{array}{r} -7.2 \\ -3.1 \\ -0.4 \\ 2.4 \\ 6.4 \end{array}$	$\begin{array}{r} -21.23 \\ -11.37 \\ -1.25 \\ 8.95 \\ 19.59 \end{array}$	0.018	-0.016	-0.116
$5 \cdot 2$	0.805	$\begin{array}{r} 15 \\ 10 \\ 5 \\ 0 \\ -5 \\ -10 \\ -15 \end{array}$	$\begin{array}{r} 7.92 \\ 5.22 \\ 2.15 \\ -0.54 \\ -3.43 \\ -6.87 \\ -9.69 \end{array}$	$\begin{array}{r} -14 \cdot 1 \\ -9.3 \\ -4.5 \\ -2.0 \\ 2.4 \\ 7.2 \\ 12.6 \end{array}$	$-41 \cdot 11$ -27.71 -14.35 -0.62 13.94 28.29 41.79	0.032	-0.020	-0.162
$9 \cdot 45$	1.070	10 5 0 -5 -10	$\begin{array}{r} 8.63 \\ 3.93 \\ -0.06 \\ -4.54 \\ -8.75 \end{array}$	$-11 \cdot 2$ $-7 \cdot 4$ $-3 \cdot 6$ $1 \cdot 1$ $5 \cdot 4$	$\begin{array}{r} -33 \cdot 46 \\ -16.90 \\ 0.69 \\ 18 \cdot 18 \\ 34.88 \end{array}$	0.048	-0.024	-0.201
11.5	$1 \cdot 146$	15 10 5 2.5 0 -5 -10	14.64 9.53 $5 \cdot 12$ 4.34 3.75 -1.12 -6.92	- $-16 \cdot 4$ $-9 \cdot 7$ $-6 \cdot 9$ $-6 \cdot 5$ $-8 \cdot 9$ $-4 \cdot 5$ $2 \cdot 0$	$\begin{array}{r} -33.06 \\ -15.86 \\ 0.74 \\ 18.63 \\ 34.34 \end{array}$,

TABLE 8
Lateral and Directional Coefficients and Derivatives on Model B
Wing alone, i.e., no body or tail unit
(c.g. at $0.25 \bar{c}$)

TABLE 8-continued

α deg	$\left(\beta=C_{L}^{C_{L}} \mathrm{deg}\right)$	β deg	$10^{3} C_{n}$	$10^{3} C_{F}$	$10^{3} C_{l}$	$n{ }^{2}$	y_{v}	l_{v}
Flaps 0 deg-continued		15	11.88	$-2 \cdot 2$	$-39 \cdot 2$			
		$12 \cdot 5$	$11 \cdot 55$	-	-			
		10	$11 \cdot 47$	$-9 \cdot 4$	-19.8			
$19 \cdot 4$	$1 \cdot 028$	$7 \cdot 5$	$14 \cdot 46$	-23.5	$-4 \cdot 1$			
		5	$13 \cdot 59$	-29.6	$5 \cdot 6$			
		0	$12 \cdot 06$	$-30 \cdot 3$	16.9			
		-5	$4 \cdot 68$	$-16 \cdot 2$	$21 \cdot 5$			
		-10	-2.09	$-4 \cdot 8$	$29 \cdot 7$			
		-15	-10.55	$4 \cdot 7$	$41 \cdot 7$			
Flaps 60, deg (hinged at 80 per cent chord)						$0 \cdot 008$	-0.008	-0.090
$0 \cdot 85$	$0 \cdot 510$	15	$2 \cdot 79$	$-5 \cdot 5$	$-26 \cdot 3$			
		10	$1 \cdot 85$	-1.6	$-17 \cdot 2$			
		5	$0 \cdot 97$	-0.4	$-10 \cdot 1$			
		0	$0 \cdot 31$	$1 \cdot 1$	$-2 \cdot 6$			
		-5	-0.35	$2 \cdot 4$	$5 \cdot 7$			
		-10	-1.23	$5 \cdot 2$	$13 \cdot 5$			
		-15	-2.58	$8 \cdot 5$	$22 \cdot 3$			
$6 \cdot 15$	$0 \cdot 787$	10	$5 \cdot 02$	$-3 \cdot 3$	-29.5	$0 \cdot 032$	-0.018	-0.158
		5	$2 \cdot 63$	$0 \cdot 4$	$-15 \cdot 3$			
		0	-0.42	$4 \cdot 2$	$-1 \cdot 3$			
		-5	$2 \cdot 91$	$6 \cdot 9$	$12 \cdot 1$			
		-10	$5 \cdot 80$	$10 \cdot 1$	$26 \cdot 3$			
$11 \cdot 45$	$1 \cdot 06$	10	$11 \cdot 34$	$-6 \cdot 0$	-38.2	$0 \cdot 065$	-0.031	-0.226
		5	$5 \cdot 67$	-0.5	$-20 \cdot 6$			
		0	$0 \cdot 66$	$2 \cdot 6$	-0.3			
		-5	-5.75	$10 \cdot 3$	$18 \cdot 8$			
		-10	-11.17	$14 \cdot 8$	$38 \cdot 7$			
$14 \cdot 6$	$1 \cdot 206$	10	$14 \cdot 41$	$-6 \cdot 2$	$-39 \cdot 1$	$0 \cdot 084$	-0.034	-0.230
		5	$7 \cdot 73$	$-1 \cdot 2$	$-20 \cdot 5$			
		0	$0 \cdot 90$	$4 \cdot 9$	-0.7			
		-5	$-6 \cdot 87$	$10 \cdot 7$	$19 \cdot 8$			
		-10	$-13 \cdot 48$	$13 \cdot 4$	$40 \cdot 7$			

TABLE 9a
Lift, Drag and Pitching-Moment Coefficients on Model A with Body and Fin No tailplane

$\alpha \mathrm{deg}$	C_{L}	C_{D}	$C_{\Delta I} 0.45 \bar{c}$
Flaps 0 deg			
0.35	0.027	0.0131	0.0025
3.55	0.216	0.0167	0.0209
6.75	0.417	0.0284	0.0406
10.0	0.607	0.0461	0.0641
13.2	0.884	0.0743	0.0840
16.4	0.982	0.134	0.1038
19.6	1.136	0.213	0.1520
21.65	1.210	0.257	0.1836
23.7	1.248	0.334	0.2130
25.7	1.256	0.409	0.2335
26.75	1.267		
27.75	1.267	0.489	0.2423

Flaps 60 deg (hinged at 80 per cent chord)

0.75	0.408	0.0769	-0.0192
2.9	0.541	0.0832	-0.0185
5.05	0.669	0.0943	-0.0072
9.35	0.912	0.123	0.0186
13.6	1.158	0.180	0.0425
15.7	1.233	0.228	0.0763
17.75	1.290	0.276	0.1100
19.75	1.295	0.337	0.1586
21.7	1.223	0.401	0.1872

TABLE 9b
Lift, Drag and Pitching-Moment Coefficients on Model A with Body and Fin With tailplane

$\eta_{T} \mathrm{deg}$	$\eta_{E} \mathrm{deg}$ (Elevators)	α deg	C_{L}	$C^{\text {d }}$	$C_{\text {3180.45c }}$
$\begin{gathered} \text { Flaps } 0 \mathrm{deg} \\ 0 \end{gathered}$	0	$0 \cdot 35$	0.010	0.0144	0.0047
		$3 \cdot 55$	0.240	0.0188	-0.0173
		6.75	0.463	$0 \cdot 0321$	-0.0398
		$10 \cdot 0$	0.654	0.0519	-0.0593
		13.2	0.874	0.0867	-0.0903
		$16 \cdot 4$	1.098	$0 \cdot 155$	-0.1328
		19.6	1.280	0.241	-0.162
		21.65	1.375	$0 \cdot 307$	-0.209
		23.7	$1 \cdot 418$	0.397	-0.262
		25.7	$1 \cdot 450$	$0 \cdot 486$	-0.296
		27.75	$1 \cdot 480$	0.587	-0.344
0	-5	$3 \cdot 55$	$0 \cdot 210$	$0 \cdot 0187$	0.0664
		6.75	$0 \cdot 422$	0.0303	0.0444
		10.0	$0 \cdot 621$	0.0484	$0 \cdot 0282$
		13.2	$0 \cdot 830$	0.0805	0.0012
		16.4	1.062	0.146	-0.0392
		$19 \cdot 6$	1.228	0.230	-0.0606
		$22 \cdot 65$	$1 \cdot 363$	0.332	-0.1384
		$25 \cdot 7$	$1 \cdot 419$	$0 \cdot 472$	-0.226
		28.75	$1 \cdot 460$	$0 \cdot 604$	
0	-10	3.55	$0 \cdot 179$	0.0198	$0 \cdot 1497$
		$10 \cdot 0$	0.591	0.0467	$0 \cdot 1048$
		13.2	0.807	0.0785	$0 \cdot 0748$
		16.4.	1.030	$0 \cdot 144$	0.0422
		$19 \cdot 6$	$1 \cdot 196$	$0 \cdot 222$	$0 \cdot 0254$
		22.65	1.330	0.323	-0.044
		25.7	1.393	$0 \cdot 463$	-0.152
-1.4	0	$0 \cdot 35$	$0 \cdot 016$	0.0145	0.0340
		$3 \cdot 55$	0.234	0.0186	0.0153
		6.75	$0 \cdot 434$	0.0303	-0.0018
		$10 \cdot 0$	0.635	$0 \cdot 0502$	-0.0191
		$13 \cdot 2$	0.854	0.0843	-0.0507
		$16 \cdot 4$	1.080	$0 \cdot 152$	-0.0877
		$19 \cdot 6$	$1 \cdot 247$	0.233	-0.1028
		22.65	$1 \cdot 371$	$0 \cdot 340$	-0.1845
		25.7	$1 \cdot 445$	0.484	

Table 9b-continued

$\eta_{T} \mathrm{deg}$	$\begin{gathered} \eta_{E} \mathrm{deg} \\ \text { (Elevators) } \end{gathered}$	$\alpha \mathrm{deg}$	C_{L}	C_{D}	$C_{\text {M }}^{0.45 \bar{c}}$
Flaps 0 deg-continued					
1.5	0	$0 \cdot 35$	0.037	0.0145	-0.0399
		$3 \cdot 55$	0.255	0.0195	-0.0625
		6.75	0.475	0.0338	-0.0857
		$10 \cdot 0$	0.679	0.0549	-0.1072
		$13 \cdot 2$	0.894	0.0919	-0.1494
		$16 \cdot 4$	$1 \cdot 138$	$0 \cdot 167$	-0.196
		$19 \cdot 6$	1-295	0.254	-0.227
		22.65	$1 \cdot 423$	$0 \cdot 365$	-0.286
Flaps 60 deg (hinged at 80 per cent chord) 0.000					
0	0	0.75	0.389	0.0763	0.0377
		$2 \cdot 9$	0.547	0.0853	0.0151
		$5 \cdot 05$	0.674	0.959	$0 \cdot 0004$
		$9 \cdot 35$	0.945	0.128	-0.0302
		$13 \cdot 6$	1.217	$0 \cdot 188$	-0.0761
		$15 \cdot 7$	1.324	0.244	-0.0915
		17.75	1.398	$0 \cdot 298$	-0.1124
		19.75	$1 \cdot 430$	0.380	-0.174
		21.7	1.398	$0 \cdot 454$	-0.231
$-1 \cdot 4$	0	0.75	0.370	0.0756	$0 \cdot 0750$
		$2 \cdot 9$	$0 \cdot 499$	$0 \cdot 0828$	$0 \cdot 0587$
		$5 \cdot 05$	0.650	$0 \cdot 0952$	$0 \cdot 0378$
		$9 \cdot 35$	0.927	0.126	$0 \cdot 0069$
		$13 \cdot 6$	$1 \cdot 193$	$0 \cdot 187$	-0.0377
		$15 \cdot 7$	1.305	0.234	-0.0457
		17.75	$1 \cdot 374$	0.289	-0.0654
		19.75	$1 \cdot 412$	0.362	-0.113
		21.7	1.414	$0 \cdot 450$	-0.178
1.5	0	0.75	0.396	0.0763	-0.0012
		$5 \cdot 05$	0.682	0.0960	-0.0393
		9.35	0.963	0.130	-0.0737
		$13 \cdot 6$	1.237	0.192	-0.1250
		17.75	$1 \cdot 417$	$0 \cdot 309$	-0.1714

TABLE 10a
Lift, Drag and Pitching-Moment Coefficients on Model B with Body and Fin No tailplane

$\alpha \mathrm{deg}$	C_{L}	C_{D}	$C_{M K 0.45 \bar{c}}$

Flaps 0 deg			
0.3	0.019	0.0115	0.0014
3.5	0.195	0.0159	0.0162
6.7	0.365	0.0277	0.0335
9.9	0.540	0.479	0.0503
13.05	0.704	0.0742	0.043
16.25	0.889	0.116	0.0647
19.4	1.029	0.194	0.0806
21.45	1.057		
22.45	1.073	0.224	0.0988
23.5	1.094	0.316	0.1027
24.5	1.110	0.353	0.1038
25.5	1.22	0.387	0.101

Flaps 60 deg (hinged at 80 per cent chord)

Flaps 60 deg			
0.7	0.353	0.0758	-0.0430
3.85	0.524	0.0909	-0.0266
7.05	0.696	0.113	-0.0125
10.25	0.860	0.141	0.0022
13.4	1.018	0.173	0.0140
16.6	1.191	0.220	0.0156
17.55	1.160	0.265	0.0356

TABLE 10b
Lift, Drag and Pitching-Moment Coefficients on Model B with Body and Fin With tailplane

$\eta_{T} \mathrm{deg}$	$\alpha \operatorname{deg}$	C_{L}	C_{D}	$C_{\text {MI }} 0.45 \bar{c}$
$\begin{gathered} \text { Flaps } 0_{0} \mathrm{deg} \\ 0 \end{gathered}$				
	0.3	$0 \cdot 025$	0.0135	-0.0022
	1.9	0.123	0.0149	-0.0022
	$3 \cdot 5$	$0 \cdot 216$	0.0189	-0.0071
	$6 \cdot 7$	$0 \cdot 404$	0.0326	-0.0199
	$9 \cdot 9$	0.591	0.0548	-0.0310
	13.05	0.775	0.0853	-0.0481
	$15 \cdot 0$	0.914	$0 \cdot 113$	-0.0708
	17.25	1.057	$0 \cdot 172$	-0.1086
	$19 \cdot 4$	$1 \cdot 156$	$0 \cdot 230$	-0.1338
	$21 \cdot 45$	1.218	$0 \cdot 295$	-0.1776
	23.5	$1 \cdot 271$	$0 \cdot 396$	-0.249
	$25 \cdot 5$	1.326	$0 \cdot 474$	-0.301
-1-4	$0 \cdot 3$	0.007	0.0140	0.0301
	$3 \cdot 5$	$0 \cdot 194$	0.0176	0.0284
	$6 \cdot 7$	0.386	0.0309	0.0148
	$9 \cdot 9$	$0 \cdot 570$	0.0526	$0 \cdot 0009$
	13.05	0.765	0.0831	-0.0157
	$15 \cdot 0$	0.891	$0 \cdot 111$	-0.0367
	17.25	1.022	$0 \cdot 165$	-0.0638
	$19 \cdot 4$	$1 \cdot 134$	0.213	-0.0893
	21.45	$1 \cdot 179$	$0 \cdot 303$	-0.1432
-29	1.4	. 0.057	0.0140	0.0594
	$3 \cdot 5$	$0 \cdot 184$	0.0173	$0 \cdot 0578$
	6.7	0.368	0.0300	0.0482
	$9 \cdot 9$	0.561	0.0515	0.0329
	13.05	0.744	0.0796	0.0183
	15.0	0.883	$0 \cdot 110$	-0.0041
	17:25	1.014	0.163	-0.0277
	$19 \cdot 4$	1.114	0.207	-0.0464
	$21 \cdot 45$	1.163	$0 \cdot 306$	-0.1055
Flaps 60 deg (hinged at 80 per cent chord)				
0	0.7	0.309	$0 \cdot 0754$	0.0386
	$3 \cdot 85$	0.520	$0 \cdot 0901$	0.0297
	$7 \cdot 05$	0.683	$0 \cdot 112$	0.0196
	$10 \cdot 25$	0.870	$0 \cdot 142$	0.0072
	$13 \cdot 4$	1.048	0.181	-0.0137
	15.5	1.181	$0 \cdot 216$	-0.0427
	17.55	1.232	$0 \cdot 285$	-0.081
	19.55	1.258	$0 \cdot 354$	-0.128
	21.55	1.302	0.455	-0.190
	22.55	1.319		
	23.55	$1 \cdot 328$	0.531	-0.251

Table 10b-continued

$\eta_{T} \mathrm{deg}$	$\alpha \operatorname{deg}$	C_{L}	C_{D}	$C^{31} 0 \cdot 45 \bar{c}$
Flaps 60 deg (hinged at 80 per cent chord)-continued				
- 1 -4	0.7	0.289	0.0745	0.0699
	$3 \cdot 85$	0.488	0.0894	$0 \cdot 0567$
	$7 \cdot 05$	0.671	$0 \cdot 111$	$0 \cdot 0477$
	$10 \cdot 25$	0.852	$0 \cdot 141$	0.0369
	$13 \cdot 4$	1.028	$0 \cdot 177$	0.0197
	15.5	$1 \cdot 163$	0.212	-0.0084
	17.55	1.224	0.280	-0.041
	19.55	1.232	0.350	-0.087
	21.55	1.281	0.442	-0.135
	23.55	$1 \cdot 317$	0.517	-0.202
	25.55	$1 \cdot 348$	0.593	-0.263
$-2 \cdot 9$	10.25	0.835	$0 \cdot 141$	0.0698
	$13 \cdot 4$	1.021	0.177	0.0494
	15.5	1.137	0.206	0.0275
	$17 \cdot 55$	$1 \cdot 187$	0.246	-0.007
	19.55	1-212	0.343	-0.044
1.5	0.7	0.331	0.0754	0.0063
	$3 \cdot 85$	0.514	0.0903	-0.0050
	7.05	0.695	$0 \cdot 115$	-0.0163
	$10 \cdot 25$	0.877	$0 \cdot 144$	-0.0296
	13.4	1.058	0.183	-0.0543
	15.5	$1 \cdot 194$	0.218	-0.0856
	17.55	$1 \cdot 245$	0.289	-0.130
	$19 \cdot 55$	1.275	$0 \cdot 384$	-0.188

TABLE 11
Lateral and Directional Coefficients and Derivatives on Model A with Body

$$
C_{L}=0 \quad \text { Flaps } 0 \mathrm{deg}
$$

(c.g. at $0.45 \bar{c}$)

β deg	$10^{3} C_{n}$	$10^{3} C_{F}$	n_{v}
No fin or tailplane	y_{v}		
2.5	-2.85	-2.81	-0.065
5	-5.48	-6.13	
10	-8.88	-16.56	
With fin and tailplane $\eta_{T}=0$ deg			
2.5	$4 \cdot 10$	$-15 \cdot 11$	0.032
5	8.37	-30.63	
10	18.32	-65.36	

TABLE 12
Lateral and Directional Coefficients and Derivatives on Model B with Body
$C_{L}=0 \quad$ Flaps 0 deg (c.g. at $0.45 \bar{c}$)

β deg	$10^{3} C_{n}$	$10^{3} C_{F}$	$10^{3} C_{l}$	n_{v}	y_{v}
No fin or tailplane	l_{v}				
2.5	-3.34	-1.85	-0.49	-0.077	-0.021
5	-6.45	-4.55	-0.91		-0.011
10	-10.91	-13.6	-1.47		
With fin and tailplane. $7_{T}=0 \mathrm{deg}$					
2.5	4.82	-12.9	-1.07	0.110	-0.148
5	9.85	-26.7	-2.61		-0.025
10	21.60	-55.6	-5.15		

TABLE 13a
Flat Plate Type Nose Flaps on Model A
Lift, Drag and Pitching-Moment Coefficients on the Wing alone, i.e., with no Body or Tail Unit

Flaps 0 deg				Flaps 60 deg (hinged at 80 per cent chord)			
$\alpha \mathrm{deg}$	C_{L}	C_{D}	$C^{\text {II } 0 \cdot 25 \bar{c}}$	$\alpha \mathrm{deg}$	C_{L}	C^{\prime}	$C_{\text {Mi }} 0 \cdot 25 \bar{c}$
50 per cent span nose flaps. $\eta_{T V}=0$ deg							
$0 \cdot 3$	-0.012	0.0228	$+0.0037$				
$4 \cdot 6$	$+0.279$	0.0208	-0.0293				
$8 \cdot 9$	0.536	0.0351	-0.0471				
$13 \cdot 15$	0.771	0.0645	-0.0570				
$15 \cdot 3$	0.897	0.0918	-0.0655				
17.45	1.002	$0 \cdot 1290$	-0.0559				
19.5	1.080	$0 \cdot 1728$	-0.0426				
21.6	$1 \cdot 152$	0.2231	-0.0199				
$23 \cdot 65$	1.218	0.2829	-0.0038				
25.75	1.284						
26.75	1.280						
40 per cent span nose flaps. $\eta_{W}=0$ deg							
$4 \cdot 6$	0.275	0.0189	-0.0261	$5 \cdot 2$	0.800	$0 \cdot 1204$	-0.1261
$8 \cdot 9$	0.521	0.0336	-0.0475	$9 \cdot 45$	1.044	$0 \cdot 1531$	-0.1446
$13 \cdot 15$	0.764	0.0621	-0.0605	13.75	$1 \cdot 268$	$0 \cdot 2052$	-0.1561
$15 \cdot 3$	0.884	0.0909	-0.0687	$15 \cdot 7$	1.345	0.2551	-0.1439
$17 \cdot 4$	0.988	$0 \cdot 1281$	-0.0642	17.8	$1 \cdot 310$	0.3167	--0.1173
19.55	1.093	$0 \cdot 1777$	-0.0611				
$21 \cdot 6$	$1 \cdot 167$	$0 \cdot 2271$	-0.0379				
23.65	1.219	0.2725	-0.0238				
$25 \cdot 7$	1.259	0.3759	-0.0468				

TABLE 13b
Curved Surface Type Nose Flaps on Model A
Lift, Drag and Pitching-Moment Coefficients on the Wing Alone and Wing and Body (no Tail Unit)

Flaps 0 deg				Flaps 60 deg (hinged at 80 per cent chord)			
$\alpha \mathrm{deg}$	C_{L}	C_{D}	$C_{310 \cdot 25 \bar{c}}$	$\alpha \mathrm{deg}$	C_{L}	C_{D}	$C_{\text {ar }} 0 \cdot 25 \bar{c}$
Wing alone with 50 per cent span nose flaps. $\eta_{W}=0$ deg							
	-0.021	0.0206	+0.0057	9.5	1.057	$0 \cdot 1526$	-0.1517
$4 \cdot 6$	+0.266	$0 \cdot 0187$	-0.0271	$13 \cdot 75$	1.278	0.1983	-0.1638
$8 \cdot 9$	0.527	0.0334	-0.0467	$15 \cdot 85$	1.383	$0 \cdot 2401$	-0.1617
$13 \cdot 15$	0.766	0.0589	-0.0573	16.9	$1 \cdot 421$	$0 \cdot 2615$	-0.1486
$15 \cdot 3$	0.893	0.0832	-0.0668	17.9	1.437	0.2843	-0.1286
$17 \cdot 45$	1.013	$0 \cdot 1197$	-0.0804	$19 \cdot 8$	1.333	$0 \cdot 3680$	-0.0573
19.55	$1 \cdot 122$	$0 \cdot 1635$	-0.0835				
$20 \cdot 6$	$1 \cdot 131$	$0 \cdot 2000$	-0.0508				
21.6	1.149	$0 \cdot 2280$	-0.0266				
23.65 25.7	1.199 1.239	$0 \cdot 2764$	-0.0015				
26.7	1.257						
27.75	1.265						
Wing alone with 50 per cent span nose flaps. $\eta_{W}=-10$ deg $\quad . \quad . \quad$.							
				$9 \cdot 35$ 13.65	1.958 1.208	$0 \cdot 1472$ 0.1922	$\begin{array}{r} -0.0743 \\ -0.0053 \end{array}$
				$15 \cdot 8$	$1 \cdot 310$	$0 \cdot 2290$	$-0 \cdot 1077$
				$17 \cdot 8$	1.342	$0 \cdot 2794$	-0.0730
				19.75	1.273	$0 \cdot 3554$	-0.0250
Wing alone with 50 per cent span nose flaps and inboard fin. $\eta_{\text {W }}=0$ deg.							
$8 \cdot 9$	0.550	0.0356	-0.0527	$9 \cdot 5$	1.044	$0 \cdot 1525$	-0.1431
13.2	0.785	0.0618	-0.0691	13.75	1.283	$0 \cdot 2015$	-0.1614
15.35	$0 \cdot 926$	$0 \cdot 0852$	-0.0845	15.85	1.388	$0 \cdot 2404$	-0.1640
17.5	1.052	$0 \cdot 1200$	-0.1119	$17 \cdot 8$	1.341	$0 \cdot 3012$	-0.1487
19.55	1.091	0.1920	-0.1047				
21.55	$1 \cdot 127$	$0 \cdot 2364$	-0.0985				
$23 \cdot 6$	1-164	$0 \cdot 2766$	-0.0825				
Wing alone with 40 per cent span nose flaps. $\eta_{\text {w }}=0$ deg							
$8 \cdot 9$	0.525	$0 \cdot 0323$	-0.0471	$9 \cdot 5$	1.043	$0 \cdot 1500$	-0.1511
$13 \cdot 15$	0.765	0.0589	-0.0590	13.7	1. 259	$0 \cdot 1974$	-0.1642
$15 \cdot 3$	$0 \cdot 876$	$0 \cdot 0817$	-0.0645	15.85	$1 \cdot 374$	$0 \cdot 2455$	-0.1647
$17 \cdot 45$	1.004	$0 \cdot 1191$	-0.0819	16.8	$1 \cdot 350$	0.2830	-0.1424
19.5	1.084	0.1741	-0.0721	17.8	$1 \cdot 336$	$0 \cdot 3102$	-0.1141
21.6 .23 .65	$1 \cdot 161$ 1.208	$0 \cdot 2251$	-0.0334				
21.65 25.7	$1 \cdot 208$ 1.226						
27.7	$1 \cdot 260$						
Wing and body with 50 per cent span nose flaps. $\eta_{W}=0 \mathrm{deg}$							
8.95	0.558	0.0418	-0.054	$9 \cdot 35$	0.924	$0 \cdot 125$	-0.165
13.25	0.821	0.0756	-0.070	13.65	$1 \cdot 178$	$0 \cdot 172$	-0.183
16.45	1.014	0.125	-0.091	15.75	1.287	0.213	-0.182
18.55	$1 \cdot 120$	$0 \cdot 167$	-0.087	$17 \cdot 8$	$1 \cdot 343$	$0 \cdot 261$	-0.151
$19 \cdot 6$	1.158	0.199	-0.072	$19 \cdot 8$	$1 \cdot 320$	0.323	-0.095
21.65	$1 \cdot 186$	0.254	-0.028				
23.65	$1 \cdot 215$	$0 \cdot 312$	0.012				

detall of upper surface fin TEETED IN CONJUNCTION WITH curved nose flaps
∞

Figs. Ia and b. Models A and B. Wing planforms.

Fig. 2. General arrangement of body and tail unit tested on models A and B.

FLAT PLATE TYPE: CONSTANT CHORD \& ANGLE

FLAP CHORD AT 50% SPAN $=8 \% C$ AT 60% SPAN $=9.1 \% C, S$
AT $T I P=20 \% \mathrm{C}$

CURVED TYPE: CONSTANT CHORD, VARYING ANGLE

FLAP CHORD AND L.E. CYLINDER DIMENSIONS AS ABOVE

Figs. 3a and 3b. Model A : nose flap details.

Fig. 4. Model A. Lift coefficients, wing alone (aspect ratio $=4.5$).

Fig. 5. Model B. Lift coefficients, wing alone (aspect ratio $=3 \cdot 0$).

Fig. 6. Flaps 0 deg.

Fig. 7. Flaps 60 deg.

Figs. 6 and 7. Model A. Pitching moments, wing alone (aspect ratio $=4.5$).

Fig. 8. Flaps 0 deg.

Fig. 9. Flaps 60 deg.

Figs. 8 and 9. Model B. Pitching moments, wing alone (aspect ratio $=3 \cdot 0$).

Fig. 10. Lift coefficients $\eta_{w}=0$ deg.

Fig. 11. Pitching moments $\eta_{w}=0$ deg.

Figs. 10 and 11. Effect of aspect ratio on longitudinal stability. Wing alone.

WING PLANFORM AND SECTION
Fig. 12. Extract from German report on split flaps (Ref. 2).

Fig. 13. Model A (aspect ratio $=4.5$).

Fig. 14. Model B (aspect ratio $=3 \cdot 0$).

Figs. 13 and 14. Yawing moments. Wing alone, flaps 0 deg.

Fig. 15. Yawing moments.

Fig. 16. Sideforce.

Figs. 15 and 16. Model B. Wing alone. Extract from Ref. 4.

Figs. 17, 18 and 19. Effect of aspect ratio on n_{v}, l_{v} and y_{v}. Wing alone.

Fig. 20. Model A. Lift coefficients. Effect of body and tailplane (aspect ratio $=4.5$).

Fig. 21. Model B. Lift coefficients. Effect of body and tailplane (aspect ratio $=3 \cdot 0$).

Fig. 22. Model A. Pitching moments, flaps 0 deg (aspect ratio $=4 \cdot 5$).

Fig. 23. Model B. Pitching moments, flaps 0 deg (aspect ratio $=3 \cdot 0$).

lig. 24. Model A. Pitching moments, flaps 60 deg (flaps hinged at 80 per cent chord, aspect ratio $=4 \cdot 5$).

Fig. 25. Model B. Pitching moments, flaps 60 deg (flaps hinged at 80 per cent chord, aspect ratio $=3 \cdot 0$).

Fig. 26. Effect of aspect ratio on longitudinal stability (wing, body and tail results).

Figs. 27 and 28. Downwash curves.

WING DETAILS
ASPECT RATIO 5.0
SECTION NACA 23012 TAILPLANE SECTION NACA 0015
$-X_{1}=$ DISTANCE OF $1 / 4$ CHORD TAILPLANE AFT OF WING MEAN $1 / 4$ CHORD POINT.
$E_{L_{-}}=x_{L}\left(\frac{b}{2}\right)$
$Z=$ TAPER RATIO (TIP CHORD
the tailplane height is zero in all cases

Fig. 29. Extract from T.N. No. Aero 1819.

Fig. 31. Pitching moments. $\eta_{W}=0$ deg.

Figs. 30 and 31. Effect of nose flaps on Model A.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning: 40s. (40s. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. Iod.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 4os. (40s. 1od.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (61s.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. (5Is.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (30s. 9d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (50s. 11d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (645.2 d .)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (5 IS .)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63 s. (64 s . 2d.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 3 d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 475 . $6 d$. (48s. 5d.)
1943 Vol. I. (In the press.)
Vol. II. (In the press.)

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCL-

1933-34	Is. 6d. (ıs. 8d.)	1937	2s. (2s. 2d.)
1934-35	1s.6d. (1s.8d.)	1938	1s. 6d. (1s. 8d.)
April I, I935 to Dec. 31, 1936.	$4^{\text {s. }}\left(4^{s .} 4^{\text {d. }}\right.$)	1939-48	3s. (3s. 2d.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHAICAL REPORTS, AND SEPARATELY-

April, 1950 - $-\quad$ - R. \& M. No. 2600 . 2s. 6d. (2s. $7 \frac{1}{2}$ d.)
AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-

$$
1909-1949-\quad-\quad-\quad \text { R. \& M. No. } 2570.15 s .\left(\mathrm{t} 5 \text { s. } 3^{d .}\right)
$$

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

December 1 , 1936 - June 30, 1939.
July 1, 1939 - June 30, 1945. July I, r945- June 30, 1946.
July i, 1946 - December 31, 1946.
January I, 1947 - June 30, 1947.
July, 195
R. \& M. No. $1850 . \quad$ 1s. 3 d. ($1 s .4 \frac{1}{2}$ d.) R. \& M. No. 1950. Is. (Is. I $\frac{1}{2} d$.) R. \& M. No. 2050. is. (Is. I $\frac{1}{2}$ d.) R. \& M. No. 2150 . 1 s. 3 d. ($\mathrm{Is} .4 \frac{1}{2} d$.) R. \& M. No. 225 O . Is. 3 d. (Is . $4 \frac{1}{2}$ d.) R. \& M. No. 2350. Is. 9d. (rs. 10 $\frac{1}{2}$ d.)

Prices in brackets include postage.
Obtainable from
HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, London W.C. 2 ; 423 Oxford Street, London W. 1 (Post Orders : P.O. Box No. 569, London S.E.1) ; 13A Castle Street, Edinburgh $2 ; 39$ King Street, Manchester $2 ; 2$ Edmund Street, Birmingham 3; 1 St. Andrew's Crescent, Cardiff; Tower Lane, Bristol 1; 80 Chichester Street, Belfast OR THROUGH ANY BOOKSELLER

[^0]: * R.A.E. Report Aero 2210, received 8th October, 1947.

[^1]: * The values of ΔC_{L} due to elevon (flaps 0 deg) given in Table A can be assumed to apply for the flaps 60 deg case also,

[^2]: * The values of n_{v} and l_{v} about $0.45 \bar{c}$ for the ' wing alone' cases are given by the equations

 Model A $\quad\left(n_{v}\right)_{0 \cdot 45 \bar{c}}=\left(n_{v}\right)_{0 \cdot 25 \bar{c}}+0.090 \cos \alpha \times y_{v}$
 $\left(l_{v}\right)_{0 \cdot 45 \bar{c}}=\left(b_{v}\right)_{0 \cdot 2 \bar{c}}+0.090 \sin \alpha \times y_{v}$
 Model B - $\left(n_{v}\right)_{0 \cdot 45 \bar{c}}=\left(n_{v}\right)_{0 \cdot 2 \bar{c}}+0.134 \cos \alpha \times y_{v}$
 $\left(l_{v}\right)_{0 \cdot 45 \bar{c}}=\left(l_{v}\right)_{0 \cdot 25 \bar{c}}+0.134 \sin \alpha \times y_{0}$

[^3]: * Ordinates of the wing section are given in Table 2.
 \dagger Ordinates of the body are given in detail in Table 3.
 \ddagger Ordinates of the tailplane section are given in Table 4.

[^4]: * The measurements at this incidence were taken at a later date

