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Summary.--The drag increase beyond the critical Mach number is calculated by modifying the supersonic part of the 
K~rm~in-Tsien pressure distribution on a profile. This is possible when the supersonic regions are not too large. The 
formula giving the modified pressure distribution is derived very roughly. I t  may give only one of the main effects 
appearing when supersonic speeds occur in the flow, and may be changed and caIculated more exactly later. 

For the calculation of the drag increase the formula is sufficient and the agreement of theory and experiment in all 
examples calculated is good. Within tile approximation of the theory the lift coefficient is practically unchanged. 
Calculations of the centre of pressure are not made. 

1. In t roduc t ion . - -A t  Much numbers little higher than the, so-called, critical Much number, 
where at one point o n  the surface sonic speed is just reached, the drag coefficient of bodies 
increases very steeply to several times the low-speed value. As this increase of drag coefficient 
appears at very different distances from the critical Mach number depending on the body's shape, 
and limits the speed of many high-speed aircraft, i t  is very desirable to be able to estimate it. 

Supersonic streams have the property tha t  ±he flow is affected only in a certain region down- 
stream of a point of distm'bance. Hence the highest velocities, i.e., the highest suction, appear 
further downstream than would be expected on high-subsonic theory. This move of suction to 
a more negative angle of profile inclination gives a drag increase. I t  depends not only on the 
change in the pressure distribution but also on the change of cross-section at the supersonic 
region. Thus in the case of a small supersonic region appearing near the maximum thickness 
the drag is very small. 

The pressure distribution given by high-subsonic theory up and downstream of the super- 
sonic region is quite good. In the absence of vorticity we can say that  the supersonic velocity 
distribution has to be changed in such a manner that  the area of the graph of velocity plotted 
against the length of the profile remains unchanged. This area condition leaves the lift coefficient 
practically unchanged within our approximations. 

* The author having left the country before arrangements for publication were put in hand this report has been revised 
for publication at the Royal Aircraft Establishment. 

-~ R.A.E. Tech. Note Aero. 1919, received l l t h  February, 1948. 



Because of the steep pressure increase in the range of Mach numbers considered, a quite rough 
estimate of the change in the pressure distribution leads to a good theory for the drag increase. 
It  agrees very well with tests in all the examples calculated. 

. 

round a body we take the integral equation of continuity : - -  

f f  p V ~ d s : O ;  . . . . .  
S " " "  " "  " "  

where S is a surface with the normal n, p the density and V the velocity. 
component normal to the surface. 

Further we take the integral form of the equation for absence of vorticity 

fc V, dl = 0 . . . . . . . . . . . . . . . .  (2) 

where C is a curve with the element of length dl and Vt (t = tangent) the component of velocity 
in the direction of the curve. 

In this paper we disregard drag caused by friction, and separation, also induced drag. Hence 
drag can be caused only by the  entropy increase in shock-waves*. I t  might seem that  absence 
of vorticity is then not applicabJe ; but the drag depends on the product of shock height and shock 
loss, while the vorticity depends on the ratio of shock loss and shock height. Since the drag in 
transonic flow is always caused by relatively small losses in high shock-waves, we can neglect 
the influence of shock-waves on vorticity and use equation (2) for a first approximation, as shown 
also by GuderleyL 

The application of equation (1) on the surface of the body gives no interesting results. 

To apply equation (2) we consider a streamline beginning far upstream of a body in an infinite 
flow, reaching the forward stagnation point, going from there in the direction of the flow along 
the body to the trailing stagnation point and then far downstream. This streamline we complete 
to a closed curve by two straight lines perpendicular to the stream and one straight line parallel 
to the stream at a great distance from the body. The application of equation (2) to this closed 
curve in subsonic flow gives 

f ( V , -  Voo)dl = O; "" • . . . . . . . . . .  (2a) 
streamline 

( V~ = velocity in the undisturbed flow), i.e., the integral of the supervelocity along a streamline 
is equal to zero. Thus the area formed by the subvelocity plotted over the length of the stream- 
line near  the stagnation points (Fig. 1) is equal to the corresponding area formed by the 
supervelocities near the maximum thickness. 

I t  can be shown that  for two-dimensional supersonic flow also, equation (2a) is valid within 
a first approximation, i.e., with linearisation of the compressible flow equation. The area of 
subvelocities ahead of the maximum thickness is equal to the area of supervelocities downstream 
of the maximum thickness. 

In the second approximation for supersonic flow the two areas mentioned are different, for it 
is not possible to apply equation (2a) on a curve similar to the curve used for subsonic flow. 
Downstream of the body there are in supersonic flow subvelocities of the third order caused by 
entropy increases in the shock-waves. Integrating these subvelocities over a very long range of 
the x-axis, we get all error of the second order, i.e., in general we get errors of the second order, 
if we apply equation (2) on very long curves. This remark is made for completeness, and is not 
of consequence in the following rough suggestions. 

At subsonic speed (Fig. 1) there are pressures and suctions before and behind the maximum 
thickness. The pressure distribution is of such a kind that  the drag is zero according to the 
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The Integral Equation for the Absence of Vorticity.--To investigate the compressible flow 

. . . .  (1 )  

V~ is the velocity- 



paradox of d'Alembert. At supersonic speed (Fig. 2) the pressures upstream and the suctions 
downstream of the maximum thickness give a drag. From the energy viewpoint this drag is 
caused by  the heating of the air due to the shock-wave losses. At transonic speeds in the range 
of steeply, increasing drag we have to assume shock-waves in the local supersonic field, otherwise 
drag cannot appearL As we disregard separation, shock-waves on the surface have to be normal. 

At subsonic speed with local supersonic regions disturbances disappear at great distance from 
the body as with pure subsonic speed. The effect of the local supersonic field corresponds to a 
greater volume of the body. Thus equation (2a) is valid also at transonic speed. In this range 
of speeds we must expect a velocity distribution similar to Fig. 1 with deviations chiefly near the 
highest velocities, but with equal areas formed by  sub- and supervelocities. 

3. The Influence of Disturbances i~z Subso,~ic Flow.---To investigate the influence of a small 
disturbance in two-dimensional incom]Sressible flow, we consider the velocity distribution caused 
by a doublet, i.e., the flow round a circular cylinder. At great distance from any disturbance 
in two-dimensional flow the velocity distribution is of this kind. In fact a very slender aerofoil 
corresponds to a circular cylinder of smaller area. In the case of small disturbances or great 
distances the disturbance of the velocity is the same as that  of the x-component 

Au - - A  ~ ; . . . . . . . . . . . . . .  ( a )  

r = (x ~ + y~)l/~ is the distance from the doublet, A is constant. I t  is the area of the circular 
cross-section of the cylinder and must be very small compared with rL 

According to equation (3), in the 45 deg direction from the small body, there is, in two- 
dimensional flow, no disturbance of the velocity (Fig. 3). In front of the body, and downstream, 
there are subvelocities due to the stagnation effect. Laterally to the body there are super- 
velocities due to the acceleration of tile flow caused by smaller separation of the streamlines. 
In any given direction the disturbance decreases in inverse proportion to the square of the 
distance. 

According to the Prandtl  rule, in the case of small disturbances, we can obtain the velocity 
distribution in a compressible flow by taking the velocity distribution of incompressible flow 
and multiplying u and y by the Prandtl  factor 

= ( 1  - 

(M,  = ~ a c h  number in the undisturbed flow). 

Thus equation (3) becomes 
A - -  x 

. . . . . . . . . . . . . . .  ( 4 )  

The disturbance vanishes on the straight lines (Fig. 4) 
= x . . . . . . . . . . . . . . . . . . .  ( s )  

The supervelocities appear now in a smaller range of angles. On the other hand the effect of 
the body across the mean flow exceeds the effect in the direction of the mean flow by the factor 
1/8 L In these two directions the disturbance falls off as in the incompressible flow, invers.ely 
as the square of the distance. 

Figs. 3a and 4a show the curves of constant perturbation for the Math numbers M~ = 0 
and M ,  = 0.80. Put t ing the function for the inner curves equal to 1 and --1 we get the other 
curves given in Figs. 3a and 4a. We will use the curves in the following to consider the influence 
of disturbances in the flow at a certain point of a profile. 

We see tha t  in subsonic flow the influence of profile parts far from the point considered is very 
small. The velocity at a given part of the surface depends chiefly on the shape in its near neigh- 
bourhood and on the velocity in the undisturbed flow. Within the Prandtl  approximation 
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the fractional change in supervelocity •u is the same on changing the shape, as the induced 
velocity of the changed part is like all supervelocities proportional to 1/~. Thus if the local region 
of supersonic speed is small, the prediction of subsonic velocity distributions is expected to be 
quite accurate and the more so for improvements on the Prandtl  approximation. 

Supersonic velocities usually increase in the direction of the flow along convex-shaped bodies. 
This property of pure supersonic flow we can observe also with local supersonic fields. Since the 
velocity decreases in the y-direction and the mass flow decreases with increasing supersonic 
speed there are never difficulties in getting all the airmass from upstream to flow along the body. 
In subsonic flow the appearance of supersonic velocities brings a loss in mass flow. So the 
velocities with the highest mass flow--i.e., the velocities near the speed of sound--have to cover 
a large part  of the y-axis. This is only possible if the curvature of the streamlines, which is 
responsible for the velocity gradient in the y-direction, decreases quickly enough and this favours 
an increase of velocity along the surface. Thus it is not surprising that  local supersonic fidds in 
general have an asymmetric character, with higher velocities downstream. 

The Prandtl  rule corresponds to an approximation of the mass flow curve by  a straight line 
(Fig. 5) and gives too high a mass flow in all parts of the flow except  in the undisturbed state 
itself. Hence especially the supersonic velodties appearing in the subsonic flow have the effect 
of small doublets. According to equation (3a) the local supersonic field induces subvelocities 
far upstream and far downstream but the most important  effect on the shape is in the super- 
sonic region itself. 

Considering a point on the profile just ahead of the sonic line (Fig. 6), we see that  the local 
supersonic field lies in the stagnation region bounded b y  the two straight lines of equation (5). 
Hence the velocity at such a point is expected to be smaller than would be given by the Prandtl  
rule. I t  is very difficult to make any prediction about this error of the Prandtl  rule in the super- 
sonic region. Parts of the supersonic field induce sub- and supervelocities at a given point of 
the aerofoil. As we do not know the velocity distribution in the flow we cannot find the resultant 
effect. For a point just behind the supersonic region the induced velocities are in general expected 
to be smaller than for a point ahead of the region. According to Fig. 4a parts of the supersonic 
f idd induce here subvelocities, but  other parts of equal influence induce supervelocities. 

An iteration beginning with the velocity distribution given by the Prandtl  rule--such as the 
iteration in the well-known Rayleigh-Jantzen method--does not succeed in the local super- 
sonic region. 

Comparing the Prandtl  rule and improvements on it with tests, we find fairly good agreement 
downstream of the supersonic region (Figs. 9, 12, 15 and 16), if the latter is not too large. As 
expected the test velocities just ahead of the supersonic region are less than those given by high 
subsonic theory as the mass flow assumed in the K~rmAn-Tsien formula is also too high. Owing 
to the very steep increase of velocity on this part  of the body, the error appears as a displacement 
of the sonic point a little downstream. Plotting the velocity along the x-axis, the error appears 
very small. Nevertheless, it can become important  for the drag, because at this part  of the 
profile the angle of flow is not small. 

4. The Distribution of Supersonic Velocities along the Profile.--we assume we have a theoretical 
velocity distribution along the profile, which reproduces the subsonic part  correctly and satisfies 
equation (2a). The drag calculated by this theoretical distribution, according to the principle 
of d'Alembert, is zero. The area given by the supersonic velocities plotted over the arc length 
is then the same as the corresponding area of the unknown (correct) supersonic velocity 

dis t r ibut ion.  

But the highest velocities are expected to move downstream, owing to the property of super- 
sonic flow of influencing points downstream only. Assuming a supersonic velocity increase ending 
with a normal shock-wave together with the area condit ion--equation (2a)--the supersonic 
velocity distribution should be quite determined. A normal shock-wave near sonic speed implies 
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that  the speed of sound is just the mean of the velocities immediately before and behind the shock. 
In  our theory of small supersonic fields, i.e., of small  supersonic velocities, this means tha t  the 
pressure coefficient corresponding to sonic speed is the mean of the pressure coefficients just 
before and behind the shock. This result is contrary to nearly all test results. Thus theoretically 
we should assume at first a continuous compression in the supersonic region ending with a normal 
shock-wave, or no shock-wave on the wall at all. Owing to boundary-layer properties ~ such a 
continuous compression seems not to be possible without separation. Hence we have to assume 
Z-shocks in the tests as shown by  Ackeret ~, and at higher local supersonic speed fork shocks 
or inclined shock-waves with only a short region of separation. The latter seem to be possible 
in the case of small supersonic speeds, where an inclined shock-wave causes a very small deflection 
of the flow only. 

For estimating the downstream move in the supersonic region we can make the following sug- 
gestions. Owing to the rapid decrease of Mach angle g with increasing Mach number M (Table 1) 

TABLE 1 

M 1"000 1"084 1-133 1"22 
0~ 90 deg 67 deg 62 deg 55 deg 

the main effect of assuming speeds to be slightly supersonic, does not seem to be a wrong.distri- 
bution of stream angle along the sonic line or a great change in the form of the sonic line 
caused by  taking high subsonic theory instead of exact calculation ; it seems to come from the 
property of supersonics of influencing downstream only rather than chiefly across the flow as 
at high subsonic speed. So we can expect tha t  all supersonic speeds appear a distance A x more 
downstream th'an is given by high subsonic theory. This distance depends on the height h of 
the supersonic region at the point investigated and on the Mach angle there (Fig. 7). Taking 
an average Mach angle a we find 

Ax = h cot a . . . . . . . . . . . . . . . . .  (6) 

The height h we estimate using the equation for absence of vorticity 

_I O_V_ !. (7) 
- -  . . . . . . . ° ° • • . . • • o 

V ~y -- R '  
R is the radius of curvature of the streamline. Assuming small stream angles we can take y for 
the direction perpendicular to the flow. The difference equation corresponding to equation (7) 
gives for the height h 

h = / ~  V - - V *  (7a) 
° . . , . . . • . . , . . • , • 

V~ 
where R is an average radius of curvature and V* the critical velocity. The value of R we could 
approximate by  the radius of curvature of the profile itself. Because of the large changes of t2 
along the profile and since we want to know R in the neighbourhood of the highest superveloci- 
t ies- -and not on the point of maximum thickness--we est imate/~ at the highest supervelocity 
reached in the flow. As we shall always, in the following, use pressure coefficients cp rather than 
velocities, and as we will calculate the compressible pressure distribution using the incompressible 
one, we estimate the average/~' from the highest pressure coefficient cp0 ~ax obtained on a circular- 
arc of the radius .R in incompressible flow. (cp pressure coefficient ; index 0: Mach number of 
the undisturbed flow M ,  = 0.) For a slender circular-arc we have (c = chord) 

2 (s) 
. . . . . . 

--Cpo m a x  --~.~ R . . . . . . . . . . . . .  

Expressing the velocity increases in terms of the pressure coefficient, we find to the first order 

v -  . .  (9) 
Vo~ ------2- . . . . . . . . . . . . .  



Hence from equation (7a) (c/* = critical pressure coefficient) 
h 1 cp -- c/* 

. . o . . . . .  . c - . . . . . .  " ( 1 0 )  

Calculating a from the average velocity and the average pressure coefficient we find, to a first 
approximation near the speed of sound 

c o t s =  (2kr 2 -- 1)1/2= I(y + 1) p - V * ] I / ~  iy ~-1 71/~ 
= - -  - . . . .  ( 1 1 )  

Using equation (10) and (11) we get finally for the shift downstream (equation (6)) 
+ 

c - -  ~ \ ~ 2 - - /  c ,0  ~a~ • . . . . . . .  ( 1 2 )  

cp* is function of the Mach number M~, cp0 .... a function of the profile shape only. c~ is the 
pressure coefficient obtained by high subsonic theory, gp is a mean pressure coefficient, giving 
a mean Mach angle of the supersonic region. We will take for gp the mean supersonic c a on the 
profile. 

Assuming an exact subsonic velocity distribution along the profile and the sffeamlines ending 
in the stagnation points given by high subsonic theory, we have also the exact area given by the 
supersonic velocities plotted against the profile length. In our approximation we can take for 
the super- and subvelocities the pressure coefficient and for the arc length the length along the 
x-axis. Thus we also get from high subsonic theory the right gp. Using equation (12) we get a 
corrected pressure distribution for the supersonic part on the aerofoil (Fig. 8). 

Formula (12) has to fulfil two conditions. Firstly, the area of the curve of supersonic velocities 
plotted over the x-axis (more exactly over the arc length of the profile) must no t  be changed 
by equation (12), because equation (2a) is assumed to be fulfilled by the high subsonic theory usedl 
As the shift downstream, A x, depends for a given shape and a fixed M~ on the velocity only, 
the distance apart of points with the same c a remains unchanged by equation (12/, thus the 
area considered is unchanged, as required. 

Further, formula (12) has to give the same value of Ax if the thickness ratio and the Mach 
number of .the undisturbed flow are changed according to the law of similarity in transonic flow 
(R. & M. 2715}, otherwise the pressure distribution would not fulfil this law. According to it, 
the thickness ratio changes proportionally to the cube of the Prandtl  factor; $ ~, and the velocity 
differences and also the pressure cofficients change proportionally to $ ~. On slender profiles 
ill incompressible flow the pressure coefficient cp0 ma~ is proportional to the thickness ratio, hence 
A x is the same in similar cases, as required. 

There are no doubt several ways of obtaining formulae of the type of equation (12). For 
example we could take the local Mach angle in equation (6) with a fixed coefficient. All formulae 
glwng A x as a function of the velocity only fulfil the area condition. Finally it would not be 
surprising if we were to get better results by changing the coefficient ill equation (12), in view of 
the very rough approximations used. 

5. Application and Comparison with Tests.--To apply our theory we use the formula of 
K~rm~n-Tsien 6, to calculate the compressible cp distribution from the incompressible cp0 

Cpo 
ca - • . . . . . . . . . .  ( 1 3 )  

+ (1 8 )  ca0 . . . .  
2 

tn  spite of our rough approximations, we do not use the slightly simpler Prandtl  rule, because 
we require the subsonic pressures as exact as possible, so as to restrict the inaccuracy as far as 
possible to the supersonic part. We prefer here the K~trmgm-Tsien equation to Krahn's equation 7 
because Krahn in the derivation of his formula does not satisfy exactly the equation for absence 
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of vorticity. However there is not much difference between these two corrections of the Prandt l  
rule and a more precise investigation would be necessary to find the better formula for our 
purpose. 

In this paper we do not calculate the incompressible pressure distribution for the different 
profiles investigated. Drawing a curve through the test points in pure subsonic flow, we calculate 
by equation (13) the pressure distribution at the different Mach numbers M ,  of the undisturbed 
flow. In this way we get the curves drawn out in Fig. 9, 12, 15 and I6. Then we calculate the 
shift downstream of the supersonic velocities by equation (12) (line dotted in the figures). There 
is, of course, a change only above sonic speed (dotted straight line). 

As already mentioned the theoretical subsonic velocity just upstream of the supersonic region 
is always too high. Downstream of the supersonic region the theoretical subsonic velocities are 
sometimes very good (Fig. 9c, 12b, and 16b) but in most cases too high. In the cases in which 
they are too small (Fig. 9f, 15e, and 16c) the supersonic region is too large for us to expect good 
agreement in view of our assumptions. 

The agreement of tests and theory at the forward end of the supersonic region is in general 
very good but at the rear of the supersonic region it is not so good. Here the area formed by the 
supersonic velocities in general is greater, and that  of the subsonic velocities smaller, than calcu- 
lated. But we can expect a quite good average pressure downstream of the maximum thickness. 
The supersonic region itself ends quite closely at the point given by the formula of K~rm{m-Tsien. 

In the case of higher supersonic speeds, i.e., large supersonic regions, sometimes (Fig. 12e and 
16c) we get at the rear of the supersonic region 3 different values of cp. This is not surprising 
in view of the nature of the calculations. To get also in these cases estimates of drag, the pressure 
distribution at the rear of the supersonic region should be changed, assuming a normal shock- 
wave and satisfying the area condition. 

If we were now to calculate the drag by integrating the pressure on the profile, we should get 
very poor results, as this method presumes a very exact pressure distribution on the profile nose. 
Hence we plot the K~rm~n-Tsien pressure distribution and our supersonic pressure distribution 
against y (in the figures, against 2y/rc ; r = thickness ratio) and find the drag, by  calculating 
the difference of the area given by the two curves. Figs. 10 and 13 show- these pressure distri- 
butions against y. While in Fig. 10 the area difference gives half the drag only, because there is 
the same effect on the upper and lower surfaces, the area difference in Fig. 13 gives the whole 
drag. In these two figures, the x/c distribution is plotted under one of the graphs. The values with 
y near the maximum occupy a small part  of the 2y/~c axis. Hence the pressure distribution 
there has little influence on the drag. This is the reason why immediately beyond the critical 
speed the drag does not increase much. Not until the supersonic region covers parts of smaller 
cross-section, does the change in the pressure distribution become important. Then it depends 
on how much the region of highest suction moves downstream. This seems to be given quite 
well by  formula (12). 

Fig. 14 shows experiments of G6thert s (dotted lines). The drag coefficient Cv of the profile 
NACA 0 00 12--1. 1 30 is plotted against the Mach number M~ at different lift coefficients CL. 
The full lines drawn are curves calculated on the above theory. They are in very good agreement 
with the tests. As the 1tit coefficient varies slightly with the Mach number M~, all values are 
corrected to the mean lift coefficient Cz = 0.45. Because of the neglect of friction t he  theoretical 
drags in general would be expected to be smaller than the experimental. 

Given the drag coefficient for zero lift against Mach number for a certain thickness ra t io  3, 
the drag coefficient for other thickness ratios and zero lift can easiiy be calculated, following the 
law of similarity near sonic speed (R. & M. 2715). The result comparted with GSthert's 9 
tests is shown in Fig. 11. The full curve for 12 per cent thickness ratio is the same as 
the curve for Ca = 0 in Fig. 14. The agreement here too is very good. There is a systematic 
change from too high theoretical values for the thickest profiles to too small theoretical 
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values for the slenderest profiles. As the law of similarity in this simplest form is valid for 
very slender aerofoils only, this small disagreement is not surprising. The larger discrepancy 
on the 6 per cent profile may also be caused by the greater influence of friction. 

Fig. 15 and 16 show theoretical and experimental pressure distribution on aerofoils with a 
position of maximum thickness at 40 per cent and 50 per cent. Drag tests are lacking in these 
cases. The drag coefficient probably increases here at higher Mach numbers as for the aerofoil 
of Fig. 9. 

Our theory certainly still gives the drag increase at much higher Mach numbers, as the changes 
in the pressure curves in Fig. 15d (M, = 0.80 at ~ = 15 percent) and in Fig, 16b (Moo = 0"84) are 
quite small. 

However we have not calculated any other drag curves and we cannot always expect such good 
results from our very simple theory. But in general we should get by this method a good idea of 
the drag properties of an aerofoil just beyond its critical speed. 

In the case of bodies of revolution equation (2a) gives the same area condition as in the two- 
dimensional case. The effect of the move downstream of the suction may here be essentially 
changed. For instance with the whole supersonic region ahead of the maximum thickness, the 
suction peak moves not only in the direction of smaller surface angle but also of greater body 
diameter. Thus sometimes the cross-section occupied by the highest suction may be practically 
unchanged by the move downstream and the effect on the drag may be very small. I t  may be 
fairly simple to modify formula (12) for bodies of revolution and to make similar drag investi- 
gations for them. 

• 6. S u m m a r y . - - T h e  drag increase beyond the critical Mach number is calculated by modifying 
the supersonic part of the Karman-Tsien pressure distribution on a profile. This is possible when 
the supersonic regions are not too large. The formula giving the modified pressure distribution 
is derived very roughly. I t  may give only one of the main effects appearing when supersonic 
speeds occur in the flow, and may be changed and calculated more exactly later. 

For the calculation of the drag increase the formula is adequate and the agreement of theory 
and experiment in all examples calculated is very good. Within the approximation of the theory 
the lift coefficient is practically unchanged. Calculations of the centre of pressure are not made. 

I wish to express my best thanks to Mr. A. C. S. Pindar and to Mr. E. P. Sutton for correcting 
the text of this paper and paper concerning the law of similarity in transonic flow (R. & M. 2715). 
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FIG. 1. Veloci ty  d is t r ibut ion  on an aerofoil in 
pure  subsonic flow. 

FIG. 8. Velocity disturbance at great distance from 
a body in two-dimensional incompressible flow. 
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FIG. 2. Veloci ty  d is t r ibut ion  on an aerofoil m 
pure supersonic flow. 
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FIG. 4. Veloci ty  d is turbance  a t  grea t  d is tance  
from a body  in two-dimensional  flow a t  Mach 

number  M ~  = 0.80. 
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FIG. 3a. Curves of cons tan t  influence in FIG. 4a. Curves o f  cons tant  influence in two- 
two-dimensional  incompressible  flow. dimensional  flow a t  Mach number  Mo~ -=- 0.80. 
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FIG. 7. Effect of a local supersonic region. 

FIG. 5. 

VF:gOCITY 

Mass flow and Prandtl approximation 
plotted against the velocity. 
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Me~ : 0'80 

FIG. 6. Supersonic region on an aerofoil and lines 
of zero influence at IVfach number M~o = 0.80. 
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FIG. 8. ,Change in the pressure distribution in 
the supersonic region, from consideration of 

the supersonic properties. 
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