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Summary.--Classical theories of impact of seaplanes on water have been based on the assumption of a transfer of 
momentum to a hypothetical associated mass of water attached to the seaplane, such that the total momentum of 
the two remains constant. Recent developments of the theory show that  this treatment fails to take account of momen- 
tum shed to the wake formed behind a seaplane when it has forward speed, i.e., it neglects the planing forces. 

This report reviews the essential theory and assumptions underlying recent work, and puts forward an approximate 
design formula for the maximum deceleration during a main step impact which is directly a function of the initial 
impact conditions. I t  has the form 

==~ - \ g )  V.o= 

where V,0 is the velocity normal to the keel at first impact, the factor A is uniquely determined by  the ratio of tile 
flight path angle to the attitude, K is a function of the geometry and attitude of the step, which depends on the assump- 
tions made in defining the associated mass, p is the density of the fluid and M the mass of the seaplane. Values of tile 
constants are given in generalized curves in Figs. 3, 4 and 5. 

1. Introductio¢4. All theories which have been evolved to date for determining the forces 
acting on seaplane hulls or floats during the course of an impact with the water have been based 
on the assumption of a transfer of momentum from the hull or float to a hypothetical  associated 
mass of water. 

In any  impact, a downwards velocity is imparted to the water particles in contact with the 
hull and if the hull has an appreciable forward speed then water particles moving downwards 
will be left behind to form a wake. The present position in the development of the theory is 
to assume therefore tha t  in all impacts downwards momentum is transferred directly from 
the body to an associated mass of water ' a t t ached '  to it  (and therefore moving with it), and in 
an oblique impact some of this momentum will be shed in the wake behind the body because 
of the forward speed of the latter. Thus forward speed will have two effects. The first will be to 
affect the rate of growth of the associated mass at tached to the body, the second to leave behind 
an increasing amount of momentum in the wake t and both these effects must be taken into 

* R.A.E. Report Aero. 2230--received l l t h  February, 1948. 
t The validity of the use of associated mass methods for dealing with the motion of a body through a free surface is 

examined in a later report. (R. & M. 2681). 

1 
A 



account when setting up the equation for the conservation of momentum. The relative impor- 
tance of these two divisions of the momentum of the water varies with the flight path angle. 
When the resultant velocity is normal to the keel and the at t i tude of the hull is small, then the 
attached associated mass retains all of the transferred momentum. Retaining the same hull 
att i tude and decreasing the flight path angle causes momentum to be shed in the wake in 
increasing amounts and lessens the rate of growth of the associated mass until in the limit the 
pure planing case is reached when all the transferred momentum finds its way to the wake. 

The ' classical ' impact theory as developed by Von K~rm~n 5 and Wagner G treats of the first 
case when the associated mass retains all of the transferred momentum. Wagner also deals with 
' s l i d ing '  or planing motions but  later writers have not in general taken any account of this 
portion of his work when modifying the impact theory to take account of forward speed. 
Thus E. T. Jones (R. & M. 1932) and Pabst  8 only make allowance for forward speed by taking 
the velocity normal to the keel as tile effective parameter instead of the velocity normal to the 
water surface as in the classical case. Neither makes any allowance either for the planing force 
or for the effect of forward speed on the rate of growth of the associated mass. 

McCaiff goes a step further by  including the effect of forward speed on the rate of growth 
of the associated mass but still neglects the planing force. In recent work however, both effects 
have been included in theories developed in England by Crewe (R & M 2513. in Amer M 1 ~ . , • • ). ica by  

ayo and Benscoter and in the Netherlands. 9 All of these investigations have produced 
formulae for estimating the forces acting during impact but the use of different symbols and 
variations in the methods of application make it difficult to compare their relative merits. 

At the same time, Johnstone 15 has made a modification of pure planing theory which allows 
for increasing immersion, but  neglects the impact force. Here again, comparison is made 
difficult not only by differences in notation but  also by the complete difference in derivation. 

The a im of the present report is to review the essentials of these later impact force theories 
(Refs. 1 and 2, and R. & M. 2513), to point out where differences arise in them and to develop 
approximate formulae*, expressed in terms of the physically significant factors, which will cover 
the useful range of landing conditions. 

Comparison of the later theories (References 1 and 2 and R. & M. 2513) with those of Jones 
(R. & M. 1932), McCaig 7 and Johnstone 15 is made by means of these approximate formulae since 
it is considered that  this approach leads to the clearest physical comparison (as given above). 

The review is restricted to the straight-sided wedge without chine immerson or angular velocity, 
the case considered in the classical theory. 

2. The General Theory of Impact of a Plane-Faced Wedge.--2.1. Nature of the Forces 
A ctiug.--The first problem is to determine the nature of the forces acting in an oblique impact. 
This can be done most easily by  assuming that  associated mass methods as developed for motion 
in an unbounded fluid will give a sufficiently good approximation to the motion through a free 
surface, provided suitable correction factors are applied 

Mayo ~, Benscoter ~ and tile Dutch 9 each deal with the problem by  this method and make the 
additional assumption tha t  the three-dimensional oblique impact case can be broken down into 
the sum of a series of two-dimensional cases. 

2.1.1. Two-dimensional Impact.--The t reatment of the two-dimensional case (vertical drop of 
an infinitely long wedge of constant cross-section at zere trim) is then made in accordance with 
Von K~rm~n's ~ and Wagner's 6 assumptions, i.e., tha t  all the momentum of the wedge is trans- 
ferred to and retained by a fictitious associated mass of water. The ' associated mass ' in this 
case was assumed by Von K~rm~n 5 to be half of tha t  obtained when a flat plate moves in an 
unbounded fluid, the width of the plate being the wetted width of tile wedge. Thus it is the 
mass of half a circular cylinder of water on the wetted width of the wedge as diameter. 

*A subsequent report 16 gives improved formula and.curves recommended for use in design. 
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If the mass of the wedge is M a n d  if, for convenience, we define the associated mass as t,M, 
then the momentum equation will read 

MV, o = +  ,MIL  . . . . . . . . . . . . . .  (1) 
where V,, is the penetration velocity, normal to the keel 
and V,,0 is the value of V. at first impact. 

The resultant upwards force on the wedge, arising from changes in momentum, is normal to 
the keel and is given by : - -  

d (MVo) 

- -  d t  ( f f M .  V~) . . . . . . . . . . . . . . . .  (2) 

from equation 1. 

Also, we can write ,uM = p_K2z 2 (per unit length) where z is the depth of penetration, see Fig. 1, 
p is the density of fluid and K is a factor which depends on the geometry of the wedge and allows 
both for splash-up and for finite deadrise angle/~. Splash-ilp is the rise of displaced fluid up the 
sides of the wedge and a correction for it, to the value of the associated mass, was first introduced 
by Wagner from consideration of the flow past a flat plate. 

Substituting for ffM in equation (2) we obtain 

d (;Rz ~ V,,) (3) F~ = dB . . . . . .  • . . . . . . . . . .  

d dz 
-- dt ( PKz2 ~ )  

since V,~ = dz/dt in the two-dimensional case, and solutions of this equation will give the motion 
of the wedge. 

In this t reatment  we have neglected any forces due to viscosity and buoyancy as being small 
compared with the inertia forces. 

2.1.2. Three-dime~sio~al imJzact.--Turning now to the three-dimensional case, i.e., the oblique 
impact of a plane-faced wedge at finite trim without chine immersion, conditions during the 
impact are as shown in Fig. 2a. The case is for simplicity restricted in the first place to the 
wedge with a straight transverse discontinuity (or step on a hull). The problem is  to determine 
the distribution of the momentum after transfer from the wedge to the fluid. 

As in tile two-dimensional case it is assumed in the first place tha t  the effects of gravi ty  and 
viscosity can be ignored and that  the a t t i t u d e ,  remains constant during the impact. I t  follows 
tha t  if we divide the fluid into sections of spacing dx by fixed planes normal to the keel, then, 
as the wedge moves through them, the flows in the various sections can be treated as independent 
of each other, and essentially two-dimensional. Also the velocity component parallel to the keel 
(V~) will remain constant and will have no effect on the normal  forces. Thus in each section 
we assume that  a force equation of the form of equation (3) will apply, i.e., 

d (#Rz d x v,,) (3) F = ~  . . . . . . . . . . . . . . . .  

The total  force on the wedge at any time defined by immersion z can then be obtained by  
considering either (1) the time rate of change of the total  momentum imparted to the fluid from 
the beginning of the impact, or (2) the summation of the force elements acting on the wedge. 
The first method seems the more obvious physically and is given below. I t  is assumed explicitly 
tha t  the momentum of the fluid at any time is divided between the associated mass at the wedge 
and the wake formed since first impact. The second method makes no explicit assumptions 
about the wake momentum and corresponds to tha t  used by Mayo ~ and Benscoter ~. Details 
of it a r e  given in Appendix I. 
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The origin of co-ordinates is defined as fixed in space at the point 0 where the step s entered 
the water at time t = 0, (see Fig. 2a). The x-axis is taken parallel to the keel and the z-axis 
normal to it. The flight path angle is taken as y, its initial value as y 0 and the velocity components 
as shown in Fig. 2a. 

We assume at time t the momen tum associated with an element dx of the fluid is that  due to 
the two-dimensional motion of a wedge with an immersion z, i.e., 

momentum = oRz ~ dx V~. 

Then the total momentum of the water at time t is given by 

f + i  p R z ~ V ~ d x ' _  

When 

x > x, + L (i.e., ahead of the wedge) the fluid is unaffected and V. = 0. 

Xs + L > x > xs, (i.e., under the wedge) the fluid is given a normal velocity V~, where 
V~ = V~(t) and is independent of x. The wetted length is here assumed to be that  due to inter- 

section with the undisturbed water surface. 

xs > x > 0 (i.e., behind the wedge) the fluid is moving with normal velocity V~, where 
V~ = V~(x) is independent of t. Provided there is a straight transverse step to the wedge, V,(x) 

is the final velocity imparted to the fluid in the plane at x when the step of the wedge passed 
through this plane at some earlier time t'. The associated mass of each section in this region is 
defined by &', the step depth normal to the keel at time t' ; 

x < 0. The water is unaffected and V~ = 0. 

The total momentum of the fluid at time, t, is therefore 

V.(x) dx + pRz V.(t) dx 

or expressed as a function of time where 

dx R cot 
dt -- VT and K =  3 

the total momentum is 

I'o,R(&')~V~(t')V2. dt'+pKz~°V~(~). 

By analogy with the two-dimensional case, p K& 3, which is the mass of a half cone of water 
defined by the intersection of the wedge with the. water surface, will be taken as the associated 
mass of water and denoted by/~M, where M is tile mass of the wedge. 

The complete momentum equation at time t will now be 

= + v . I , ' l  . . . . . . .  MV.o 

This differs from the two-dimensional case by the addition of the last term which allows for 
the shedding of fluid with- downward velocity from the step into the wake because of forward 
speed. 
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The resultant impact force will be normal to the keel and given by 

d (momentum) 

d 
- -  dt (#M.V,) + pRz~ 2 V,  Vr. 

d 
-- dt (~M.V,) + 3pKz~ 2 V~Vr tan , .  

d d(tzM) Vr tan z . . . . . . . . . .  (5) 
- at  + dz,  

dz, 
and since dt -- V,  -- Vr tan • 

- d E  d ( t , M )  V~'  . . . . . . .  (Sa) 
F = ~M--~- + dz, . . . . . .  

Comparison with the expressions given by Mayo 1, Benscoter ~ and Crewe (R. & M. 2513) 
is made in Appendix I. 

These expressions for the momentum equation and for tile force acting on the wedge have been 
developed assuming a straight transverse step. If the step is not straight, e.g., rounded or of 
vee-shape in planform, then momentum flows into the wake over a range of values of x, as shown 
in Fig. 2b for a straight vee step. The assumption of plane parallel flow is not likely to be valid 
in this region and in addition there is the equivalent of chine immersion. However an approxi- 
mation to the correct division of momentum transfer might be obtained if a straight transverse 
step were assumed at a suitable station and the wedge lines were extended to meet this step. 
The choice of station would best be determined by analysis of experimental results. A priori, 
likely positions for tile vee-step, Fig. 2b would be either at the lines W1 Wl '  or W2 W2' or at the 
centroids of the triangles Wl  W~'s or W~ W(s .  

A further point requiring clarification concerns the position of the splashed up water line 
PW~. Some preliminary unpublished tests at the Royal Aircraft Establishment towing tank 
indicate tha t  on a planing wedge there is a forward splash-up and that  the true splashed up 
water line is along a line P'W3 approximately parallel to PW~. If so then further modification 
would be required to the value taken for the associated mass in the momentum equation. 

2.2. Solution of Equation of Motion.--Equation 5(a) reads 

a( M) . . . . . . . . . . . . .  (Sa) 
F = I ~ M - ~ - +  dzs 

So far we have neglected a possible form drag. Benscoter ~ expresses this in the form 

F~ = e a(~M) V¢ 
d2, 

where ~ is the ratio of the form drag force to the inertia force. 
Introducing this form drag, equation (5a) becomes 

_ d r .  d ( ~ M )  V~ 2 
F = # M - - ~ -  -~- (1 -[- ~) dz, 

= _ M  dV.  
dt 

dV.  d~ 
i.e. (1 + --d/- + (1 + v ,  = 0 . . . . . .  
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The solution of this equation has normally been made assuming constant horizontal velocity 
(V~), instead of constant velocity parallel to the keel (Vr), so that  the results can be compared 
with experimental results from tank tests. - 

If the horizontal velocity is kept constant, then while the resultant water force will still be 
normal to the keel the resultant acceleration will be vertical, hence 

( M @ ) / - -  cos 7 = F cos 7 

which can be transformed to 

(1 + ~ ' ) d r +  (1 + ~ )  ( r +  1) 2 
c o s ~ 7  d~'  = 0 (7) 

° ° . o . o ° . 

V~ tan ~, where r -- 
V~. tan ~ -- tan 

and #' = ~ cos ~ 7. 

or, the associated mass is closely a function of the parameter  r only (cos ~, is usually nearly unity). - 
Equation (7) can be obtained from Crewe's generalized equation (R. & M. 2513) 

sdl~' wdw 
(1 + /,') + w 2 + q w  + r = O 

by putt ing 

r ----- 1 (assumes a fully developed wake) 
q = 2 (viscosity forces etc. neglected) 
s = (1 + d) cos  ~ 7. 

Integrating equation (7), 
1 log  (1 + r) + - -  

l + r  

= l o g  (1 + r o )  + ~ -  

where subscript zero refers to initial condition. 

+ (1 + ~) cos27 log (1 + # ' )  

1 
l + r o  . . . . . .  . .  (s) 

Differentiating equation (6) with respect to z, gives as conditions for  maximum acceleration 
(denoting the values by the subscript m) 

I~,~' -= " 2r. ,  
r,,[1 + 6 ( 1 +  c~) cos'7] + 6(1 q-d) cos '7  

6~,,,' (1 + d cos~7)  
• • 

r,. = 2 - [1 + 6 (1 + d) c o s ' z ]  ~,,,' . . . . . . . . .  (9) 

Equations (8) and (9) admit graphical solutions to obtain curves of ~,,/and r~ against r0. 
The results of Benseoter ~ and Crewe (R. & M. 2513) are given in Fig. 3. 
2.3. Maximum Deceleration.--So far we have obtained the values of the associated mass and 

velocity at the time of maximum deceleration in terms of the initial velocity conditions only. 
The deceleration is given by 

= 0 .  

= K z s  3 COS2v 

= (2 + r )  VHsin~-, 

--  ( l + - d / ~ ) 3 ~ ' ( l + r ) ~ V  2sin~ - - - -  + , Z'. 

Putt ing 

and 

dv,~ d(~') 

#'M 
v,, 

dT,~ 
dt 
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where r0 = tan y0/tan ~. 
Details of the solution are given in Appendix Il l ,  and it should be noted that  as r0 tends to infinity 
equation (13) tends to 

Vn0 
V ~ = I +  ~ 

which is the two-dimensional relation. 

3.1. Associated Mass and Velocity at Instant of Maximum Deceleration.--Since cos=~-~-1, 
equation (13) can be replaced by 

l + r  1 
(1 - -  # / r o )  . . . . . . . . . . . . . .  ( 1 4 )  l + r 0  l + / z  

If r0 >~ 1, then comparison with the general solution for r,, (the value of r at the instant  of 
maximum deceleration) shows that  if/~,, be taken equal to its ultimate value of 2/7 and #~/ro 
neglected, then 

1 + r,,, 7 
1 + r 0 - - 9  . . . . . . .  . . . . . . . . .  ( 1 4 a )  

to within one per cent, which means that  
(V,,),,, 7 
V.o -- 9 . . . . . . . . . . . . . . . .  (13a) 

to the same order (when ro ~> 1). 

Now when z is small and ~ is negligible equation (9) becomes (generally) 
2r~ 

~"~ = 7r,~ + 6" • . . . . . . . . . . . . . . .  (15) 

and therefore from (14a) 

2 (7~o - 2) 
" - -  4 9 r o  + 4 0  . . . . . .  . . . . . . . .  ( 1 5 a )  

when ro ~ 1. 

The close agreement given by these approximate formulae for r,, and/~,~ when r0 ~> 1 is shown 
in Fig. 3, where points calculated from equations (14a) and (15a) are denoted by crosses. 

When r0 < 1, ~,~ is small and neglecting ~,,~ we obtain from equations (14) and (15) the relation 

2to ~ 
m,~-  7ro2 + lOro + 2" • . . . . . . . . . . . . .  (15b) 

3to 2 . 
Also r,, = 5r0 + 1 . . . . . . . . . . . . . . . .  (14b) 

Values of/z,~ and r,~ calculated from equations (15b) and (14b) are denoted by circles in Fig. 3 
and are in good agreement with the exact theory solutions of Crewe (R. & 1~. 2513) and Benscoter 2 
from r0 ---- 1 right down to ro ~ 0. 

3.2. Formulce for Maximum Deceleration.--Substituting from equation (13)in equation (12) 
we obtain 

Since . 

dV.  1 d~ V,,o 2 
dt  - -  1 + t, dz.  ( t  + ~)~ (1 - -  ~/ro)~. 

I~M ~ pKz~ ~ 

dt ,,o (1 + , ) ~  (2 - -  ~lr0)  ~ 
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At the instant of maximum deceleration, this becomes 

- - d / - / ~ =  - V.o (1 + ~ , , . ) ~ \ - ~ - /  k 1 - ~,o / 

KP) It3 
= -  A --M V'°~ 

3~.?/3 ('1--_~,.']  ~ 
where A =(1  + ~,~)3k, ro J 

and will be called the deceleration factor. 
If r0 > 1 from equation (151) 

2(7r0 -- 2) 
m, -- 49ro + 40 

(1~) 

(17) 

and Figs. 5a and 5b show that  the resulting values of A approximate to the values derived from 
Crewe's (R. & M. 2513) solution down to r0 ---- 0.5, within the limits of the error introduced by 
neglecting the form drag force. 

If r0 < 1, then Fig. 5b, shows that  taking 
2r02 

~" =7 r 0  ~ + 10r0 + 2 
as in equation (15b) gives agreement within the same limits right down to r0 ----- 0.05. Fig. 5a 
shows tha t  the same agreement is obtained at large values of r0, but  it should be noted that  
in these cases the corresponding values of ~,,~ and r,,~ will be considerably in error (cf. Fig. 3). 

Fig. 5b also shows that  when r0 < 0.25 then a good approximation to A is given by 

r0 . . . . . . . . . .  0 s )  
A = ( 1  + ro)~ . . . . .  

With this substitution equation (16) becomes (since V~0/(1 + r0) m_ V,o/ro w h e n ,  is small), 

- ~ 7 - / ~  = - 

----- -- Vo ~r0 t a n ,  

a solution which is useful because it does not require knowledge of ~,,,. 

Thus the whole range of ro can be covered with sufficient accuracy by an expression of the 
form of equation (16), i.e. 

- ~ / ~  = - A Voo ~ 

which depends only on the initial conditions and the geometry of the wedge. 

V,o is the physically significant velocity component at first impact. The factor A allows for 
the effect of forward velocity on the maximum deceleration and is uniquely determined by 
tan  y/tan • to a first approximation and (pK/M)1/3 depends on the geometry and at t i tude of the 
wedge. For example, the effect of deadrise appears only in the factor (pK/M) 1/3, and the variation 
of maximum deceleration with deadrise will therefore depend on the assumptions made for the 
associated mass factor K. 

4. Comparison with Classical Theory and the Importance of the Planing Force.--With the 
exception of Johnstone's theory 15, the classical theory assumed that  the momentum of the 
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float plus tha t  of an associated mass of water remained constant during the impact period, 
i.e., they neglected the momentum shed in the wake and obtained, as in section 2 of this report. 

M V ,  o = MV~ + # M V ,  

instead of the general equation 

M V ~ ° = M V ~ + ~ M V " +  f~o d(~M) V ~ V r t a n ~ d t d z ~  

and therefore obtained 

dV,  dp 
dt 1 + ~ dt 

Interpretations of d~/dt have also varied. If the resultant velocity is normal to the keel, 
i.e., there is no tangential  component of velocity, then 

d~ d~ 
dt -- V~ dz-~ 

but  generally 

d 
/ ' ~  - -  

dt ( V~ -- VT tan ~) d# dz~" 
i.e., there is an effect of the tangential  ~velocity of the rate of growth of the associated mass. 
However some writers (e.g., E. T. Jones in R. & M. 1932 and Pabst 8) also neglected this effect 
and assumed tha t  in general 

d/~ d/~ 
d t -  V~ dz," 

Johnstone 15 on the other hand obtained his results for maximum impact accelerations from a 
consideration of steady planing forces only. He assumed that  the effect of flight path angle was 
equivalent to planing at an increased incidence, and obtained reasonable results based on 
measurements of planing forces on wedges at high speeds. I t  is implicitly assumed that  there is 
no acceleration effect on the flow past a planing surface. The difficulties of defining splash-up, 
associated mass arid distribution of momentum are avoided by the use of an empirically deter- 
mined associated mass factor which is dependent only on deadrise angle. The estimation of 
wetted areas would still however require knowledge of the splash-up factor. 

4.1. The Effect of Neglecting Both the Planing Forces and the Effect of Forward Speed on the 
Rate of Growth of the Associated Mass d~/dt = V,z d~/dz, as in R. & M. 1932).--II planing 
forces are neglected 

V~0 
V n - - - -  1 + ~  

and since 
d# d# 

d V ~ _  V, ~ dl, 
dt 1 + ~ dzs 

- -  • 

This has its maximum value when/~ ----- /~, = 2/7, 
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when k . d t - J m . ~ -  -- 0.61 ,~o 

From the present theory (equation 15) we have 

- g / - j ~  = - .o - i l  + .,,,)~ I - r o e  

The variation of A with r 0 is shown in Fig. 5a. Its value is progressively reduced from the value 
of 0.61 of Jones' assumptions as ro(= tan y/ tan ,) decreases from infinity to zero, i.e., as the ratio 
of the planing impact force to the pure impact force is increased. Jones '  formula would thus 
give over large values of maximum acceleration for small values to, although the discrepancy 
will be less than ten per cent for ro > 8. 

This latter condition covers most of his model test data, and explains the agreement he secured. 

4.2. The Effect of Neglecting Planing Forces but Imludi~¢g the Effect of Forward Speed on the 
Rate of Growth of the Associated Mass (d,u/dt = ( V , -  V r t a n , ) d # / d & ,  as in McCaig7). 

If planing forces are neglected 

g~ 0 V ~ = i +  ~ 

but  we now have 
d# 
dt -- (V,,-- 

hence 
dE, 
dt 

Vr tan 3) d__~ 
dzs 

V,, iV,, -- VT tan ,) dE 
1 +l~ d& 

- (1 + ~)~ v~°~ 1 - (1 + ~) v~v,,tano ~ 

_~_ 3# 21a { 1 + # l f  Ko'~lla 
_ (~ + . )~  V,,o ~ 1 1 + r~ j k ~ /  if ~ small 

= _  a .  ~'~ ( l _ . / r 0 )  V , ~ 0 v v 0 ( ) )  1'3 (1 + ~)3 

which is equivalent to McCaig's expression for dV,/dt in Ref. 7. 
(R. & M. 2513) and ~,,, is shown to be given by 

2r,,, 
~,,, = ~,~0 = 7r,, + 3 

as against 

. . . . . . .  (19) 

This form is discussed by Crewe 

11 

~" = 7r,,, + 6 
when planing forces are included. 

Fig. 6a shows the difference in value between ~,,, and #,,~0. 

The effect on maximum deceleration of neglecting the planing forces is shown in Fig. 6b. 
For this purpose we write equation (19) in the form 



where 
. . . . . . . . . . . .  (20) 

31~"°~/3 (1  -- Iz,,,'~ ro 
A o --  (1 -1-/z.,o) a \ ro , /1  -]- ro 

and compare A 0 with A of equation (16) (where planing forces are included) over a range of r0. 

The values are also given in the following table. I t  must be remembered here that  the decelera- 
tion factors A and A 0 are for different immersions and ~,~ ---- ~,,0. The actual planing force 
component included in the factor A is obtained in Appendix IV. 

~'0 

Ao = 0.131 

A = 0.293 

A o/A = 0"45 

0-0243 

0.401 

0.61 

0.357 

0.481 

0.74 

0.455 

0.537 

0.85 

6 8 L~ 

0.500 0.527 

0-561 0.572 

0-89 0.92 

10 

0"543 

0.580 

0"94 

The figures in the last row of the above table show that  the error introduced by  neglecting the 
wake term may be up to fifty per Cent at the small values of r0 associated with normal good 
landings. 

4.2.1. Further Notes on Mc Caig's Approximate Formula.--McCaig 7 assumes that,  in equation 
(19), ~/ro is negligible for design stress cases and hence obtains the constant value of f2,,~ = 2/7. 
Substituting back in equation (19) we obtain for the maximum deceleration 

- 0 0 1  dt - m ~ x  . . . . . . . . . . . .  

which is the equivalent of equation (3) of Ref. 7. Compared with Jones' result, V~o 2 has been 
replaced by V~0 × V~o which allows for the effect of forward velocity. 

With this form and the use of suitably chosen correction factors in the associated mass factor 
K, he obtains 12 excellent agreement with experimental acceleration results and with Mayo's 
theoretical results down to small values of ro. The approximate V,~ × V~ form has also been 
found to give reasonable agreement with maximum pressure results lq 

Associated Mass.--McCaig's value of the associated mass factor pK is discussed in Appendix II. 
He gives in Ref. 7 a form equivalent to 

p K  o N  - -  4 

Comparison 1~ of his form with experimental results showed tha t  best agreement was obtained 
if the aspect ratio correction factor (1 -- 3~/4 × tan ~/tan ~) were neglected. 

Mayo's value for p K (see Appendix II) is 

2 tan S /  

= 0 " 8 2 p ~ c o t z  2-~-- 1 2 1 2~-an-flJ" 

Mayo has introduced I a factor 0.82 in order to obtain agreement with measured results. 
If the form drag factor 0 be included in the force equation (as in Ref. 11) then the factor becomes 
0.75. 
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The variation in associated mass factor pK between Mayo (K1) and McCaig (K~) is shown in 
Fig. 7b for a wedge with deadrise angle of 22{ deg. Over the whole range of attitudes Ke is 
twenty  to th i r ty  per cent greater than K1. 

Deceleration Factor.--McCaig's equation for maximum deceleration (21) may be written as 

d ( / m =  = 

where Ao' = 0.61 r0 
r 0 + l  

Fig. 7a compares the deceleration factors A and A o' over a range of r0 and shows tha t  McCaig's 
values are always less than Mayo's values. At the same time, however, McCaig's approximate 
factor A0', .which neglects #~to, is in better agreement with A than is the factor A 0, which does 
not neglect ~/ro as is shown in Fig. 6b. These two figures (6b and 7a) would give the comparison 
between the methods if the associated mass factor were the same in all. 

Maximum Load Factor.--Finally the variation in the resulting maximum load factors is shown 
in Fig. 7c. This shows that  the differences in A and pK cancel out to give good agreement 
between Mayo and McCaig for small values of r0. 

4.3. The Effect of Neglecting Impact Forces and Using Steady Planing Force Expression 
(Johnstone~5).--The explicit planing force component of the total  impact force is from 
equation (5) 

Fp = 3pKz, e V,~Vr t a n ,  

= 3pKhe sec ~ * h e V,~Vr tan z . . . . . . . . . .  (23) 

--"- 3pKhe V ~ e ~  ~ l + r -- ~e r e }  i f ~ i s s m a l l  . . . . . . .  (23a) 

In pure planing (v = 0) and 
Fp ~- 3pK tan e ~ h e VR e . . . . . . . . . . . . . .  (24) 

and the lift component L = F~ cos z -~- F~ if ~ is small. 

Johnstone takes (in the notation of the present report) the pure planing lift to be given by  

L = a. p h e . . . . . . . .  (25) . . . . . . . .  

and determines a from experimental evidence as a function of deadrise only. 

Comparison of equation (24) and (25) gives 

a = 6 K t a n  ~. 

Substituting Benscoter's e form for K (section 2.3) above 

i.e. K = cq 3 o~e ~ 

where cq ~ ----- 0.82 =/6 cote~ cot ~ (section 2.3 and Appendix I I ) .  

and c~e 8 combines the splash-up, deadrise and aspect ratio correction factors. 

we have a ----- 0.82 = cote/5 ~e ~ . . . . . . . . . . . . . . .  (26) 

If we now substitute in this equation the empirical values of a given by  Johnstone ~6, we obtain 
the following values of c~e 3 

/5 ---- 10 15 2_____0____0 25 30 

~23 = 1.0 1.18 1 . 1 1  1.16 1.27 
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whereas Benscoter" estimated c~23 to lie between 0.9 and 1.3 for normal landings, taking the 
mean value of 1.1 for general use. Thus {he ' associated mass '  given by Johnstone's values of 
a will be of the right order for determining impact forces. 

Having empirically determined what is effectively an associated mass factor, Johnstone 
develops three formula for impact force, which can be conveniently expressed by 

.(1) L = 3 p K h  ~ VH 2 ~ .  This assumes that  the impact force is identical with the steady 
planing force experienced at the same att i tude and horizontal speed, i.e., that  flight 
path angle has no effect. Comparison with equation (23a) shows that  this is only the 
case when r is negligible, i.e., for extremely small flight path angles. 

(2) L = 3pKh'~ V~I ~ ~ 2 (1 + r). This assumes that  the effect of flight path angle is equivalent 
to planing at an increased att i tude with an associated mass factor dependent on ~ only. 
Comparison with equation (23a) shows that  this formula will give a good approxi- 
mation to the planing force component of the total  impact force provided r~ r" is 
negligible, i.e., (V~/VH)  2 negligible. It  is shown in Appendix IV that  this component 
can be eighty per cent of the total  force at the time of peak deceleration for small 
flight path  angles. 

(3) L = 3pKh V 'r 2 (1 + r)(1 + 2r). In addition to the assumption of the second 
formula this represents an at tempt  to allow for the effect of flight path angle on 
associated mass. The resulting force will be greater than the planing impact force, 
cf. equation (23a), and can give fair agreement with total  impact force but  whether 
the acceleration effects can be legitimately considered in terms of equivalent planing 
forces by an effective change of incidence is a moot theoretical point. 

5. Conc lus ions . - -1 .  The ' classical' impact theory as developed by Van Karman ~, Wagner 6 
and later writers neglect the momentum shed in the wake and therefore obtained the momentum 
equation 

MV o = M V .  +  M.V. 

where M is the mass of the wedge 

/zM is the associated mass of water 

V~ is the velocity component normal to the keel 

and V,0 is the value Of V,~ at first impact. 

When  the momentum shed in the wake is taken into account, the correct form for the momen- 
tum equation at time t becomes f" 

MV,~o = MV,~ + ~ M .  V,~ + d(#M) V,~Vr tan ~ dt 
o d& 

where d( f ,M)/dz ,  VT tan z dt is the amount of associated mass shed from an equivalent straight 
transverse step into the wake in time dr. 

2. Based on the correct form for the momentum equation, Benscoter 2, Mayo ~ and Crewe 
(R. & M. 2513) put  forward general theories which result in a formula for the maximum impact 
deceleration of a plane faced wedge of the form 

d i - J ~  (Z,),, 1 + #,,/1 + r 0 2 t a n ~  V ° ' s i n ~ "  

z, = V K p - -  draft at step normal to keel 

V = resultant velocity 

y = flight pa th  angle relative to the water surface 

where 
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= att i tude of wedge to water surface 

r = tan y/ tan 
subscript 0 refers to values at first impact 
subscript m refers to values at instant  of maximum deceleration 

a = form drag force/inertia force is a function of the deadrise angle ~. 

if,,, and r,~ can be determined graphically as function of r0 and a. The values for a = 0 are given 
in Fig. 3. 

The value of pK (and hence of z~) depends on the assumptions made for the value of the 
associated water mass ffM. Using Mayo's form for ffM, which includes an empirical correction 
factor to give agreement with experimental data, Crewe produced the curves for (l/K) 1/3 
reproduced in Fig. 4. 

3. An approximate formula for maximum impact deceleration, which can be expressed 
explicitly in terms of the initial conditions, is given in the present report as 

d t  /max  = - -  A V~o ~ 

3 f f " ~  (1 - ~,,,/ro) ~ < 0.61 where A -- (1 + if,.)3 

2(7r0 -- 2) when r0 > 1 
and if" = 49r0 + 40 

2to ~ = when r0 < 1. 
7r0 " +  1 0 r o + 2  

Values of if, K and A are given in Figs. 3, 4 and 5. 

In this expression, V,o is the physically significant velocity component at first impact. The 
factor A allown for the effect of forward speed on the impact force and, as before (pK/M)  II~ 
depends on tile assumptions made for the associated water mass. 

4. I t  is shown that  the planing force, defined by rate of increase of momentum in the wake may 
account for eighty per cent or more of the total impact force at small values of r0 (<  1). 

5. Of the earlier theories which neglected the momentum shed in the wake. 

(a) The only allowance made by E. T. Jones (R. & M. 1932) for the effect of forward speed 
was in taking the velocity component normal to the keel as the fundamental  velocity 
parameter. The value of A does not decrease with decrease of flight path  angle and 
his results are shown only to be of value for r0 > 8. 

(b) McCaig 7 included the effect of forward speed on the rate of growth of associated mass 
and obtained the product V,,0 × V~0 as his fundamental  parameter. In terms of 
V,~0" the constant A then decreases with decrease of flight path angle and gives a 

useful first approximation for the effect of forward speed, but as an approximation to 
the complete theory his full formula is only justified theoretically for values of r0 > 6. 
His approximate formula, however, is a good empirical approximation for small values 
of r0, by  virtue of his choice of associated mass factor pK. 

6. Johnstone's theory 15 considers the impact forces entirely in terms of momentum shed in 
the wake, and in effect makes allowance for the pure impact force by considering it as a planing 
force resulting from an increase of incidence and associated mass proportional to the flight 
pa th  angle. The wake momentum treatment is only justifiable theoretically for values of r0 < 0.5, 
but  by  using empirical planing force data reasonable results can be obtained for t o t a l  impact 
force. 
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(a) 

(b) 

Geometrical 

T 

Y 

h, z, z ,  and L 

0 

OX, OZ 

List of Symbols 

Velocities 

Deadrise angle 

Attitude of wedge, relative to undisturbed water surface 

Angle of descent, y 0 = value of y at first impact 

tan ~,/tan ~, ~'0 : value of r at first impact 

See Fig. 2 for definitions 

point of first impact on water surface 

axis fixed in space, parallel to and perpendicular to keel. 

V 

Vr, V~ 

V~, Vo 

resultant velocity at time t. 

components of velocity parallel to and perpendicular to the keel 

components of velocity parallel to and perpendicular to undisturbed 
water surface (horizontal and vertical if water is calm). 

Subscripts zero refer to velocities at first impact. 

(c) F o r c e s  a ~ d  P r e s s u r e s  

F 

Fo 
F 

(d) Masses 

resultant impact force. 

component of impact force perpendicular to ked  

F ,  if viscosity and gravity forces are neglected 

planing force 

M Mass of wedge 

/~M Associated mass of water 

K Associated mass factor, given by v M  : eKzs 3 

K includes factors ~ 1 and ~ ~ where 

1 is factor to allow for deadrise angle 

2 is factor to allow for aspect ratio of the wetted area. 

Subscripts m refer to values at instant  of maximum deceleration. 

NO. 

1 Mayo 

2 Benscoter 

3 Kreps 

4 Crewe 

Author 
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APPENDIX I. 

An AlternMive Devel@ment of the Force and Momentum Ex2bressions of Section 2.1, and 
Com])arison with the Formulce Given by Mayo ~, Benscoter ~ and Crewe (R. & M. 2513) 

This method is the same in essence as that  employed by Mayo 1 and Benscoter ~, and consists 
in summing the elements of force given by equation (3) over the wedge length. Take co-ordinates 
as shown in Fig. 2a. The element of force 

d (pF2z, dx × V~) aF=~ 
dV,~ dz 

= pRz ~ dx ~ + 2pRz ~ dx × V. 

(assuming that  K is independent of z, which is only the case for a plane faced wedge) 

Since we are considering a fixed plane in tile fluid then 

dz dZ 
dt d E -  V., 

dV,, 
a F = pRz 2 dx - ~ -  + 2pKz dx X V~ ~. 
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The only sections giving reaction are those in contact with the wedge at time t. Therefore the 
resultant force 

F = pR z = dx + pRV .  = J dx 
Xs 

pRz, 8 cot z dV~ 
- -  3 " d-T + Rz*2 cot ~ V, ~. 

• As in the first method (section 2.1) define ~M = pKz, 3 

R cot z 
where K -  ~ ,  then 

F = pKz, ~ dV~ dt + 3pKz'~ × V ~  

dV. d(ttM) 

which is the same as given by equation (5a) of the main text. 

Now ~M is the associated mass of water below the wedge at time t and by definition must be 
taken as moving with the wedge, 
hence d 

dt (~M) d(~M) dzs 
- = d z ~ -  X - d [ "  

If the resultant velocity is normal to the keel then 

dz, dZ 
- -  _ _  g n dt dt 

and from equation (4'a) we obtain 

d 

which exactly corresponds to the two-dimensional equation. 

Normally however ttiere is a velocity component parallel to the keel, in which case 
d& dh 
d-t = d-7 s e c  

= V s inv × sec w (see Fig. 2) 

----- V , - -  V s t a n ,  

in which case 

d 
d-/(~M) = 

hence from equation 

F =  

d( M) 
" dz~ (V~-- Vrtan~) 

(4a) 

dV~ + V,~ d(~M) d(~M) Vr tan 
t , M - ~  d--7- + V,, × dz~ 

d 
= d--t (~M × V,~) + V,, d(~M) VT tan Z 

d& 

, 1 8  



which is the same result as obtained by tile first method (equation (5) of the main text). 

The expression 

d(#M) tan ~ = 3pKz, 2 tan 
dz, 

= pKz, ~ 
is the associated mass of a unit section of fluid at the step. 

Hence 

V~ VT d(ttM) t a n ,  = pKz, VTV~ 
dzs 

gives the rate at which momentum is shed from the step into the wake because of forward speed. 

Thus, physically, the force is equal to the sum of the time rate of change of the momentum of 
the associated mass plus the rate of shedding of fluid with downward velocity to the wake, or it 
may be said to be composed of a pure impact force plus a planing impact force. 

Summarising the results, either method gives the generalised momentum equation at time t 
during the impact as 

M V ~ o = M V , + # M . V , ,  + fio (z,') vr dt 
where the associated mass t M  = pKz, 3 

and K = 3 K t a n ,  

while the resultant upwards force on the wedge is normal to the keel and is given by 

d d(~,M) VT tan 3. F = 5  + Vo dz, 

Comparison of the Form of the Force Equation with those of Benscoter 2, Mayo 1 and Crewe 
(R. & M. 2513).--(a) Benscoter~.--Allowing for differences in notation, equation (5a) is the 
equivalent of Benscoter's equation (51), which reads 

F~ = m~ + m'~ ~. 

Here, F~ refers to the inertia force, m is the associated mass and z is the space co-ordinate 
Z of the present report. 

dV. 
~ =  V,~,~-- 

dt 

and m' corresponds to d(ttM). 
dzs 

(b) Mayok--Similarly, equation (5) is the equivalent  of Mayo's equation (22), which reads 

dV,~ 
KY~ dt Ky ~ V~ ~ 

F,  = 3 s in ,  cos ~ , + sin ~ cos 

Here, K is the two-dimensional associated mass factor p/~ of the present report, and y is the 
step depth h of the present report. 

Equation (5) above is the equivalent of Mayo's equation (24), which reads 

dV, 
KY3 dt + Ky 2 2V~ + Ky 2 VbV,, 

F~ = 3 sin ~ cos ~ ~ sin v cos ~ T cos ~ 
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where Vp (in Mayo's notation) is the velocity component parallel to the keel. 

(c) Cmwe (R. ~ M. 2513).--Crewe gives an expression for the inertia force of the form 

d rh~_ 1 F - -  M (:, v,,) + B 

taking #M = Kh* 

instead of # M  -~ p Kz a. 

This amounts to taking a different value of the two-dimensional associated mass factor 
in the planing force term to that  in the pure impact force term. Crewe discusses this point on - 
pp. 38 and 39 of R. & M. 2513. Theoretically it depends on the validity of the strip theory 
method used by Benscoter and Mayo (and in the present report) in their approach to the problem. 
However, from experimental evidence it seems justifiable to make use of the same factor in each 
term, and this simplifies Crewe's equation to that  of Benscoter or Mayo,--i.e., equation (5) of 
this report--aIways assuming that  there is no time lag factor in the build-up of the planing forces. 

APPENDIX II. 

Summary of the Values of the Associated Mass Factor pK at Present in Use. 

The Value of the associated mass depends on the geometry of the wedge and on the total 
wetted area which has to be considered. The classical approach is to build up the three- 
dimensional associated mass as the sum of a series of two-dimensional values, introducing a 
correction factor for aspect ratio to allow for the escape of fluid around the perimeter of the 
wetted area. 

The two-dimensional associated mass was assumed by Von K~rm~n 5, from the theory of motion 
of a flat plate, to be the mass of a semi-cylinder of water on the wetted width of the wedge as 
diameter. He took the wetted width to be the intersection of the wedge with the undisturbed 
water surface. Wagner 6 modified this assumption by basing his associated mass on the splashed- 
up wetted width, where splash-up is the rise of displaced water along the sides of the float. 
He obtained the splash-up by consideration of the two-dimensional flow around tile edges of 
a flat plate. 

Since both values are based on the theory of motion of a flat plate, a further correction had 
to be introduced to allow for the effect of deadrise angle on the motion. 

Detailed consideration follows. 

Basic Value.--The two-dimensional basic (Von K~rm~n) value for the associated mass is, 
as stated above, assumed to be the mass of a semi-cylinder of water diameter equal to the width 
of the wedge at the undisturbed water surface. 

Thus, by integration, a three-dimensional basic value for a wedge at att i tude ~ (as in Fig. 2) 
is the mass of a half cone of water determined by the intersection of the wedge with the undis- 
turbed water surface (provided the chines are not immersed). Thus the basic value for the 
associated mass factor pK, defined by ~M = pKzs 3, is 

p .~ cotS/? cot T = pKo say. 

Correctio~ for Sj)lash-up.--As calculated by Wagner G, splash-up will make the wetted beam 
of a plane-faced wedge ~/2 times that  intersected by the undisturbed water surface. This result 
is backed by experimental evidence from the Royal Aircraft Establishment towing tank (un- 
published). If the associated mass is based on the splashed-up wetted width, then the basic 
value pKo must be multiplied by the factor ~ /4 .  Further Royal Aircraft Establishment Tank 
unpublished experimental evidence would indicate that  there is also a splash forward (see section 
2.1), but this so far has not been taken into account when estimating associated mass values. 
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Correction for Deadrise Angle.--The factor for deadrise angle may be denoted by ~ and has 
been given different values. 

Kreps ~ advanced the value 

2 taS[r(1/2_+ -_ _ 

, - I  

-'- 1 -- 2/~/~ for practical values of ft. 
This value has since been used by McCaig 7 and Russian writers. 
Wagner 6 on the other hand put forward the value 

which has been used by Mayo ~ and Benscoter ~. 
Correction for Aspect Ratio.--A correction for finite aspect ratio is made by a factor ~.  Such 

a factor was empirically determined by Pabst s for rectangular plates and takes the form 

22 _ 0.425 ,~ q- 1 where 2 -- (beam) 
~2 = (2 ~ q- 1) a/2 wetted area 

1 1 - - ~ / 2  fo r t  ~<0.7. 

He then applied this correction to the wedge impact problem by taking ~ as the aspect ratio 
of the triangular area formed by the projection parallel to the keel of the intersection of the 
wedge with the undisturbed water surface. (,t ~- 0 corresponds to the two-dimensional case). 

Mayo ~ and Benscoter 2 take ~ -- tan v/tan fi, i.e., half the aspect ratio of a rectangle on the 
same base. Crewe (R. & M. 2513) makes the same assumption. 

McCaiff multiplies this value of ~ by three to allow for the fact that  the volume of the associated 
mass is only one-third that  of the original half cylinder, and by ~/2 to allow for the splashed-up 
area. 

Combining these factors we obtain 

ffM -~ pKz, a 
~ 2  

- -  4 PK°~l~2z~ 

which, by sabsdtution of the various values, gives the forms used by Mayo ~, Benscoter ~, Crewe 
(R. & M. 2513) and McCaig ~, apart from additional constants added to secure agreement with 
experimental results. 

The diversity of formulae obtained and the necessity for adding arbitrary constants both point 
to the need for a more rational means of estimating associated mass,::" preferably based on three- 
dimensional concepts rather than by trying to extend further the two-dimensional concept. 

A P P E N D I X  III. 

An Approximate Solution qf the Equation of Motion 

If we assume that  cos ~ r ~ 1 in normal landings and that  the form drag fo.rce can be neglected 
in comparison with the inertia forces, i.e., ~ = O, then the equation of motion (6) becomes 

dV,~ 1 dff 
dff + 1  + ff dz, V " ~ = 0  

*It should be noted that  since the original date of this report, such an estimate has been given by Crewe's 
(Area)Z/Perimeter formula and is used in obtaining the design formulae of Ref. 16. 
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which,, since dzJdt = V,  -- Vr tan ~ is equivalent to 
dV~ V~ 2 1 
- -  - -  X - - .  

d/~ V,~ -- Vr t a n ,  1 + 
Integrating this equation we obtain 

V, exp Vr tan ~ V,, V,0 1 + /~  Vn 0 

Now ( Vr tan ~)I V,, is not necess~/rily small if ~ is small, but up to the instant of maximum 
deceleration the exact theory shows that  

Vr tan  ~ V~ IZ, o 

is small and hence 

1 1 7 _...1 + Vr t an~  V,, V~0 exp Vr tan v V,~ V~,o - -  

This approximation is valid within one per cent down to r0 = 0.5 (r0 = tan ~ 0/tan ,) and is 
ten per cent high at r0 = 0.2. 

Substituting this approximation in the solution for V,,/V,, o we obtain 

V,~02 1 V,,0 Vr tan 
x 

V,0--  V r t a n ~  1 + ~  V,,0-- V r t a n  
V~ 

N o w ,  is small hence 
Vr tan 

V.0 

Hence 

1 -- ro tan~,  
l + r 0  

1 
l + r 0  

-- V"---~° ( l  _ f,/ro) vo-l+/ 

o r  

and these are equations (13) and (14) respectively of the main text. 

APPENDIX IV 

An  Approximate Expression for the Planing Force Component of the Present Theory 

The force equation corresponding for oblique impact is given by equation (5), i.e. 

F = -dr /~M d t - . I  + 3p Kzs 2 tan ~ V, Vr 

where /~M = pKz~ 3. 

On the right-hand side of this equation the first term corresponds to the pure impact force, 
the second to the planing force. Strictly speaking it is not possible to make this sharp division 
since the planing force has an effect on the pure impact force theough the momentum equation. 

For some purposes however it is useful to know the magnitude of the planing force occurring 
explicitly in the above equation. Denote this force by Fp. 
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Then Fp = 3pKz ,  2 V , Y r  t an  

or ~r  --  o . .  ~. M J V,,Vr t an  

V,,o ( '  - ~/~0) . . . .  where  V. --  1 -¢- 

V~0 
and  Vr t an  ~ -"- - -  

1 -t- r0 

F, 3.~13 f Kp'~ ~13 1 - -  . / r o *  
or ~r  = (1 + , ) 5 \  M J V"°~ 1 + ro 

which can be compared  with  the  total  force given by  

ff 3/£2/3 (~)113 ( )2 
m - (1 + ~)" V,~o ~ ~ - ~/ro 

(13) 

The planing force given by  (24) of Section 4.3 will have  its m a x i m u m  value at  a different 
t ime to the  to ta l  force, bu t  considering condit ions for m a x i m u m  tota l  force, i.e., 
~,~ = 2r,~/(7r,,, + 6), we have  

F~ (1 + ~,,,) 
F --  (1 -t- r o) (1 --  ~,,,lr o) 

which > 0 as  ro > oo 

and  0.8 when  ro = 0.5. 

The value for ro = 0.5 is considerably larger t han  t ha t  given in section 4.2 bu t  it mus t  be re- 
m e m b e r e d  t ha t  in the present  case, a por t ion of the planing force is a l ready included impl i c i t l y  
in the  ' pure  ' impac t  force, where  i t  serves to reduce the value of the  la t ter  force. 

*In pure  p laning  this  accelerat ion would be  given b y  

M V~ ~ where V,~ = V,, 0 = const.  
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FIG. 1. Normal impact of a wedge with zero attitude (two dimensional case). 
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FIG. 2a. Oblique impact of wedge at finite attitude (three-dimensional case). S~raight transverse step. 
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FIG. 2b. Oblique impact of wedge at finite attitude. 
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