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Summary.--Methods are given in this paper of dealing with singularities of functions satisfying certain two- 
dimensional partial differential equations. For a numerical solution the differential equations are replaced by 
difference equations on a square mesh. Log (I/q) where q is the Velocity, becomes infinite at stagnation points, sharp 
corners, sinks, etc., while the conjugate function 0 (flow direction) becomes multi-valued. The method consists in 
finding a series expansion for the function (log 1/q or 0) in the neighbourhood of the singularity. This expansion is 

then  used to find relationships between the function values at points of the mesh adjacent to the singularity. A 
method of working directly in the transformed flow plane (in which the aerofoil is a slit)~ and thus avoiding irregular 
squares on the boundary, is also given. The method is developed for incompressible flow, but an approximation 
suitable for compressible flow is given. 

Introduction.--Differential equat ions for incompressible and compressible flow can be 
replaced by difference equat ions on a square mesh. Thorn t, Southwell  2- and  E m m o n s  ~ have  
used this principle to de termine  the  flow in channels and about  aerofoils, but  the  finite difference 
me thod  breaks down in the  ne ighbourhood of a s tagnat ion point  or sharp corner. At a s tagnat ion  
point the  second space derivatives of the veloci ty potent ia l  become infimte, while at a sharp corner 
where the velocity itself becomes infinite, the  first derivatives of the potent ia l  function are infinite. 
Bo th  Southwell  and Emmons ,  who used equat ions involving the  s t ream function, appear to have 
neglected the singulari ty at the s tagnat ion point. The s tagnat ion points  and their  exact location, 
represent  boundary  condit ions too impor tan t  to be neglected (for example, by  using a grid in 
the  physical (x, y)~-plane, so arranged tha t  these points are avoided). The author  has found, 
for instance, tha t  the m o v e m e n t  of the  front s tagnat ion point  1/1000 of the chord distance for 
a small nose radius aerofoil at a given angle of incidence, can alter the  magni tude  of the  veloci ty 
peak by  more than  ten per cent. The difficulties at these singular points become more serious 
.when equat ions involving log (l/q), where q is the velocity, are used ins tead of the s t ream 
function, since log (l/q) becomes infinite botch at the  s tagnat ion points and the  sharp corners. 
Methods 4 have been given for problems in which the derivat ives of the function in quest ion 
become infinite at one or more points i n  the  field, and this paper will deal wi th  the  case for 
which the  function itself becomes infinite or mul t iva lued  at points in the field. Log (l/q) becomes 
infinite at sharp corners, s tagnat ion points, sinks, sources and vortices. All these can be 
included in the  same general method.  This involves finding a series expansion for log (I/q) 
in the  ne ighbourhood of the singularity, which allows relations to be established between the 
values of log (!/q) at t h e  points of the grid ne ighbour ing  the infinity. 

The flow direction 0 becomes mul t i -va lued  at these singularities, bu t  the  me thod  enables the  
exact  character  of 0 near  the singulari ty to be determined,  and the  difficulty overcome. 

.*. Oxford University Engineering Laboratory Report No. 27. 
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In addition to the results mentioned above for log (I/q) and O, the following related results 
are g iven: - -  

1. Calculation of s = fd$/q,  (where 4; is the potential function, and s the distance along a 
streamline) near the singularity. This integration is an essential part of the method of 
working in the (4;, W) plane (see Section 2 below). 

2. Calculation of the trailing edge angle from a given velocity distribution curve. This 
is a useful step in the case when the aerofoil profile has to be calculated from the given 
velocity curve. 

Symbols  

(x, y )  
(4, ,p) 

=) 

q 

L.. 

0 

y = 

t 

R 

h : 

S 

X 

T 

the physical flow plane. 

the transformed flow plane, such that  the aerofoil boundary is on ~0 = 0 (~0 is the 
stream function). 

polar co-ordinates in the (4, ~/') plane. 

velocity vector magnitude. 

log 
angle between x-axis and the velocity vector. 

L + i O .  

change in direction of b o u n d a r y a t  a point. 

radius of curvature of the boundary. 

t/=. 
interval of the square mesh. 

distance along a streamline or boundary. 

residual of the Relaxation Process. 

trailing-edge angle. 

1. The Velocity Fie ld  in  the Neighboufhood of  a S i n g u I a r i t y . - - R e f e r r i n g  to Fig. 1, the 

dz : 1 e~ ~ Schwarz-Christoffel Transformation from the z-plane to the w-plane is Tww ~7 w-'% where 

K and 2 are real constants, and the origin is taken at the corner A. 

but dz 
d w -  ei°/q : ei~/K X w -h , . . . . . . . . . . . . .  . (1) 

where h ~_ t/n. 

Therefore f ~ log ( ~ ) +  

Thus, since w =: re i°, 

K 
iO ~ L + iO = h log ~_ + i2. 

K 
L = h l o g } - - ,  0 = (2 - -  he). 

When r = K then L = 0, and since e = 0 on AC, 2 is the angle between the x-axis and AC. 
These results imply that  in the neighbourhood of a sharp corner or stagnation point on an 
aerofoiI we can write, 

f =  - -  h l o g w +  a + bw + cw 2 + . . .  

2 
(2) 



or L + iO = - -  h log r + al + blr + c~r ~ + . . . - -  ( h e - -  i + b2r + c2r 2 +  . . . )  (3) 

where al, bl . . . ,  b~, c~ . . . are real, and functions of e only. 

' a + bw + cw 2 + . . . " represents the contribution to f due to the remainder of the aerofoil, 
and so sufficiently close to the singularity -- h log w will be the dominating term in the series. 

1 w~-h 
Integrat ing (1) we find z -- K 1 -- h + C, and since the origin in the z-plane transforms into 

the origin in the w-plane, C = 0. Using this in (2) we find for the z-plane tha t  f can be expanded 
in the series 

h 
f - -  1 - - h l ° g z  + a3 + b3z + c3z 2 + . . . . . . . . . .  (4) 

This equation could be made the basis of a method of dealing with singularities in the (x, y) 
or z-plane. I t  would be similar to tha t  described below for the (¢, ~o)-plane. The (¢, ~0)-plane 
however has two advantages over the (x, y)-plane: - -  

1. Irregular stars ~, which involve the use of interpolation formulae in the Relaxation 
Process, are avoided on the boundary. 

2. By confining the circulation to one of a series of discrete values, it is possible to arrange 
tha t  each of the leading and trailing edge stagnation points coincide with a mesh point 
in the square grid in the (¢, ~o)-plane (see Ref. 5). In the (x, y)-plane this is usually 
only possible with a symmetrical  aerofoil at zero incidence. 

The one disadvantage is tha t  the boundary conditions in the (¢, r)-plane depend upon the 
solution, but  this can be easily overcome as described in section 2 below. 

We conclude this section by briefly noting that  sources, sinks and vortices can also be 
represented by  equations of the type (2). Dealing with a sink as typical of these, we have 
V = B / r ,  where V is the velocity due to the sink, t3 is a known constant proportional to sink 
strength, and r is radius from the sink centre. Thus near the s ink : - -  

L = l o g r +  a + b y +  cr ~ + . . . .  

This would find some application on boundary-layer suction aerofoils. 

2. B o u n d a r y  C o n d i t i o n s . - - N o w ,  since f is an analytic function (except at the stagnation 
points and sharp corners), it satisfies V ~ f =  O, i .e . ,  V2L = V20 = O, in both the z- and w-planes. 
The Cauchy-Riemann Equations also hold, i .e. ,  in the w-plane, 

OL O0 OL 30 

On the aerofoil boundary 0 is specified, 'or can be calculated from the aerofoil co-ordinates. 

OL O0 ~s 1 
- -  ~ • . . . .  . . .  , .  Now O,!, Os 0¢ + R q  . .  (6) 

since O¢/Os = q, and Os/O0 - -  R (radius of curvature of boundary). The other boundary 
conditions are the locations of the stagnation points and sharp corners if any. The rear 
stagnation point will be fixed at the trailing edge (Joukowski Condition), whereas the location 
of the front stagnation point will depend upon the circulation or incidence required. The 
non-linear boundary conditions (6) can be dealt with as fo l l ows : -  

Assuming initially a distribution of q against ¢ in the w-plane, and that  ¢ ---- 0 at the trailing 
edge, we find the distance g from the trailing edge to any particular potential ~ by  integrating 
thus : - -  

f ~ de 
= - -  • . . . . . . . . . . . . . . . . . .  (7) 

o q 
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since q ~ a¢/as.  The  front  s tagnat ion  point  is ma in ta ined  at  a cons tant  potent ia l  of such a 
value  tha t  it falls on a mesh  point  of the  square  grid. In  an actual  calculation,  the  integral  in 
(7) is replaced b y  a summat ion ,  and  the  potent ia ls  ~ are the  potent ia ls  of the  lines of the  gr id  
cu t t ing  the  boundary .  In tegra t ing  r ight  round  the  aerofoil enables e (chord distance) to be 
found from the  known relat ionship be tween  the  per imete r  and the  chord of the  aerofoil; thus  
sic for each grid poin t  on the b o u n d a r y  can be found. If the  non-dimensional  graph c/R against  
sic has been plot ted,  then  1/R is quickly  ob ta ined  for each grid point.  Using the  assumed 
values  of q and  the  der ived values of 1/R an approx imate  b o u n d a r y  condi t ion OL/a~ ---- + 1/Rq 
is found for each point .  

This m e t h o d  m a y  seem crude,  and it would  seem tha t  the  resul t ing va lues  of a l l  a~, would  be  
qui te  wide of the  t rue  values. However ,  as an overes t imate  in the  value  of q reduces the  vah.les 
of c subsequent ly  de termined ,  the  p roduc t  qc remains  r ea sonab ly  close to the t rue  value.  
Fu r the rmore ,  along the greater  par t  of the aerofoil chord, R varies .slowly. 

Using these approx imate  b o u n d a r y  condit ions,  the  usual  re laxat ion t r e a t m e n t  Of V2L ~ 0 
is now applied.. This will result  in new values of q along the  aerofoi], which  are then  used in 
exac t ly  the  same m a n n e r  as described above, to de te rmine  a new b o u n d a r y  condi t ion aL/a~. 
This leads to a new q dis t r ibut ion on the  aerofoil surface, and so on . . . .  The process converges 
rapidly,  and  even assuming q ----- 1 initially,  only two or th ree  in tegrat ions  along the surface are 
required.  

Fig. 2(b) shows a typical  square 0546 in t h e  field. The values of L are progressively changed  
so as to reduce the  residuals X~ defined b y  X2 == L4 + L6 + Lo + L5 --  4L~ to a min imum.  On 
the  b o u n d a r y  at  a typica l  point  0 we can w r i t e : - -  

\a¢~/o  + ~ .  \ a ¢ ' / 0  + . . . .  

2 L 2 - - 2 L 0 - - : 2 n  ~ + n  2 
o \ a~ ~ Io + -5 \ a~,~]. + . . . .  

i.e., LI + Ls + ' 2 L ~ -  4 L o - -  2n - ~  o "" 

Using (6) we have  

2neLo 
L I +  L ~ + 2 L ~ - -  4 L o - -  Ro = X °  . . . .  . . . . . .  (9} 

which  can be wri t ten ,  wi th  less accuracy,  (since Lo ~ <: 1) 

( 2,q Zo Xo. (lm L1 + £ 3 - /  2 L 2 - -  4-~- Ro/ R o - -  " . . . . . . .  " 

3. The 0 Field near a Stagnation Point or Sharp Corner.--From (3), 0 = --  he + ~ + br + . . . .  
Referr ing to F ig .  3, we see t ha t  ,~ is the  value of 0 for the t angen t  TT'  to the  s tagnat ion  s treamline.  
TT '  bisects the t rai l ing edge angle r. The value of 04 depends upon  s, i.e., upon the  direct ion 
in the w-plane f rom which  point  4 is approached.  For  the  square  m a r k e d  1234, the  appropr ia te  
direct ion is 2 -0 -4 ,  for which  ~ : =/2. Therefore 0~ : --  h (~/2) + Z ---- - -  t/2 + ~, : - -  ~:/4 + ~, 
since in this case t ---- ~-T and so for the residual  at  0 2 , 

T 
Xo : 01 + 02 + 0~ - / 0 4  - -  400 ---- 01 + 02 -~- 0~ + ,~ - -  ~ - -  400 . . . .  (11) 

For  other  more  involved formulae,  such as Bickley 's  ' 2 0 '  formula  s, t h e  value to be t aken  for 0~ 
depends only upon  e. For  ins tance if the square in quest ion were  cent red  at  point  3 , ,  ---- (3~)/4, 
and  0, = --  (3~)/8 + ~, etc. 
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Thom has used an approximat ion  for 0 near  a re -en t ran t  corner. This  is 0t + 02 + 02 = 300. 
Considerat ion of Fig. 3 shows tha t  approximate ly ,  

0~ -¢- 02 -"- 200 -" -  203 -" -  2 ( - -  -v/4 -~  %), therefore 0t -4- 02 + 03 ~--- 300. 

For a sharp corner project ing into the  fluid the  only  change required is in the  sign of , .  

. 

a t  the  s tagna t ion  point,  

L = --  h log (¢~ + ~2)t/~ + at + bt (¢2 + ~0~)~/2 + ct (¢2 + ~02) + . : . .  

t l  " 2 
Thus  on v' = 0 ,  L = - - h l o g $  + p l  + s ~ $  + F~ $ + . . . . . . . . . .  

The L Field near a Stagnation Point Or Sharp Corner.---From equat ion (3), wi th  origin 

(12) 

where  Pt, st . .  are now constants ,  since e is cons tant  ( =  0). 

S imilar ly  on ~ = 0, 

L - -  h l o g  v, + P~ + s2~, + ( t , /2 )  ~o ~ + . .  (13) 

aL h a~L h 
F rom (12) aS --  ~ ~- s~ + t t ~  + . . . . ,  a6~- = ~  + tt + . . . . .  

02L 2!h 
a~ 2 - # - ~  . . . . . . . . .  

a~L (n- 1)!h 

Using  these results, and  referring to Fig. (3), we now de t e rmine : - -  

~- . . . . . . . .  

a. L3 in terms of L6. 

L5 = L6 + n ~ 8 -t7 ~ \ a¢ 2/6 + . . . . . . . .  (n is the  mesh interval).  

[ ( ~ )  1 (~) 2 1(~) 8 ] 
-"- LG + n (s~ -{- t t ¢ ) +  (~42/2!) t~ -- h --  ~ + g -- • . . . . .  

= L 6 + ( n s l + n S t ~ - { - ( n 2 / 2 ! ) t t ) - - h l o g  1-¢-~ , i f - -  1 < ~  < 1. 

B u t  $ =  --  2n, since $ refers to point  6. 

Therefore L5 -"- L6 + h logo 2 --  25- st - -  -~ ,6~tt. . .  (14) 

b. L5 in terms of L3. 

L2 -- L5 + n + 
5 

\ a ~  2/5 + . . . . . . . .  N o w  ~ -  5 = ~ '  

a3L 
and  from Laplace 's  equat ion we have  -3- 3 

a 2 (aL) 
a~ ~ 

1 a s 
R a$ ~ (eL), assuming R cons tan t  near  the s tagna t ion  point.  

5 



Therefore 

Similarly, 

a,L , r (oLy1 e (h 
\ a 4 / J  _~ ~ + #  

aZa4 ---~ _ + e'4, h (h,R + 1) {h (h + 1) + 2 × 3}, etc. 

e ~ h (h + 1) 
R 4; ~ 

Also 
02L 02L h O"L a4L 3!h 
O~v 2 04 45, 0 ~ ' - -  04" 4~,  etc. 

7 / e  L 

Thus La -"- L5 4- R 
nh (h 4- 1) e L 3! 51 - -  ° -  . . . . . . .  

1 1 

omitting powers of h > 2, as h m,, ---- ½. 

. . . i  . . . .  ] 

~4e L 
Therefore L~ -- L5 4- R nh (hR4- 1)eL {½ log (1 4- (~)2) 4- ( ~ ) t a n  -1 (~) -- 1} 

When $ : n, as at point 5 : l  

4h(h+ 1)( ~ ) h 
Rq ½ l o g 2 +  ~ - -  1 - - ~ l o g 2 .  

= z~+ (~)0 (1-- 0.131h (h + 1)}-0.346h. . .  (15) 

c. Lo in  terms of  L1 and L~. 

L1 -J-- L 3 -  2L  0 7--~ SV]~ 2 (02L~ ~ 4  
(0K) 

\ a $ ~ / o +  . \ a # / o  + . . . . . . . .  

\ o v , ~ / +  ~. \0v,'/o -- " . . . . . . .  

= - -  n~t2 - -  h + ½ - -  . . . . . . . . .  from (13). 

[ Therefore L1-4- L 3 - - 2 L o = - -  n~ t2 - -h log  1 +  . When~o = n ,  as at point 0, then : - -  

2L0 = L1 + L3 + 0.693h + n2t2 . . . . . . . . .  (16) 

Equation (15) can b e  used to calculate L~ from L3 during the relaxation of the field, and 
equation (14) is a useful check. The constants s, tl, &, are normally very small and can usually 
be neglected. If necessary they could be eliminated by using similar equations for other 
neighbouring points. 

6 



In Ref. 5 Thorn suggests an alternative method of dealing with the infinity at the stagnation 
point. He uses the function F = log (qdqc) + i (Oc --  G), where subscript a refers to the aerofoil 
and c to the cylinder from which it is transformed. However (3) shows tha t  F is finite only if 
ha = h,  While this is true at a rounded nose it is not true at the trailing edge. The method 
would be useful to transform the known flow around one aerofoil to that  around another with 
the same trailing edge angle. 

5. Integration near a S ingular i ty . - - In  determining the location of the feet of the equipotential 
lines upon the aerofoil surface it is necessary to integrate the expression ds = d¢/q, which becomes 
infinite at a stagnation point. We proceed as follows:-- 

On the surface near the singularity, 

L = - - h l o g ¢  q- a +  b4 + . . . . . .  (17) 

Put  c h 

e a = A,  a n d w e  find approximately q -- A (1 + be) " 

Therefore r | ~  d$ = 
do q 

at 6. 

f ; de _ 
Therefore 0 q 

61_h ( 1 - - h  ) -- 4 where ~ is the value of q A l _  h l + b ~ _ h ~ .  NowA ~ ( l + b ¢ ) '  

- b6 h)  - -  ~ - h) 2 . . . . . .  d ~)(~ 2 -  ( 1~  (~ -~ h) (is) 

where, from (17), ~ is the first difference of the function L + h log ¢ on the mesh at ~ (found by 
extrapolation). Generally ~ can be ignored. 

6. Calculation of Trailing-Edge Angle f rom a Given Velocity Distribution along the Chord. 
When it is required to calculate the aerofoil profile corresponding to a given velocity distribution 
at a specified free stream Mach number, it is necessary to calculate the trailing-edge angle so 
tha t  the methods given above can be employed. We start  from equation (4) and find that  

h 

q , - - \ ) 7 /  where h = 2--~' and (q', x'), (q", x") are points on the given 

(q, x) -curve selected as near to the trailing edge as the data permits. (x in this case is measured 
from the trailing edge.) 

tog q"/q' 
If g ----- iog x ' /x '  ' then 2~ -- - - g .  Therefore the trailing edge can be 

2 (19) calculated from z -- 1 +-----g . . . . . . . . . . . . . . . .  

A few results are shown in Fig. 4, which verify equation (19). The numbers at tached to each 
point are the A.R.C. references from which pressure distributions were taken. The ' true angle ' 
was obtained from the aerofoil co-ordinates and is actually the angle between the tangents to 
the profile drawn at the smaller of x", x', say x'. Of course the smaller x' the nearer will this 
angle be to the actual trailing-edge angle. 

Another useful formula is ~¢~ -"- (1 --  h) q ~xl . . . . . . . . . . . .  (20) 

where 8¢i and ~xl are small increments measured from the stagnation point. 

7 



. , . . , ~ X l  

This follows since 05~ -"- 
~ 0  

, h 

q dx = q~ \ O x J  
~ 0  

= (1 - -  h) ql axl. 

7. The Appropr ia te  Value  to take for  ' n ' . - - I t  is clear, that  unless the mesh size n is small, 
certainly less than the radius of curvature near the nose, the above formulae will have l i t t l e  
accuracy. Normally, near a rounded nose the value of h = ,/(20) = a/(2a) ---= ½ should be 
taken, but  on a coarse mesh, this value of h would be too large, and so would exaggerate the 
influence of the stagnation point. The field on the coarse mesh due to the stagnation point is 
like that  due to a nose angle much less than a. This is not usually the case in the neighbourhood 
of the trailing edge since R is quite large and varies slowly, except at the edge itself when R = 0. 

Now if *A and , a  are the leading and trailing-edge angles respectively, then 

dO + ~A + ~z-z=O, 

is simply one of the conditions that  the profile is closed. With a finite number of mesh points, 
say m of them, the condition becomes 

. . . .  + = o ,  
i = 1  

aL oo 
or since O0 - -  0~, 04~ = - -  R--q' (see (6)) 

. . . .  *H . . . . . . . . . . . . .  (21) 
i = 1  i 

Equation (21) must be satisfied regardless of the real values of zA and ,n, otherwise the profile 
will not be closed. 

Use of (21) is based on the assumption that  ,~ can be taken equal to the trailing-edge angle. 
On a coarse mesh near the trailing edge this may not be quite accurate, and it is better to treat 

( ~ \  
zn and ,~ in exactly the same way as follows. Zn is made equal to the sum of the ~-~)i ( =  X~0,) 

between the points of contact of parallel tangents on the aerofoil and the trailing edge. ~A is 

(~6~ between the selected to satisfy (21), and then it will obviously be equal to the sum of the \~q/~ 
points of contact of the tangents and the leading edge. 

8. Compressible F l o w . - - I t  can be shown that  7 

oo aL 
") a s = O '  

oo OL 
as+  = 0 ,  

where L is now the log of the compressible velocity, and M the local Mach number. If ¢ is the  
angle between the compressible and incompressible flow vectors at a point, then transforming 
to the incompressible flow grid 

0O 
($, ~o) we have 0n 

00 sin ~ etc., - - q l  cos~ a~o 

8 



Retaining only the first powers, of ~, since for most where qi is the incompressible velocity. 
cases it is quite small, we find after some calculation:-= 

Initially we solve V2L= -~ M s -g~ . . . . . . . . . .  

and by an integration through the field ~ is found, enabling the full equation to be solved. The 
method has been described in full in another paper t  Making the usual approximation of small 
pertubation theory, i.e., tha t  M ~ is equal to M~ ~ (the undisturbed stream Mach number) we 
write (23) with less accuracy 

t~ 2 02L O~L 0, where/~ = (1 M~o2) ~/2. (24) ~ +  0 ~ - - ~ =  - . . . . . .  . . .  

The affine transformation $j = Z¢, ~0; = X~0, Lj = vL, where 1 and v are constants transforms 
(24) in to : - -  

~'L; a % _  0 . . . . . . . . . . . . . . . .  ( 2 5 )  

Thus if Lj = f (~0 i, ¢/) is a solution of (25), then L = 1 f (X¢, Z/~) is a solution of (24). Now 

from equation (3), for a corner 80 on an aerofoil in incompressible flow, we can wri te : - -  

8 0 1 o g ( ¢ 2 + ~ 2 ) + a x - ~ - b l ( ¢ ~ + ~ ) l / 2  + - - i  (-~ tan -l~v 1@ ) 
L + i o  = - -  2 ~  " ~ - -  " 

Thus a solution of (25) is 

80;1 
L~ = N log (¢? + w~) 1/~ + . . . .  

aLj v ( 8 L 8 6 )  = v But 80j = ~-~j 855 =/~  ~ ~ ~0, and so the solution of (24) in the neighbourhood of a 

corner 80 is 
80 (26) L -- 2 ~  log (¢2 + /~02) + . . . . . . . . . . . . . .  

From this equation we can conclude tha t  most of the formulae for incompressible flow, given 
above, may be modified to give approximate results for compressible flow by replacing h by h/~. 
This does not of course apply to section 3 which remains unchanged. 

For aerofoils at an angle of incidence, in addition to the modification given above, the stagnation 
point moves as the Mach number of the stream is increased. This movement must be calculated 
by finding ~ at the stagnation point (integrating along the stagnation stream line). The 
stagnation point will thus move off a grid point and interpolation formulae are required. 

9. Comlus iom. - -The  formulae given in this paper have all been employed and have been 
found (in those cases where exact solutions, or solutions by other methods, were available) 
to be .sufficiently accurate. The case of an asymmetrical aerofoil at a given angle of incidence 
and at free stream Mach numbers of 0, 0.4, 0.65, and 0.75 was one of the problems selected, 
and the results are reasonably close to experimental curves provided by the National Physical 
Laboratory. (R. & M. 2727. ) 
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