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Two-dimensional Aerofoil Design in Compressible Flow 
By 
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Engineering Laboratory, Oxford University 

Reports and Memoranda No. 273 : 

ATovem[~er, 1949 

S u m m a r y . - - T h i s  paper deals with the following two-dimensional problem:-- '  The design of an aerofoil to give a 
specified velocity against chord curve at a given free-stream Mach number. '  A ' r e l axa t i on '  method is adopted, 
based on the differential equations for incompressible and compressible flow. An essential feature of the method is 
that  the calculations are carried out in the (¢, ¢) or w-plafle, in which the aerofoil is represented by a slit along ¢ = 0. 
The square mesh in this plane is formed by  the streamlines (~ = constant), and equipotentials (4 = constant) for 
incompressible flow about the aerofoil. The method is developed for a symmetrical aerofoil at zero incidence, but  
the modifications necessary for the more general case are indicated. A worked example is given, from which some 
idea of the accuracy of the method can be gained. The compressible velocity distribution about a known aerofoil 
was taken as the initial data. This aerofoil was actually 12 per cent thick at 30 per cent of the chord distance from 
the leading edge. Using a mesh giving only fourteen mesh points on the aerofoil, we find that  the calculations yield 
a 12.06 per cent aerofoil at 28.2 per cent of the chord distance from the leading edge. 

Introduction.--Symbols Frequently Used. 
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Physical plane, in Which z ---- x + /3i. 

The transformed flow plane in Which the aerofoil is represented by a slit 
on ~ - - 0 .  w-----¢ + i v .  

Incompressible velocity vector in polar co-ordinates. 

log (1/qo). 
Similar quantities for compressible flow. 

Radius of curvature of boundary. 

Interval of the square mesh. 

Distance along a streamline or boundary. 

Residual of the Relaxation process. 

Local Mach number. 

Undisturbed stream Mach number. 

Angle between incompressible and compressible velocity vectors. 

Incompressible velocity on aerofoil surface. 

Local velocity of sound. 

Velocity of sound at stagnation points. 

Aerofoil chord. 

32 ~ 
,a42 + 0~2 . . . . . . .  
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A method of solving the incompressible flow equation V~Lo = 0 . . . . . .  (1) 

a 0 aLo 1 
subject to the boundary conditions 0¢ -- a~o -- Rq, (2) 

and L0 = oo at the stagnation points, h a s  been given in R. & M. 27261. The difficulties 
encountered in the relaxation process at points neighbouring the infinities at the stagnation 
points for both compressible and incompressible flow are also dealt with in this reference. The 
compressible flow equations corresponding to (1) and (2) are developed below and  we find tha t  

a z  a L 0  1 
= = Rq----, . . . . . . . . . .  (3) 

If we start  with given values of q, and hence L, on the aerofoil boundary, and L = 0 at infinity 
(corresponding to an undisturbed velocity of unity) we can solve the compressible flow equations 
(by relaxation) and deduce the boundary gradients aL/O~.v. From (3) we then immediately have 
boundary conditions for the corresponding incompressible flow. The incompressible equations 
(1) and (2) are then solved and q, determined. Using these values of (aLl a~,) and qs in (3), 
we can obtain R and hence deduce the aerofoil profile. A slight complication is introduced 
by the fact tha t  until  we know q,, we cannot determine the positions of the equipotentials on 
the aerofoil surface, and until  these are known we cannot assign values of L = L(¢) on the 
boundary. However, proceeding from a guess for q,, we can work through the process to find. 
more accurate values for q,, and so on. Convergence is quite rapid. The method is given in 
section 3. 

Once aL/O~, and hence aLola~ has been found, equation (1) can be solved by either (a) 
relaxation (R. & M. 27261) or (b) the ' polygon method ,11. Relaxation is very much slower 
because, although surface values only are required, the method necessitates the calculation of 
values throughout the whole field of flow. On the other hand the polygon method enables us 
to calculate surface values directly. The polygon method equation appropriate, for example, 
to the flow past a symmetrical aerofoil at zero incidence in a free stream is 

l o g  1 (¢) = 1 [.A (aLo)  log ( 4 -  6') d¢' - -  1 2; ~i log (¢ - -  ¢~),  . .  . .  (4) 

where ~i is a discrete jump in 0 on the aerofoil surface at ¢ = ¢i. 

The essential contribution of this paper is the method of deducing aLo/&,o from the given 
compressible velocity distribution. 

1. Compressible Flow.--In Ref. 2, it is shown that  

a0 (1 - -  M s) aL a0 aZ __ 0, 
an ~ = 0 ,  and -gs-] On 

where s and n are distances along, and normal to the streamlines respectively. 
to the incompressible flow grid (¢, w) we have 

y ~  = qo c o s  ~ - -  -- sin ~ -~ ) ,  

Transforming 

as -- q0 s i n a  ~ -t- cos~ 

where ~ is the angle between the compressible and incompressible flow vectors. 
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Thus t h e  equat ions assume the  form 

ao OL oo OL 
a-7 q- a~o 2 sin ~ a~o 0¢ ~t cos ~, . . . . . .  (5) 

where 
_ s/OL OL ) 

= --  M ~ c o s ~  + ~ - s i n ~  . 

Now, forsubsonic  flow at least, ~ is qui te  small, and so retaining first powers of ~ only, (5) dan 
be wri t ten  

_ aL ao oL  . , / a L  oL~, ao a L  M=~ - -  . , .  (6) 
aw a¢ M t 5 T  + ~ N /  0-7 + a-7 = 0 ¢  " 

Put t ing  8 = L -- L0, and subtract ing the  corresponding equations for incompressible flow, 
we f i nd : - -  

a~ 08 _ ~/OL OL'~, O~ 08 M%~ OL 
09 a¢ --  M ~ ~ -t- ~ -g~-/ a-¢ + 0--~ = 0-¢- . . . . .  (7) 

From (6) and (7), by cross differentiating, 

(s) 

= : (9) 

In Appendix  I more general forms of these equat ions are obtained,  in which the  Vorticity is 
not  zero. These equat ions find some application behind  shock-waves 9. The boundary  condit ion 
for 8 is zero normal  gradient,  c.f. (3), while ~ is zero on the  boundaries,  except  at  s tagnat ion 
points, the  location of which m a y  change, wi th  increase in Mach number.  Equa t ion  (8) can 
be wri t ten  wi th  less accuracy 

v s 8  = v s L  = a-~ M s  . . . . . . . . . . .  ( lO)  

Now M s = q2M°S and (aola) s = 1 +  ~ --  1 
1 y -  1 ' 2 M s, . . . . . .  ( 1 1 )  

2 Mo2(q s -  1) 

thus  OM2 - -  a°s" qS e-SL OL aq ~ a4, also = therefore ~ s _  2q2 0¢ 

These results enable us to write (10) in the  form 

2 - \ a ¢ / j  . . . . . . . . . .  

Using equat ions (11) we can plot  M 2 and (aola) ~ as functions of L. Except  for unusually thick 
aerofoils, and near s tagnat ion points or sharp external  corners, (aL/O¢) 2 is much  smaller than  
a2L/O¢ ~, and can be neglected. (ao/a) ~ is not  much  larger than  unity,  even at large values of 
M, and so (12) can be wri t ten  app rox ima te ly : - -  

VS 8 = V2 L = M S  U L  a¢ s . . . . . . . . . . .  (13) 

3 
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In  the problem considered in section 5 below, results were ob ta ined  by  using equa t ion  (10), 
i.e., by ignoring c~ completely.  These results are sufficiently accura te  to i l lustrate  the  method .  
The fur ther  step of using the  full equat ion  (8), after  first using (7) to in tegra te  th rough  the  
field to find , ,  can only be justified on a mesh of such a fineness, t ha t  the  error due to the  use 
of a difference equat ion  to replace (8) is cer ta in ly  smaller t han  t ha t  due to neglec t  of , .  How- 
ever, if high accuracy  is required on a fine mesh,  the  above r emark  indicates the procedure  to 
be adopted.  

2. A Relaxation Treatment of the Equations.--Fig. 1 is a typical  squa re  in the  mesh. 
value of L at  point  3 say, will be ind ica ted  by  L3. 
(5,1) respectively.  The mesh in terva l  is ~z. 

The 
Points  6 and  7 bisect the intervals  (3,5) and  

~ L  ~ L  
Now n 2 -  -~- L1 + L3 --  2L5, n ~ - -  -~- L~ + L~ -- 2L5. 

a¢ ~ 0¢ ~ 
4 

Therefore  n ~ V~L -~- Z Li --  4L5 
i = 1  

- - ~ M ~  ~ ~ 2 - \ 0 ¢ / ) ~ '  f rom (12). 

i.e., ~=~N L ' - -  4L5 = M5 °- L~ + L~ -- 2La- - -~ka]5  

and  so X5 - - ( 1  - -  Ms~)LI + L2 + (1  - -  M52)L3 + L, -- 2 ( 2  - -  M52)L5 

+ ½ M s  2 - -  ( L ~ - -  L 3 ) Z = 0 ,  . . . . . .  . .  . .  ( 1 4 )  

where  X is t e rmed  the ' residual. '  If a rb i t ra ry  values of L are assigned th roughou t  the field, 
in general  X~, i = 1,2, . . . , will not  be zero. Relaxa t ion  3 is the  process Whereby the X~ are 
progressively reduced  to a pract ical  min imum.  While  (14) is the most  suitable form from which  
to calculate  the  residuals, it  does not  lead to a ve ry  suitable re laxat ion pa t te rn .  

Now n 2 { ~ 0 ( M 2 ~ ) } s - =  kM/ ~n_gO_)TaL\ _ (M~n ~ ) 6  

= - -  + M?(L  - -  L1),  

and  hence equat ion  (10), which  is ident ical  wi th  (12), is represented  by  the difference equat ion  : - -  

X~ ---- (1 --  MT2)L1 + L~ + (1 --  M~2)L~ + L~ .-- {4 - -  (M7 ~ + M~2)}L5 -= O, 

from which we find the ' influence coefficients ' 

~X5 - -  1 - -  M 7 2 ,  . ---  1 - -  M 6 2 .  ( 1 5 )  a x 5  _ 1, - 4 - ( M :  + MT ), aX5 
~ L~, ~ O L5 aLl O L~ "" 

These give rise to the  re laxat ion pa t t e rn  shown in Fig. 2. M ~ and ½(ao/a) ~ are readi ly  de te rmined  
from a graph, in which  they  are p lo t ted  as functions of L. I t  is sufficient to es t imate  L,  and  
L7 to obtain values of M,  ~ and M~ ~. The small errors in t roduced  in this way  are de tec ted  when  
(14) is used to recompute  the residuals towards  ~the end of the relaxation.  

On the aerofoil b o u n d a r y  (14) and  (15) are modified as follows. Referr ing to Fig. 1, in which  
the  line 153 is now taken  to represent  an aerofoil boundary ,  we have  from (3) 



which we use to eliminate L4 from (14) and (15). Equation (15), for example, becomes 

Xs = (1 -- Ms~)L~ + 2L2 + (1 -- Z d ) L ~ - -  \ - ~ / 5 -  2 ( 2 -  Md)L5 

a0  ~ 
+ . . . . . . . . . . . . .  

3. Conditions to be satisfied by the Specified Velocity Distribution.--If the velocity distribution 
is specified over the whole chord then it will have to satisfy certain conditions in order to apply 
to a closed profile. When the method given above has been used to determine the corresponding 
incompressible velocity distribution, q,(¢), the conditions tha t  q, must satisfy could be used to 
infer (R. & M. 21121~) whether or not the compressible velocity distribution was satisfactorily 
specified. This would be a very tedious process and can be avoided by specifying the velocity 
distribution over all but the regions of the chord adjacent to the leading and trailing edges. 

Consider, for example, the symmetrical aerofoil at zero incidence shown in Fig. 3. In order 
tha t  GH and AB be parallel we must have 

A 

f dO + + = O. T H  7; A 

H 

Suppose we have m mesh points, then using (2) this equation becomes 

/ 
~ ¢ /  = ~A + TH, . . . . . . . . . . . .  (17)  i=1(  O~ j i  

where ( }i is the value of the function at the i- th mesh point. Furthermore, in order that  the 
profile be closed, ~H should be adjusted to make 

= 0 . . . . . . . . . . . . . . . . .  ( 1 8 )  

If then we specify the velocity distribution over all but  the regions between H and the next  
mesh point, and A and its next mesh point, we are then free to select ~H and rA to satisfy (17) 
and (18). When the solution is complete it is a simple mat ter  to subdivide the mesh in the 
neighbourhood of A and H, and to determine whether the velocity distribution in those regions 
violates any design condition. 

Since the treatment of the infinities in log 1/q at the stagnation points (given in R. & M. 27261) 
requires knowing the values of TA and rH from the start, there is a difficulty. This is not serious 
however, and is overcome by initially assuming values for rH and ~A. [Even with a very fine 
mesh rA can not be taken as 90 deg for a rounded-nose aerofoil (R. & M. 27271°)]. Then as the 
calculations proceed and improving values of {(0L/O~)~¢} are found at each mesh point, rA is 
continually adjusted to satisfy (17). When the solution has been roughly completed in this 
way (i.e., with a fixed ~ ) ,  e is calculated, ~z, is replaced by rH -- e, and the whole process 
repeated. One or two iterations of this type will enable the computor to simultaneously satisfy 
(17) and (18). I t  is important  that  a relatively fine mesh be used in the region of the aerofoil 
nose, otherwise the calculated value of y~ (see Fig. 3) will be in error due to too coarse a mesh. 
The deduced value of e will be wrong and this will have a significant effect on the shape of the 
deduced profile. 

In the example treated below the velocity distribution was that  about a known profile, and 
so there was no question tha t  it satisfied the necessary conditions mentioned above. To avoid 
too much detailed calculation in the neighbourhood of the nose rH was obtained from the given 
(q; x)-curve using (R. & M. 27261) 

-c~i- Hm ~/'(1 - -  Mo~), . . . . . . . . . .  (19) 



log (q"/q') and (q", x"), (q', x') are points on the given (q, x)-eurve t aken  as near  where m --  log (x"/x')' 
to the trailing edge as the data  permits. ~A was then  selected to satisfy (17). 

4. Details of the Design Procedure for a SymmetricaZ Aerofoil.--We start  with a given com- 
pressible flow curve q = q(x/c), and take the following s t eps : - -  

(i) Es t imate  the corresponding incompressible velocity. Two simple, but  comparat ively  
accurate methods  are available :--(a) yon KarmAn's approximat ion ", (b) the Temple-Yarwood 
approximat ion ~. Von KArmAn's approximat ion can be w r i t t e n : - -  

a~o i~n : q e - ( q ~ - l ) / a a o  ~ 

( q_~_~_ 1'~ (20) i.e., Lo = m  L-l -  4ao / '  " . . . . . . . . . . . . . . .  

where 2 ( 1 - - M 2 )  1/~,andao 2 =  1 + ~ -  2 /M°2" 

(if) Assuming at first tha t  x/c -"- sic and applying (20) to the given q = q(x/c), w e  deduce an 
approximate  q, = q,(s/c). The free-stream velocity is convenient ly  taken as unity.  Assuming 
the values 0 and 10 for ¢ at the  trailing and leading edge respectively we f ind : - -  

¢ = ¢ = J , . . . . . . . . . . . . . .  ( 21 )  

where 

Now L = L(x/c) ~- L(s/c) can be obta ined from the given q = q(x/c)-curve, and hence, from 
(21), we can find L = L(¢) on the aerofoil. These are the  approximate  boundary  values to 
be used in the solution of the  compressible-flow equat ions given in section 2. The trailing and 
leading-edge angles are dealt  with as in section 3 above. 

(iii) The outer  boundary  condit ions remain to be determined.  These are, of course, relat ively 
s imp le  if the aerofoil is s i tuated in a channel. On the  channel  walls we have R = oo, and 
therefore ~LId~ = 0. Ups t ream and downst ream it is sufficient to assume tha t  L = 0, since, 
if the  ups t ream and downst ream boundaries  are taken  far enough away, say two chords from 
the  centre of the aerofoil, it is known tha t  the  channel  wai l ' rapidly  damps out the influence of 
the  aerofoil (R. & M. 20335). 

In the open-field case the boundary  condit ion becomes L = 0 at infinity in all directions. 
Short of inver t ing the w-plane to limit its extent ,  we can only use approximate  methods,  such 
as replacing the aerofoil by a subst i tut ion vor tex 4, and calculating theoret ical ly the  values of 
L0 on an outer  boundary,  say two to three chords radius from the aerofoil centre. Equa t ion  (20) 
can then  be applied to find L. Inversion produces a curved boundary  and is thus  c lumsy 
numerically.  A subst i tu t ion vor tex has been found to be of sufficient accuracy (R. & M. 2727~° ). 

(iv) Having  de te rmined  approximate  boundary  condit ions we can now solve equat ion (12)by  
the relaxation process given in section 2, dealing wi th  infinities at the s tagnat ion points as 
indicated in R. & M. 2726 ~. Residuals are computed  using (14) and relaxed in the  usual way 
using the influence coefficients given in (15). Residuals must  be checked at the end of the 
relaxation, as errors creep in when the non-linear influence coefficients are made  linear for small 
steps during the process. 



(v) Equa t ion  (16), in which of course X5 = 0, i s n o w  used to de termine  (OL/Ow) = f(¢), (22) 
and  this by  (3) is the normal  boundary  gradient  for the corresponding incompressible flow. 

(vi) Using this aerofoil boundary  condition, wi th  appropriate outer  boundary  conditions, we 
now solve the incompressible-flow equat ion  (1) to obtain a new and more accurate value of 
q, = ¢,(¢) . . . . . . . . . . . . . . . . . . . . . . . . .  (23) 

In tegra t ion  of ds = dS/q/S) yields s = s(S). (See Appendix  for formula to use when this lute- 
grand becomes infinite at  the s tagnat ion points.) 

(vii) From (2), dO = --  (OL/aV') dO = dO(S), a n d s o  wi th  0(0) =~H, and (OL/OW) given by (22), 
we can in tegrate  to find 0(S). Then dx = ds cos 0, dy = ds sin 0, are in tegra ted  to give x = x(S), 
Y = y(S), c --= x(10), which paramet ical ly  define the aerofoil profile. The process is set out  for 
the selected example  in Table 3. 

Since in step (vi) we obta ined q,(S), s(S), we can deduce q, = q,(s). Using the value of c found 
in  step (vii), we find a new value of q, = q,(s/c) to use in step (ii). We repeat  steps (ii) to(vii) 
unti l  there is negligible difference between successive values of q/s). The final relations x(¢), 
y(S) found this way then define the aerofoil profile. 

The process may  appear to be very  laborious, but  when steps (i) to (vii) have been worked 
through once, only a fraction of the  t ime is required to repeat  them. Convergence is rapid, 
and the process needs to be repeated  only two or three times. 

5. Modifications Necessary for an A symmetric A erofoil .--Only two modifications are necessary. 

(a) Using an approximate  q, calculated, not  from (20), but  from the cor responding  von K~rm~in 
equat ion for flow with circulation 8, we find an approximate  circulation K = ~ q, d(s/c) = AS, 
where AS is the  potent ia l  j ump at the front s tagnat ion point,  taking ¢ = 0 at the  trailing edge. 
Thus on the upper  surface ¢ varies from 0 to 10 say, while on the  lower surface ¢ varies from 
0 to 10 -- AS. Integrat ions  are now necessary on both  upper  and lower surfaces, and the  upper  
l imits  of these integrat ions are different. 

(b) The circulation makes a substant ia l  contr ibut ion to the  subst i tut ion vor tex  calculated for 
the  outer  boundary  in the  open field. 

6. A n  Example." A Symmetrical Aerofoil in a ChanneI.--In Ref. 7 E m m o n s  s tar ted with a 
symmetr ica l  aerofoil of specified profile between channel  walls, and deduced the velocity distri- 
but ion curve for flow at several Mach numbers.  He  used an ent i rely different approach to tha t  
given above, based on the compressible-flow s t ream function. He gives exper imental  curves 
agreeing closely wi th  his theoret ical  results. For these reasons this has been selected as a suitable 
example  to i l lustrate the me thod  of this paper. We shall start  with his q = q(x/c)-curve at  
M ---- 0.70, and deduce the aerofoil profile, which can then  be compared with tile actual profile. 

Table 1.--This  sets out  q(x/c) at  M = 0-70, the deduced q~(x/c) using equat ion (20), and for 
comparison, the  value of q/x/c) given by Emmons .  

Table 2 gives the true aerofoil coordinates, while Fig. 4 gives the  geometric  relat ionship 
between the  aerofoil and channel. Of course at the start  of the problem we are only supposed 
to know tha t  H/c -= 3.6. 

Applying equat ion (21) we find a first approximat ion to c. This is c = 9.26. If ~ = 0 on 
the axis, and ~0' is the value of ~ on the upper  channel  wall, then  far upstream, where q = 1, 
2~' /H = q = 1. Therefore~o' = Hi2, b u t H / c  = 3.6, and so 

3 .6  × 9.26 
~o' = 2 : 16.65 ---"- 17, 

say, as an initial approximation.  We can now set up the  square mesh  in the w-plane. Fig. 5 
shows a par t  of the  grid actually used in the  relaxation. Using the  las t  three entries in Table 1, 
column 3, we find tha t  an est imate for the value of ~ is 8 .55 deg. 
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Table 3 sets out  steps (vi) and (vii) of section 4, for the th i rd  and in this case, final round 
of the  process out l ined in tha t sec t ion .  We shall describe the columns of the table tha t  are not  
obvious. 

Column 2 Values of q, from the  previous round. 

Column 4 ~s = 0__¢$ (Use formula (30) of Appendix  II  for the first and last steps). 
q, 

Column 5 ~0 = (0-~L d0) expressed in degrees. 

80,,, mean  value of ~0 at midpoints  of the intervals of ¢. 

Column 8 Os --  ~x = ~s(1 --  cos 0) 

Column 9 x from columns (8) and (4). c is the  value of x at ¢ = 10. 

C o l u m n l l  dy---- ~ s s in 0 .  

The results given in columns 10 and 12 are shown p lo t ted  in Fig. 6, and can be compared 
wi th  the actual  aerofoil profile also shown in the  Figure. The values of q, qs given in Table 1 
and  in Column 2 above, are graphed in Fig. 7. 

2 × 1 7  
Now with  ~0' = 17, c = 9. 110, we have  H/c --  9. 110 --  3.73, ins tead of 3 .6  as specified. 

The next  step is to c h a n g e t h e  mesh so tha t  ~0' = (3.6 × 9.110)/2 -"- 16.5. This means  tha t  
in te rpo la t ion  formulae are required when relaxing o n  or adjacent  to the channel  walls. How- 
ever, making  this change, we find tha t  the new residuals are such to make  a negligible contri- 
but ion to q,. 

I t  will be not iced in Table 3 tha t  y at ¢ = 10 is not  zero as it should be. This is, of course, 
due to the  coarse mesh used in the  ne ighbourhood of the  nose. Wi th  a fine mesh, ins tead of 
relying on the  value of the  trai l ing-edge angle, calculated from (19) we could arrange this angle 
so tha t  y is zero at the  nose. The fine mesh, however,  means  a great  deal more computat ion.  

0L 
In this case there  is another  check. In tegra t ing  dO = ~ d~o from the channel  wall, where 0 = 0, 

along ¢ = 6 we find 0 ---- 1.66 on the  aerofoil, which is sufficiently close to the  value of 1-63 
obta ined in Table 3. 

6. Conclusions.--Considering the  sources of error, which a r e : - -  
(a) due to using a finite difference equat ion instead of the  differential equation,  

(b) due to neglect of ~, 
(c) possible small errors in the  results t aken  from Emmons '  paper  (Emmons  provided graphs 

only), 
the  comparison be tween  the  results of this me thod  and those given by  Emmons ,  given in Figs. 5 
and  6, is quite good. The me thod  would thus appear to be a suitable one for the design of 
aerofoils in compressible flow. Problems in which the profile is given, and the velocity field is 
required, have been solved along similar lines (R. & M. 27271°. See also Appendix  III) .  The  
m e t h o d  is quite satisfactory for small supersonic patches on the  aerofoil, and presumably  the 
design problem could also be sovled if the specified velocity distr ibution has a small supersonic 
section. 

7. Achnowledgeme~ts.--The compressible-flow equat ions given in section 1, and in the  
appendix,  were brought  to the  author 's  a t tent ion,  in a different form, by  Professor Thorn, who 
has used these equat ions in a somewhat  different me thod  s to tha t  given in section 2, to solve 
compressible-flow problems. 
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A P P E N D I X  I 

To p?'ovg:-- 

V2L - -  0~o 2 c o s  ~ + qoq-- Sin ~ - -  ~ 2 s i n ~ - - q o q - - C O S  , 

Vh~ - -  0$ 2 s i n ~ - -  qo---qC°S ) 0( ±s,o4 ' + - ~  4 c o s ~  + qoq 

where = --  M 2 cos ~ ~-¢ -~- si n c~ -~- /  L = log (l/q), and ¢ is the yort ici ty.  

_Pro@--We shall denote  by  R1 a, the real par t  of a, and  by  Im a, the imaginary  par t  of a. 
o is the density.  
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1. C o n t i n u i t y . - - T h i s  equation can be written 

o r  

8 8 
0x  (pq cos 0) + -@ (pq sin 0) = 0. 

d 
R 1 2 ~ ( o q d  °) = 0 ,  

d 8 i 8 since 2 ~ -- 0x g~, and thus 

R1 ~ - - i  pq(cos0 + i s i n 0 )  = 
8 8 

(oq cos 0) + ~ (pq sin 0). 

Transforming to the w-plane, we have for the velocity vector, 

dz 
q~ = q" d-w ' i e., q~ = qz/qo, also 0w = 0z -- 00 = ~. 

Therefore in the w-plane continuity can be written 

d ( q  e~) _= 0" 
o qo 

+ i sin0) = ~-~(qsin0) -- -@ (q cos 0) 

d 
I m 2 ~ ( q d  °) = ~. 

2. V o r t i c i t y . - - I m  -g~ - -  i q(cos 0 

and hence the equation can be written 

In the w-plan this becomes 

3. Bernoull i ' s  equation is:--- 

Im 2 ~-~ qo e~ = 

dq _ a ~ dp M~ d L  1 dp 
q ds p ds ' i.e., ds---=p ds"  

d 8 8 
= cos ~ o9a-7 + sin ~ -S~' we can write (26) in the form ds 

M2 R1 ) 

Since 

Now from equation (24) R1 p ~ qo d° q ei~ dp 

Therefore e-i~q°R1 d ( q ) + ~  ( d_~)=0"  q d-w ei~ 1 e-~ R1 e ;° dp 

With the aid of (25) and (27) this equation becomes 

q dw ei° ~ + i • 

10 
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d* d log q e  '° --  2 e -'~ k + i Therefore 4 d--w d--w qo d-w ' 

d* 0 3 
where 2 Tww = ~ + i0--~ 

q-e  ;° = 2 e -;° z + i (28) i.e., V ~ log q0 d-~ ' " . . . . .  

whereas for incompressible flow V 2 log q0 = 0 . . . . . . . . . . . . .  (29) 

The real and imaginary  parts  of (28), wi th  the aid of equat ion (29), yield the equat ions required 
to be proved. 

APPENDIX II 

Formula at Stagnation Points. 

In  R. & M. 2726 ~ the  formula 

s = f~ 
d$ 

3 0 q  

1 4' 
(1 - -  ~/2~) q' (30) 

is established for the  value of s measured  from a s tagnat ion point  of trai l ing-edge angle of 3, to 
the  point  on the  aerofoil at  which ~ = $', q = q'. 

APPENDIX III 

This Appendix  contains the  results of an invest igat ion into the compressible flow about  a 
circular cylinder by  the  me thod  outl ined ill sections 1 and 2. Results  are obta ined a t  values 
of M0 of 0.85, 0.40 and 0.45. The most  interest ing feature of the solutions is tha t  at the  
higher Mach numbers  the velocity peak moves off to one side of its usual symmetr ica l  posit ion 
on a circular cylinder. 

This relat ively simple profile was actual ly selected as a prel iminary example to ensure tha t  
no special difficulties had  been overlooked, but  in any  case so much  work has been done on the  
circular cylinder by  various invest igators tha t  the  results obta ined here have an intrinsic value. 

The incompressible solution could have been ent irely calculated by theory,  but  relaxat ion was 
used so tha t  the approximate  theory  of R. & M. 2726 could be applied, and hence its accuracy 
checked by comparison wi th  exact theory. 

Incompressible Flow.--Suppose the cylinder of radius a is s i tua ted  at the  origin, then  if the  
veloci ty at infinity is un i ty  and parallel to the real axis, the ($, ~0) and (x, y)-planes are re la ted 
by  

w = ~ +i~o = - z +  , w h e r e z = x + / y  

11 



or wri t ing z = rd("/~-°,)  

0 ¢ = --  r s i n ~  + 7 '  

, • %  

%0 = - - r  cos~  1 --  • 

The  velocity is given by  
dW ~ 

qd  ° -= - ~  = 1 - -  z~ ,  

t 

• ° (31) 

. {  (a)2 (_~)~}~t~ sin 2~ 
i . e . ,  q 1 + 2 cos 2~ + , t an  0 = --  

Wr i t ing  p " (a/r) ~, we find from (31) the  reciprocal quar t ic  " 

• .  ~(32) 

( ( 1 )  
~2 pe _~_~_~ _ (¢e + %02) p @ >  @ 2 (¢e -- %02 _ a2) = O, (s incep :/= 0). 

Wri t ing  p +- l i p  = t, say, reduces this equat ion for p to two quadratics,  which are easily solved. 

F rom (32) it  follows tha t  

q - -  1 + p  (1 + p ) 4  a - - r ¢ 2  ' t a n 0  = (1--p~){2a~(41P(~p)~ 2p¢~}: " 

This method  enables q and 0 to be found at  specified-values of the  ratios ¢/a,  %0/a, but  it  can 
be seen tha t  even for this  simple problem the theoret ical  solution in the (¢, w)-plane is not  easy 
(from the computa t iona l  poin t of view) to obtain. In  fact i t  was quicker to use re laxat ion in 
t h e  main  par t  of the '  field. The theoretidal  solution was used to calculaie results in the neigh- 
bourhood of the  s tagnat ion  point  and thus  to check the approximate  theory  of R. & M. 2726, 
which was justified by  the results. Bounda ry  values on the cyl inder  and on an outer bounda ry  
at  a large distance from the cylinder were also calculated by  the exact  theory.  Fig. 9 shows 
a port ion of the (¢, ~o)-mesh on which the re laxat ion was carried out. 

Compress ib le  F l o w . - - T h e  only change in the calculations from the design method  was in the 
use of equat ion (16) to calculate X5 instead of using it-to calculaie values of the gradient ,  which 
are now known. No special difficulties occurred in calculat ing the compressible flow. The 
angle between the compressible and incompressible-flow vectors was ignored and, as a check on 
this  approximat ionl  this  a n g l e w a s  calculated for M0 ,~-2 0.35,  for~whiCh its m a x i m u m  Value  
in the  field was less than  • 2 deg. T h e  resul ts  for M0 ~- 0.35, 0- 40 and. 0 .45 are Shown in Figs• 8, 
10, 11 and  12. ' . . . .  

Shen Yuan  ~ f o u n d  results s imilar  t:o those of Fig. 8 by  an applicat ion of the  hodograph 
t ransformat ion.  At  the  higher Mach numbers  the  veloci ty  peak moved off to one side of its 
u sua l  symmetr ic  posit ion on a circular cylinder: Yuan ' s  results ~/re not  s t r i c t l y  comparable. .  
wi th  the  author 's ,  since, as M0 increased,  his cyl inder  dis tor ted in shape.: T h i s  prdfile distort ion 
is an undesirable feature associated w i t h  the hodograph method'. . . . .  

The  results in Fig. 8 indicate  tha t  the lower Critical Mach n u m b e r  (M,) is s l igh t ly  less than  
0 .4  whereas the  Janzen-Rayleigh14"method gives M,  = 0 . 4 2 .  Wi thou t  a r e ca l cu l a t i on  on a 
finer mesh the au thor  cannot  be confident tha t  M e >  0-4, b u t  the  error in calculat ion from thls  
source would not  account  for a discrepancy of 0 .2  in Me. 

• Tt/e au thor  was 'unable  to find a c, ont inuous solution a)c 21//0 0 . 5 0 :  This  was to be expected 
since it is known tha t  the  Mach number  at  which shock-waves appear  for a cyli15der is about  
M0 ---- 0.475. In  the re laxat ion the residuals could not  be el iminated,  and it  was concluded 
t ha t  this  indicated the  need to introduce a shock-wave intb t h e  field. 
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T A B L E  1 

Surface Velocities 

(1) 

xlc % 

1 

1"8 
3 
4 
6 
8 

10 
12 
14 
16 
18 
20 
24 
26 
30 
40 
50 
60 
70 
80 
90 
95 

(2) 

q (M ---- 0-7) 

0.905 
1.060 
1.159 
1.197 
1.252 
1.274 
1.296 
1.307 
1.320 
1 • 332 
1.338 
1.340 
1.317 
1 • 303 
1.276 
1 • 228 
1.187 
1 • 135 
1.095 
1.039 
0.990 
0.948 

(3) 

qo (v. K~rm~n) 

0"925 
1.046 
1.104 
1.127 
1" 156 
1" 168 
1.180 
1.185 
1" 193 
1.197 
1.200 
1- 201 
1.192 

, 1  • 183 
1" 169 
1" 143 
1" 120 
1" 089 
1" 064 
1" 029 
0"992 
0"960 

(4) 

qo (Emmons) 

0.920 

1.123 
1-149 
1" 170 
1.178 
1.183 
1.188 
1-188 
1.188 
1-188 
1.183 
1.175 
1.169 
1-155 
1-132 
1'  107 
1'  083 
1.058 
1.023 
0-990 
0.955 

T A B L E  2 

True A erofoil Co-ordinates 

x/c % y/c % 

0 
1.25 
2-5 
5 .0  
7 .5  

10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 
95 

100 

0 
1.894 
2.615 
3-555 
4 .200 
4 .683 
5.345 
5.738 
5.941 
6 .002 
5 -803 
5- 294 
4 .563 
3.664 
2- 623 
1.448 
0.807 
0 

L.E.  Radius  ---- 1 .58%c.  
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T A B L E  3 

Determination of Profile Co-ordinates 

(1) 

0 
1 
2 
3 
4 
5 
6 
7 
7~ 
s 
s½ 
9 
9k 
9½ 
9~. 

10 

1 
1 
1 
1 
1 
1 
1 

2 
1 

1 
2 
1 

1 

1 

(2) 

0.000 
0.995 
1-033 
1.069 
1.094 
1-119 
1.139 

(3) 

1/q 

1-005 
0.968 
0-936 
0.914 
0-894 
0.878 

(4) (5) (5) 

~s dO dO~ 

1.048 
0.987 
0-952 
0-925 
0-904 
0-885 

1-156 
1.170 
1-178 
1.182 
1.180 
1-177 
1.167 
1-105 
0.000 

0-865 
0-855 
0-850 
0.845 
0.848 
0.850 
0.857 
0-905 

0.871 
0-430 
0-426 
0.424 
0.423 
0-212 
0.213 
0.220 • 
0.279 

1-02 1.32 
0.61 0.82 
1-08 0.85 
1.14 1.11 
1.37 1-26 
1-65 1.56 
2-44 2.05 
1.52 1.37 
2-09 1.81 
2-32 2.21 
3.63 2.98 
2.74 3.19 
4.96 3 . 8 5  
8.38 6.67 

10.67 

(6) 

7.23 
6"41 
5"56 
4"46 
3"19 
1"63 

--  0"42 
- -  1"79 
- -  3"60 
- -  5.81 
--  8"79 
- -  12-08 
--  15"73 
- - 2 2 . 5 0  

(7) 

Om 

7"89 
6"82 
5.96 J 

5"01 
3"82 
2"61 
0"60 

- -  1"11 
--  2"70 
- -  4"71 
- -  7"30 
--  10"38 
- -  13"91 
- -  19"17 
- - 2 7 " 8 3  

(s) 

~x) 
× 10 3 

11 
7 
5 
4 
2 
1 
0 
0 
0 
2 
3 
3 
6 

13 
33 

(9) 

1 • 037 
2.017 
2-964 
3"885 
4" 787 
5.671 
6- 542 
6- 972 
7" 398 
7-831 
8"241 

8"450 
8" 657 
8" 864 
9-110 

(lO) 

x/c% 

11 -4 
22 .2  
32.6  
42-7 
52.7  
62.4 

71 .8  
76.7 
81 -3 
86 .0  
90.6  
92-8 
95 .2  
97-4 

100.0 

(11) 

~y 
× 102 

145 
117 
99 
81 
60 
40 

9 
- - 8  

- -  20 
- -  3 5  

- -  5 4  

- -  3 8  

- -  5 1  

- -  7 2  

- -  1 3 1  

(12) 

y/c% 

1 "57 
2.86 
3-94 
4 -83 
5"49 
5"92 
6"03 
5"94 
5.72 
5"34 
4-73 
4"32 

3 "76 
2.97 
1 "66 

All distances measured from the trail ing edge. 
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