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Summary.-The object of this report is two-fold. On the mathematical side it seeks to illustrate the use of
oblique co-ordinates in applications to Elasticity and Structure Theory. On the practical side it seeks to provide
methods by which designers can solve problems of stress distribution and deflection for the case of swept-back wing
structures, whose ribs lie parallel to the direction of flight.

The report is divided into three parts. In Part I the mathematical basis is developed. Formulae are derived
which express the fundamental concepts and relations of Geometry, Kinematics, Statics and Plane Elasticity in
terms of vector components in oblique co-ordinates. In Part II, the results obtained in Part I are applied to a
uniform, symmetrical, rectangular section, swept-back box. A complete theory of stress distribution and deflections

,is obtained for the case of loading by 'normal' forces and couplest applied to the ends of the box. Some consideration
is also given to problems of constraint against warping. In Part III the main results of Part II are generalised
to cover the case of a more representative wing structure. This represents an extension of the usual Engineer's
Theory of Bending and Torsion to, cover the case of swept-back wings with ribs parallel to the flight direction.
Practical procedures based upon this extension are laid down for stress distribution and deflection calculations.
These will have the same validity for swept-back wings, as the usual design approximations have for the unswept
case.

An appendix reproduces tables and graphs of certain functions useful in the application of the theory, from a paper
by S. R. Lewis.

,-",~~------

* College of Aeronautics Report No. 31, received 2nd March, 1950 with College of Aeronautics Report No. 44,
received 25th May, 1951, as an Appendix.

t Forces whose directions and couples whose planes are normal to the plane of sweep-back.
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DEFINITION OF THE SYMBOLS EMPLOYED

Geometry. Dimensions

Main system of oblique Cartesian co-ordinates (see Fig. 1)
Auxiliary system of oblique co-ordinates (see Fig. 1)
Angle between the axes Ox, Oy
Co-ordinates of a point referred to axes o(x,y ,z)
Unit vectors in the directions Ox, Oy, Oz, OX, OY respectively
Position vector
Length of vector df
Angle between df and i
Length of the material element df after strain
Length of a plate or box measured x-wise
Half-width of a plate or box measured y-wise
Half-depth of a box measured z-wise or, in particular, the half-depth

of the spar y = c
Half-depth of the spar y = -- c
Ordinate of the skin line
Mean value of C over width -- c ~ y ~ c
Thickness of the skins
Thickness of the spar webs or in·particular, thickness of the web y = c
Thickness of the web y = - c
Thickness of a diaphragm rib
Section area of spar flange or in particular, section area of flanges

aty = c
Section area of flanges at y = - c
Section area of stringer
Section area of rib flange
Stringer pitch measured parallel to the ribs
Rib pitch measured parallel to the stringers
tR/aR
Parameter defining the point of action of a certain shear stress

distribution in a box (see equation 143)
Parameter defining a torque axis for use in the calculation of twist

(see equation 159) .

Kinematics

Displacement vector
Oblique components of 14

U + v cos ('J.

u cos ('J. + v
Rotation vector
Oblique components of p or in particular, components of rib rotation
Constants defining a rigid body movement in a plane (see equation 17)
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w

L1 1 ,L1 2

Pl,P2
Ql, Q2

y

e
exx , eyy , exy

eyy , exY

to

F
(X,Y,Z)

(L,M,N)
(L1 ,M1)

4>
T1 ,1'2 ,S

T 1 ', T 1 ", T/, T 2 ",

5',5"
SR

Sw,Sw'
II

L*1

E
(J

Components of rib displacernent In the plane of the rib In y and
z-directions respectively

(wR)Y= 0

Arbitrary constants occurring in expression for W RO (equation 65)
Components of web displacement in directions x and z respectively.

Undashed: y = c, dashed: y = - c
Rigid body translation of a rib in z.;.direction. Defined as W = W RO

in Part II and W = (ww +' ww ')j2 in Part III
Additional deflection due to shearing (see section 3.3(5))
Warping displacement function (equation 118) or warping displace

ment itself (equation 131)
Functions of y occurring in expression for w (equation 132)
Section distortion function (equation 118) or section distortion

displacement itself (equation 131)
Functions of y occurring in expression for L1 (equation 132)
Constants in expression for P (equation 132)
Constants in expression for Q (equation 132)
'Shear Deflection' constant occurring in expression for W (equation

132)
Strain in arbitrary direction
Strain components in oblique co-ordinate system O(x,y)
Strain components in rectangular co-ordinate system O(x, Y)
Rotation of an element dr

Statics

Force vector
Oblique components of F. Also in Parts II, III, Z is used as resultant

z-wise force across a section of a box
Oblique components of a couple--axes O(x,y,z)
Oblique components of a couple-axes O(X, Y). Used also as

resultant couple acting across a section of a box
Stress resultants in a plate referred to oblique axes O( x,y) (see

Fig. 3)
Stress function (see equation 22)
Stress resultants in a plate referred to axes O(x, Y) (see Fig. 4)

Functions of y occurring in expressions for T 1, T2 , 5 in equation (37)

Shear per unit length in the ribs, estimated per unit span (x-wise)
Shear per unit length in the webs y = c, y = - c respectively
Couple component (oblique) about an X-wise axis through a point

y = 'YjC, Z = 0 on a cross-section of a box (equation 145)
Ditto about axis through y = 'Yj*c, z - 0 (equation 159)

Elasticity. Influence Coefficients

Young's Modulus
Poisson's Ratio
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aij

( aij)p

(aij)R

Aij

an, aI3

Cij

CI3

I

Ai (i = 0,1,2,3,4)

fli

Ai (i = 1,2,3,4)

OBi (i = 0,1,2,3,4)

Bij (i,j = 0,1,2,3,4)

(Jifl )

Cfh
Pi, Qi (i = 1,2,3)

Matrix relating stress resultants and strains (equation 24)
Part of a ij arising from the plate (equation 27)
Part of aij arising from the reinforcing members (equation 28)
Matrix inverse to aij (equation 31)
a3I , a33 Special combinations of aij (equation 120)
Matrix relating rates of rotation of the ribs with the couple trans

mitted in a box (see equations 99, 100, 157, 158, 160 and 161)
Constant in formula for PI (equation 157)
'Second Moment of Area' for a swept box (equation 142)

Miscellaneous Parameters and Constants

Constants in expression$ for linearly varying stresses in a plate
, (see equation 40 and section 2.4)

Constant defining the rate of die-away of a special stress system
(see equations 44, 47)

Sequence of values of flC defined by equation (114)
Values of A satisfying equation (46)
Arbitrary constants in equations 43, 47
Coefficients of the linear equations for B i (see equations 108, 109,

110,111,112,113)
Co-factors of B 4j in the determinant IBijl
Sequence of arbitrary constants (equations 116, 117)
Constants relating rates of rib rotation to couple transmitted and

section warping (equations 125, 126)
Denominator in expressions for Pi, Qi (equation 126)
Constants in the warping equation 127 (see equation 128)
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PART 1. GENERALITIES AND APPLICATIONS TO PROBLEMS OF
TWO-DIMENSIONAL ELASTICITY

1.1. Geometry.-The frame of reference used in this report is a system of oblique Cartesian
co-ordinates. This system is shown in Fig. 1. The basic axes are o(x,y,z) . The angle xOy
_has magnitude (/... The axis Oz is at right-angles to the plane xOy, and is such that a rotation
which brings Ox into the position Oy is right-handed about Oz. Use is also made of auxiliary
axes O(X, Y) lying in the plane xOy and such that O(X,y,z) and O(x, Y,z) form systems of right
handed rectangular cartesian axes.

It is convenient to introduce unit vectors i,j,k, i1,j1 lying in the directions Ox, Oy, Oz, OX, OY
respectively. These quantities satisfy, as is easily shown, the following relations:-

i 1 = i cosec (/.. - j cot (/.. )

j1 = - i cot (/.. + j cosec (/.. f

i2=j2 = k2 = 1, i.j = cos(/.., j.k = k.i - 0

ixi=jxj=kxk=O 1
i X j = k sin (/.. , j X k = iI, k X i = j1 )

The position vector fi of a point with co-ordinates (x,y,z) may be written:-

fi= xi + yj + zk .

If the length of the differential vector dfi be denoted by ds, we find from (4) and (2):

ds2 = dfi2 = (dx i + dy j + dz k)2 = dx2 + dy 2 + dz2 + 2dx dy cos (/.. .

(1)

(2)

(3)

(4)

(5)

The vector dfijds is a unit vector. For the special case in which this vector lies in the plane
Oxy (i.e., when dzjds = 0) and is inclined at an angle e to the axis Ox, we find for the components
dxjds, dyJds the formulae:- .

dx _ sin ((/.. -'-- e) dy _ sin e
ds - sin (/.. 'ds - sinCl (6)

The relations (6) may be established using (2) and the formulae i.~: = cos eandf~ = cos ((/.. - e),

or by a simple trigonometrical calculation.

1.2. Kinematics.-Any vector may be expressed, as in (4), as a linear combination of i,j,k.
The displacement of a point u and the rotation about an axis p may be written:-

u = ui + vj +wk )

P= pi + qj + rk r' (7)

The combi~ations (u,v,w) and (p,q,r) may be termed the 'components' of the vectors in the
axes O(x,y,z) , but care must be exercised to avoid applying formulae applicable only to rectangular
axes to these quantities. The lengths of vectors are given by formulae like (5). The component
u is not the projection of u in the direction Ox; this last is given by u + v cos (/...
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If the axis of p passes through 0, then the displacement u induced at a point with position
vector f is given by:-

U=pXf . ..

Substituting from (4), (7) into (8) and making use of (3), (1) we find:-

u = u + v cos oc-- (qz - ry) sin oc I
V = u cos (X +v = (rx - pz) sin (X

w ---: .(py - qx) sin (X

where U, V are the 'projections' of U in the directions Ox, Oy respectively.

(8)

(9)

In the remaining portions of this section we shall restrict our attention to positions and displace
ments in the plane xOy. Use will be made of our previous notation, with the understanding
that z components, such as w, z, etc., are taken equal to zero.

If the plane xOy is subjected to a displacement u(x,y), a point at f will move to f + u. The
length of an element df will change to dS where,

(10)

Neglecting terms of second order in the displacement we find for the strain e in the element df
the tormulae:- ,

dS2 - ds2 df du
e = 2ds2 - ds ds .

Substituting from (4), (7) (with Z = W = 0) and using (2) we find:-

( dX)2 (dy)2 (dX dy )
e = exx ds + eyy ds + exy ds ds

(11)

where
.au

e =-~
xx ax'

av
eyy = -,

ay
(12)

and U = u + v cos (X, V u cos (X + v .

The quantities exx , eyy and exy may be termed 'components of strain', since the complete deforma
tion is defined in terms of them. The formulae in the second line of (12) are familiar, but it
must be noticed that U, V are not the true displacement components.

The direct strain eyy , in the direction OY may be obtained from (12), by Inaking use of (6)
with f) nj2. We find:-

The rotation 'L{} of an element df is given (see Fig. 2) by the formula:-

dv . (. ) du.
'l;{} = d- SIn (X - f) - - SIn f) .

s ds

6
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'Using (14), (12) and (6) we can show that the shear strain exY associated with the directions Ox,
OY is given by:-

(15)

When the strain components satisfy a compatibility relation:-·

the second line of (12) may be solved for the displacements U, V. The 'complementary function'
for this integration is a 'rigid body motion'*:-

U = Cy + Cl , V = - Cx + C2 (17)

where C, Cl , C2 are arbitrary constants. The results (16), (17) are identical with those for
rectangular co-ordinates and the usual proofs apply.

1.3. 5tatics.-A force F may be written,

F=Xi+Yj+Zk. (18)

If this force acts at the point r, its moment about the origin 0 is r X P. Using (4), (18), (?) and
(1) we find,

where

and

r X P - L1il + Mljl + Nk = Li + Mj + Nk

L l = yZ - zY, M l = zX - xZ, N = (xY - yX) sin a

L = L l cosec a - M l cot a, M = - L l cot a + M l cosec a .

(19)

The conditions for equilibrium of a system of forces are ~ P = 0, ~ r X F - O.
(18), (19) shows that these may be written:-

~X=~Y=~Z=O . l
~ (yZ - zY) = ~ (zX ~ xZ) = ~ (xY - yX) = 0 . j ..

These equations have the same form as for rectangular axes.

Reference to

(20)

Turning now to two-dimensional questions, we define the stress resultants Tl , 51' T2 and 52
for a plate. These are the oblique components of forces per unit length, acting across normal
sections parallel to axes Ox and Oy, situated in the middle surface of the plate. The sign conven
tion for these forces is shown in Fig. 3. Consider an element of the plate (dx, dy). The forces
acting upon it are shown in Fig. 3. The forces on the edges are determined by the stress
resultants; the body force is given by (Xi + Yj) dx dy. Application of the rules of (20) gives
us the following differential equations of equilibrium:-

* A translation it = cosec2 a {(Cl - C2 cos a) i + (C2 - Cl cos a) j} and a rotation about 0, p = - Ck cosec a.
(See equation 9.)
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aT1 + 052 + X = 0
ox ay

as] +~T2 + Y = 0
ax oy

51 = 52 = 5 (say) .

(21)

« ,

The similarity with the equations in rectangular co-ordinates will be noticed. If X = Y = 0
we can satisfy (21) by introducing a stress function ep such that,

(22)

It is convenient also to introduce stress resultants T1 , T2 , 5 referred to axes O(x,V). The
specification of these is shown in Fig. 4. The relations between the un-barred and barred stress
resultants may easily be shown to be:-.

5 = 5 ~ T2 cot rx .

I( ..
)

(23)

104. Stress-Strain Relations.-In section 1.2 we studied a system of plane strain referred to
oblique axes O(x,y). We now ,interpret these results as referring to the mean strain across the
thickness of a uniform plate. Such a state of strain in a plate will give rise to stresses and stress
resultants and in section 1.3 we studied the properties of these forces when referred to our
oblique axes. If the material of our plate is elastic and obeys the Generalised Hooke's Law,
then the stress resultants T 1 , T 2 and 5 will be related to the strain components exx , eyy and exy by
hOlnogenous linear equations of the form:- «

(24)

where as we shall show later, '

(25)

For the special case in which the plate is isotropic with thickness tj' Young's Modulus E and
Poisson's Ratio a, known theory applied to the rectangular axes O(x, Y) gives:- .

- Et5 = ,-"",'-,.--,... e ,y
2(1 + a) ~, .

(26)

Substitution from (26) in (23) expresses T], T 2 , 5 in terms of e1;X' eyy and exY • Use of (13), (15)
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throws our relations into the form (24) and so determines the aij for the isotropic plate. Denoting
these results by (aij)p we find:-

cos2 a + a sin2 a ,
1 ,

- cosa,

-CoSa )
- cos a .

1 + cosz a - a sin2 a
2

(27)

In the case where the plate is reinforced by closely spaced stringers of section area As at a
" pitch as running parallel to Ox, and by closely spaced ribs of section area A Rat a pitch aR running

parallel to Oy*, then, if the material of the reinforcements has modulus E; loads of magnitudes
respectively EAsexx and EAReyy will appear in the stringers and ribs. Distributing the stringers
and ribs continously we generate stress resultants 'TI '= EAsexxjas and T z = EAReyyjaR and
so for a reinforced plate we must add to (27) the matrix (aij)R given by:-

(28)

The complete matrix for a plate reinf9rced in the directions Ox, Oy is thus:-

aij = (aij)p + (aij)R'

The equations (24) may be solved for exx , eyy , and eXY yielding:-

exx = AnTI + A 12'Tz + A 13S )
eyy = A 21 T 1 + A Z2 T 2 + A 23S ..

exy = A 31 T I + A 32 T z + A 33S

where,

'(29)

(30) ,

a Z3a3I - a 2Ia33 ,

an a33 - a13
2

,

aI 3a2I - ana23 ,

(31)

(32)

1.5. Compatibility Relation for the Stress Resultants.-The strain components must satisfy
(16). It follows from (30) that the stress resultants must satisfy:-·

(
02 02 02 ),

+ A I3 oy2 + A Z3 ox2 - A 33 oX oy S = 0 .

In the case where a stress function 4> exists we can substitute from (22) into (32) obtaining:-

044> 044> 044>. 04cjJ' 044>A zz ---- - 2A 93-- + (2A 12 + A s3) 2 ') - 2A I3--
S

+ A n -
4

= 0 . (33)ox4 ~ ox3 oy oX oy~ oX oy oy

* as and. aR are measured parallel to Oy and Ox respectively.
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1.6. Application to Certain Plate Problems.-The theories of displacement, strain and stress
developed in the previous sections are particularly applicable to plates whose boundaries consist
of parallelograms. Let us therefore turn our attention to a plate whose edges lie along the
lines x = 0, x = l,y = ± c (Fig. 5).

We shall not seek here to solve problems with given boundary conditions, but following
the 'inverse' method of St. Venant, shall impose certain restrictions on the stress distribution
and examine the consequences. However, with an eye on applications to wings, we shall restrict
our discussion to solutions which satisfy:-

T 2 = 0, wheny = ± c . (34)

Let us begin with the simplest of all cases in which the stress resultants are constant*.
Equation (34) then implies that T 2 = 0 everywhere. The edges x = O,l are loaded by uniform
T 1 and 5, while the edges y = ± c are loaded by a uniform S. Writing T 2 = 0 in (30) we
find the following formulae for the constant strain components:-

exx = Au T 1 + A 13S

eyy - A 2I T I + A 23S

exy = A 3I T I + A 33S .

)

r
(35)

The displacements follow from (12). The complementary function for this integration is given
by (17). We thus find:-

(36)
U = exx x + (eXY + C)y + CI }

V = eyyy - Cx + C2 •

As a second example let us consider another case in which X = Y = 0 and assume that the
stress resultants vary linearly with x . We write

(37)

where Tr', Tr", T 2 ', T 2", 5' and 5" are functions of y. Substituting in (21) with X = Y = 0
and using (34) we easily show that,

, dS"T 1 = - - T/ = T 2 " = 5' = 0 . . (38)
dy

(39)

Substituting from (37) and using (38) we find that:

T I " = - A 13 A2y2 + A 3y
Au + A 4

)

5" = tA2y2 + Aly + AD

where Ai(i = 0,1,2,3,4) are arbitrary constants. Substituting from (38), (39) into (37) we
obtain,

T, = - A 2(xy + ~:: y2) - Ajx + Aay + A,

T 2 = 0
(40)

* This satisfies (34) and implies X = Y = 0 by (21).
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Substituting in (30) and using (12) we find the following expressions tor (U, V).

U = A o(A 13X + A 33y) + A 4(A n x + A 31y)

+ A 1{ - tA ll x
2 + A 13XY + t(A 21 + A 33) y2}

+ A 3(A n xy + tA31y2)

+ A 2 j- !An x2y - !A13xy" + m(tA 21 - .~1:12 + !A..) y3} + (Gy + Gl ) •• (41)

V = AoA 23 y + A 4A 21 y + A 1 ( - A 13X2
-- A 21 XY + tA 23y2)

+ tA 3 ( - A n x
2 + A21y2)

+ A21 WA n x3 - !A21Xy2 + me!A23 - AA~13)y3f + (- Gx + G2) . (42)

As a third and last example, let us consider a case where the stresses decrease exponentially
from the root x - 0 (i.e., vary as e- flX

, where the real part of fl is positive). For the sake of
possible applications to the box structures of' Part II, we introduce a body force:-

x=o, Y=-Boe- flX

where Bo is a constant, which may be a complex number.

A particular solution of equations (21) and (32) is easily shown to be

(43) .

5 = - BOe - flX •

fl
(44)

The displacements corresponding to (44) follow from (30) and (12). We find:-

(45)

where use has been made of the algebraic theorem that the co-factors of IAijl are given by
aii Iaij I· To obtain a complementary function we make use of (33). Assuming that eP varies
as exp {fl(AY - x)}, we find that

A n A4 + 2A 13As + (2A 12 + A 3S)A2 + 2A ssA + A 22 = 0 .

Denoting the roots of (46) by Ai(i = 1,2,3,4) we find a solution of (33) in the form:-

(46)

4

eP = e -flX 2: Bi eflAiY (47)
i=l

where B i are arbitrary constants (complex numbers). The stress resultants follow from (22):-

(48)
5 - fl2 e -p,x ~ BiAi ~AiY •

11



(49)

The corresponding deflections are found to be:

V - ~ fl e -f1-X ~ Bi ef1-AiY(.Ii}A ll + -<;A" + A'2) + Cy + c, 1

2: BieUAiY( AlA 21 + Ai A 23 + A 22) Cx + C2 . f
Ai .

IlTIposing the condition (34) upon our complete solution we find:-

(50)

which gives two equations for the constants B i . The imposition of fur:ther boundary conditions
at y = ± c would enable the solution to be completed. This development is reserved until the'
theory of Part II is formulated.

1.7. Note on the Tensorial Character of some of the Quantities Introduced in Part 1*.-.Many of
the vectors and other quantities introduced in preceding sections, usually because their use
simplified the formulae and maintained formal identity with the equations valid for orthogonal
systems, show a more fundamental inter-relation when considered from the point of view of the
Theory of Tensors.

The position vector of equation (4) may be written:-

Xi = (x,y,z)

where the index i takes the values i = 1,2,3. As is customary we regard Xi as a contravariant
tensor of order one. Equation (5) for the line element may now be written, using the summation
convention, as:-

where ( 1 cos CI. 0y)
gij = co~ CI. ~

The matrix gij is then a second-order covariant tensor-the metric tensor.

If we introduce the first-order contravariant tensor ui
, where ui = (u, v, w) we find for the

corresponding covariant tensor U i the followingexpression:-

Ui = gij u j = (u + v cos CI., U cos CI. + v, w) = (V, V, w) .

In other words the quantities V, V introduced in (12) are elements of the covariant tensor corre
sponding to the contravariant tensor (u, v, w).

Now in the expression of the Theory of Elasticity in tensor formt the strain components
appear as a covariant tensor eij given by:-·.

where (Ui)j is the covariant derivative of Ui. The fundamental reason why the introduction of
V, V simplifies the strain-displacement relations is now apparent.

* The writer is indebted to Professor G. Temple for the suggestion to include a note on this matter.
t See Methodes de Calcul Differential Absolu et leurs Applications,by Ricci and Levi-Civita. Chap VI., para. 3.
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PART II. APPLICATIONS TO SIMPLE SWEPT-BACK BOX STRUCTURES

2.1. Description of a Simplified Structure. Notation.--In Part II we shall apply the results
developed in Part I to the study of stress distribution and deflection problems for a uniform
swept box. Such a simplified structure, while not reproducing all the characteristics of an
actual wing structure, will reveal those properties peculiar to sweep back.

The structure to be considered is a uniform rectangular section box swept back through an
angle n/2 - l/.., (see Fig. 6). Reference axes O(x,y,z), of 'the kind defined in section 1.1, are so
disposed that the faces of the box are given by y = ± c, Z = ± b and the ends by x = 0, x = l.
The faces z = b are termed 'skins'. They have thickness t and are reinforced by x-wise
closely spaced stringers of section area As and y-wise pitch as, and by y-wise closely spaced
rib booms of section area A R and x-wise pitch aR . Thefaces y = ± c are termed 'spar webs~.

They have thickness tw and are assumed to carry only shear stresses. Such direct load carrying
capacity as they may possess will be assumed integrated with the 'spar flanges', which run
along the four edges of the box and have a cross-sectional area A. The corresponding rib booms
on the skins z ± b are joined by 'rib webs' thickness tR , which are assumed to carry only
shear stresses. These rib webs are of course rigidly attached to the spar webs. The materials
of all the components are assumed to have Young's Modulus E and Poisson's Ratio a.

2.2. Theory of the Simplified Structure.-We shall limit ourselves in what follows to ·cases in
which the displacements occurring in the skins z = ± b are equal and opposite to one another.
The notation applied to plates in Part I will here be applied to the 'skin' z = b. Corresponding
values of displacement and stresses for z = - b, can then be obtained by reversal of sign.

Let us begin by considering the rib webs. These are to be treated as continuously distributed
in the x-direction. The 'thickness' of ribs within an element dx will thus be rR dx where,

(51)

The shear per unit length carried by the rib web, within dx will be written SR dx where SR is a
function of x only. The y and z components of displacement in the plane of the rib webs will be
denoted ~y V R and WR respectively. These definitions are illustrated in Fig. 7. The relation
between SR and the displacements is clearly:--

(52)

The kinematics of a 'pure shear carrying plate' are not well defined. We shall therefore in the
interests of simplicity, assume that WR is independent of z, thus attributing a limited rigidity
to the ribs. Experience with the theory of unswept boxes suggests that this restriction is not
of any real significance. Differentiation of (52) with respect to z then shows that V R is a linear
function of z and so, remembering that rib displacements must conform with those in the skins
at z = ± b, we fi.nd:-

V R = Vz/b.

Equations (52) and (53) then yield:---

. - 2( 1 + a) SRI JY V d 1-wR - Y - - y' WHO
ErR b 0

where W RO = (WR)Y = 0 is a function of x.
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We turn now to the spar webs considering first of all the surface y = c. The x and z-wise
displacement components in the plane of the spar will be written U w andww respectively.
Conformity with the rib displacements implies:-~

(55)

The component Ww is thus independent of z and so, just as in the case of the rib webs, we deduce
that U w is linear in z and thus is given by:-

z
U w = (U)y=c' b (56)

since spar web displacements must agree with those in the skins at z = ± b. The shear per
unit length in the spar web will be written 5 w and is related to U w and Ww by:-

The notation for the spar web is illustrated in Fig. 8. 5w is a function of x only and its variation
is brought about by the shear 5 R applied by the ribs. Equilibrium of an element dz dx yields
the equation:- .

Substituting from (54) into (55) and from (55), (56) into (57) and thence into (58) we find:-

d2
S R _ LR 5

R
+ __J:!L_~. [! (au) __ I I'e a2v dy + ~2WRO] = 0

dx2 ctw 2c(1 + 0) b ax y=e b.;o ax2 dx2
•

(58)

(59)

We shall denote corresponding quantities for the surface y = - c, by the same symbols as for
y = c, but with a dash added (i.e.) U W ') ww' and 51£")' The equations corresponding to (55)-(59)
are:-

So' = 2(1 E~w a) ca~;' + a:;')
dSw ' + SR = 0
dx

(60)

(61)

(62)

(63)

(64)

(65)

Transforming (59) and (64) we obtain the following equations for WRO and SR in terms of the
displacements in the skin z = b:-

1 (r e
. r-c . ) 1 rx

wRo =2b JoVdy+ Jo Vdy -2bJo (U)y=c+(U)y= __ cdx+KIX+K2
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.d2SR _ TR 5 _ .. 1}TR . ... [(.c a2v d _ J(au) _ (au) 1] (66)
dx2 ciw R-4bc(1+a) J_f ax2 Y lax y=c ax y ~.J

where K 1 , K 2 are arbitrary constants.

The equations governing the behaviour of the skin z = b have already been developed in
Part I. The external force (X, Y) arises in this case from shear flows 5 R applied by the ribs.
We have in fact:-

X = 0, Y = -- 5 R • (67)

The boundary conditions at the edges y = ± c can be obtained by considering the equilibrium
of elements dx of the spar flanges. The balance of y-components gives:-

The x-wise balance of forces is shown in Fig. 9. We thus find:-

5 + (5) = EA (~exx)
w y = C ax y = c

(69)

(70)

Formulae for 5w I 5w ' in terms of U, V, 5 Rand W RO were obtained implicitly during the derivation
of (59), (64). These may be expressed as

5 + 5 ' =li~~1i~
w w 1 + a

5 5 ' . Etw [1 (() (U) ) 4(1 + a) c dSR 1 \'c av ]
w - w = 2(T+a> bUy = c ._-- y= - c + E T R-dx - bJ_c ax dy

(71 )

(72)

where use has been made of (65). Our boundary conditions (69) and (70) can then be written:-

EtwKJ

1--+; (73)

The mathematical problem presented by our swept box is thus reduced to a plate problem of the
type studied in Part I where the (body force' Y = - SR is given by equation (66) and the
boundary conditions at the edges y = ± c are given by (68), (73) and (74).
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Finally let us write formulae for the static resultant of the forces acting across a section with
co-ordinate x. These reduce to a force Zk at the centre of the section (x,O,O) and a couple
L1i1 + M1y'1 where:-

and,

L, = 2bc(Sw - 5:) 2b L 5 dy l
M, = 2bEA {(cxx)y~ ,+ (cxx)y~ -,} + 2b .L T, dy. j

(75)

(76)

(77)

It is to be remarked that we have found it convenient to use the oblique axes OX, OY for defining
the couple. If it is desired to write the couple Li + My' using the axes Ox, Oy, then the necessary
transformation is given in (19).

2.3. Simple loading Conditions:·-(l) Constant Couple.-We now apply the results of the first
example in plate theory of section 1.6 to a problem of swept boxes. The constant stresses
T 1 and S of this example will be assumed to be acting in the skin z b. The corresponding
strains and deflections are given in equations (35) and (36). The body force Y = - SR is zero
in this case. Substituting SR = °and the values of U, V given in (36) into (66), we find this
equation identically satisfied. Since Sand exx are constant equation (73) shows that K 1 - °
and so by (75) that Z = 0. Equation (74) shows that,

C - - 1 _ b(l + 0') S
- 2exy E ' .twc

Equations (69) and (70) show that,

(78)

Assuming for simplicity that U = V =0 when x = y = °and that WRQ = 0, when x = °we
find from (65) that,

Using (53),(54), (55), (56), (60) and (61) we find,

VIi ••.~ (c yy • y - Cx)zlb 1
exx ~~ + C e '))

WR = - 26 . x- ., b xy - db .y-

Uwl
'j' = {exx • x ± (eXY + C)c}z/b

U w ,

W] C 2w _ exx 2 ± ' c eyyc
w

w
'f-- 2bx "T;x- .2b·
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The magnitudes of the stress resultants T I and 5 follow from (76). We find:-

M
I

+ EAA l3 L
I

")

T - 2c l
1 -- 4bc(1 + E~All)

5 - L I j- -- 8be .

(83)

The formulae developed in this section together with (35), (36) solve the stress distribution and
deflection problems for the case where our simplified swept box is loaded by constant couples.

2.4. Simple Loading Conditions:-(2) Bending by a z-wise Force.-We now apply the results
of our second example of section 1.6 to our swept box. The stress resultants for the face z = b
are assumed given by equation (40). The deflections for this face are then given by (41) and
(42). Since Y = 0 for this solution we have SR - 0 as in section 2.3. Substituting from (41)
and (42) into (66) we find that SR = 0 implies:-

A 2 = 0, A 3 = - ~ A l3 Al . (84)
2 An

Substituting from (30), (40) into (73) and recalling (75) we find:

ZAl = -~~--- .
4bc(1 +E~All)

Substituting from (30), (40), (41), (42) into (74) and recalling (84) we find:

C = _ (b (1 + (1) + A 33) A _ A 31 A .
Etwc 2 0 2 4

Equations (69), (70) and (75) give:-

Sw} Z
Sw' = 4b =f A o .

(85)

(86)

(87)

(89)

If we assume that our force Z is located along the line x - l, Y 0, i.e., applied centrallyat the
tip rib, we find by (19) that:- '

L 1 = 0, M 1 = - Z (l - x) . (88)

Substituting in (76) and using (88), (85) we find that:-

, A o = 0, A 4 = All.

Substituting from (84), (85), (86), (89) in (40), (41), (42) and (87) we find:-

T, = __ Z(l - x - ~ t;y) = .. M 1 ~_ .A 13 5

4bc (1 + E~An) 4bc (1 + ~~~An) 2All

5 = _ Zy

4bc (1 + EAcAn)
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(91 )

(92)

Where in (91) we have assumed U = V = 0 when x = y = O. The equations (90) show that
the conditions at the tip x = l are not exactly those corresponding to 'freedom', even from direct
stress. For our solution to be valid equal and opposing couples must be applied to the faces
z = ± b by loads normal to the rib x = l, not to mention linearly varying shear loads applied
parallel to this rib. However, the effects of this self-equilibrating system will die away as one
proceeds along the span and so our solution may be considered practically valid at (say) a distance
2c from the end.

Substituting in (65) we find assuming W RO = 0 when x = 0 ,

(93)+ ~~ (2A 21 + A 33 - ~1~)} x] .

The remaining deflections can be written down using (53), (54), (55), (56), (60) and (61), but
since the formulae are lengthy we shall not give them here.

2.5. Analysis of the Deflections for the Simple Loading Conditions.-The deflections at any
plane section (co-ordinate x) of our box may be analysed into the sum of a translation, a rotation,
a warping from the plane and a distortion in the plane of section. Let us consider a translation

'. Wk and a rotation pi + qj, where W, p and q are functions of x. These will produce displace
ments at our section given by:-

U = qz sin r:t. , V = - P?, sin r:t. , W = W + py sin r:t. •

Where use has been made of (9) and the rotation has been located at (x,O,O).
equation U, V have a 'general' significance as in (9) and are not confined to z = b.
of the first of (94) with (56) and (61) suggests the identification

_ (U)y = c + (U)y = - cq - '-~"-"._ .._ _._ _.
2b sin r:t. •

Comparison of the second of (94) with (53) suggests:-

p = _ ~~e!~s~~~ independ:~~~_f'y)
b sin r:t. •
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Comparison of the third of (94) with (54) gives:-~

(97)

and (96) again. The term in (54) containing SR does not occur in (53) and gives a shear strain not
a rotation. We shall adopt the definitions (95), (96) and (97) for p, q and W. Other definitions
are possible, but the differences are bound up with questions of 'shear deflection' and 'root
conditions', with which we are not particularly concerned here.

Let us now apply our formulae to the case of loading by a couple analysed in section 2.3.
Substituting from (36) with C1 = C2 = 0 and (79) we find,

P = Cx cosec r:t. q = exxx cosec \1._ W = _ exx x2

b' b' 2b

Substituting from (77), (35) and finally (8~,) we find the following relations:---

dp
dx = CllL l + CI2M]

where,

(98)

(99)

A 13 cosec r:t.

8b~C( 1 + EAcA;;)

I

I
r ..

I

J

.. (100)

The relations (99) generalise the usual curvature-bending moment and twist-torque relations
valid for an unswept box (beam).

The remaining terms in the deflection formulae can be analysed into firstly a 'linear warping':-

u = (eXY + C) Y ,

uw )
;. = ± (eXY + C) czjb

uw'j

and a .cross-sectional distortion' >--

U = 0, V = eyyY

VR = eyy . yzjb, W R = - eyy . y2j2b .
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The warping, which consists of spanwise displacement, depends upon both L1 and M 1 . The
cross-sectional distortion consists of an (anticlastic' bending of the ribs.

We turn now to the analysis of the deflections for the case of z-wise loading at the tip, dealt
with in section 2.4. Substituting from (91) into (95), (96) recalling (93), (97) and (100) we find,

x) , .. (103)

Recalling (88) we see that the relations (99) are valid for this case as well. The remaining
displacement terms can be analysed into firstly a (linear warping':-

secondly, a (parabolic warping':-

.. (105)

v=O

and finally a cross-sectional distortion:~-

u=O, (106)

The formula (101) when expressed in terms of M 1 (with L1 = 0) agrees with (104). Similarly
(102) agrees with the first term of (106). The warping of (105) is analogous to that occurring in
unswept boxes and will give rise to a theory of (shear lag', just as the linear warping will give
rise to a theory of (end constraint' similar to that arising in the case of the torsion of l1nswept
boxes.

2.6. Internal Systems of Stress.-The third example of section 1.6 may be used to construct
systems of stress for which the static resultant on a cross-section is zero. We take as displace
ments in the surface z = b the sum of the expressions given in equations (45) and (49), where
the constants B j , which occur in these, are limited by the relations (50). Equations (43) and
(67) show that

(107)

Our assumed solution must satisfy (66), (73) (with K 1 = 0 by (75)) and (74). Making the neces
sary substitutions, we find, incidentally, that the constant C of (49) is zero. The three remaining
equations together with (SO) form a homogeneous set of linear equations in the five constants
BAj = 0,1,2,3,4). These equations may be written

4

~ BijBj °
j = 0
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where the equations for i = 0,1, are obtained from (50) by addition and subtraction, the equation
for i = 2 is frOln (66), that for i = 3 from (73) and that for i = 4 from (74). The constants
B ij are given by:-

(109)

B - A 23
10 - -3---'

Il A 22
(110)

(j = 1,2,3,4)

(Ill)

(j = 1,2,3,4) 1·. (112)

.. (113)
+ Etwfl [A .2A ll + A·A 13 - L A 23 -~-- A 2')

2b (1 + a) J J Aj Al ~

- ~1l2Ab(l + a) (AlAn + Aj A 1s + A 12)] sinh IlAjC U = 1,2,3,4) .
tw

Equations (108) are satisfied by non-zero B j if:-

.. (114)

Equation (114) is a transcendental equation for fl. It is very complex as inspection of (109) to
(113) shows. The mathematical examination of its roots is therefore out of the question, but
physical intuition, based upon experience with unswept boxes, suggests the existence of an
infinite sequence of roots with positive real parts, which 1nay be written:-

1
/1, = -(Ill, 112 , fl3, ' ) . .. (115)

c

They can of course be calculated numerically in a special case. The solution of the first four
equations of (108) gives the ratio between the Bj •

We may write

.. (116)

where C/{ is an arbitrary complex constant and (Jj(ll) are the cofactors of B4j in the determinant
of (114).
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A 'general' internal system may be obtained by summation of our results with respect to
p over the sequence (115). The resulting displacements U, V for the surface z·= b may be
written:-

)
~ .. (117)

J

It must be understood in (117) that the real parts of the expressions given are to be taken.

The solution (117) could be used to remove the 'warping' and 'section distortion', from the
simple solutions analysed in section 2.5 at one particular section (say) x = O. However another
difficulty arises here, because the constants Cit cannot be obtained by the usual harmonic analysis.

Multiplication of (117) by e - p~y and operating f~ c ( ) dy yields an infinite set of equations for

the Cp,. An alternative process might begin by limiting the expansions (117) to afinite number
of terms and then proceed by choosing the Cp to remove the warping at a finite number of
points on the section.

The processes sketched above are very complex and hardly practicable. Recourse must
doubtless be made to approximate methods of calculation to handle problems of constraint
against warping for swept-back wings.

2.7. Approximate Calculation of Root Constraint for the Case of Loading by a Constant Couple.
The general methods of section 2.6 are hardly feasible for design calculations. However, an
approximate calculation is possible if certain restrictions are made as to the deformation possi
bilities. We assume that the section of the box can only warp and distort in its plane according
to the pattern defined in equations (101) and (102), that is, in the same way as occurs when a
constant couple is transmitted, with no restraint at the ends. Other modes of deformation
of the section cannot occur, in particular the rib webs are rigid in shear (t R ~ (0). The
deformation of the skins and spar webs is then given by:-

U = qb sin a + wy/c

V = - pb sin a + fly

uw )

i = qz sin a ± wzjb
U w ']

Wwl
r

= w ± pc sin (f. - J c2J2b
w'w

(118)

where, p, q, W, w, L1 are functions of x. Making the supposition that T 2 = 0 the stress resultants
follow from (118). We find

T (( - dp + - dq)b 'J .a.-13w.. _.·~ + \all d...__w_ + - dLl
. 1 = "I ~- a 1R dx . all dx Sln (X, T --c- I t c dx aIR dX y

(119)
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where

and

.. (120)

;.:} = zrf!;:;;) (± ~~c sin a + qsin a + ~~ ±';; -~~ ~~) . . '. (121)

Equations (12), (24), (57), (62) and (118) have been used in the derivation of (119), (120) and
(121). Writing Z = 0 in (75) we find from (121):-

Substituting in (76) we find:-

L1 = 4bc sin a . (Z(;:~Ca) -+ bii&1) ~~ -- 4b
2
cii31 sin a~~ 1

I (2(t~c;) biis;l) (i,

(122)

.. (123)

J

Substituting in (69) and (70) we find:--·

( Etwc b - ). dp + b - . dq + ( Etw + (33) EA d
2
w

2(1 + a) - a33 SIll IX dx a3] SIn tJ. dx 2b(1 + a) C w = dx2 .

Solution of (123) for dpjdx, dqjdx yields:--

.. (124)

f
J

.. (125)
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where,

.. (126)

D = 16b3c sin' (J. [(~(f't,t-a) + bii"l)(Ciill + EA) -- beiii,2] .
Substitution from (125) into the second of (124) yields:-

.. (127)

where,

R sin rx [( Etwc b - ) P + b - Q]
1 = ·EA 2(1+~) - a33 1 a3l ]

R sin rx [( Etwc b - ) P + b - Q]
2 = E A- 2( f + a) - a33 2 a3l 2

(32 - sin (/, [f Etwc .. - b - l P + b - Q] + .... 1 ( Etw + ~c~) .
- EA (2(1 + a) a

33
) 3 a31 3 EA 2b(1 + a)

A solution of (127) which vanishes at x = 0 and remains finite as x ~ 00 is:-

The first of (124) gives assuming L1 = 0 for x 0:--

11 = t'§~1_~Q?~~~~_=-_aglL w .
aggc

.. (128)

.. (129)

.. (130)

The ren1aining unknowns are easily found. p, q follow from (125), W from (122) and the stress
resultants from (119) and (121). The solution found solves the problem of 'root constraint'
for a 'long' swept box loaded by any couple at the tip. It may be applied with the usual approxi
rnation to other cases of loading. The method used here may be extended to deal with the
parabolic warping of (105) and so yield an approximate solution of the shear lag problem for the
swept box.
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PART III. APPLICATIONS TO SWEPT-BACK WING STRUCTURES

3.1. Generalisation of the Engineering Theory of Bending and Torsion to Include the Case of
Swept-back Wing Structures.-The intention of the present section is to generalise the solutions
obtained in Part II for the simple cases of loading (sections 2.3, 2.4 and 2.5), to cover the case
of a uniform swept box, whose section bears a closer resemblance to an actual wing structure,
than that considered previously. The box to which we shall now devote attention is shown in
Fig. 10. The section has unequal spars, that at y = c has thickness tw and depth 2b, while
that at y = - c has corresponding dimensions tw ' and 2b'. The skins are identical in both
geometry and elasticity and so the section is symmetrical about the y-axis. The skins may be
curved, but the development below is restricted to the case where d'jdy is small*, where '(y) is
the ordinate. This will ensure that the angle a between the stringers and the rib-skin inter
sections may be treated as constant over the skin surfaces. The flanges of the spars y = ± c
will have section areas A and A' respectively.

The notation for displacements, strains, stress resultants, etc., will be the same as in Part II.
However, in the case of the curved skins, displacements, etc., will be treated as occurring 'in the
surface'. For exan1ple V will represent a displacement parallel to the tangent of the curve
of cross section.

We make the following assumptions with regard to displacements:-

1. Each section x = x moves as a rigid body with displacement Wk and rotation pi + qj.
W, p, q are functions of x, the last tvvo being quadratic and the first cubic.

2. The section is warped from the plane by a displacement which is linear in x. In the
skins we have U = Wl(y) . x + W2(y) and the warping in the spar webs is linear in z. By a
suitable definition of q we may assume the rotation of linear elements of the two spar webs to
be equal and opposite.

3. The section is distorted In the plane In such a way that SR = 0 and that
V = Ll](y)x + Ll 2(y).

Reference to section 2.5, in particular to equations (104), (105) and (106) shows that our
assumptions. are sufficiently general to deal with the loading cases and the simple box treated
there. Putting our assumptions into mathematical form, we can write:-

U = q' sin a + w

U w = qz sin a + (w)y=c' zjb

ww = W + pc sin ct.

Uti,' = qz sin a + (w)y _ c • zjb'

'Zv 11" = TiV --- pc sin a

* This implies that Ib - b' 1/2c is smalL

25

(131)



where,

P =--= PI X + iP2X2

q = q1x + tq2X'2

~V == yX tXZ(ql -j kqzx) sin rx (132)

(133)

The quantities PI , Pz, ql' qz, yare constants, while WI, W2, ill, Liz are functions of y. The terms
in (131) involving p,q are obtained by an application of (9). Those involving d'Jdy in the formula
for V represent the tangential component of those parts of W R which express rigid body motions
(see Fig. 11). The component of the remaining portions of WR is included in LJ. The definition
of W in (131) is (ww + ww ')j2, which will differ from that used in section 2.5, equation (97), by a
term which depends upon the cross-sectional distortion and so will be linear in x. This difference
will therefore not affect the relation between Wand q given in (99) and (103). This relation has
been adopted here and used to derive the formula for W in (132). From equations (12) and
(131) we find for the strains in the skins:--

e1'X= (ql +q2x)~sinrx (1),

(h P2X )(C y ~j) sin a i y ~j +11+ ~~1 X + ~;2 .
It follows that the stress resultants T I and 5 are linear in x and so assuming in accordance with
the findings of Part II that Tz = 0 and SR = 0 we find from (21) writing X = Y = Tz = 0 that:-

Equation (30) then gives :--

T.)

S

dS
x f (Tl)~ 0

dv

o
S(y) .

" (1:{4)

A,{
as

(TlL r') f Al~Sen x dy
.. (135)

eX1'= A,ll( ~.. X ~i + (T1)x 0) A3~S .

5= (S)v

Comparing (133) and (135) we deduce using (134) :-

T I = (CQ_±._q2X )'~i?:_~ + Lw1)y =_=-C_1~13 (5)
All An Au:V

t 2(P2 + :43~ q2) sin rx [V 'dy
All An J. r:

. J1'~lz__Sl~~' ~ dY
An c

wl = (wl):v I + (2Pz + AA·--~l q2) sin rx [V t. dy
11 J.- c

.1 1 + ~~2= A31(T1)x ~O + A33S + p{C - Y ~§) sin a
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P2 ~in_~ (yt + cb')
An

P2sinrx(y' + cb')

de
Ydy'
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Suhstituting frOlTI (183) and (186) in (69) and (70) (with A' written for A) we find:-

where,

- 1 JC '-, =-- l, dy .
2c -c

.. (137)

.. (138)

Substituting from (131), (132) in (57) and (62) (with tUl ' written for tw) we find expressions for
Sw 1 Sw' which may be compared with (137) yielding:-

(Wj)y=C
h

P:2C sin tJ:.

(1 + aLq2 sin ij. (EAb
E tw

.. (139)

(1 + a) . (EAbI q.) SIn ij. .
E ~ t

w

EA'b'+ 2c~)
tw A ]]tw

where in the last equation we have made use of the anti-symmetric nature of the warping in
the spar webs (cJ. assumption (2) given above). Substituting now from the third of (136) into
the first of (139) we find:-

.. (140)

The formulae for T 1 , S, Sw, Sw' ((136), (137)) obtained above contain the unknown constants
ql' q2, P2 (w1)y -c and (S)y= -c' Equations (139), (140) show that two of them are expressible
in terms of the remaining three. These last three and hence the stresses can be determined by
use of equations of overall equilibrium like (75) and (76). However, these require modification
for the present structure. We find easily that:-

" ·C d(
2b cSw + 2 j yS dy

. ~{ dy
2 r (8 dy

. c

(141)

.(

M1 = 2bE A (exx)y = c + 2b' E A' (ex,Jy = c + 2 J_c (T j dy

where allowance has been made for the z-wise components of skin shear S d(/dy.
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Substituting from (136) and (137) into (141) and making use of (139) and (140) we find after
some transformation:-

where

where
2 'c. 4'c [Y

2E(Ab2 ---- A'b'2) + --A--·-·--·· J y(2 dy + --A J ((Y)'((Y1) dYl dy
_ C n -- C C 11 .- c. 017 -- -------------------.~--~--------------.-----~-------~--

EI

(Zl + 2~1 L 1)

q ___ 11 .•
1- --

EI sin a

.. (142)

.. (143)

(144)

It is to be remarked that Z and L 1 are constant in our solution, whereas M 1 is linear in x. It is
assun1ed in (144) that Z is applied at x = l and hence that M 1 is given by the expression in (88).

Formulae for the stress resultants can now be obtained. Substituting from (142), (143),
(144), (139) and (140) in the formulae of (136) we find:-

where

s= II Z -y <-

---~------- .... J ~ dy
8c~ EIA u ' 0

.. (145)

and

where

II = L] 17cZ

.. (146)

Substituting in (137) \ve fin d :---

II Z'c ,. AbZ
S1l' = --;.. +------ f i., dy +----

8c~ EIAu . 0 . I

, _ . II Z-o,.... A'b'Z
SIR'----- -;.. + .. ---- j (, dy +-. .

8c ~ EIA]J . ~ c I

.. (147)

The point y = 17C, z = 0 on a section x = x may be termed the 'shear centre' at the _section.
I t may be remarked that 17 = 0 when there is symmetry about the z-axis. The torque L 1 about
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an axis through the shear centre may be termed the 'Batho Torque' and is seen to be reacted
by a uniform shear flow given by the usual Batho formula.

We turn now to the calculation of the deflections. Combination of (137) with the second of
(139) gives :--

.. (148)

The quantity y can then be obtained using (147). It is equal to the mean shear strain in the two
spar webs and so the term in TV (eqn. (132)) 'yx' is the 'shear defl~ction'. The calculation of the
rotations requires a knowledge of PI, which we have not found as yet. To determine PI we must
consider the deformations of the ribs. The rib displacements are calculated upon the supposition
that SR =0 and that W R is a function of y only (cf. section 2.2). We find by (52) that

(149)

The displacelnent V at the skin is given by:--

.. (150)

Recalling (60) we find >-~

'-y V
:!!~+j -dy=O
b' 5-2 •

. - c (,

Substituting from (131) in (151) we find:-

.. (151)

W R py sin rx+ W .. (152)

and

-& Ll
j ---4 dy

- - c ,
.. (153)

(154)

Now the strain eyy in the curved skin can be calculated in two ways. Firstly from the displace
ments V and wR* by a well-known formula and secondly fronl equation (30). We thus find:--

av d2 , ~
eyy - -ay - W R dy2 = A 21 T 1 +- A 23S .

Substituting from (131), (152), (145) and (146) and equating coefficients of x in the resulting
formulae we find:-

A 21 Z,
All EI . .. (ISS)

* In all strictness W R - V R j~ ,but the inclusion of the second term only introduces terms of the order neglected

here.
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The remaining terms of our identity give an equation forJ~, which we do not write here. The
solution of (155) which satisfies (153) is,

12-(Y~ 9) de I
C dyJ . .. (156)

The quantity PI can now be calculated. Operating on (136) with Je c ( ) dy and using (156),

(145) and (146) we find an expression for {(w 2)y=c - (w~)y=-c + y(b - b')}. This quantity can
also be obtained from (139) using (142) and (145). Equating the two results we find for PI :--

CL2

cosec \/.. !(1 + a)(b/tw + b'/tw') (Ail::!
8~c- -12-£,C t

A:n cosec \/..
2A11Ei

_A13~/All) + 2Ail12~c I

2~ ElAn?')

Using (140), (142) and (157) we then find:--

dt = C1LL 1* -+ C12M]
dx

A'b'~)

t 'w

(157)

.. (158)

where

and
L J* = L] - 1}*CZ }

1]* = - CI3/CClI .

.. (159)

Using (144), (142) and (132) we find:--

d
2
W _ dq _ C" L C M--ax2 - cosec \/.. - dx - 21 1 + 22 1 .. (160)

where,

and C
21

C
nl I

C22 = cosec \/../ £1 .
.. (16])

The formulae (158) and (160) have the same form as (99) and it can be shown that the constants
Cij of (157) and (161) reduce to the forms given in (100) when the proper specialisation is intro
duced. The difference in the new formulae lies in the introduction of L1* in (158). L1* is the
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moment about a line y = 1}*c. The intersection of this line with a rib wise section (co-ordinate x)
Inay be termed the 'centre for twist' at that section.

The aim set at the beginning of this section has now been accomplished. Formulae for
stresses and deflections have been obtained for the case of a uniform swept wing structure loaded
by 'normal' forces and couples at the ends. This represents a generalisation of the usual
Bending-cum-Batho formulae which are used by aircraft engineers to obtain a first approximation
to the behaviour of unswept wings.

3.2. Procedure for Practical Stress Analysis.-Consider now an actual swept-back wing structure
having two straight spars, skins reinforced by stringers and ribs parallel to the 'direction of
flight'. (see Fig. 12). The wing possesses a small amount of taper and the dimensions of the
structure vary in a gradual manner along the span. The existence of a plane of symmetry
intersecting the spar webs will be assumed. If no such plane exists in reality, then the actual
top and bottom surfaces should be replaced by fictitious surfaces having ordinates and geometry
which are mean values of the real quantities for the two surfaces. This plane of symmetry will
be taken as the x,y-plane of a co-ordinate system. The y-axis will be taken parallel to the ribs
the x-axis will intersect the traces of the ribs on the x,y-plane at their mid-points and the z-axis
will be normal to the x,y-plane. Attention will be directed in what follows to a single rib-wise
section with co-ordinate x. The geometry of this section and of the various structural elements
at this section, will be described by the symbols used in section 3.1 and illustrated in Fig. 10.
It will be assumed that the wing is loaded by forces acting in a z-wise direction and by couples
whose axes lie in the x ,y-plane. "

The procedure for "estimation of the stresses at section x may be outlined as follows:

1. Tabulation of the values of the following quantities at this section:-----

(J.., c, b, b' , '( y), t, tw , tw' , tR, A, A I, As, A R, as, aR, E, (J •

If any of these, apart from', vary across the section, then mean values should be taken. Allow
ance for the bending stiffness of the spar and rib webs should be made by augmenting the areas
A, A' and A R •

2. Calculation of sundry constants for the section:-

As/as, AR/aR, (aij)p (equation (27)), (aij)R (equation (28)),

laijl, Ai] (equation (31)), ~ (equation (138)), r ~2 dy,
• ~,- c

I (equation (142)), 'YJ (equation (143)).

Uq (equation (29)), the determinant

f' (y(:I. dy, .r (J~ ~(y) . qYl)dYl dy,

~). Calculation of the resultant static action across the section:

Z SUln of z-wise forces acting at points outboard of section. This acts at the centre
of the section (y = 0).

L[, M , Oblique components, referred to axes O(X, Y) (see Fig. 1) of the sum of the moments,
about the centre of the section, of all forces and couples acting at places out board
of the section. These may be calculated using the formulae of equation (19). If the
external forces are denoted by Zi and act at (Xi, Yi) we may write:-

L ,
x

I

:::2 (Xi x)Zt

I

where the summation :::2 is with respect toi over all the points Xi such that
x

x < Xi ~ l (where x = l is the tip). Any 'couples' must be replaced by forces before
inclusion in these formulae.
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II X-wise component of moment about y = l1C (see equation (145)).

4. Calculation oj the Stress Resultants:~·

S Shear per unit length (oblique component) in skins (see equation (145)).

T I Tension per unit length (oblique component) in skins (see equation (146)).

The remaining component T 2 is zero.

51/)) 5 w' Shear per unit length in spar webs (see equation (147)).

The shear per unit length in the rib webs S R is zero, except of course for effects due
to local loads applied to the ribs.

5. Calculation of the stresses in the various components:-

E exx Stress in the stringers. en has already been found in the calculation of 1'] (equation
(146)) .

E(exx)y= ±c Stresses in the spar flanges.

The loads in the spar flanges and the tensions in the stringer-skin c0111bination (1'1
per unit length) will have normal shear components if the wing structure is tapered.
Corrections of the type, usually introduced in the stress analysis of unswept wings,
can be introduced here to allow for the (shear carried by end load', if it is felt to be
worthwhile.

E eyy Stress in the rib flanges. This is given by (30). We find, eyy = AzI1'] -+ A 235.

en, eyy, eXY Strain c01l1ponents in the skin (oblique axes). en, eyy have already been found.
exy follows froin equation (30):- eXY = As] T 1 + A 3S5.

exXl eyy , exY Strain components in the skin (rectangular axes O(x,Y). en has been calculated.
eyy , exY follow using equations (13) and (15).

TIlt, T21t, Sit Stress components in the skin (rectangular axes O(x, Y).

These follow from equation (26).

5 wltw , 5w'jtw' Shear stresses in the spar webs.

This completes the analysis of the stresses at a section of the wing. For a complete stress
analysis these calculations must, of course, be repeated at a number of sections. The solution
given will be in error near the tip, near large concentrated loads and at the root, but these errors
are present in the customary application of the beam theory to ullswept wings. A sufficiently
accurate estimate of these errors may be obtained by idealising the wing structure and treating
it as a uniform doubly symmetric rectangular-section box applying the methods developed in
section 2.7. The warping equation (127) found there is so similar to that for an unswept box
that the ontline given in section 2.7 should be an adequate basis for application.

3.3. Procedure jor Defle'c ion Calculations .-The procedure given here for the calculation of
deflections will be based upon the same assumptions with regard to the wing structure as the
procedure for stress analysis of section 3.2. The calculations described must be carried out at a
reasonable number of sections of the wing so that numerical integrations to obtain actual deflec
tions and rotations can be carried out.
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1. Calculation of Section Constants supplementary to those of section 3.2 (2).

Cn , C12 = C21 , C13 , C22 • Formulae for these constants are given in equations (157), (161).

1]* (see equation (159)).

2. Calculation of a Special Couple Component supplementary to section 3.2 (3).

L1* X-wise component of moment about y = n*c (see equation (159)).

3. Calculation of Rates of Section Rotation.

~t , -d~Cl = - dd2~ cosec r:t.. These quantities follow by equations (158) and (160).
dx x x

4. Calculation of the Deflections and the Rotations.

p, q These follow by integration of the expressions found in (3). This rotation is about
an axis passing through the centre of the section (y = z = 0).

p sin r:t. Decrease in (incidence' of a rib section.

W This follows by integration of an expression found in (3). If the root is (fixed' we
may write W = dWjdx = 0 at the root.

However see (5) below in this connection.

5. Calculation of the (Deflection due to Shear'.

y This is the (rate of shear deflection' and is given by equation (148). In section 3.1

it was a constant and equal to (~~)x=o (see (132)). In general it will be variable.

W s The (additional deflection due to shearing'. This is obtained by integrating:-

W s must be added to W to obtain the 'total' mean spar deflection. This procedure
will give the correct root conditions for the total deflection W + W s '

This completes our analysis of deflections. No account has been given of the calculation of
section warping and distortion, since this is of little practical importance. Rough estiluates
of these effects can however be made using the simplified structure of Part II (see equations
(101), (102), (104), (105) and (106)).
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APPENDIX

Numerical Tabulation of A ij and Allied Functions*

Tables 1, 2 and 3 give values of the matrix elements A ij defined in equation (31) for a senes
of values of ex, As/ast and AR/aRt. These results are plotted in Figs. 13 to 2l.

Tables 4 and 5 give values of the determinant !aij ! and the matrix (aij)p respectively, which
are defined by equations (27), (28) and (29). These results are plotted in Figs. 22 to 24.

All the numerical results given assume a value of 0·3 for Poisson's Ratio.

----~-~ ----------------------

* Taken from the report:- The Evaluation of Matrix Elements for the Analysis of Swept-back Wing Structures
by the Method of Oblique Co-ordinates by S. R. Lewis, B.Sc. (College of Aeronautics Report No. 44, A.R.C. Report
14025. Strut 1450).

TABLE 1

90

0·660
-0·168

o
0·812
o
2·74

0·652
-0·126

o
0·613
o
2·71

0·646
-0·102

o
0·492
o
2·69

0·679
-0·121

0·367
0·847
0·477 .
2·64

0·732 0·674
0·0108 -0,0901
0·725 0·384
0·682 0·632
0·676 0·357
2·52 2·57

0·732 0·672
0·0085 -0·072
0·722 0·394
0·536 0·505
0·531 0·285
2·38 2·53

0·732
0·0149
0·729
0·938
0·930
2·77

5545 -,--
0·815 0·757
0·229 0·0779
1·09 0·849
1·06 0·976
1·35 1·07
3·03 2·84

0·801 0·755
0·189 0·0560
1·01 0·825
0·743 0·702
0·947 0·771
2·52 2·51
---------

0·793 0·754
0·124 0·0437
0·960 0·811
0·573 0·548
0·730 0·602
2·25 2·33

-------- -~-I~--

\ 60--
35

0·887
0·411
1·35
1·14
1·61
3·31

30

0·930
0·516
1·50
1·18
1·75
3·50

AnEt
A 12Et
A1sEt
A 22Et
A2sEt
AssEt

exdeg

As = 0.5
ast

As 0 ~- = .~

ast

AllEt 0·858 0·841
A 12Et 0·350 0·283
A 1sEt 1 ·25 1 . 17
A22Et 0·802 O· 783

~R7 ~_~I ~:~:_I:__1_:_~~__I:--~-:~-b---
AnEt 0·821 0'817
A 12Et 0·265 0'215
A 1sEt 1·12 1·08
A22Et 0·607 0'596
A 2sEt 0·902 0·846
AssEt 2·23 2·22

As = 0.5
ast

!
----------~--~-------------
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ct:deg 30 35

TABLE 2

45 55 60 75 90

'- --
As = 0.1

AllEt 1·48 1·38 1· 21 1·08 1·04 0·932 0·897
A 12Et 0·822 0·638 0·339 0·112 0·0210 -0,166 -0'228ast A 1sEt 2·38 2·10 1·62 1·22 1·03 0·504 0

A R = 0.2
A 22Et 1·35 1·25 1·09 0·980 0·938 0·855 1 ·10
A2sE t 2·25 1·96 1·50 1 ·11 0·936

I
0·453 0

aRt AssEt 4·92 4·45 3·74 3·26 3·07 2·71 2·80

As = 0.1
AllEt 1·31 1·27 1·18 1·08 1·03 0·923 0·881
A 12Et 0·534 0·426 0·236 0·0803 0·0153 -0'123 -0'171ast A 1sEt 1·90 1·76 1·48 1 ·18 1·02 0'526 0

A R = 0.6
A 22Et 0·876 0·831 0·759 0·704 0·682 0·637 0·829
A 2sEt 1·46 1 ·31 1·04 0·798 0·680 0·338 0

aRt AssEt 3·61 3·42 3·12 2·90 2·82 2·65 2·75

As AllEt 1·22 1· 21 1 ·16 1·08 1·03 0·919 0·872
~- =0,1 A 12Et 0·395 0·320 0·181 0·0626 0·012 -0·0984 -0'137ast A 1sEt 1·67 1·60 1 ·41 1 ·16 1·02 0·539 0

AR = 1.0
A 22Et 0·649 0·624 0·582 0·549 0·536 0·508 0·664
A 2sEt 1·08 0·983 0·800 0·622 0·535 0':269 0

aRt AssEt 2·98 2·91 2·79 2·70 2·67 2·62 2·72

TABLE 3

ex deg 30
I

35
I

45
I

55 1- 60 75 J 90
- --

As I AnEt 1·60 1·48 1·29 1·15 1·09 0·977
I

0·939
=0·05 A 12Et 0·887 0·685 0·361 0·118 0·0222 -0 ·174 -0'238ast A 1sEt 2·57 2·25 1·73 1·29 1·09 0·528 0

A R = 0.2
A 22Et 1·39 1·27 1·10 0·981 0·938 0·856 1·16
A 2sEt 2·35 2·03 1·53 1·12 0·937 0·449 0

aRt AssEt 5·23 4·69 3·88 3·33 3·13 2·73 2·80
----~-- ---~-------_\_---~

As = 0.05
AnEt 1·40

I

1·35 1·25 1·14 1·09 0·968 I 0·922
A 12Et 0·571 0·455 0·251 0·0849 0·0161 -0' 129 i ---0· 179ast A 1sEt 2·04 1·88 1·57 1· 25 1·08 0'552

I
0

A R = 0.6
A 22Et O' 892· 0·841 0·762 0·704 0·682 0·638 0·867
A 23Et 1·512 1·35 1·06 0·803 0·681 0·334 I 0aRt AssEt 3·80 3·59 3·24 2·97 2·87 __2~~~__

As = 0.05
AllEt 1·30 1·29 1·23 1·14 1·09 0·963 I 0·911
A 12Et 0·421 0·340 0·192 0·0662 0·0127 --0'103 -0·143

ast A1sEt 1·78 1·70 1·49 1·23 1·08 0·565 I 0
I A 22Et 0·657 0·629 0·584 0·549 0·536 0·508 0·694A R-- = 1·0 A 2sEt 1·11 1·01 0·813 0·626 0·535 0·266 0

aRt AssEt 3·13 3·04 2·89 2·77 2·73 2·63' 2·72
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TABLE 4

Values Of jaiLI
'j (Et)8

I

I I

I I
I

I
adeg 30 35 45

I
55 60 75 90

I

i

I I
As = 0.5 A R = 0.2 8·85 5·43 2·59 1·54 1·26 I 0·86 I 0·76
ast ' aRt

\

I

I II

As =0'5, A R =0,6
I I

13·03 7·91

I

3·68 2·14 1·74
I

1·15 1·00
ast aRt

I

II

II
I

A S =0'5 AR=l·O I 17·20 10·39 4·78 2·74 2·21
I

1·44 1·25
ast ' aRt

! ]

i~~ =0'1, AR =0.2
I

I

5·56 3·50 1·74 I 1·07 0·89 0·62 0·56
ast aRt I

As =0,1, A R =0,6 8'56 5·25 2'50 i 1·49 I 1·22 0·84 0·74
ast aRt

I

I

I
:

I

IAs =0'1, A R =1,0 11·55 6·99 3·26 1·91 1·56 1·05 0·93
ast aRt

As ~ O. 05 , ~~ = 0.2 5·14 3·26 1·64 1·0] 0·847 0·60 0·53
ast aRt

As = 0.05 A R = 0.6 I 8·00 4·92 2'36 1·41 1·17 0·80 0·71
ast ' aRt

I
I

As = 0.05 A R = 1.0
I

I

I

10·85 6·57 3·08 1·81 1·48 1·00 0·89
ast ' aRt

I
I I
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TABLE 5

1·22 1 ·107·388·79an
Et

_-_-rx-_d_~g_--_~,-_-_--_-8~0~=:1 =_3_2__-1_-_~3_5~~-,_~4-3------'L-~4-s~l~o~[ 55 --1--6-0----1~7-5--J-9~-

I 5 ·82 3·46 3 . 1 I 2 ·44 2 ·0 I 1·69 I

----1----1---1----1---1----1---1----1----1-----1-----

7·25 5·93 4·48 2·34 2·02 1·44 0·80 0·42 0·33

-7,61 -6'26 -4'77 -2,53 -2,2 -1,57 -1,15 --0,85 -0,316 0

8·79 7·38 5·82 3·46 3·1 2·44 2·0 1·69 1·22 1·10

----1-----1----1----1----1----)----1----1----:1--------

-7,61 -6'26 -4,77 -2,53 -2,2 --1,57 -1,15 -0,85 -0'316 0

--------1----1-----1----1----1----1----1----1----1------1----

a33

Et
7·36 6·04 4·58 2·42 2·10 1·51 1·13 0·87 0·48 0·38
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