No. 是

MINISTRY OF SUPPLY
AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Note on the Influence of Aspect \mathbb{R} atio on the Variation with Mach Number of the Lift and Hinge-Moment Characteristics of a Wing and Full-Span Control By
A. D. Young, M.A. and P. R. Owen, B.Sc.

Growu Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE 1952

Note on the Influence of Aspect Ratio on the \mathbb{V} variation with $\mathbb{M a c h}$ Number of the $\mathbb{L i f t}$ and Hinge-Moment Characteristics of a Wing and Full-Span Control

By

A. D. Young, M.A. and P. R. Owen, B.Sc.

Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

Reports and Memoranda No. 2767*
August, I943

Simmary.-It is shown on the basis of the linearised theory that the effects of compressibility on the lift and hingemoment characteristics of a wing and full-span control are functions of aspect ratio. With reduction in aspect ratio the increase of the lift characteristics with Mach number is reduced appreciably (see equation 12 and Table 1). The same effect is noted for the hinge-moment characteristic b_{1} (equation 13). The effects on the hinge-moment characteristics b_{2} and b_{3} are rather more complicated (equations 14 and 15), but in many practical cases the influence of aspect ratio will be very small.

1. Notation.
α_{1} Wing or tail plane incidence
$\alpha_{2} \quad$ Control setting
$\alpha_{3} \quad$ Tab setting
$C_{L} \quad$ Lift coefficient
$C_{H} \quad$ Hinge-moment coefficient
$a_{1}, a_{2}, a_{3} \frac{\partial C_{L}}{\partial \alpha_{1}}, \frac{\partial C_{L}}{\partial \alpha_{2}}, \frac{\partial C_{L}}{\partial \alpha_{3}}$, respectively, for incompressible flow
$A_{1}, A_{2}, A_{3} \frac{\partial C_{L}}{\partial \alpha_{1}}, \frac{\partial C_{L}}{\partial \alpha_{2}}, \frac{\partial C_{L}}{\partial \alpha_{3}}$, respectively, for compressible flow
$b_{1}, b_{2}, b_{3} \frac{\partial C_{H}}{\partial \alpha_{1}}, \frac{\partial C_{H}}{\partial \alpha_{2}}, \frac{\partial C_{H}}{\partial \alpha_{3}}$, respectively, for incompressible flow
$B_{1}, B_{2}, B_{3} \frac{\partial C_{H}}{\partial \alpha_{1}}, \frac{\partial C_{H}}{\partial \alpha_{2}}, \frac{\partial C_{H}}{\partial \alpha_{3}}$, respectively, for compressible flow
[^0]```
A Aspect ratio
U
 w Downwash velocity
 c}\mp@subsup{c}{0}{}\mathrm{ Speed of sound in undisturbed stream
M
 \beta (1-M M ' }\mp@subsup{}{0}{\prime}\mp@subsup{)}{}{1/2
 \gamma (\pi\Lambda + a a m)/(\beta\pi\Lambda + a cav)
\mu
\mp@subsup{\mu}{3}{}}\mathrm{ see equation (15)
```

Suffix ${ }_{0}$ refers to infinite aspect ratio.
2. Introduction.-The well-known Glauert law based on linearised theory for the effect of compressibility on the lift-curve slope of a wing of infinite span is

$$
\begin{equation*}
\frac{A_{1}}{a_{1}}=\frac{1}{\beta} \quad . \tag{1}
\end{equation*}
$$

Similar relations hold for the effect of compressibility on the lift and hinge-moment characteristics of controls in two-dimensional flow. For wings of finite span the relations differ from the Glauert law, and it is the purpose of this note to illustrate how they differ in practical instances. The relations will be derived on the basis of lifting-line theory using the assumption that the loading is elliptic but the argument can readily be generalised to the case of non-elliptic loading.
3. Analysis.-For incompressible flow we can write

$$
\begin{array}{llll}
C_{L}=a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3} & \ldots & \ldots & \ldots \\
C_{H}=b_{1} \alpha_{1}+b_{2} \alpha_{2}+b_{3} \alpha_{3} & \ldots & \ldots & \ldots \tag{3}
\end{array}
$$

and
The downwash is given by $w$, where

$$
\begin{equation*}
\frac{w}{U_{0}}=\alpha_{1}-\alpha_{10}=\frac{C_{L}}{\pi \Lambda} \quad \ldots \tag{4}
\end{equation*}
$$

where $\alpha_{10}$ is the local aerodynamic incidence.
Making use of the fact that the aerodynamic characteristics of the wing and control are related to the local aerodynamic incidence by the two dimensional relations, it follows that

$$
\begin{equation*}
C_{L}=a_{10}\left(\alpha_{1}-\frac{C_{L}}{\pi \Lambda}\right)+a_{20} \alpha_{2}+a_{30} \alpha_{3} \ldots \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{H}=b_{10}\left(\alpha_{1}-\frac{C_{L}}{\pi \Lambda}\right)+b_{20} \alpha_{2}+b_{30} \alpha_{3} . \ldots \tag{6}
\end{equation*}
$$

Hence from (2) and (5) we have

$$
C_{L}=a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}=\left(a_{10} \alpha_{1}+a_{20} \alpha_{2}+a_{30} \alpha_{3}\right) /\left(1+\frac{a_{10}}{\pi \Lambda}\right) .
$$

It follows that

$$
\begin{equation*}
a_{r}=a_{r 0} /\left(1+\frac{a_{10}}{\pi \Lambda}\right), r=1,2,3 . \quad . \quad . \quad . \quad . \quad . \quad . \tag{7}
\end{equation*}
$$

Likewise from (3) and (6) we have

$$
\begin{aligned}
C_{H}=b_{1} \alpha_{1}+b_{2} \alpha_{2}+b_{3} \alpha_{3} & =\alpha_{1}\left(b_{10}-\frac{a_{10} \cdot b_{10}}{\pi \Lambda+a_{10}}\right) \\
& +\alpha_{2}\left(b_{20}-\frac{a_{20} \cdot b_{10}}{\pi A+a_{10}}\right) \\
& +\alpha_{3}\left(b_{30}-\frac{a_{30} \cdot b_{10}}{\pi \Lambda+a_{10}}\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
b_{r}=b_{r 0}\left[1-\frac{a_{r 0} \cdot b_{10}}{\left(\pi \Lambda+a_{10}\right) b_{r 0}}\right], \quad r=1,2,3 . \tag{8}
\end{equation*}
$$

But it is shown in R. \& M. 1909 ${ }^{1}$ that equation (4) for the downwash applies whether the flow is compressible or incompressible, and therefore we can similarly derive the relations

$$
\begin{equation*}
A_{r}=A_{r 0} /\left(1+\frac{A_{10}}{\pi \Lambda}\right), \quad r=1,2,3, \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{r}=B_{r 0}\left[1-\frac{A_{r 0} \cdot B_{10}}{\left(\pi \Lambda+A_{10}\right) B_{r 0}}\right], \quad r=1,2,3 \tag{10}
\end{equation*}
$$

Further, the two-dimensional Glauert relation gives us

$$
\begin{equation*}
\frac{A_{r 0}}{a_{r 0}}=\frac{B_{r 0}}{b_{r 0}}=\frac{1}{\beta}, \quad r=1,2,3 . \quad \therefore \quad . \quad . \quad . \quad \ldots \quad . \tag{11}
\end{equation*}
$$

From (7), (9) and (11) we derive immediately the first group of relations that we are seeking, viz,

$$
\begin{align*}
\frac{A_{r}}{a_{r}} & =\frac{a_{10}+\pi \Lambda}{a_{10}+\beta \pi A}, \quad r=1,2,3  \tag{12}\\
& =\gamma, \text { say }
\end{align*}
$$

Likewise from (7), (8), (9), (10) and (11) we find that

$$
\begin{align*}
& \frac{B_{1}}{b_{1}}=\frac{a_{10}+\pi \Lambda}{a_{10}+\beta_{\pi \Lambda} \Lambda}=\gamma, \quad . \quad . \quad . \quad . \quad . \quad . . \quad . \quad . \quad . .  \tag{13}\\
& \frac{B_{2}}{b_{2}}=\frac{\gamma}{\beta}\left\{\frac{\beta+\frac{a_{10}}{\pi \Lambda}\left[1-\frac{b_{10} \cdot a_{20}}{b_{20} \cdot a_{10}}\right]}{1+\frac{a_{10}}{\pi \Lambda}\left[1-\frac{b_{10} \cdot a_{20}}{b_{20} \cdot a_{10}}\right]}\right\} \\
& \begin{aligned}
& =\frac{\gamma}{\beta} \cdot \mu_{2}, \text { say, } \quad . \quad . \quad . \\
\frac{B_{3}}{b_{3}} & =\frac{\gamma}{\beta}\left\{\frac{\beta+\frac{a_{10}}{\pi \Lambda}\left[1-\frac{b_{10} \cdot a_{30}}{b_{30} \cdot a_{10}}\right]}{1+\frac{a_{10}}{\pi \Lambda}\left[1-\frac{b_{10} \cdot a_{30}}{b_{30} \cdot a_{10}}\right]}\right\}
\end{aligned} \tag{14}
\end{align*}
$$

4. Discussion.-Consider first the relations for the lifting characteristics of the wing or control given by equation (12). We see that the effect of finite aspect ratio is to reduce the ratio $A_{r} / a_{r}$ below the two-dimensional value of $1 / \beta$. To illustrate this point the following table gives the values of $A_{r} / a_{p}$ tor various values of the Mach number up to $0 \cdot 8$, and for aspect ratios of 3, 4, 6 and 8, assuming $a_{10}=6 \cdot 0$.

TABLE 1

| M | $A_{r /} / a_{r}$ |  |  |  | 1/ $\beta$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Lambda=3$ | $A=4$ | $A=6$ | $\Lambda=8$ | $\Lambda=\infty$ |
| 0.2 | 1.012 | 1.014 | 1.016 | 1.017 | 1.022 |
| 0.4 | 1.054 | 1.060 | 1.068 | $1 \cdot 072$ | 1-092 |
| ${ }^{0.6}$ | 1.139 | 1.157 | 1. 179 | 1.193 | $1 \cdot 25$ |
| 1.8 | $1 \cdot 327$ | $1 \cdot 371$ | $1 \cdot 436$ | 1-477 | 1-667 |

Thus, it will be seen that for a wing of aspect ratio 6 , for example, the increase of $A_{1} / a_{1}$ with Mach number is about two thirds of the increase tor a wing of infinite aspect ratio, whilst for a tail plane of aspect ratio 3, say, the increase is only about half. It can be expected that these results will be reflected in the stability of an aeroplane with change of Mach number.

Coming now to the hinge-moment characteristics given by equations (13), (14) and (15), we see from equation (13) that $B_{1} / b_{1}$ is the same function of Mach number and aspect ratio as are the ratios $A_{r} / a_{r}$, and the above table therefore illustrates its variation with these two parameters. The expressions for the ratios $B_{2} / b_{2}$ and $B_{3} / b_{3}$ are more complicated. We may note, however, that the value of the factor $\mu_{2}$ in equation (14) is determined principally by the magnitude of $b_{10} / b_{20}$, since $a_{20} / a_{10}$ is normally of the order of 0.5 and its variation is confined between tairly narrow limits. Thus, if $b_{10} / b_{20}$ were small then $\mu_{2}$ would tend to $1 / \nu$, and then $B_{2} / b_{2}$ would tend to $1 / \beta$. Conversely, if the value of $b_{10} / b_{20}$ were such that $\left(b_{10} / a_{20}\right) /\left(b_{20} / a_{10}\right)$ were positive and comparable to unity then $B_{2} / b_{2}$ would be approximately given by $\gamma$. This is illustrated in Fig. 1 where the variation of $B_{2} / b_{2}$ with $\left(b_{10} / a_{20}\right) /\left(b_{20} / a_{10}\right)$ for a tail plane of aspect ratio 4 is given for various Mach numbers. The tendency with modern high speed aircraft is for $b_{10} / b_{20}$ to be made as small as possible for the tail surface controls, in which case it is sufficiently accurate to take $B_{2} / b_{2}$ equal to $1 / \beta$.

These remarks apply similarly to the factor $\mu_{3}$, but examination of the possible variation of the ratio $b_{10} / b_{30}$ shows that its value is never much in excess of $0 \cdot 2$, so that we may take $1 / \beta$ as an acceptable approximation to $B_{3} / b_{3}$ for all controls.
5. Conclusions.-It is concluded that

$$
\begin{aligned}
& \frac{A_{1}}{a_{1}}=\frac{A_{2}}{a_{2}}=\frac{A_{3}}{a_{3}}=\frac{B_{1}}{b_{1}}=\frac{\pi \Lambda+a_{10}}{\beta \pi \Lambda+a_{10}}=\gamma \\
& \frac{B_{2}}{b_{2}}=\frac{\gamma}{\beta} \mu_{2}=\frac{\gamma}{\beta}\left\{\frac{\beta+\frac{a_{10}}{\pi \Lambda}\left[1-\frac{b_{10} \cdot a_{20}}{b_{20} \cdot a_{10}}\right]}{1+\frac{a_{10}}{\pi \Lambda}\left[1-\frac{b_{10} \cdot a_{20}}{b_{20} \cdot a_{10}}\right]}\right\} \\
& \simeq \frac{1}{\beta}, \text { for tail unit controls where } b_{10} / b_{20} \text { is small. }
\end{aligned}
$$

$$
\frac{B_{3}}{b_{3}}=\gamma \cdot \mu_{3}=\frac{\gamma}{\beta}\left\{\frac{\beta+\frac{a_{10}}{\pi \Lambda}\left[1-\frac{b_{10} \cdot a_{30}}{b_{30} \cdot a_{10}}\right]}{1-\frac{a_{10}}{\pi \Lambda}\left[1-\frac{b_{10} \cdot a_{30}}{b_{30} \cdot a_{10}}\right]}\right\} \approx \frac{1}{\beta}, \text { for all controls. }
$$

No.

## Author

Title, etc.
1 S. Goldstein and A. D. Young The Linear Perturbation Theory of Compressible Flow, with Applications to Wind-tunnel Interference. R. \& M. 1909. July, 1943.


Fig. 1. Variation of compressibility factor on $B_{2}$ with $\frac{b_{10} a_{20}}{b_{20} a_{10}}$.

# Publications of the Aeronautical Research Council 

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)-

1934-35 Vol. . I. Aerodynamics. Out of print.
Vol. II. Seaplanes, Structures, Engines, Materials, etc. 4os. (40s. 8 d .)
1935-36 Vol. I. Aerodynamics. 30s. (305. 7 d .)
Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 3os. (30s. 7d.)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 405. (405. 9d.)

Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. rod.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 10d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 6os. (6is.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. (5 rs.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 305. (305. 9d.)

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (50s. I I d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. ( 64 s .2 d .)

1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. ( 5 Is. )
Certain other reports proper to the 1940 volume will subsequently be included in a separate volume.
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL$\begin{array}{ll}\text { 1933-34 } & \text { Is. } 6 d . \text { (Is. } 8 d .) \\ \text { 1934-35 } & \text { Is. } 6 d . \text { (Is. } 8 d .)\end{array}$
April I, I935 to December 31, 1936. 4s. (4s. 4 d .)
1937 2s. (2s. 2d.)
1938 1s. 6 d . (1s. 8 d .)
1939-48 3s. (3s. 2d.)
INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-

April, $195^{\circ} \quad$ R. \& M. No. 2600. 2s. $6 d$. (2s. $7 \frac{1}{2} d$. )
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

| December i, 1936-June 30, 1939. | R. \& M. No. 1850. | 1s. 3 d. (1s. $4 \frac{1}{2 d .}$ ) |
| :---: | :---: | :---: |
| July I, 1939 - June 30, 1945. | R. \& M. No. 1950. | Is. (If. 1 I $\frac{1}{2} d$.) |
| July 1, 9945 - June 30, 1946. | R. \& M. No. 2050. | 1s. (Is. $\mathrm{I} \frac{1}{2}$ d.) |
| July 1, 1946-December 31, 1946. | R. \& M. No. 2150. | Is. 3 d. (rs. $4 \frac{1}{2}$ d.) |
| January 1, i947- June 30, 1947. | R. \& M. No. 2250. | 1s. 3 d. (Is. $4 \frac{1}{2}$ d.) |

Prices in brackets include postage.
Obtainable from
HER MAJESTY'S STATIONERY OFFICE
Tork House, Kingsway, london, w.c. 2423 Oxford Street, london, w. 1 P.O. Box 569, London, s.e. 1

13a Castle Street, edinburgh, 21 St. Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, $3 \quad 80$ Chichester Street, belfast or through any bookseller.


[^0]:    * R.A.E. Tech. Note Aero. 1250, received 15th September, 1943.
    * R.A.E. Tech. Note Aero. 1263, received 22nd October, 1943.

