C.P. No. 319

A.RC Technical Report

ARC. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Some Aspects of Compressor Stage Design

By
J F Lours and J H Horlock

Some Aspects of Compressor
 Stage Design

- By -
J. F. Louis and J. H. Horlook

April. 1956
Introduction.- The prediction of the "off-deaign" performance of a low hub-tip ratio compressur stage is difficult, but if an estinate may be made of the radial location of the initial stalling, then it may prove possible to medify the design and improve the performance at lnw flow rates.

This paper gives two approaohes to the problem.
The first section deals with the direct problem of the performance of given compressor stages and indicates how the blade sections of various designs approach the stall point.

In the second part, a method is presented which combines the solutions of the inderect and direct problems. This method enables a designer to dotermine stages which will satisfy the imposed design conditions and to prediot their off design performanoe up to the stalling point. These stages differ in the distribution of pressure rise between rotor and stator. This choice of reaction is investigated in the off design performance and may enable the designer to ohoose the optimun blading.

In both seotions aotuator disc theory is used in the derivation of the equations of the flow.

Part I - Prediotion of Off-Design Performance of a Given Stage The Direct Problem)

1(a) General Theory -- Reference (1) has derived the equations of motion for the inoompressible flow through olosely spaced actuator dusos, each diso replacing a blade rw.

An equation derived by Bragg and Hawthorne (Reference (2)) is used:-

$$
\begin{equation*}
\frac{d H}{d \psi}=\frac{1}{r^{2}}\left(\eta r+\theta \frac{d \theta}{d \psi}\right) \tag{1}
\end{equation*}
$$

where H is the stagnation enthalpy
r is the radius
η is the tangential vortioity
$A=r a_{u}$ is the tangential velooity (ou) - radius product.
ψ is a streamline funotium in the axially symmetric flow.

The tangential vortioity η, upstream or downstream of a diso, may be expressed in terms of the axial velocity far upstream or far downstream of the disc. ($0_{x \infty}$).

$$
\begin{equation*}
\eta=-\frac{d o_{x} \infty}{d r} \tag{2}
\end{equation*}
$$

For a compressor stage oonsisting of two closely spaced blade rows, a stationary inlet guide vane row and a rotnr rew, equations may be obtained for the axial velocity distribution that would exist far downstream of these rows.

Fig. 1 shows the axial locations (02,03) of the disc, located at the axial centre-line of the blades. The trailing edges are denoted by suffixes $2 e, 3 e$.

Across the guide vane row

$$
\begin{align*}
r^{2} \frac{d H_{O_{2}}}{\partial \psi} & =\eta_{1} r+\theta_{1} \frac{d \theta_{1}}{d \psi}=\eta_{2} x+\theta_{2} \frac{d \theta_{2}}{d \psi}=0 \\
\frac{d c_{x_{2}}}{d r} & =\frac{\theta_{2}}{r} \frac{d \theta_{2}}{d \psi} \tag{3}
\end{align*}
$$

where o_{2} is the axial velocity that would exist far downstream of the row, and $\rho_{2}=r o_{x \infty} \tan \alpha_{2 \theta}$ where $a_{a e}$ is the trailing edge air outlet angle from the guide vane row.

Across the rotor row

$$
r^{2} \frac{d H_{O_{3}}}{d_{\psi}}=r^{2} \frac{d}{d \psi}(\Delta W)=\eta_{3} r+\eta_{3} \frac{d \theta_{3}}{d_{\psi}}
$$

where ΔW is the work done on the fluid by the rotor and is given by the product of blade speed (U) and the change in tangential velooity.

Whenoe

$$
\begin{align*}
\frac{d o_{x_{3}}}{\partial r} & =\frac{\theta_{3}}{r} \frac{d \theta_{3}}{d \psi}-r \frac{d}{d \psi}\left[U\left(c_{u_{3 \theta}}-o_{u_{3 \theta}}\right)\right] \\
& =\left(o_{u_{B e}}-U\right) \frac{d}{d \psi}\left[\theta_{3}\right]+U \frac{d}{d \psi}\left[\theta_{2}\right] \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
o_{u_{3 \theta}} & =U-o_{x_{\theta \theta}} \tan \beta_{3 e} \\
\theta_{3} & =r o_{u_{3 \theta}}=r\left(U-o_{x_{3 \theta}} \tan \beta_{3 \theta}\right) \\
\theta_{2} & =r o_{u_{2 \theta}}=r o_{x_{3 \theta}} \tan a_{3 \theta}
\end{aligned}
$$

1(b) Linearization of the Equations.- Up to the stall point, it is usually assumed that the exit air angle from a blade row is unchanged with varying incidence, sc that

$$
\begin{aligned}
\tan \alpha_{b \theta} & =f(r) \\
\tan \beta_{B \theta} & =F(r)
\end{aligned}
$$

Equations (3) and (4) are Iinearized by writing

$$
d \psi=-r o_{x} d r
$$

The value of 0^{\prime} used in this linearization should be the looal axial velocity at the diso stations $\left(c_{x_{0 a}}, o_{x_{0}}\right)$ but sance $\left(\frac{c_{x}{ }^{-o_{x 1}}}{o_{x 1}}\right)$ is always small, little loss of aocuracy is obtained if the following values of o_{x} are assumed in the linearization:-

```
In equation (3)
```

$$
o_{x_{02}}=o_{x_{2 \theta}}
$$

In equation (4)

$$
\begin{aligned}
& o_{x_{08}}=o_{x_{3 \theta}} \\
& \frac{U}{o_{x_{08}}}=\frac{U}{o_{x_{1}}}=\lambda r
\end{aligned}
$$

Than

$$
\begin{aligned}
& \frac{d o_{x 2}}{d r}=-\frac{f(r)}{r} \frac{d}{d r}\left[r f(r) o_{x_{2 \theta}}\right] \\
& \frac{d o_{x s}}{d r}=\frac{F(r)}{r} \frac{d}{d r}\left[r\left(U-o_{x_{3 \theta}} F(r)\right]-\lambda \frac{d}{d r}\left[r f(r) o_{x_{2 \theta}}\right] \ldots(6)\right.
\end{aligned}
$$

The velocities $o_{x_{2 \theta}}, c_{x_{3}}$ may be expressed in terms of the
"infinity" exial velocities $o_{X 1}, c_{x a}, o_{x s}$ (Reference 1 , Equation (8))

$$
\begin{align*}
& o_{x_{2 \theta}}=o_{x_{2}}-\left(\frac{c_{x a}-c_{x 1}}{2}\right) e^{-k b / l}+\left(\frac{c_{x 3}-c_{x 3}}{2}\right) e^{-k b / l} \\
& c_{x_{B \Theta}}=c_{x_{3}}-\left(\frac{c_{x 3}-c_{x a}}{2}\right) e^{-k b / l} \tag{7}
\end{align*}
$$

where b is the axal dastance botween tho disc and the leading or trazling edfcs of the row, and 1 is the length of the blades, z.e.,

$$
\begin{align*}
& o_{x_{2 e}}=y c_{x_{1}}+(1-2 y) c_{x_{2}}+y c_{x 3} \\
& o_{x_{3}}=(1-y) c_{x 3}+y c_{x 8} \tag{8}
\end{align*}
$$

where $2 y=l$.
If gluide vane and rotor are far apart, then interferenoe etifoots may be neglected and

$$
\begin{align*}
& o_{x_{2 \theta}}=c_{x 2}(1-y)+y c_{x 1} \\
& c_{x_{3 \theta}}=c_{x 3}(1-y)+o_{x 2} \tag{9}
\end{align*}
$$

Equations (5) ard (6) are thus simultanoous differential equations in terms of tivn unkrowns $c_{x 2}, c_{x 3}$ or more conveniently $o_{x_{2}}, c_{x_{9 e}}$. The simplest method of solution is to determine oxa approximately as a funotion $g(r)$ by putting $c_{X_{2 e}}=c_{x^{2}}$ in equation (5). Equation (6) may then be expressed in the form

$$
\begin{equation*}
\frac{d c_{x_{3}}}{d r}+P(r) \quad o_{x_{3 e}}=Q(r) \tag{10}
\end{equation*}
$$

the solution of whzoh is

$$
\begin{equation*}
o_{x_{3 \theta}}=\frac{\int e^{\int P d r} d r}{e^{\int I+\partial r}}+\text { oonstant } \tag{11}
\end{equation*}
$$

which may be solved when the angle distributions $\tan \alpha_{2 \theta}=f(r)$ and $\tan \beta_{3 \theta}=F(r)$ are specified. $o_{X_{a e}}$, $c_{x 3}$ mey be determined whan $c_{x \Omega}, o_{x_{3 \theta}}$ are known, fran equations (8) or (9).

1(0) Same Particular Solutions.- Equation (10) may be solved analytically for certain distributions of air angle with radius
(i) $f(r)=A r$

$$
F(r)=B r
$$

$$
o_{x^{2}}=\frac{a_{1}}{a_{a}+A^{2} r^{2}}
$$

$$
\begin{equation*}
o_{x 8}=\left(a_{8} r^{2}+\frac{a_{1}\left(r^{2}+a_{8}\right)}{1+A^{2} r^{2}}\right)\left(\frac{1}{a_{8}+a_{7} r^{2}}\right)+a_{8} \tag{12}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& f(r)=\begin{array}{l}
A \\
r
\end{array} \\
& F(r)=\frac{B}{r} \\
&=o_{x_{1}} \\
& o_{x_{2}} \\
& o_{x_{30}}=b_{1} \log \left(b_{2}+b_{3} z^{2}\right)+b_{4} \tag{13}\\
& o_{x_{20}}=b_{5}+b_{6} o_{x_{3 \theta}}
\end{align*}
$$

(iii)

Whore a_{n}, b_{n}, o_{n} are constants.

$$
\begin{align*}
& f(r)=\frac{A}{r} \\
& F(r)=B\left(r-\frac{1}{r}\right) \\
& 0_{x 2}=\sigma_{x a} \\
& o_{x_{30}}=\frac{o_{1}\left(x^{2}-\log x\right)+o_{2}}{o_{3}+o_{4}\binom{1}{r}^{2}} \tag{14}
\end{align*}
$$

Various combinations of these angle distributions may be considered. In particular, if a free vortex guide vane row $\left(\tan a_{2 \theta}=\frac{A}{r}, c_{x 2}=o_{x 1}\right)$ is used, the following solutions for different rotors may be obtained, neglecting interference effects

$$
\begin{align*}
& F(r)=B r \tag{iv}\\
& o_{x_{3 \theta}}=\frac{d_{1}+d_{2} r^{2}}{d_{3}+d_{4} r^{9}}+d_{5} \tag{15}
\end{align*}
$$

(v)

$$
\begin{align*}
& F(r)=B \\
& o_{X_{2 \theta}}=\theta_{1} r^{-\dot{\theta} a}+\theta_{a}+\theta_{4} r \tag{16}
\end{align*}
$$

where d, e, are onstents.
The combination of $f(r)=-\quad, F(r)=B r$ is used later in r
the analysis of the indirect problem of design. (Section 2.)
For a free vortex design in which $f(r)=\frac{A}{x}$ and x
$F(r)=B r+\frac{c}{r}$ a graphical solution of the equations may be obtained, as indicated in Reference 5.

1(d) OfS Design Performance.- Onoe the distribution of air outlet angle is specafied then it becomes possible to predict the radral location of the initial stalling of the rotor row.
A. R. Howell (kef. 3) has shown that the performanoe of a oasoade is most easily expressed in temns of nominal oondrtions - that incidence at which the deflection is 0.8 of the stalling deflection.

For each raduus, onoe the radial distribution of $\beta_{3 \theta}$ is specified then the nominal air outlet angle $\beta_{3 \mathrm{e}}^{\mathbf{t}}$ is fixed, and the nominal defleotion ϵ^{*} ls fixed by Howell's data, if the Reynolds number and space chord ratis are known. The nornal entry air angle to the rotor is then calculated.

$$
\beta_{2 \theta}^{*}=\beta_{3 \theta}^{*}+\varepsilon^{\star}
$$

At any flow the inlet alr angle to the rotor is oalculated from the relation;

$$
\tan \beta_{2 \theta}=\frac{U}{o_{x_{2 e}}}-\tan \alpha_{\partial \theta}^{*}
$$

The defleotion $\epsilon=\beta_{2 \theta}-\beta_{3}{ }^{*}$ and the difference fram nominal incidenoe $\beta_{2 \theta}-\beta_{2 e}^{*}=i-i^{*}$ are also found.

Thons for selected distributions of $\alpha_{\theta}, \beta_{s \theta}^{*}$, Reynolds number and space chord ratio, plots of $\frac{i-i *}{\epsilon^{*}}$ against $\frac{e^{*}}{\varepsilon^{*}}$ may be compared With the general shape of the curve given by Howell, for any rotor blade section.

It should be noted that there may be no flow at which all sections are at nominal ocnditions, if the space ohord ratio is predctermined.

1(e) Caloulations.- Such calculations have been made for the incompressible flow through a stage of hub-tip ratio 0.4, in whioh the mean Reynolds number is 3×105, and the space chord ratio has a value of 1.0 at a hib tip radius ratio of 0.7 . It is assumed that the blade chord is oonstant, i.e., that the pitch chord ratio s/o varies linearly with radius. The ratio of blade height (1) to blade axial spaoing (b) is taken as 2.1 .

Fig. 2 shows plots of $\frac{i-i^{*}}{\varepsilon^{*}}, \frac{e}{\varepsilon^{*}}$ at root, mean and tip sections for a stage in which $f(r)=A r, F(r)=B r$. Calculations were made for several values of A and $B\left(\frac{1}{2}<A<1\right.$, $\left.\frac{1}{2}<B<1\right)$, but in every case it was clear that the blade tip would stall first as $\lambda=\frac{U}{Y o_{x i}}$ inoreased, although the tip seotion was generaliy furthest from the stall at low values of λ.

$$
\text { Similarly for the angle distribution in which } f(r)=\frac{A}{r} \text {, }
$$

$F(r)=-$ the stall wald be expected first at rotor tip, for a r
similar range of values of A and B, and the off design performance graphs are similar to Figure 2.

For two free vortex stages (for which graphioal solutions were obtained) one with, one withrut guide vanes (Ref. 4), the reverse process ocours, the root seotion stalling first.

Part II - Selection cf a Design on the Basis of Off Design Performance

2(a) Introduotion.- The radial diatribution of the sutlet air angles from a row can be expressed generally as
$\tan a$ or $\tan \beta=\frac{a}{x^{p}}+b r^{q} \quad\left\{\begin{array}{l}p \geqslant 0 \\ q \geqslant 0\end{array}\right.$

For well known designs suoh as the "free vortex" the cutlet afr angle variations are:

$$
\text { for the stator and giide vanes } \tan \alpha=\frac{a_{1}}{r}
$$

$$
\text { for the rotor } \tan \beta=\frac{a_{2}}{r}+b_{2} r
$$

and for a "oonstant $a_{3}{ }^{\prime \prime}$ design, approximately

$$
\begin{aligned}
& \tan \alpha=a_{1}+b_{1} r \\
& \tan \beta=a_{2}+b_{2} r
\end{aligned}
$$

It has been seen in Part I Af this paper that actuator diso equations nan be snlved when

$$
\begin{aligned}
& \tan \alpha=A r^{n} \\
& \tan \beta=B x^{m}
\end{aligned}
$$

with

$$
n \text { or } m= \pm 1,0
$$

In this section, it is shown hew the se solutions may be used to determine general ourves relating the constants A and B to the stage temperature rise orefficjent and the flow coeffioient. This set of ourves enable the designer to salmulate the different ocupling of the constants A and B required to satisfy the design oonditions. (The indirect problem). The sane set of ourves may be then used to predetermine the overall stage temperature rise oharacteristio. (The direct problem). In this respect, direct and indireot problems are combined. In the cases oonsidered, the overall temperature rise oharaoteristios up to the stall point were very Inttle different for different cmplings of A and B that defined blading satisfying the same design conditions. In rrder to choose the best blading, a further more detailed analysis must be made of the fllow through the stage, to obtain an insight on how and why a oortain section of row will stall.

2(b) Design Gurves for Blading of Chosen Vortex Flow.- As it has been shown in Part I, the aotuator disc equations can be solved for particular vortex flows, and from these solutions $\frac{o_{x_{2 \theta}}}{U_{m}}, \frac{o_{x_{3}}}{U_{m}}$ are known functions of $\tan \alpha_{2 \theta}, \tan \beta_{a \theta}, \frac{o_{x L}}{U_{m}}$ and r.

The temporature rise coofficient may be written
$\frac{K_{p} \Delta T}{U_{m}^{2}}=\frac{\int_{r_{h}}^{r_{t}} \frac{U}{U_{m}}\left[\frac{{ }_{x} x_{3 \theta}}{U_{m}}\left(\frac{U}{V_{m}}-\frac{{ }_{x_{x_{3 \theta}}}}{U_{m}} \tan \beta_{3 \theta}\right)-\left(\frac{o_{x_{2 \theta}}}{U_{m}}\right) \tan a_{2 \theta}\right] r d r}{\int_{r_{h}}^{r_{t} \frac{o_{X 1}}{U_{m}} r d r}} \ldots \ldots(1)$

Introducing in this relation the solutions for $\frac{{ }^{{ }^{x_{X_{2 \theta}}}}}{U_{m}}$ and $\frac{{ }^{o_{x_{3 \theta}}}}{U_{m}}$ the
integration can be earried out, and for the example $\tan a_{2 e}=\bar{F}$, $\tan \beta_{3}=\mathrm{Br}$ the final relation may be written

$$
\begin{equation*}
\frac{K_{p} \Delta T}{U_{m}^{2}}+a A \frac{c_{x_{1}}}{U_{m}}=f\left(\frac{o_{x 1}}{U_{m}}, B\right) \tag{2}
\end{equation*}
$$

in which a is a constant. The imotion $f\left(\frac{o_{x_{1}}}{U_{m}}, B\right)$ an be represcnted by a set of curves for which $B 1 s$ the variable and $\frac{o_{x 1}}{U_{m}}$ a parameter.

These curvos were drawn (Fig. 3) for the case in whioh $\tan \alpha_{2 \theta}=\frac{A}{r}$ and $\tan \beta_{3 e}=B r$ for a stage with an Hub/tip ratio oqual to 0.8. The analytical function $f\left(\frac{0_{\mathrm{x} 1}}{\mathrm{U}_{\mathrm{m}}}, B\right)$ can be determined but its actual form is so cumbersame that it is of no practioal use and the set of curves such as given in Fig. 3 enables the dosigner to dotcrmine different blading (i.e., different values of A and B) to watch given design omditions, and to oaloulate the overall oharaoteristio for the stage temperature rise as long as the stage is not stalled.

In the example ocnsidered, the design oonditions were $\frac{\mathrm{K}_{\mathrm{p}} \Delta T}{\mathrm{U}^{2} \mathrm{~m}}=0.25$ and $\frac{C_{x_{1}}}{U_{m}}=0.65$. Using Fig. 3, these oonditions can be matohed by different bladings for whioh the values of B: $0.6,0.8$ and 1.0 were ohosen and the respective values of $A: 0.222,0.387$ and 0.553 were calculated.

Knowledge of A and B then enables the determination of the off-design values of $\frac{K_{p} \Delta T}{U^{2} \mathfrak{m}}$ to be made from the same set of curves, and oansequently the charaoteristic of $\frac{K_{p} \Delta T}{U_{m}^{2}}$ related to $\frac{0_{x_{1}}}{U_{m}}$ may be drawn.

In this resprot, the solution of the direot and indirect problems are combined. In Fig. 4 it is seen that the characteristic is the same for the three stages up to the stall point, but the overall characteristic of Fig. 4 does not give any information as to the stalling of the induvidual blade sections.

This information can be given by the more precise analysis of Section 1 (d) which tells how the different stages wall stall.

This analysis has carried out for each row as follows:-
(1) as the outlet air angle from a row at any radius may be assumed constant as long as the row is unstalled, from the data given in Ref. 3 the nomanal defleotion can be deduced at any radzus If the ratio s / o and the Reynolds number are knom.
(2) As the axial velocity profiles (Appendix 1) and the air outlet angles are known for various floirs and at different radial sections, the actual deflection can be calculated. Consequently the operating points can be plotted for difforent radual sections cn Howell's curve relating $\frac{\epsilon}{\epsilon^{*}}$ to $\frac{i-2 k}{\epsilon}$.

This was done for the different rors at radial sections
- $=0.8,0.9$ and 1.0 and the results are shown in Figs. 5, 6 and 7. $r{t i p}$

2(c) The Behaviour of Stages iratohung the Same Design Conditions
(1) with the design $B=0.6$ and $A=0.553$, the rotor wa. 11 be stalled first for a flow cocfficient $=0.5$.
(2) with the design $B=1.0$ and $A=0.222$, the stator root will stall first for a flow coefficient slightily less than 0.5.
(3) Whth the design $B=0.8$ and $A=0.387$, the rotnr tip and stator root inll stall at the same flow coefficient (less than 0.5).

Irom the restracted point of view of a delayed stall, the latter design wold scen to bo the most attractive.

2(a) Tho Cause of Early Stallurg:- In order to obtain a better insicht of the stall necharism, it is interesting to point out the reascus why a giver stage section stalls earlier.

It anpears that there are two basin reasons:
(1) the $l_{n a d u} n_{5}$ of the blade at the design conditions which dotermine the initial nporating pount on the Ilowell's curve; if the loading is hach tris point wall be nearer the stall.
(a) tho rate at which the incidence increases on a certain klade section when the flow decreases.

This may be studica as follows.
β as the air inlet angle rolative to a row and a is the leaving air angle relative to the preceding row. It is assumed that a is indeperdent of the flow coef'fucient as long as the row is
unstalled/
unstalled, and it is alao asamed that the variation of the axial velocity between the rows may be negieoted.
α and β are related by the relation

$$
\begin{equation*}
\tan \beta=\frac{\frac{U}{U_{m}}-\frac{o_{x}}{U_{m}} \tan a}{\frac{o_{x}}{U_{m}}} \tag{3}
\end{equation*}
$$

by differentiation:

$$
\frac{d \tan B}{d \frac{o_{x}}{U_{m}}}=-\frac{1}{r_{m}} \frac{1}{\left(\frac{o_{x}}{U_{m}}\right)^{2}}
$$

or

$$
\begin{equation*}
\dot{d \beta}\left(1+\tan ^{2} \beta\right)=-\frac{r}{r_{m}} \cdot \frac{1}{\left(\frac{o_{x}}{U_{m}}\right)^{2}} \cdot d \frac{o_{x}}{U_{m}} \tag{5}
\end{equation*}
$$

If it is angle of inoidenoe

$$
d i=\alpha \beta
$$

and

$$
\begin{equation*}
\frac{d i}{d \frac{o_{x}}{U_{m}}}=-\frac{r}{r_{m}} \frac{1}{\left(\frac{o_{x}}{U_{m}}\right)^{2}\left(1+\tan ^{2} \beta\right)}=-\frac{r}{x_{m}} \frac{\cos ^{2} \beta}{\left(\frac{o_{x}}{U_{m}}\right)^{2}} \tag{6}
\end{equation*}
$$

Thia relations shows whioh factors are important in explaining oocurrence of the stall.
(1) the madial poustion of the blade eoction conaidered. A000rding to' (6), all other ocnditiona being the same, the tip motion will tend to stall earlier than the other seotican.
(2) the form of the axtal velocity proftle.
(3) the magnitude of the inlet angle relative to the row.

With these reasons in mind, the ocourrence of stall in the stage considered can be explained. The rotor tip stalls first for the design $B=0.6$ and $A=0.553$ because the rotor tip seotion is more heavily loaded for this design.

The stator root stalls earlier in the deslen $B=1.0$ and $A=0.22<$ than for the two others. In this case the loading at the stator roots is almost the same for the three designs but the outlet angle from the rotor is the largest and the slope of the velocity profiles is al so the steepest for the design oonsidered.

2(e) Conclusion.- The method followed in this paper gaves the dosigrer information relative to the performances of a new design which may enable him to canoose the best klading to match specified design conditions, or to know the effect of a change in the blading on the stage performance.

References

No.
Author
1 J. H. Horlock

2 S. I. Bragg and
W. R. Hawthome

3 A. R. Howell

4 J. F. Loxis and
J. H. Horlock

Sitio, etc
Sone actuator disc theories for the fllow of aur through axial turbomachines. R. \& lif. 3030. Decomber, 1952.

Scme exact solutions of the flow through annular cascades actuator discs. Journ. Aero. Sci., Vol. 17, No. 4, 1950.

The present basis of axial,flow compressor design. Iart I - Cascado and theory performance. R. \& N. 2095. June, 1942.

A traphical method of predicting the off-design yerformanco of a conpressor stage. C.P. 320. April, 1956.

FIG.I. AXIAL LOCATIONS IN COMPRESSOR STAGE.

TRAILING EDGE POSITIONS

(4)

BRACKETED FIGURES (2) (3) REFER TO STATES THAT WOULD EXIST FAR DOWN STREAM OF GUIDE VANES, ROTOR, STATOR.

$$
+\left\{\begin{array}{l}
B=1 \quad B=0.8 \quad B=0.6 \\
A=0.222 \quad A=0.387 \quad A=0.553
\end{array}\right.
$$

FIG. 6. PREDICTED OPERATING POINTS PLOTTED ON HOWELL'S CURVES

fig.7. predicted operating points plotted on howelis curves

Crown copynght reserved
Printed and published by Her Majesty's Stationery Office
「o be purchased from
York House, Kingsway, London w c 2
${ }_{423}$ Oxford Street, London w.i
PO Box 569 , London se I
${ }_{13 \text { A }}$ Castle Strect, Edinburgh 2
${ }_{109}$ St Mary Street, Cardıff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Brrmingham 3
80 Chichester Street, Belfast
or through any bookseller

Printed in Great Britann

