

By
F. O'Hara, M.A.

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE 1952
price 3s 6d net

$\mathbb{A} \mathbb{M}$ ethod of $\mathbb{P e r f o r m a n c e} \mathbb{R}$ eduction for $\mathbb{H e l i c o p t e r s}$

By .
F. O'Hara, M.A.
Comuunicated bỵ the Principal Director of Scientific Research (Air), Ministry of Supply
Reports and Memoranda No. 2770^{*} October, 1947

Summary.-The equations for helicopter performance are derived in a form suitable for the development of performance reduction methods, and the equations obtained provide also a simple method of performance estimation. Formulæ are determined for reducing observed performance data to standard temperature conditions and for estimating the effect of weight changes on performance. Charts of the relationships are given for typical values of helicopter and engine characteristics.

The general equations are divided into two. groups dealing respectively with forward and vertical flight. Performance reduction methods are then outlined for the three cases of climbing, level and vertical flight and are applied to show the effect of weight changes in each case.

1. Introduction.-Existing methods of helicopter performance estimation do not appear to be directly applicable to the reduction of measured performance data, because quantities not normally observed occur in the final performance equations. In this report, the performance equations are derived in a modified form suitable for the development of reduction formulx; the form obtained provides a simple method of performance estimation. The treatment is for a helicopter with a single main rotor and some torque-compensating device such as an auxiliary rotor. The assumptions about the helicopter are the same as those made by Squire in R. \& M. 1730^{1} and the approach is similar to that of Wald ${ }^{2}$ but the final performance equations have been obtained in a form not containing the disc incidence.
2. Velocity Equations.-The helicopter is assumed to be flying with velocity V and the angle of incidence of the rotor disc is i. The induced velocity v is assumed constant over the disc and is directed perpendicular to it. The velocity in the plane of the disc is $V \cos i$ and the velocity perpendicular to it is $u=v+V \sin i$. The resultant of the components V^{\prime} is given by the equation :-

$$
\begin{equation*}
V^{\prime 2}=v^{2}+V^{2}+2 v V \sin i . \quad . \tag{1}
\end{equation*}
$$

The rotor thrust is assumed (R. \& M. 1730 ${ }^{1}$) to be

$$
L=2 \pi \rho e^{2} R^{2} V^{\prime} v
$$

where $c R$ is the effective rotor radius with allowance made for tip losses ${ }^{2,3}$.
For the purposes of performance reduction it is convenient to work in terms of equivalent air speeds, which are denoted by the suffix i. Thus if ρ_{0} is the air density at sea level

$$
L=2 \pi \rho_{0} e^{2} R^{2} V_{i}^{\prime} v_{i}
$$

For all practical aspects of steady flight it may be assumed that the rotor thrust equals the aircraft weight W. Introducing v_{0} such that $2 \pi \rho_{0} e^{2} R^{2} v_{0}{ }^{2}=W$, then

[^0]The later analysis is developed in terms of V_{i} / v_{0} and v_{i} / v_{0}, which are written x and y respectively. From (1) and (2) the relation of the disc incidence to the velocity terms is given by

$$
\begin{equation*}
x \sin i=\frac{1}{2}\left(\frac{1}{y^{3}}-y-\frac{x^{2}}{y}\right) \quad . . \quad . \quad . \quad . \quad . . \quad . \tag{3}
\end{equation*}
$$

2.1. Performance Equations.-The performance of the helicopter may be determined from the rotor power equation and the energy equation. The rotor power equation is derived by equating the rate of work done by the thrust to the effective power at the rotor less that expended in rotating the blades ${ }^{2}$. If P is the total engine power and $E P$ the effective power when allowance is made for transmission losses, power to tail rotor, etc.,

$$
E P \ldots P_{R}=W u
$$

where $P_{R}=\frac{\rho}{8} C_{D} b c R \Omega^{3} R^{3}\left(1+\mu^{2}\right)$
The tip speed ratio $\mu=x \cos i / w$, where $w=\Omega_{i} R / v_{0}$.
Using (3), the power equation may be written in a form used later in performance reduction

$$
\begin{equation*}
\frac{E P \sqrt{ } \sigma}{\pi \rho_{0} e^{2} R^{2} v_{0}{ }^{3}}=\left[\frac{1}{y^{3}}+y-\frac{x^{2}}{y}\right]+r_{c}\left[w^{2}+\left\{x^{2}-\frac{1}{4}\left(\frac{1}{y^{3}}-y-\frac{x^{2}}{y}\right)^{2}\right\}\right] \quad \ldots \quad \ldots \tag{4}
\end{equation*}
$$

where $r_{c}=C_{D} s w / 8 e^{2}$.
With the torque coefficient $q_{c}=P /\left(b c R \rho \Omega^{3} R^{3}\right)$, and putting $p=\left(8 E q_{c} / C_{D}-1\right)$, this equation
becomes becomes

$$
\begin{equation*}
w^{2} p=\frac{1}{\gamma_{c}}\left\{\frac{1}{y^{3}}+y-\frac{x^{2}}{y}\right\}+\left[x^{2}-\frac{1}{4}\left(\frac{1}{y^{3}}-y-\frac{x^{2}}{y}\right)^{2}\right] . \quad . . \quad \ldots \quad \ldots \quad \ldots \tag{5}
\end{equation*}
$$

The energy equation from R. \& M. 1730^{1}; is

$$
E P=V_{c} W+v W+\frac{\rho}{8} C_{D} b c R \Omega^{3} R^{3}\left(1+3 \mu^{2}\right)+\frac{V_{i}^{3^{\prime} D}}{\sqrt{ } \sigma 100^{2}}
$$

where D is the body drag at 100 f.p.s.
Combination of the power and energy equations leads to

$$
\begin{equation*}
z+\frac{d_{c}}{y^{3}}=\frac{1}{2}\left(\frac{1}{y^{3}}-y-\frac{x^{2}}{y}\right)-y_{c}\left\{x^{2}-\frac{1}{4}\left(\frac{1}{y^{3}}-y-\frac{x^{2}}{y}\right)^{2}\right\} \quad \ldots \quad \ldots \quad \ldots \tag{6}
\end{equation*}
$$

where $z=V_{c} \sqrt{ } \sigma / v_{0}$ and $d_{c}=D /\left(2 \pi \rho_{0} e^{2} R^{2} 100^{2}\right)$.
Equations (5) and (6) are in a form convenient for general performance analysis. Knowing the fixed constants of the helicopter, y is determined by (5) for chosen values of q_{c}, x, w and σ. The corresponding value of z (and therefore of V_{c}) follows from (6). Performance estimates can be made from charts of these equations in the forms given in Figs. 1 and 2. The main lines of the chart in Fig. 1 are based on a typical value of γ_{c}, but the effect of alteration in γ_{c} is indicated by subsidiary lines. Similarly in Fig. 2 the effect of alteration in d_{c} is indicated by subsidiary lines.

The mean blade angle θ_{0} and the amplitude of variation θ_{1} can also be determined, using equations (11) and (14) of R. \& M. 1730 ${ }^{1}$. When y is determined it is possible from (3) of this report to find $\mu=x \cos i / w$ and $\lambda=(y+x \sin i) / w$; then from R. \& M. 1730^{1},

$$
\theta_{0}=\frac{3}{2}\left[\frac{C_{D}}{a r_{c} w}+\frac{1-\frac{1}{2} \mu^{2}}{1+\frac{3}{2} \mu^{2}} \lambda\right] \frac{1+\frac{3}{2} \mu^{2}}{1-\mu^{2}+\frac{9}{4} \mu^{4}}
$$

$$
\theta_{1}=\frac{8}{3} \mu \frac{\theta_{0}-\frac{3}{4} \lambda}{1+\frac{3}{2} \mu^{2}} .
$$

2.1.1. Level fight.-From the energy equation in level flight (equation (6) with $z=0$)

$$
\begin{equation*}
x^{2}=\frac{1}{y^{2}}+y^{2}-\frac{y}{r_{c}}\left[\left(1+4 \gamma_{c} y+\frac{4 r_{c}{ }^{2}}{y^{2}}+4 r_{c} \frac{d_{c}}{y^{3}}\right)^{1 / 2}-1\right] \tag{7}
\end{equation*}
$$

The sign of the root term depends on that of $\left(1 / y^{3}-y-x^{2} / y\right)$, which from (3) is $2 x \sin i$. This is positive in normal level flight.

The power equation (5) applies also to the level flight. It is possible to eliminate y numerically from (5) and (7) and obtain a relationship between $x, w^{2} p, r_{c}$ and d_{c}. This is plotted in lattice form in Fig. 3 from which it is possible to find the level speed for given power and drag characteristics.
2.1.2. Vertical flight.-In vertical flight, neglecting the drag of the fuselage, equation (2) leads to

$$
\begin{equation*}
z=\frac{1}{y}-y . \quad \therefore \quad . . \quad . \tag{8}
\end{equation*}
$$

The energy equation may be written

$$
z=\frac{1}{2} r_{c} 0^{2} p-y .
$$

Hence using (8)

$$
\begin{equation*}
z=\frac{1}{2} r_{c} w^{2} p-\frac{2}{r_{c} w^{2} p} . \quad . \quad . . \quad . . \quad . \quad . . \quad . \quad . \tag{9}
\end{equation*}
$$

This is the formula for estimating vertical performance in terms of the helicopter constants. The above analysis only applies where the assumed form for the thrust equation is valid ; it does not obtain for the rotor operating in the vortex ring condition, that is in rapid power-on descent.
3. Performance Reduction Methods.-Current methods of performance reduction for fixed wing aircraft are derived from the performance equation assuming laws of variation of engine power and propeller efficiency based on experimental data. Corrections to observed performance data are usually made at constant propeller speed and, in the case of climb, at constant airspeed. Helicopter reduction methods are obtained similarly from the performance equations assuming a law of power variation and that the rotor thrust equals the aircraft weight.

The performance of a helicopter is determined by the power and energy equations (5) and (6). The induced velocity term y may be eliminated and the parameters of performance are q_{c}, w, x, and z. These may be used to develop a height change method of performance reduction; the law of power variation determines the height in the standard atmosphere at which the measured performance specified by w, x, z applies. The disadvantage of this method is that a change in the true rotor speed is involved whereas in practice rotor (or engine) speed is one of the fixed flight conditions. A correction for the change in rotor speed could be used but, because the height range covered by the performance is at present often very limited, reduction methods are developed here for constant pressure height and constant rotor speed.
3.1. Climbing Flight.-The method of analysis used for climb reduction involves finding the effect of temperature on y. The value of y in observed conditions may be found from (6) or Fig. 2 , at known x and z. The variation of y with temperature is found from (4) ; part of the final term
in this equation is small (of $0\left(\mu^{2}\right)$) in normal climbing conditions and may be neglected. Assuming the power law $P_{\propto} T^{K}$ then, taking $\delta T=T-T_{s}$ (since conventionally $\delta T>0$ on a day hotter than standard),

$$
y_{s}=y\left(1+\frac{\delta v_{i}}{v_{i}} \delta T\right)
$$

where

$$
\begin{equation*}
\frac{\delta v_{i}}{v_{i}}=\frac{(K-0.5)\left\{\frac{1}{y^{3}}+y-\frac{x^{2}}{y}\right\}+(K+1) r_{c} z v^{2}}{T\left\{\frac{3}{y^{3}}-y-\frac{x^{2}}{y}\right\}} \quad \ldots \quad \ldots \quad \ldots \quad . \tag{10}
\end{equation*}
$$

$\delta v_{i} / v_{i}$ is charted for $K=-0.75$ and mean values of T and $r_{c} e^{2}$ in Fig. 4.
The value of z_{s} may now be determined from Fig. 2 and the rate of climb in standard I.C.A.N. conditions, V_{c}^{s}, is $v_{0} z_{s} / \sqrt{ } \sigma_{s}$.

Alternatively the increment to the rate of climb may be obtained from (6) ; for reduction to standard I.C.A.N. conditions,

$$
V_{c}^{s}=V_{c}^{a}\left(1+\frac{\delta T}{2 T}\right)+H v_{0} \delta T
$$

where

$$
\begin{equation*}
H=-\frac{1}{2 \sqrt{ } \sigma_{s}}\left\{\frac{3}{y^{3}}+y-\frac{x^{2}}{y}-\frac{6 d_{c}}{y^{3}}\right\} \frac{\delta v_{i}}{v_{i}} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{11}
\end{equation*}
$$

H is charted for $K=-0.75$ in Fig. 5.
3.2. Level Flight.-The relationship between x and y for level flight (7) makes it possible to find the variation of x with temperature from the rotor power equation alone. It may be shown from (5), with $t=T / T_{s}$, that

$$
\begin{equation*}
Y=\left[\left\{\frac{1}{y^{3}}+y-\frac{x^{2}}{y}\right\} t^{0.5-K}+\frac{r_{s} e_{s}^{2}}{t^{1+K}}+\frac{r_{s}}{t^{K}}\left\{x^{2}-\frac{1}{4}\left(\frac{1}{y^{3}}-y-\frac{x^{2}}{y}\right)^{2}\right\}\right] \ldots \tag{12}
\end{equation*}
$$

is invariant with t.
Y is charted in Fig. 6 as a function of x and t using the x, y relation from (7). This chart provides a method of level speed reduction ; since the value of Y corresponding to given speed and temperature conditions remains constant when the temperature is changed the speed appropriate to the changed conditions may be determined.

It is also possible to obtain a correction in the form of an increment to the speed but this method is evidently inaccurate for speeds in the neighbourhood of $d Y \mid d x=0$.
3.3. Vertical Flight.-It follows from (9) that

$$
\begin{equation*}
J=\left[\frac{V_{c}^{a} \sqrt{ } \sigma_{s}}{v_{0}} t^{1-K}+t^{0 \cdot 5-K}\left\{4+\left(\frac{V_{c}^{a} \sqrt{ } \sigma_{s}}{v_{0}}\right)^{2} t\right\}^{1 / 2}+\frac{r_{s} w_{s}^{2}}{t^{1+K}}\right] \quad \ldots \quad \ldots \quad \ldots \tag{13}
\end{equation*}
$$

s invariant with t.
J is plotted in Fig. 7 in a form providing a method of vertical climb reduction similar to that for level flight.
4. Effect of Weight Changes.-The only quantities in the performance equations (5) and (6) which vary with weight are v_{0} and γ_{c}. It is convenient in some of the analysis to replace r_{c} by v_{r} / v_{0} where v_{r} is independent of W. The effect of changes in weight can then be studied through variations in v_{0} alone.
4.1. Climbing Flight.-It can be shown from (5) and (6) that for a change δW in weight at constant power

$$
\delta V_{c}=-\frac{\delta W}{W}\left(V_{c}+A \frac{v_{0}}{V^{\sigma}}\right) .
$$

where

$$
\begin{equation*}
A=2 \frac{3\left(1-d_{c}\right) y-x^{2} y^{3}}{3-y^{4}-x^{2} y^{2}} . \quad . \quad . . \quad . \quad . \quad . . \quad . . \tag{14}
\end{equation*}
$$

Estimates show that A is practically independent of x for the operating conditions considered. The approximate curve for A as a function of y only in Fig. 8 may therefore be used. The appropriate value y may be found from Fig. 2.
4.2. Level Flight.-From (5) and (7)

$$
\begin{equation*}
M=v_{0}^{3}\left[\frac{3}{2 r_{c}}\left\{\left(1+4 r_{c} y+4 \frac{{r_{c}}^{2}}{y^{2}}+4 \frac{d_{c} \gamma_{c}}{y^{3}}\right)^{1 / 2}-1\right\}-y-\frac{d_{c}}{y^{3}}\right] \quad \ldots \quad \ldots \quad \ldots \tag{15}
\end{equation*}
$$

is invariant with W in level flight.
M is plotted, using (7), as a function of x for selected values of d_{c} and v_{r} in Fig. 9. The effect of a weight change on speed may be determined by keeping M constant in moving from the initial to the final value of v_{0}.
4.3. Vertical Flight.-From equation (9)

$$
\begin{equation*}
N=v_{0}^{2}\left\{V_{c} \sqrt{ } \sigma+\left(4 v_{0}^{2}+V_{c}^{2} \sigma\right)^{1 / 2}\right\} \quad \ldots \quad . . \quad . \quad . . \quad . \tag{15}
\end{equation*}
$$

is invariant with W in vertical flight.
N is plotted in Fig. 10 in a form providing a method of determining the effect of weight on vertical rate of climb.
5. Discussion.-In some of the charts covering a wide range of operating conditions accurate assessment of performance is not easy particularly at the higher speeds. In practice it may be desirable to subdivide the range of y and to plot the parts on a larger scale with the appropriate values of γ_{c} and d_{c} for the helicopter concerned.

It is necessary to note that the possible range of y for a given airspeed is limited. This follows from the fact that $\sin i \leqslant 1$ and also that in normal steady climbing or level flight $x \sin i>0$. It is possible in descending flight to have $i<0$; the rotor operating condition is then complicated however and may not be accurately represented by the simple momentum theory used in this report. The conditions quoted lead to boundaries on which

$$
x=1 / y-y, \text { and } x^{2}=1 / y^{2}-y^{2} \text { respectively }
$$

The performance reduction charts also apply accurately only for the assumed values of the constants but the variation with these constants does not appear large. The effect of variation of body drag and rotor characteristics can be determined from (5) and (6).

REFERENCES

LIST OF SYMBOLS

a slope of blade lift curve
A reduction constant defined by (14)
b number of blades
$c \quad$ rotor blade chord at $r=0.7 R^{6}$
$C_{D} \quad$ blade profile drag coefficient at the mean effective lift coefficient
$d_{c}=\frac{D}{2 \pi \rho_{0} e^{2} R^{2} \cdot 100^{2}}$
$D \quad$ fuselage drag at 100 f.p.s.
e tip loss factor
E ratio of effective power at rotor to total power
H reduction constant defined by (11)
i rotor disc incidence to the wind direction
J reduction constant defined by (13)
K index of variation of power with temperature
L rotor thrust
M reduction constant defined by (15)
N reduction constant defined by (16)
$p=\frac{8 E q_{\dot{c}}}{C_{D}}-1$
P engine power
$P_{R} \quad$ power required for rotor torque due to profile drag
$q_{c}=\frac{P}{b c R_{\rho} \Omega^{3} R^{3}}$
$r_{c}=\frac{C_{D} s \Omega_{i} R}{8 e^{2} v_{0}}$
$r_{s}=\frac{C_{D} s \Omega_{i s} R}{8 e^{2} v_{0}}$
$R \quad$ rotor radius
$s=\frac{b c}{\pi R}$, rotor solidity ratio
$t=\frac{T}{T_{s}}$
T air temperature
T_{s} standard I.C.A.N. air temperature
u total flow normal to rotor disc
$u_{i}=u \sqrt{ } \sigma$
v induced velocity

$$
\begin{aligned}
& v_{i}=v \sqrt{ } \sigma \\
& v_{0}=\left(\frac{W}{2 \pi \rho_{0} e^{2} R^{2}}\right)^{1 / 2} \\
& v_{r}=v_{0} v_{c} \\
& V \text { aircraft speed } \\
& V_{c} \text { rate of climb } \\
& V_{c}^{a} \quad \text { altimeter rate of climb } \\
& V_{c}^{s} \text { - rate of climb in standard I.C.A.N. conditions } \\
& V_{i}=V \sqrt{ } \sigma \\
& V^{\prime} \text { resultant air velocity at the rotor } \\
& V_{i}^{\prime}=V^{\prime} \sqrt{ } \sigma \\
& w=\frac{\Omega_{i} R}{v_{0}} \\
& w_{s}=\frac{\Omega_{i s} R}{v_{0}} \\
& W \text { aircraft weight } \\
& x=\frac{V_{i}}{v_{0}} \\
& y=\frac{v_{i}}{v_{0}} \\
& Y \text { reduction constant defined by (12) } \\
& z=\frac{V_{c} \sqrt{ } \sigma}{v_{0}} \\
& z_{s} \quad \text { value of } z \text { in standard conditions } \\
& \theta_{0} \text { mean blade angle } \\
& \theta_{1} \text { amplitude of blade angle variation } \\
& \mu=\frac{V_{i} \cos i}{\Omega_{i} R} \\
& \lambda=\frac{v_{i}+V_{i} \sin i}{\Omega_{i} R} \\
& \Omega \quad \text { rotor angular velocity } \\
& \Omega_{i}=\Omega \sqrt{ } \sigma \\
& \Omega_{i s}=\Omega \sqrt{ } \sigma_{s} \\
& \rho \quad \text { air density } \\
& \rho_{0} \quad \text { air density at sea level } \\
& \sigma \quad \text { relative air density } \\
& \sigma_{s} \text { relative air density in standard conditions }
\end{aligned}
$$

Fig. 1. Chart of rotor power equation.

Fig. 2. Chart of energy equation.

FIG. 4. Chart of $\delta v_{i} / v_{i}$.

Fig. 8. Chart for determining effect of weight changes on rate of climb.

Fig. 9. Chart for determining effect of weight changes on level speed.
N IS DEFINED BY EQUATION (16)
N is invariant with weight and the EFFECT ON $V_{c} \sqrt{\sigma}$ OF A CHANGE IN w is DETERMINED BY KEEPING N CONSTANT IN MOVING FROM THE INITIAL TO THE FINAL VAlUE OF V_{O}.

FIg. 10. Chart for determining effect of weight changes on vertical rate of climb.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES) -
1934-35 Vol. I. Aerodynamics. Out of print.
Vol. II. Seaplanes, Structures, Engines, Materials, etc. 4os. (40s. 8d.)
1935-36 Vol. I. Aerodynamics. 3os. (30s. 7 d.)
Vol. 1I. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7 d.)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9 d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 505. (50s. Iod.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. זоd.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc, \quad os. (6xs.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. (5.rs.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 3os. (30s. 9 d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50 . (50s. ind.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. $(64 \mathrm{~s} .2 d$.
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50S. (5IS.)
Certain other reports proper to the 1940 volume zoill subsequently be included in a separate volume.
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

$$
\begin{aligned}
& \text { 1933-34 Is. 6d. (Is. 8d.) } \\
& \text { 1934-35 } \\
& \text { 1s. } 6 \text { d. (Is. 8d.) } \\
& \text { April I, } 1935 \text { to December 3I, 1936. } 4 s \text {. (4s. 4d.) } \\
& 1937 \text { 2s. (2s. 2d.) } \\
& 1938 \text { Is. } 6 \text { d. (1s. 8d.) } \\
& \text { 1939-48 3s. (3s. 2d.) }
\end{aligned}
$$

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-

April, $1950 \quad$ R. \& M. No. 2600. 2 s. $6 d$. (2s. $7 \frac{1}{2} d$.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

December I, 1936-June 30, 1939. R. \& M. No. 1850. is. 3 d. (rs. $4 \frac{1}{2} d$.)
July $1,1939-$ June 30 , 1945.
July 1,1945 - June $30,1946$.
R. \& M. No. I950. Is. (Is. I $\frac{1}{2} d$.)

July x, 1945 - June 30, 1946. R. \& M. No. 2050. Is. (ェs. I $\frac{1}{2} d$.)
July I, 1946- December 3I, 1946. R. \& M. No. 2150. 1s. 3 d. (is. 4 $4 \frac{1}{2} d$.)
January I, 1947 - June 30, 1947. R. \& M. No. 2250. is. $3^{d .}$. (rs. $4 \frac{1}{2}$ d.) Prices in brackets include postage.

Obtainable from
HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, london, w.c. 2423 Oxford Street, london, w. 1
P.O. Box 569 , LONDON, S.e. 1

13a Castle Street, edinsurgh, 2 1.St. Andrew's Crescent, cardiff.
39 King Street, MANCHESTER, 2 Tower Lane, bristol 1
2 Edmund Street, birmmgham, $3 \quad 80$ Chichester Street, belpast
or through any bookseller.

[^0]: *A.F.E.E. Report Res. 26-received 2nd December, 1947.

