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Summary . - -Owing to the abrupt change in shear stress at loading sections of beams there is a concentration of direct 
stress in the outer fibres of the beam near the loading section. A method of calculating this concentration is described. 
The highest stress concentrations occur in short deep beams and are greater for wooden than metal beams. 

The method is applied to the spars of two wooden aircraft and stress concentrations 1-06 and 1'4 are found at the 
fuselage attachments. 

Strain measurements were made at positions on a wooden beam under load and the theoretical predictions verified. 
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N O T A T I O N  

D e p t h  of each flange of b e a m  

D e p t h  of each flange of b e a m  if different  

W i d t h  of flange of b e a m  

Dis tance  of cen t re  of each flange f rom cent re  of iner t ia  of sect ion 

Dis tance  of cen t re  of each flange f rom cent re  of iner t ia  of sect ion if different  

Semi- leng th  of b e a m  

Area  of each f lange  

Area  of each flange if different  

To t a l  web area, web as sumed  to end at  inner  edge of flange 

Be nd ing  stiffness of flange = ~ a ~ . A . E  

Shear  s t i ffness of web = G . A ~  

Young ' s  m o d u l u s  of flange 

Young ' s  m odu lus  of web in long i tud ina l  d i rec t ion  

Shear  m o d u l u s  of web 

* R.A.E. Report Structures 48, received 25th November, 1949. 
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Moment of inertia of flanges about neutral axis of beam 

Moment of inertia of web about neutral axis of beam 

Moment of inertia of complete section of beam 

Modulus of section of beam 

Modulus of section of flange 
Co-ordinates measured along and across the beam 
Displacements of web in directions x, y (when transverse strains are neglected v is 

constant across each section x) 

Value of v at centre-line of web 
Displacement of flange in direction y relative to the centre-line of the web 

Load in direction y which is equal to the change in shear across loading section 

Bending moment at loading section 

Shear load at a section x 

Bending stress at section on engineers' theory 

Change in shear stress at loading 
Bending moment in flange additional to St. Venant 's  solution 
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1. Introduction.--The stresses at a section of a built-up beam, consisting of flanges connected 
by a web or webs, are normally calculated on the engineers' theory that  stresses due to bending are 
independent of stresses due to shear. The bending strains are compatible with plane sections of 
the beam remaining plane whereas the shear strains require warping of the sections. 

BENDING MOMENT 

SHEAR LOAD 

SECTION 
OF BEAM 

FIG. 1. 

1 
Bending distortion of beams. 

2 

FIG. 2. Shear distortion of beams. 



The distortion of a beam under three-point loading is shown in Figs. 1 and 2, the bending and 
shear distortions being treated separately. The shear distortion, being different on the two 
sections adjacent to the change in shear, would require a break in the beam and this is clearly 
impossible. From symmetry the section will remain plane at the change in shear and the flange 
will distort locally. 

A method is described whereby this local stress concentration can be calculated. I t  is assumed 
tha t  all the bending loads are reacted by end loads in the flanges and that  the shear stress in the 
web is uniform across each section. 

The effect of transverse strains is shown to be small and if it is neglected a complete solution 
can be obtained from the shear equation (equation (1)) 

c (d. dr) 
1- -  a/2h \dy q- ~ -- 2B dx-~= S " 

The method is applied to determine the stress concentration in the spars of two types of wooden 
aircraft at the fuselage attachments. 

2. Basic Assumptions.--To obtain the stress distribution at a section of a beam the following 
conditions must be fulfilled : - -  

(i) the sum of the vertical shear loads in the web and flanges is equal to the total vertical 
shear at tha t  section as determined from statical equilibrium. 

(ii) there is continuity of longitudinal displacement at the junctions of web and flanges. 

A rigorous solution is not practicable for the distribution near concentrated vertical loads and 
the following simplifying assumptions are made : - -  

(a) all the bending moment is reacted by end loads in the flanges. 

(b) the shear stress in the web is uniform across each section, there is contim~ity of shear load 
at the junction of the web and flanges and the shear stress in the flange, other than tha t  
due to local bending, reduces linearly to zero at the outer fibres. 

(c) each section of the flange remains plane under load. 

(d) there is no shear deflection of the flange at the loading section, i.e., the shear stiffness of 
the flange is very large compared with the shear stiffness of the web. 

(e) transverse strains are neglected. 

No appreciable error is liable to be introduced by assumptions (a) and (b). Assumption (c) 
means that  the calculated stress at tile outer fibres near the loaded section are lower than the 
actual stress but assumption (d) means that  the calculated stress is higher. The effect due to (d) 
will be greater than tha t  due to (c) and the calculated stresses are on the  safe side. I t  is thought  
tha t  this margin will be only a few per cent even where each flange has a shear stiffness as low as 
tha t  of the web. The effect of transverse strains* is shown to be negligible in Appendix I. 

3. Basic Equations.--For a beam with equal tension and compression flanges the condition (i) 
may  be written (see notation) as 

Total vertical shear S = {shear load in web} + 2 {shear load in each flange} 

= C(-d-y+-~] j + 2  - - B - d - ~ + C 2 h _ a k d y + ~ .  • 

* The transverse stresses are of course appreciable being essential for applying local transverse forces to the flanges. 
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This equation simplifies immediately to 

C du dv --  2B : S . . . .  (1) a ~ + ~  ~ . . . . .  
1 - ~  

A second equation is obtained from the equation for longitudinal stress in the web, making use 

of condition ( i i)  The longitudinal stress in the web is E du and is proportional to its distance 
' 7 ~  

from the centre-line. Thus 

du Y [ 
-- a longitudinal stress at junction of web and flanges 

E d x  h - -  ~ 

By taking due account of the local bending moment ( B  
d:v  in each flange the longitudinal stress 
dxV  

in the flange, at the junction with the web, can be shown to be 

M B Ea~ d2v 
2hA + (hA + -ff / 7 ~  ~" 

Thus Y (B 
dx -- h---~-- ~ 2hA + ) ~  - /  dx 2] " 

By integrating with respect to x and differentiating with respect to y the equation becomes 

By eliminating du/dy between equations (1) and (2) a linear differential equation with constant 
coefficients is obtained for v in terms of x. The method is applied to several special cases. A 
detailed solution for a cantilever is given in section 4 and the results for two other cases are given 
in sections 5 and 6. 

4. Cantilever ot" Beam under 3-point Loading. - -The solution of the equations (1) and (2) for 
a beam of length 21 under a concentrated load W at its centre, or a cantilever of length I and a load 
W/2 at its end, is based on the following boundary conditions 

dv 
- - - - 0  a t x = 0  
d x - -  

d2V 
dx---~ = O a t x = l ,  

where x is measured from the encast% end of the cantilever or from the centre of the beam. The 

dv _ 0 at x = 0 is a consequence of assumption (d) of section 2. boundary condition 

W I47 
Putt ing S = -ff and M -- 2 --(l -- x), equations (1) and (2) reduce to 

c ~ (~u dv) _ 2B d3v - w 
1 -- ~ + 7; dx 3 2 . . . . . . . .  (a) 
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Edu= 1 { 
dy h - -  -2 4hA - ~ / - d ~  I " 

(4) 

'Eliminating d@ between (3) and (4), 

B 

1 + Eh2A dv d*v 

Hence 

W C I+N 
2 

1 ( l x  - -  x" (s) 

(6) 

B 1+ 
C E h M  (where p2 _ and e -~ is negligible). 

d~.v The local bending moment in the flange is B dx-- ~ 

B ( z -  x) w B w  2B)  ~ _ ~ e _ ~ ,  
• (7) 

The first term is .that given by the engineers' theory of bending and the second term is the 
concentration due to the presence of the loading section. 

5. Beam under 4-point L o a d i n g . - - T h e  boundary conditions for a beam of length 2l under two 
equal loads W at its ends and balanced by loads at equal distances b from the centre are 

dv - - 0  a t x = 0  
dx 

dv d27) 
d x  ' d x  2 

c o n t i n u o u s  a t  x = b 

d2v - - 0  a t x = / .  
dx 2 

Under such conditions 

and 

B W ( 1  2B~ ( 1 -  ~h)~ {pc-P("- ~/ + pe-P('+b'} 
m -  2C E l l  

m B W  (1  - -  2B~ ~ a 2 
-- 2C E I /  ( 1 - - ~ ) { p c  -p'~- 

for x < b 

~1(1 + e-~P6)} forx > b  (8) 

(where e -pz is neglected). 



6. Any Single Abrugt Change of Shear.--There is a stress concentration at any abrupt change 
of shear across a section of a beam and it may be proved generally that  

m = ~ W  -- E I /  "" 

t 1 B where p~ C + E ~ A ~  
2 B ( 1  - - ~ ) /  

provided there is no other abrupt change in shear in the neighbourhood. 

The stress concentration at the outer fibres of the beam will be given by 

which reduces to 

2hA ~ I  I W 

9" " G) " h W  (1 4a 1 

(nogloOtil g (a/h) 

(10) 

The amount by which the stress concentration factor exceeds uni ty will reduce to 1/e of its 
maximum value at a distance 1/9 from the abrupt change of shear. For wooden or metal spars 
lip will be equal to about once or twice the depth of the spar flange. 

Provided the bending moment in each flange is small compared with the total bending moment 
the stress concentration for beams with unequal flanges can be calculated by putting (al -/a,)/2 
for a, (hi + h2)/2 for h and hJY/M for hW/M in equation (10). 

The stress concentration is only of interest when 9b is large and it is greatest when 9, is equal 
to twice the ultimate shear stress, that  is when there is a change of shear from ultimate stress m 
one direction to ultimate stress in the opposite direction. For a beam of given section this maxi- 
mum stress concentration can be predicted as follows : - -  

(i) The maximum value of the first term under the square root sign in equation (10) can be 
obtained from the constants of the material and is ;~ (say). 

(ii) The third term is less than unity but  nearly equal to uni ty for deep beams. 

(iii) The stress concentration will thus be not greater than 

1 -~ (,~hl/g/M) 1/2 . . . . . . . . . . . . .  (11) 

7. Exgerimental Verification of Theory.--Tests were made by Mr. A. J. Fairclough on wooden 
beams to check the theory and are described in Appendix II. The experiments were arranged 
so that  the stress concentration at the outer fibres exceeded two. Using values of the elastic 
modnli as determined on the particular specimens, the measured strains in the flanges agree with 
those predicted theoretically. 

8. Practical A99Iication of ResuIts.--Equation (11) states that  the stress concentration is not 
greater than 1 + (ZhW/M)l/k The value of ?~ is approximately 1 for metals, 4 for wood in 
cross-grain shear and 2 for wood in diagonal shear ; hW/M is largest for short deep beams. The 
rate of die-away is less for wooden than metal spars being approximately inversely proportional 
to the flange depth. 



The stress concentration will probably be significant only in structures made from non-ductile 
materials. The stresses in the main spars of two wooden aircraft in the neighbourhood of the 
abrupt change in shear at the connection to the fuselage have been calculated and are given in 
Table 1 and Fig. 3. 

9. Conclusions.---Calculations on simple engineer's theory predict shear distortions which are 
incompatible at the sections of a beam adjacent to a concentrated load; the additional local 
bending moments to ensure compatibility are determined from considerations of shear equilibrium, 
the effects of transverse strains being shown to be negligible. 

The stress at the outer fibres of a beam with shallow flanges will exceed the stress calculated 
on simple engineer's theory by a factor which has a maximum value at the loaded section of 

If account is taken of the finite depth of the flanges this maximum value of the factor will be 
reduced slightly. The additional stresses reduce exponentially with distance from the loaded 
section to 1/e times the maximum at a distance from the loaded section of once or twice the spar 
flange depth. 

3p, E 
The maximum value 7t P-~b" G can attain will be greater for wood than metals and for a given 

3p, E 
p~ " ~ the maximum stress concentration will occur in deep beams (i.e., h W / M  large). 

A calculation based on thedimensions of an aircraft wooden spar of deep section gave a stress 
concentration of 1.4. This is probably an extreme case for conventional designs but may be 
sufficient to cause premature failure in non-ductile materials. 

APPENDIX I 

Effect of Transverse Strains 

As in section 2 assume that  the bending loads are reacted as end loads in the flanges of the beam 
and the shear loads are reacted by uniform shear stress in the web. It will now be assumed that  
the beam is not stiff transversely but for ease of computation the effect of transverse strain will 
be calculated for beams which are stiff in bending. 

As the beam is stiff in bending the shear in the web is C dvo where C is the shear stiffness of web. 

The local bending in the flange produces a shear of 

- -  B cP a/2 dVo 
(vo + w) + C 2 h _ a  dx " 

The total shear in the section is S so that  the shear equation becomes 

1 dvo 
1 --  a/2h C ~ --  

d 3 

2B ~-3 (vo + w) = S .  

7 

(12) 



C dvo 
Now the shear stress in the  web = ~y - -  t (2h - -  a) ~ " 

__ ~Y & $ y  
The transverse stress at a point  (x, y) = 3o--d~ dy  

= - -  C d%o y 
~X~ . (2h - a) t 

Strain in direction y --  C y d~vo 

E t  (2h - -  a) dx  ~ 

Displacement  of flange, w = - -  (,-~1~ C y d~Vo 
~o E-) (2h - -  a) d x  ~ dy  

c ( 2 ~ -  a) d~Vo . . . . . .  (13) 
8 E t  " dx  2 . . . .  

The soh t ions  of equations (12) and (13) are 

S x  
v0 = A0 -t- A,e -p'~ + Al 'e  ~ + A2e -p~* + A ( e  p~* + C 

S x  V o + W = B 0 +  . . . . . . . . . . . . . . . . . . . . .  + - (  

where ~/51 and 4- 22 are the  roots of C(2h  - -  a) 24 _ 22 + 
- -  8 E t  

boundary  conditions. 

C 1 

2 B  1 - -  a /2h  
--  0 with appropriate  

The boundary  conditions for a canti lever of length l and load W / 2  or a beam Iength 2l under  a 
concentra ted load W are 

(i) a(vo + w) 
dx  --  0 at x = 0 

d2 
(ii) ~ ( V o + W )  = 0  a t x = l  

(iii) The distr ibution of shear between the  web and flanges at the encastr6 end of the cantilever, 
or the  centre of the  beam. 

Taking the  case of all the  shear being withstood by  the flanges, the  bending momen t  in the  
flanges is given by 

d ~ 
B ~ (Vo + w) = 

0t' 

( 2 q '  
(14) 

where e-~ lz is negligible. 
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If the shear is all taken in the web 

B d (v° + w) 
dx 2 

_ e - a * -  ~ e-p2~ (1 -- ~ ) .  

A 1 - 

1 5 )  

To determine the effect of transverse strain equations (14) and (15) have to be compared with 
the equation to which equation (9) reduces when the beam is stiff in bending, i.e., 

m = B P w ( 1 - -  a )  p~ C 1 
~ 2-h e -~" where -- 2B " 1 -- a/2h . . . . . . .  (16) 

For most conventional types of beam p~/p~ will be small so tha t  equations (14) and (15)'will 
differ much from equation (16) and the effect of transverse strain will be small. 

not 

A P P E N D I X  II  

Experimental Investigation 

A. 1. Ir~troduction.--In c~rder to test the accuracy of the theoretical solution, given in the text 
of .this report, for the stresses caused by  concentrated shear loads applied to built-up beams, a 
specimen was built up and tested under various loading conditions. The test specimen, which 
was made of wood since it is in non-ductile materials that  the effects predicted in  the text of this 

-report . are most pronounced, was a deep, narrow box-beam. 

This specimen was tested over two different test lengths under the 3-point loading case and 
strains were measured with electricai registance strain-gauges. Two different test lengths were 
used to give different ratios of bending to shear and consequently different stress concentrations. 

A knowledge of the values of Young's and the shear moduli is necessary before the experimental 
s t ra ins  can be t ransla ted into stresses.  A separate set of experiments was, therefore, carried out 
to determine these values. 

A.2. Descr@tio~¢ of Specimen..--The test specimen was built up from two three-ply birch 
webs, 6 × 3/16 in., and two spruce flanges, 12 × ~ in., into a box-beam, 6 × 1~- × 50 in. The 
loads were applied to the web through 10-S.W.G. mild steel distributing plates glued to the webs. 
Full constructional details of the specimen are given in Figs. 4 and 5. 

A:.g. ° Sfrai~i-Gauge I~4staZli~tion.--British Thermostat ½-in. self-adhesive type wire resistance 
strain-gauges were installed at 104 positions on tile webs and flanges of the test specimen as 
described in Fig. 6 . . . .  ~ 

A.4. Description of Tests.--Four tests were carried out on the specimen, two to determine 
Young's and the shear moduli for the materials of the specimen and two, With different unsupported 
lengths, to check the theory given in this report. 

A.4.1. Tension Test.--The specimen was suspended from point 'A (see Fig. 6 )and :  a d e a d -  
weight load of 3200 lb was applied at point B in  increments of 400 lb. At each load readings 
were taken of the tensile strains in both' flanges. The results  of this test are given in Fig. 9. 
From the gauge readings the mean strain was found to be 0..48 X ~j,0-3. 
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A.4.2. Pure Bending Test.--In this test the beam was supported horizontally from points A 
and B (see Fig. 6) and loaded with equal loads at points C and D. The maximum load applied 
was 800 lb at each point. The central part  CD of the beam is then in pure bending. In  Fig. 7 
the specimen is shown rigged for this test. Loads of 800 lb were applied at C and D in increments 
of 100 lb and measurements of direct strain in both flanges were taken at each load. The strain- 
gauge results are given in Fig. 10. The mean numerical value of the maximum fibre strain was 
0"868 × 10 -3. 

A.4.3. Tests under 3-point Loading.--Two tests were made under 3-point loading. The beam 
was loaded with a single concentrated load applied at E and supported horizontally, in the first 
tests at A and 13 and in the second at C and D (see Fig. 6). Strain-gauge readings were taken in 
both tests of the direct strains in both flanges and, in the first test, of shear strains in the webs. 
In the first test with the beam supported at points A and B a load of 1400 lb was applied at E in 
increments of 140 lb and strain-gauge readings were taken at each load. In the second test with 
the beam supported at points C and D a load of 1920 lb was applied at E in increments of 240 lb 
and strain-gauge readings were taken at each load. Fig. 8 shows the beam specimen rigged for 
the three-point loading test supported at points A and B. 

A.5. Determination of Young's and Shear Moduli.--A.5.1. Young's Modulus.--The test 
specimen was made from two different woods--spruce and birch p ly- -and  these two woods have 
different values of E. The result of the tension and pure bending tests were used to determine 
the values of E for these materials. 

From the tension test L = (AE + A~E,o) strain; 

From the pure bending test M' = (IFE + L~,E~) strain at y ,  
Y 

where L is the applied tension load in the tension test and M' is the applied bending moment in 
the bending test. 

Substituting numerical values in these two equations (see Figs. 5, 9, 10) and solving for E and 
Ew, 

E = 1"78 × 106 lb/sq in. 

E~ = 1' 47 × 106 lb/sq in. 

A.5.2. Shear Modulus.--The stress distribution predicted theoretically in this report depends 
upon the shear stiffness, C, of the webs of the beam. The records of shear strain obtained during 
the first test described in section A.4.3 above were used to obtain a value for C. 

The shear equation for the beam is 

C (du dv'~ __ 2B d3v S . .  (1 b i s )  

and away from abrupt changes of shear we may write, 

(ElF + E~I~) d3v -- S ~ - -  • 

Therefore equation (1) becomes 

C ( d u + d v ) _ 2 B  .S  
1 -- a /2h ,@ dx (EIF + E~I~) 

10 
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From readings taken in the first test mentioned in section A.4.3 a value of 1.85 X 10 -8 was 
-obtained for the shear strain in the webs of the beam under a shear force of 700 lb. We therefore 

( ~  dv~ _-- 1.85 × 10 -3 and substituting this and ali other relevant numerical values in have du + 
% 

the equation above, C is obtained as 

C = 0 . 3 2 6  × 106. 

A . i s  assumed to be 1.69 in. ~ (see Fig. 5) and therefore the shear modulus, G = 1.93 × 106. 

A.6. Experimental and Theoretical Results.--Using the experimental values for E and C in the 
expressions Of section 4 we obtain 

p = 1.482. 

For 1 lb centre load 

m ---- 1 .  1 0 4 e  -1"48~ . 

In Figs. 11 and 12 the theoretical stress distributions are shown for the 3-point loading tests 
with the beam supported at (C and D) and (A and B) respectively. The values of stress obtained 
from the strain-gauge readings using the experimental value of E are also shown in these 
figures. 

Two theoretical distributions, assuming the beam encastr6 at two different points, are shown 
for the outer faces of the beam flanges. I t  would normally be assumed that  the beam is effectively 
encastr6 at its centre (i.e., on the line of action of the applied shear). There are, however, 
two steel load-distributing plates attached to the webs at the centre of the beam (see Fig. 4) to 

E stec[ 
apply the external load into the webs. The ratio E b~a~ ~ 20, and taking the thickness of wood 

equivalent to a given thickness of steel as this ratio multiplied by the thickness of steel we find 
tha t  the stiffness of the beam is more than doubled by the presence of the steel plates. I t  is 
therefore thought to be more realistic to assume that  the beam is effectively encastr6 at the edge 
of the distributing plate (i.e., ½ in. from the centre of the beam) and for this reason the stress 
distributions on this assumption are shown in Figs. 11 and 12. 

I t  can be seen from Figs. 11 and 12 that  the experimental points agree well with the theoretical 
stress distribution obtained assuming the beam to be effectively encastr6 at the edge of the load 
distributing plate. 

I t  should be noted, however, tha t  this agreement does not extend right up to the edge of the 
load distributing plate. The experimental curve rounds off to an appreciably lower value of 
stress than that  predicted theoretically at the edge of the plate ; this is due to the stiffening effect 
on the flanges of the presence of the distributing plates. The percentage theoretical over-estimate 
of stress will depend upon the magnitude of the stress concentration; this in turn depends upon 
the materials and dimensions of the beam. 

In practical constructions of the same type as the test specimen used in these tests some form 
of distributing plate will always be present to put the concentrated shear load into the webs of 
the beam and there will be some smoothing of the actual stress distribution as noted above. 

A.7. Conclusions.--The experiments described above show that  the theoretical solution given 
in this report, gives a good estimate of the stresses induced in the flanges of a box-beam which 
is subjected to a concentrated shear force except close to any load distributing plates which are 
attached to the webs of the beam. They further show that  close to such plates the theoretical 
solution gives an over-estimate of the stresses, the amount of the over-estimate depending upon 
the dimensions of the beam and the values of Young's and the shear moduli for the materials of 
the beam. 

11 



T A B L E  1 

Dimensions 

~ 2  

hi 

h2 

b 

t 

M 

W 

Pb 

E 

G 

Maximum 
bending stress 

Type A 

5.25 in. 

3-4 in. 

7.35 in. 

11.35 in. 

4" 625 in. 

Type 13 

5" 05 in. 

4.5 in. 

5" 94 in. 

6" 66 in. 

11 "0 in. 
(effective thickness to give 
stresses of j5 b/5~ as below) 

0' 25 in. 

1,750,000 1b/in. 

17,700 lb 

5,120 lb/sc 1 in. 

2,460 lb/sq in. 

0' 25 in. 

2,570,000 1b/in. 

9,050 lb 

5,000 lb/sq in. 

2,310 lb/sq in. 

1 '9 × l0 G lb/sq in. 

0-15 × 106 lb/sq in. 

9" 83 in. 

7,220 lb/sq in. ( =  1 "41 fib) 

(presuming both webs of 
spars have same shear 

stress) 

1.9 × 106 lb/sq in. 

0"6 × 10 G lb/sq in. 

10-03 in. 

5,275 lb/sq in. ( =  1-05 Pb) 

r 

Z 

to 

_J\_ 

12 



B 0 0 0  . 

, STRESS 
'C~/sO ~N. 

6000 

T E E~ A(ZCU~ATE SOLUTION 
ST. VE.NAMT SOLUTIOM 

0 t 0 2 0  

FIG. 3. 

.:10 40 6 0  IN, 
DISTANCE FROM ~00T 

Compression stress in outer fibres of spar. 

~ 0  

- / 
"DIA... \ ~ X ~  

13" 

O*S" DIA. 
I~IAhE FROM MILD STEEL 10~(~S.~,,) SHEEr 
~'ArEDON ONE SIDE WITH WODD VENEER / 

VIEW ALONG LI~E A C - A ~  k 

37" 

i 
SECTION ?LON~ LINE B -P, 

! 

~r3" 

SECTION 
ON LINE C-C 

~IRCH 

FIG. 4. Construction of test beam. 

13 



Y 

/ 

16 81/~CH PLY WEBS 

.X 

. . . .  8 

t-! ' °  
| I( 

L ,, J 
I II ~11 

ASSUMINI~ A F L A N G E  TO COIMSIST 01= THE I E- X ~- ~P~UCE MF..Mt3E~ ONLY 
WE OBTAIN"  - 

A : , - 6 7 ~  ,N. ~ (.z~)y v : Is-oo ,N.* 

TOTAL AIZEA OF SECT/ON = 4 .12S IN a ( 2 )  xx : I~ .  7S IN, ¢ 

F0~ THE PU~POSE OF C A L C U L A T I N  G B ~ C  MATERIAL  FUI~.'I"HEI~ ~'I~OM 
X - X  T H A N  SECTIONS A - A  A N D  B-L~ I.~ ASSLIMEID TO ~E  F L A N G E  
M A T E I ~ I A L  WITH A IJNIF'0F~M VALUE OF YOUN~S M01DLILL/S; 
M A T E R I A L  B E T W E E N  A - A  ~ 8 - B  IS A S S U M E D  TO BE W E B  MATERIAL. 
THUS,  FOI~ T H I S  P U R P O S E  (Zr.) yv =0oD572 IN. a" 

A N D  8 = E.(l"F)yy : I . O / B  X IO S L ~  JM. ~ 
A L S O  A w : 1"8~ IN.  ~ 

FIG. 5. Cross-section and section constants  of test  beam. 

14 



A C E 

- ~ 5  - -  - -  • . ~ , . ~ - - ~ - 1 -  

' ~  ~ ~ -~ "~ '~- '~ ~,°-,o,~, 4 . . . .  iz6 lIE'7-- ,141) .~1 ~ 

~ ~'~ ~ N ~ - - ~ - ~  - L J _  

D B TOP 

WEB 

- " OUTSIDE 

1~6 
I~¢ : 

- -  tas.l., 

i --158 i~'7-- " ~'~- 
He Hg ' 

I I WEB 
OUTSIDE 

T o p  

i 4_2 

Ts 

NOTE. ;- 

~ . ~  _ 4 2_J_._2..,_L. I'Ll_ B' _ 1 _  l_  ~" ,.L _ 4 , ' ~ . J _  4 " " J 

a2 a.e ,~r ~j~ &s a_¢ ~d,,.~d_2 b 

r4A ur-.t ES AT 
I 

I I 

I "~Jr  . . J 

~" INTERVALS 

E INDICATE8 4- PAIRS O F '  ~ A U , G E S  WIRED IN SEI~JE;S F/L:'OM 
fNSIDE AND OUTSIDE OF %PECiMEN 

- I N O I C A T E S  A ,SJN~LE END LOAD ~ A U ~ E  
• INDICATES S N E A ~  C]AU~E 

r--]AUGE NUMBERS RUN 11-18; 21 -28 ;  31-SS ETC. 

A L L  POSITIONS ON THE. WEBS, CON'SIST OF G{AUQES ATTACHED 
TO 8 0 T H  ,SIDES OF T H E  WE8 MATERIAL AND WIRED IN SEI~IES. 
E N D  LOAD GAUrqES BEA~INC~ T H E  SAME NUMBEJ~ 
AI~E ' WI~ 'ED IN' SE~IE,S 

"•S p 

HEAR 
~AO~E 

~, t' ~'--SOT.TOM 
FLANGE 

OUTEE' FACE 

--1 SAME FLANGIE 
INNE~ FACE 

OTHE~ FLANGE HAS THE 
r_.]AUrqES 11-2.S ~. ~ 3 - 5 7  
SIMILAP.Lh(  P L A C E D  

FIG. 6. S t ra in-gauge  ins ta l la t ion  on tes t  be a m.  



DUMMY SPECIMEN TO WHICH 
TEMPERATE COMPENSATING 
STRAIN GAUGES WERE ATTACHED. 

~ .  | ~  

, r ~ 

 xli c 

i 
TEST SPECIMEN 

!I ~ - ' ' ~  . ~ 

- t " i A 

A 
DUMMY SPECIMEN 

TEST 

" 7  

SPECIMEN 

/ B 

i 
• I t  • ' ;  

,lb. 

FIG. 7. Specimen rigged for pure bending test. FIG. 8. Specimen rigged for 3-point loading test. Supports at A and B. 



0.¢ 

STRAIN 
X I0 ~ 

0"4 

, STRAIN 
X I0 3 

O~ 

0 . 4  

STRAIN 
X 10 "~ 

O.R. 

0.~. 

0 , ~  

STRA f N 
X 10 ~ 

r JX4AXIMUM 

z4  - I 

TOP FLANGE 
OUTSIDE-  

" ~AU ~jF.S J 1-~.5 
SEA M 

4~ 

O.~ 

S 

,..1 

x 
BOTTOM =~.A ~E 
|NSJDE - 
~iAU(~ES 61-'~ 

BE~ 
CENT 

FIG. 9. Strain-gauge results in tension test. Readings 
at 3,200 lb tension. 

J M E A N  STR~AIN = 0"~60 XI0 "a T 0 ~  FLAxNI~E 

OUTSIDE. FAeF.. 
x ~A0~ES. I1"~ 2.;' 

-0 .6  

X 103 

-0.4 

INSII3E I='A C E 
¢ QAUQ~S 4 5 - 5 ¢  

-0 ,~.  

O-S 

0 .6  

STRAI 
)¢ 10 3 

0 .4  

MEAN STRAIN; 0"~7,~ X In ~ 

x 

® 

~OTTO M 
FLANCiE 

x 
FACE 

qAU~jES =6 -57  

,.I~SIDE FACE 
CtAO~iES 61-72 

0-2. 
NOTE :- 
TF-.NSI/.t-- STRA/M 

BE, 
CEt ITRE 

FIG. 10. Strain-gauge results in pure bending test. Readings 
with 800 lb at C and D (i.e., bending moment of 9,600 lb/in. 

between C and D). 



g 
o 

.-a 
P~ 

Go 

E7 
Li 

. . . . . . . . . . . . . . . . . . . .  EDIblE OF OISTRI~UTIIM~JH' I-$ PO~ITIV ~:' PLATE / / / 

TO 4-1390 LIS/SQINI,x / / 
AT BEAM E.BNTII~Ei///~// 

BOTTOM FLANGE / 
/ ;  ~.000 

STRESS OUTSI BE ~ ' A C E ~  ~ O" 

OF BEAM ~ I - 

I~00 J -/~" / --- 51OE TO ~64- L~/~Q'INo / / FACE AT EEAM :~XITI~E 

500 ~'~ 

o / / ¢ /  , I t~EAM 
E.ENTI~E 

I-~.3 

N° 
~M 
E 

FIG. 11. Strain-gauge results and theoretical stress distributions 
in 3-point loading test (supports at C and D). Readings with a 

centre load of 1,920 lb. 

I /1 I TOP 

-~0 % EXPERIMENTAL POINTS-OUTSIDE FACE OF FLAIM~E I /~ . -~  FLANr.aE 
I ~ EXI:~ERIMENTAL POINTS-INSIDE FACE OF FLANGE i / I  [ 
I - -  B , . P L ~  E . ~ , . E E ' ~ , N ~  T .EO'~Y - , / i I ~ 'OO"~IOE- 
1 _ _ - -  TAYLOll~'S THEORY ASSUMfM~ BEAM EN!CASTII~E ;x /  I I C~ALIr~ES 

/ I  AT C . . IENTRE BEAMENrj~ET,.AT~.~/I [ST,~E ~ ~ 1  II t l - ~ -  
-P.O00~ --:--- TAYLOI~S 'THEO~'(, ASSUMINg, 

/ TO ~e, O0 LB/SI~IN. AT EDGE OF. DISTI~IBUTIN~ J4v'. / I I 
sTges~ PLATE / Y  / I A  

- , s o o ' ~  ~ - - B ~ A ~  CE~'mE * , - j " J / "  I -  
POl NT I . / /~:/ f  I I 

S U(];I:~OP.T O UT~,ID~" FACE ~ . ~ "  I 

D -  i 
~/ T - -  T \~ ~' INSIDE 

~'T~ 
LB 

TSIDE- 
UCiES 
- 3 " /  

FIG. 12. 
in 3-point loading test (supports at A and B). 

centre load of 1,400 lb. 

SIDE 
kUGES 
-72 

CENTRE 

Strain-gauge results and theoretical stress distributions 
Readings with a 



A..R.C. Tectmical Zegort. 

Pubticati©ns of 
Aeronautical Research 

the 
Counci! 

A N N U A ] L  TGG]f-,INECAIL NGPO]tKT$ OF' TF/G A_GRONAUT]ICAL 
LR]ZZGA~RQH COUNGEG (BOUND VO]LIUMGZ) 

z936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 4os. (4os. 9 £) 
gol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 5os. (5os. Iod.) 

I937 Vol. I, Aerodynamics General, Perfbrmance, Airscrews, Flutter and Spinning. 4os. (4os. xod.) 
Vot. II. Stability and Control, Structures, Seaplanes, Rngines, etc. 6os. (6is.) 

I938 Vol. I. Aerodynamics General, Performance, Airscrews. 5os. (Sis.) 
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 3os. 

(3os. 9 £) 

I939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 5os. (~os. I Id.) 
Vol. II. Stability and Control, Flutter and ],ribration, instruments, Structures, Seaplanes, etc. 

63s. (64s. 2£) 

~94o Aero and Hydrodynamics, Aerofoils, Airserews, Engines, Flutter, Icing, Stability and Control, 
8tructures, and a miscellaneous section. 5os. (Sis.) 

I94I Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, 
Structures. 63s. (64s. 2£) 

I94z Vol. L Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 3£) 
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels 

47 s. 6d. (48s. 5d.) 
I943 Vol. L (In t/ze press.) 

Vol. II. (In flee press.) 

ANbqUAIL ~ ] Z P O ~ T ~  OF' T}]IG A E R O N A U T I i C ' , A L  NGSGARC]Hf G O U N C ~ L - -  

I933-34 Is. 6d. (Is. 8£) I937 as. (2s. 2d.) 
I934-35 Is. 6£ (Is. 8£) I938 Is. 6d. (Is. 8d.) 

April I, I935 to Dec. 3I, I936. 4 s. (4 s. 4d.) I939-48 3s. (3 s. 2£) 

]iNDEX TO ALL RIBPORT5 A N D  MIZI~ORANDA PU~L]fSHGD ~l~q T][-lfG 
ANNUAL T]]gGN/N][GAG ~ZP©GT$~ AND $ G P A X i T I B L g - -  

April, I95o - R. & M. No. 26o0. 2s. 6d. (2s. 7~d.) 

AUT~IOFk IbqDGx TO ALL N G PO ~T g  AND MGNdOFKAHDA O15' Tlt{B 
AZ]FKONAUT[GAIL RGZGA~C]H[ QOIUIXqGlIL - 
I9o9-I949. R. & M. No. 257o. ISs. (IV. 3£) 

I~NDGIKZZ TO ~[~G ~£C~{I~qICAL tg,,]ZPO.RTS O~ TF/]Z AG~ONAVT!CAL 
]~]ZZZA_v%Q}[ QOUg ' ICI rL- -  

December I, I 9 3 6 -  June 3 o, i939. 
July I, I939 - - June  3 o, I945. 
July I, I945 - - June  30, I946. 
July I, I946--December  3I, I946. 
January i, i947 - - June  30, i947. 
July, I95I. 

R. & M. No. i85o. 
R. & M. No. r95o. 
R. & M. No. 2050. 
R. & M. No. 215o. 
R. & M. No. 2250. 
R. & M. No. 235 o. 

is. 3d. (is. 4½d.) 
is. 0s. >~d.) 
is. ( i s  i½e.) 
is. 3d. (is. 4½d.) 
Is. 3d (Is. 4½-£) 
Is. 9 £ (Is. Io~d.) 

Prices in brackets include postage. 

Obtainable from 

H E R  M A J E S T Y ' S  S T A T I O N E R Y  O F F I C E  
York House, Kingsway, London, W.C.2 ;  423 Oxford Street, London, W.l  (Post Orders : 
P.O. Box 569, London, S.E.1) ; 13a Castle Street, Edinburgh 2 ; 39, I(Jng Street, Manchester, 2 ; 
2 Edmund Street, Birmingham 3 ; 1 St. Andrew's Crescent, Cardiff ; Tower Lane, Bristol 1 ; 

80 Chichester Street, Belfast, or  through any bookseller 

S.O° Code No. 23-2775 


