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Swmmary.-This paper treats the elastic stability of supported rectangular plates of sandwich construction with 
isotropic and aeolotropic fillings under compression and shear loading. Formulae are developed for critical stresses 
for flat and curved panels in compression and flat panels in shear for the buckling of the whole panel, also for the 
wrinkling or local failure of the faces of flat panels in compression. 

It is established that for a wide range of conditions the critical stress for panels buckling in compression is independent 
of the form of the filling providing it is symmetrical about the normal; of the elastic constants of the filling only the 
transverse shear is of concern. As a result a simple extension of the equivalent plate theory of greatly improved 
accuracy is developed enabling the use of equations treating the plate as a whole. 

NOTE: This paper was presented as a thesis for the Diploma of the College of Aeronautics, June 1948. 

1 .  Summary of Results.-An isotropic and two forms of aeolotropic filling are considered. 
Of the latter both are symmetrical about the normal to the panel?, but one has stiffnesses only 
in normal planes and the other has comparable stiffnesses in all planes: the first of these will 
be referred to as a honeycomb filling, as a fabricated paper honeycomb filling is a good example 
of the material in mind, and the other simply as aeolotropic. 

Failure may be either a buckling of the panel as a whole or a short-wave buckling or wrinkling 
of the faces. The 
critical stress for this type of failure is not dependent on the dimensions of the panel other than 
the ratio of the skin thickness to the overall thickness; from this and from dimensional arguments 
there is reason to believe that the wrinkling stress is independent of the edge conditions and of 
curvature and that a panel in shear will wrinkle when the compression field equals the critical 
compressive wrinkling stress. 

Sections 4 and 5 of this paper derive by a fairly rigorous analysis formulae for the critical 
stresses for buckling, as opposed to wrinkling, of simply supported panels in compression which 
divide into three orders of approximation. The first, which in general is quite inaccurate, is 
the result of ignoring shear deformation and gives the so-called equivalent plate stress; this, 
of course, is the same for all forms of filling. The second; which is also independent of the 
form of filling, provides in effect a correction factor to the equivalent plate stress that is a function 
of a parameter, denoted by the symbol 7 ,  which is a measure of the transverse shear stiffness 
of the filling in terms of the strength of the whole panel in compression. The third approximation 
is a'more complicated expression giving the failing stress for panels that are weak in shear. 

The latter has only been investigated for simply supported flat panels. 

* College of Aeronautics Report No. 25, received 1st September, 1949. 
-f. From recent tests with Dufaylite this is not strictly true for honeycomb material. 

P 
The transverse shear modulus 

measured along the direction of B. diagonal .of a hexagonal cell differs from that measured at right-angles. 
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This common second approximation is important because it is accurate over a wide range 
of conditions and because it can also be deduced by a simple allowance for the shear deformation 
of the filling. Though the latter is a natural and obvious extension of engineer’s bending theory, 
the rather tedious analysis of sections 4 and 5 of this report remains necessary because it 
establishes the accuracy and range of validity of the approximation. The way is then cleared 
for applying this simple concept of the behaviour of the filling with a fair hope of comparable 
accuracy to  such problems as clamped edge conditions and shear loading which are difficult 
by more rigorous methods. 

The smaller the parameter 7 the more marked is the effect of shear deformation with a 
consequent decrease in both failing stress and buckling wavelength. This applies in all 
circumstances of long-wave buckling. 

The problem of curved panels in compression is treated by an approximate correction of the 
flat panel solution and also as a check by the method of simple shear allowance. No investigation 
is made of the stability of the buckled state, so that the apparent gain in stiffness may be illusory. 

The critical shear stresses for nearly square and for long narrow panels are calculated by 
energy methods. Both solutions are approximate particularly the latter. Shear critical 
stresses appear to fall more rapidly with the filling shear stiffness than the corresponding com- 
pressive stresses, and it is difficult to estimate the lower limit of the parameter q for the validity 
of the formulae. 

The formulae derived can only be a guide to the failing stress owing to the simplifying 
assumptions particularly with regard to edge conditions. A general verification of resylts is 
of course necessary but especially of the more approximate formulae such as those for curved 
panels and panels in shear. Among the many other aspects are two which may be of over- 
riding importance, the effect of non-homogeneous fillings and the effect of initial waviness of 
the skin. The use of large-mesh honeycomb material is clearly another source of local failure 
of the skin. Initial waviness will lead t o  additional bending stresses in the faces that may 
cause their premature yielding and impose strains that may rupture the adhesive at  the inter- 
faces. The implications of initial waviness have been discussed at length by Howardl and very 
similar results to his can be obtained by using the formulae derived in this paper. 

Elastic constants of filling (equation 1) 
Young’s modulus and Poisson ratio of faces 
Panel length and width 
Filling and face thickness 
Radius of curvature of panel 
Compressive or shear stress due to applied load 
Critical compressive or shear stress 
Filling stresses 
Filling strains 
Geometrical co-ordinates (Fig. 1) 
Displacements in x, y ,  x directions 
Stress resultants of faces 
Stress couples of faces 
Stress couples of whole plate 
Number of buckling half-wavelengths along and across the panel. 
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+i = nb/a 

Et3 D =  12(1 - 2) 

n2n2 m2n2 
a2 b2 p = - + -  ,U = 2h/t 

L R2h2 E * = - -  2c - L n2h2 

2b2 

3C b2 3c b2 t =  

E t 
(1 - 02)L - R z =  

@ = n2R(2h + t )  

y = -  C + L  
c - L  E = 2C/L 

3. Summary of Formulae.-(a) Buckling in Compression of Flat Panel.-(i) Approximate 
Formulae for all Forms of Fijling. 
1. Simply Supported Long Panel. 

where q/(r - 1) < b2/200h2, q =r L(l - 02)bz/n2Eht 
p = 2h/t. 

2. 

3. 

Simply Supported Short Panel. 
Where a/b = 0(1) a correction factor to 1 is given at Fig. 10. 
Where the panel is very wide compared to its length a modified Euler strut formula 
is obtained 

. .  .. . .  (27) . .  
provided a>lOh. 

Long Panel with Clamped Edges. 

. .  .. . .  . .  (43) (1u + 1)2L . 3 - 4972 
q3 + 3 . 6 8 ~ ~  + 3*6q - 1-3  fc = cc 

- - 17-05(2k+ t)"E v 3  
(1 - a2)b2 q3  + 3.687' + 3-67 - 1.3 

1 and 3 are plotted at Fig. 8 as correction factors to the equivalent plate stresses. 
The buckling wavelengths are shown at Fig. 9. 

(ii) More Accurate Formula for Isotropic Filling.-(Simple Support). 

where +i is chosen to make fc a minimum and 
2C - L nzh2 

3c b2 
. - .  E =  

* Numbers refer to equation numbers in main text. 
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f c / L  versus p is plotted for different 77 at Figs. 2 and 3 for 6Eq/p = (1 - 02)(2C - L)L/E% 
equal to 0.001 and 0.0004 respectively. 

(iii) Accurate Formula for Honeycomb Filling.-(Simple Support). 

where E is chosen to make fc a minimum and 

fc/L versus p is plotted for different 7 a t  Figs. 4 to 7 for values of 6E*7/p = (1 - 02)L2/EC 
of 2.5 x 10-4; lO-*; 2.5 x 10-5 and 10-5 respectively. 

(b) Wrinkling of a Simply Supported Flat Panel in Compression.-(i) Isotropic Filling. 

P3CL > 2 
E(C + L) Approximate condition of validity is 

This result is plotted at Figs. 2 and 3. 

(ii) Aeolotropic. Filling. 

. .  * .  (33) 

Approximate condition of validity is 

(iii) Honeycomb Filling. 

. .  . .  . .  . .  (35) a .  

L =  2EC 1 
L (3p(l - 2 ) L 2  

This result is plotted a t  Figs. 4 to 6; the wrinkling stress is too high to appear on Fig. 7. 

(c) Simply Supported Curved Plates in Compression.-(i) Panels. 

where ,ti2 has the nearest value to 77 + (77 + l ) e 2  + 77[77{77 + (77 + l)e”l’12 
r 2  - 77 - e2 

e = 2b2/n2R(2h + t) and 77 > +{l + (1 + 4p2)’/’). 

The factor of increase of this stress over that for a similar flat panel is plotted at Fig. 11. 
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(ii) Cylinders. 

. .  .. (49) . .  . .  . .  fc - (P + Ei2 P 2  
2p ( n T r  + 31 * -  

- -  
L 

where +i2 has the nearest value to er/(? - e)  and b = nR. 
For long cylinders this ’reduces to:- 

t . _ ,  E f. = z (1 + p - &AT}, where z = L (1 - 2 ) L  R 
which is plotted a t  Fig. 12. 

(d) Sim$ly Supported Flat Panels in Shear.-+) Square Panels. 

qc - 23.3(2h + t )2  
E - 

r 
(1 - o”b2 - ((7 + S ) ( r  + 5 ) Y  

or 

(ii) Long Panels. 

qc - 13-3(2h + t )2  o r ,  - -  E (1 - a2)bZ 

The shear stresses are plotted at Fig. 13 as correction factors to the equivalent plate stresses. 
It is suggested that values for intermediate values of the ratio b:a will be given by parabolic 
interpolation. 

4. (a) General Conditions of Equilibrium-In this section the equations of equilibrium are 
derived that are required for finding the critical stresses of simply supported flat and curved 
panels under uniform compression by the method of considering neutral equilibrium under 
infinitesimal displacements. 

They are cylindrical co-ordinates but 
instead of the usual Y, 6, x for the radial, azimuthal and axial co-ordinates, R + x, y /R ,  x are 
used, where R is the radius of curvature. The sides and the direction of the applied load are 
parallel to the axis of the cylinder; the ends of the panel are cut by planes perpendicular to 
the axis. 

The approach to the curved panel problem is to expand the various expressidns involved in 
powers of 1/R and to neglect the higher powers. To this end we assume that R is large compared 
to the total panel thickness. 

The faces are taken to be isotropic and the filling is assumed to be aeolotropic, but with 
symmetry about the normal to the plate. Writing X,, Y,, etc., for the stresses and err, e,,, etc., 
for the strains in the filling, the stress-strain relationship is given by the following scheme:- 

The co-ordinates to be used are indicated in Fig. 1. 

.. (1) . .  .. 
X ,  = Ae,, + ( A  - 2N)ey,, + Fe,,, 

Y, = ( A  - 2N)e,, + Aeyy + Fe,,, 

2, = Fe, + Fe,, + Ce,,, 

Y, = Le,, 

2, = Le,, 

X, = New 
5 



by writing 2.t, v,  w for the displacements in the x, y ,  z directions and neglecting second order 
terms in 1 / R the well-known equations relating strain and displacement in cylindrical co-ordinates 
become :- 

azt 
ax ex, = - 

aw 
a2 

err = - 
.. ..  (2) . .  .. . .  

(b) , EquiZilwium of the FiZZi.Yzg.--In the same fashion the following equations of equilibrium 
are obtained:- 

i ( 2  - - 22, a x y  + au, + - I ay, 
ax ay ay 

. .  . .  . .  (4) 

. .  . .  (5)  . .  

On substituting from equations (1) and (2) into equations (3) and (4), we have:- 

a2.U a 2 z t  'a2% a2v a2w + N 7 +  L @  -t- ( A  -N)- + ( F  + L)  axx ay ax ay 

Write 

Differentiate equations (6) and (7) with respect to x andy respectively and add, so that:- 

(8) 
azw as 

a2 ax2 ay 
. . .  a2w 

. . . . L- (A  2N + L ) -  ( A  + ZL),) . .  .. . .  
6 



Differentiate equations (6) and (7) with respect to y and x respectively and subtract, so that:- 

a 2  i a  am a8  azm ( N P  + L a )  0 = jj (2% [m- - (A - N ) -  - ( F  + L)-] ay a2 
ay ay 

. .  .. 19) 

Substituting from equations (1) and (2) into equation (5) gives:- 

Among the terms in 1/R2 neglected in the last equation is a term ( A  - F)w/R2 which is worthy 
of note. It arises since eYy contains w / R  and is contained in (Zz - YY)/R in equation (5). 
When the buckling wavelength is of the same order as R, which it might be for a semicircular 
panel, V2w is of the same order as w/RZ. This would appear to limit the angle of the sector 
forming the panel for an accurate solution, but however these equations lead to  solutions in 
section 8 which are identical to those obtained by other means. 

(c) EquiZiibrium of the Faces.-When considering the equilibrium of the faces it is necessary 
to make allowance for the fact that the stress resultants in the face and the reaction of the 
filling are not in the same plane. 

Let unprimed quantities refer.to values at an interface, x = f h, and primed quantities to 
values at the central surface of a face x = & (h $r i t )  where Zh and f are the thickness of the 
filling and a face. 

We have approximately:- 

U' = U 

V I  = v 

w1 = w 

where the top sign refers to the face z = + h and th,e bottom to the face x = - h. 

Hence 6' = 6 'F gtv2w } 
w f  = w 

and since the normal stress in a face may be considered to be negligible 

avi awl 
ax ay ax o -  au '+  0 - + (1 - 0) - = o  

ot whence w ' = w F  8'. 2(1 - 0) 

However since the area1 dilation is small compared to the transverse displacement the last 
cdi-rection can be ignored. 



Equilibrium in the Surfme of a Face.-Neglecting terms in t /R  and l /Rz  we have:- 

where N,, N,, N y  are the stress resultants in the face and the top and bottom signs refer to 
face x = + h and - h respectively. 

In considering the equilibrium of the stress resultants in the x and y direction account must 
be taken of the shear forces acting a t  the interfaces:- 

aNX + aN, -- 
ay R a y -  - 

ax 

where QY is the y-stress resultant normal to the face. 
Substituting from equations (1 1) into equations (12) yields:- 

a w  1 - 6 
S + T  

1 1 + a a2u' awf a2v' K +(T h a* F - + 2h  ay^ f 2 Q,) (14) ay 
where 

eliminating the primed quantities, we obtain:- 

K = (1 - u"L/Et. 
Differentiating equations (13) and (14) with respect to x and y respectively and adding, and 

Differentiating equations (13) and (14) with respect t o y  and x and subtracting, we obtain:- 

a2m 1 + a a26 
2 a2 ayz 2 axay 

h -  1 - 0  am 1 P2w 'f K - = f ( (1  - 0) h - - ~ 



Equilib~iuwz Normal to a Face.-With the same approximations the stress couples, M,, M,,, 
My,  are given by:- 

where D = ~t3/12(1 - .y. 
In  considering the equilibrium of the shears and couples account must be taken of the 

distributed moment of the shear forces a t  the interfaces about the centre of the faces:- 

Similarly in considering the equilibriums of the shears and normal forces account must be 
taken of the tension the filling exerts on the faces:- 

where f is the stress in the faces resulting from the applied load. 
On substituting from equations (17) and (18) into the last equation we obtain:- 

. .  . .  (19) 

It will be noted that the last term in the last bracket of this equation is of order 1/R2. This 
term is retained because it is not a derivative and because E is so much greater than the other 
elastic constants; other possible terms that might be retained are either derivatives which are 
necessarily smaller for long-wave buckling, or contain elastic constants of the filling. 

5. Simply Su$$orted Flat Panel in Unifoym Com+ression.-The conditions of equilibrium are 
given by putting l / R  = 0 in equations (8), (9), (IO), (15), (16) and (19) and they are:- 

9 



(21) a t z = f h  . .  
(NP + L =)U a 2  = 0 

(+ cr P2 'F K -)w a = 0 
a2 

If we assume w to be of the form ZWmn (2) sin (nnx/a) sin (mnylb) (n, m integers), 6 will be 
a similar series while w will be a double cosine series. 

Since the equations containing w do not contain w or 6 ,  the coefficients in the series for w 
will be independent of those for w and 6. In each coefficient of o there will be two constants 
of integration which must be chosen to satisfy the second equation of (21) at z = + h and - h. 
It is clear that the only possible solution is w = 0. 

Each pair of corresponding terms in the two series for w and 6 must satisfy equations (20) 
and (22) separately. In solving equations (20) each pair of coefficients will contain four constants 
of integration, which must be chosen to satisfy the four equations of (22). The latter requirement 
will determine the value o f f ,  but f will now be a function of rn and n, so that the equations 
cannot be satisfied for all rn, n a t  the same time. Hence w will consist of one term only, instead 
of a series, corresponding to one pair, rn and n, which must be chosen to make f least. 

For a panel with edges at  x = 0, a and y = 0, b we will have w = 0 at  the edges. The bending 
moments of the plate as a whole will also be zero at  the edges since in addition to a2w - = a2w = 0 

ax2 ay au av 
ax ay we have - = - = 0, because 6 = 0 at the edges and w .= 0 everywhere, making the direct 

stresses'as well as the bending moments in the faces vanish a t  the boundaries. Hence the 
conditions of simple support are satisfied apart from small displacements in the plane of the panel. 

Isotropic Fizzing.-For an isotropic filling A = C, N = L, F = C - 2L. 

The solution of equations (20) is:- 
nnx mny w = (W,c + W21xs + Wl's $- W,'Zzc) sin - sin - a b 

nnx nmy 6 == - Z {W,s + W ,  (Zzc + YS) + WL'c + W,'(Zzs + YC)) sin - sin - 
a b 

where c = cosh Zz, s = sinh Zz 

Y = (C + L)/(C - L) 

W1, W2, Wl', W2' = constants of integration. 

Now w and 13 are the sums of even and odd functions of x: to the even part of w corresponds 
the odd part of 6 and vice vcma. It will be seen from inspection of equations (22), taking due 
account of the alternative signs, that .  the odd and even parts of w will form independent 
solu tions. 

10 



Let us first consider the even part of w (i.e., W1' = W2' = 0) corresponding to the buckling 

On substituting for w and 6 in equations (22), we have:- 

of the panel as a whole or ' in-phase buckling '. 

w1- - (K(1 + Y )  + Ph)c + (2Kh + Y - @hi}Zs - wz (2K - @Z)c + Is 

L(tZc + 2S)ZW, + (L(2h + 2 + t)Zc + (C - YF + thZ2L)S}ZW, 
.n23t2 - f t  = DZ4 + 
a2 W1C + W,ZhS and 

[{2(C - L)th + +CtZ}Z2 - 4Kh(C - L ) ] Z C 2  -l 
+ 2[2K(C - L) + tI2LIcs 
+ 2[2Kh(C - L) + c - (C - L)thZZ]Zs2 

- OZ4 + [ZKC + (C - L ) Z % ] C 2  + (C + L)ZCS - (C - L)hZ2S2 . .  (23) - 

In order to minimise the expression for f it is necessary to  make an approximation. Consider 
first long-wave buckling in which Zh is small, say < 0 -7, so that approximately tanh 112 = Zh - +Z3h3 
Neglecting higher powers of Zh the equation reduces to:- 

In general the second bracket of the numerator of the fraction on the right-hand side is small, 
so the equation reduces approximately to:- 

) . .  (24) f - (P + (E2 + m2)2 1 
1- 2 P  ,ii2 

where f.4 = 2hlt 

2 c  - L Z2h2 - 
3C b2 € =  

2 ---- a' - - f > 0, so that, if there exist m and n for which af/an vanishes, the NoWmam i iag 6 2  

least f occurs at  the least possible value of m, which in this case is unity. 
The minimum value f,/L of this expression is plotted against ,U for a range of q of 0.2 to 20 

for 6Eq/p = (1 - 2) (2C - L)LJEC equal to 0.001 at  Fig. 2 and equal to 0.0004 at Fig. 3. 
In computing these curves it is assumed that the panel is long so that E = nb/a can take up 
its optimum value. 

af 

For 7 > 1 a further approximation may be made:- 

. .  . .  . .  .. . .  . .# (25) f - (P + 
E -  2p E2(E2 + 1 + 7) * 

(BZ + 
q + l This gives for a long panel, E = (q - - 1) and:--- 

.. . .  .. .. .. . .  - _  f c  - 2(P + 
L P (11 3. * 

7 
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This expression requires a correction, when the panel is not long, to allow for E being restricted 

The last approximation is tantamount to substituting lh for tanh lh so that a reasonable 

by virtue of n being an integer. The correction is plotted at  Fig. 10. 

b2 condition for validity is - <- 
q - 1 200P - 

When b is large compared to a, n = 1 so equation (25) becomes:- 

so .. . .  . .  . . (27) (1 - a2)La2 
which is a modified Euler strut formula. 

‘ Now consider the opposite approximation in which lh is large, say > 2, so that tanh Zh 1 1 
corresponding to short-wave buckling, or wrinkling of the faces. This rather drastic approxi- 
mation implies that the two faces fail independently. 

With tanh lh = 1 equation (23) yields:- 

n2n 
a2 

L1(4K(C - L )  + 2Cl + 2tL12 + +Ct213} 
2KC + (C + L)l -ft = ~ 1 4 . +  - 

n2 n2n2 4 
b2 a2 As before m = 1; also l2  = - + - > by our assumption, but 4/h2 is in general large 

compared to n2/b2 so that nn/a can be replaced by 1. 
1 

In addition K/l > hl/2tE > 0.01. say, so that terms in K can be neglected. Tbe ratio of 

the fourth term of the numerator of the fraction to the third, which in itself is small, is 1 
approximately and may also be neglected. Therefore:- 

. . .  . .  . .  (28) . .  . .  . .  2CL 2tL2 +- (C + c + L ft = D12 + 
Hence:- 

for which n - - - 2 (3(1 - a2)CLj’i3 
a nt 2E(C + L) ’ 

This makes Zh * which may well be as low as 1, in which case the approximation 
made would not be acceptable. 
better approximation in place ,of equation (28) might be:- 

From an inspection of equation (23) it would appear that a 

.. .. (29) .. .. . .  2CL tanhlh 2tL2 
+ C+L - ft = D12 + - C + L  1 

12 



Using the previous value of t we have:- 

This second approximation will be inaccurate if lh < 3/2, so psCL/E(C + L) > 2 is an 

It should be noted that q = 1 is not the threshold between long-wave buckling and wrinkling, 
Though indeed the wavelength shortens 

for the wavelength no longer holds as 17 

We will now show that out-of-phase buckling modes do not occur; that is modes with w as 
By repeating the same process as for in-phase buckling an equation like 

approximate condition of validity. 

but only the boundary of validity of expression (26). 
as 17 tends to zero, the expression 2b - approaches one. (; ; Y2 
an odd function of z .  
(23) will be derived except that cosh lh and sinh Zh will be interchanged. 

Considering long-wave buckling first, put tanh Zh = lh - +12h2 as before, giving:- 

.. (31) 
n2z2 C + 4Kh(C - L)  - hZ2[(C - L)t + $Khz(C - L)] 

h[L + KhC + +Z2h2(C - 2 L  - KhC)] - ft = ~ 1 4  + L 
a2 

As a first approximation write:-- 

n2z2 - ft = D14 + C/h a2 

so that for a minimum ( ~ . n / a ) ~  = ( ~ / b ) ~  + C/Dh whence ( J L Z ) ~  > ( ~ n h / a ) ~  > Ch3/D = 
12(1 - 2) (h/t)3 C/E which in general gives a greater value of lh than the approximation will 
stand. Now the full expression (31) will yield an even greater value of lh, since its second term 
on the right-hand side is a decreasing function of 1 instead of a constant as first assumed. It 
is therefore concluded that long-wave out-of-phase buckling does not arise. 

With regard to short-wave out-of-phase buckling we will obtain the same expression as for 
in-phase buckling on putting tanh lh = 1 for the first approximation.. However for the second 
approximation the result -of interchanging cosh Zh and sinh Zh will be the counterpart to 
equation (29) with coth Zh for tanh lh, clearly leading to a greater critical stress. 

Aeolotropic Filling.-The solution t o  the equilibrium equations (20) for the filling are:- 

.nzx mzy w = (W1cl + W2c2 + Wl'sl + W2's2) sin - sin - a b 

nzx mzy 6 = Z{d,s, + d2s2 + dl'sl + dz's2} sin - sin - a b 
. .  

where c, = cosh K ,  12, s1 = sinh k,Zz etc. 

K1, K 2  are the roots of LCk4 - (AC 2 2LF - F2)k2 -l- A L  = 0 

Wl/d, = Wl'/dl' = ( F  -+ L)K,/(L - k,"C) etc. 

13 



Proceeding as for isotropic filling and considering only the even part of w, we have on 
substituting for w and 8 into equations (22) :- 

Wlcl(K - &Z2) - d,(Zs, + KK~C,) = - W,c,(K - $tZ2) + dZ(Zs2 + KKZC,) 

/~[(CK,Wl + F'4 ) s ,  + (CKZW2 + F&)s21 \ 
and 

n2z2 - ft = DZ4 + \+ *tLZZ [(W, - K l 4 ) C I  + (W,  - k 2 A 2 ) C 2 I I  

a2 W,C, -1- W2c, 

As an approximation for long-wave buckling (Zh small) put c, = c2 = 1, s, = k,Zh and s2 = K,Zh 
so that:- 

K F  - &tZ2(F + L)  - Z2hL - - 
(K  + Z2h)C 

- K,BW, + K , 2 W ,  
w, + W2 

and 

- (h + +t)2Z4L 
- 

K + Z2h 

f - (P + u2 . (" + 
- , which is the same expression as derived for an 1- Zp G2(G2 + m2 + q )  

z.e., 

isotropic filling (equation 25) by a comparable approximation. 

For short-wave buckling (Zh large) put Ci = c,  = s, = s2 so that equations (32) become:- 

k ,  [KF - +tP(F + L )  + KK,2C]k, + (k,2C - L)Z w, - - w,- [KF - $tZ2(F + L )  + KK,2C]K, + (K:C - L)Z 

n2n 
a2 w,+ Wz 

and - f t  = DZ4 + 
KF2 + FC(K,2 + k,2) + k,2K,2C + ZC(F + L)(K, + K,) 
+ +tZ2[LC(k,2 + K,2)  - C2K,2k,2 - 2C(F + L)K,k, - P] 
+ $-tZ3C(F + L)K,K,(K, + k,) 

qck,K, + L )  + KCk,h2(k, + k,) 
= DZ4 + 

For similar reasons to those given for short-wave buckling with an isotropic filling, put nn/a = Z 
and neglect terms in K and t2Z3, so that:- 

LC(K, -+ K,) + +tL[LC(K,Z + @) + 2 ( F  + L)CK,K2 - K,2k,2C2 - F2] 
qxh + L )  ( F  + L)(C1hK2 + L) 

f t  = DZ2 + 
14 



Lc(K1 f '2) ]'" so that 
{2D(Ck,kz + L) which is at least for nn/a = I = 

. .  . .  . .  (33) 
. .  fc - SEC(~'Z - F)(v'AC + 2~ + F )  

16Lz(1 - o2)(dE + L)' - L -  ( 
on substituting for k,, k ,  from the quadratic in K2. 

This formula only holds when K,Zh and K,Zh are large, say greater than 2, so that an approxi- 
mate condition of validity is:- 

Honeycomb FiZZing.-It is assumed that this type of filling has no stiffness in the plane of 
The solution to the equations of equilibrium of the filling the plate, so that A = N = F = 0. 

now become:- 
nzx mzy w = {W, + W,Z2z2 + W,'lz} sin - sin - a b 

n m  mny 
6 = I{W,lz - W2(eZz - +Z3z3) + W,' + QW2'Z2z2} sin - sin - a b 

where E = 2C/L.  

Proceeding as in the previous two cases for in-phase buckling we obtain on substituting for 
w and 6 in equation (22) 

W ,  .z(K,+ HI2) - (4h + #t)h2Z4 wz = (h + $t)P 

where . .  .. . .  . .  .. .. (34) . .  . .  

This is.of the same form as obtained for an isotropic filling (24) and approximates t o  precisely 
the same expression (25) obtained for the other two types of material for long-wave buckling 
whenq > 1. 

When AZ is large compared to (1 + q), an alternative apprbximation may be made:- 

15 



for which 1 E 2  = { Q -k 1 ) ( 3 ~ 5 * ) ~ / ~  - I ]  * 

This approximate form corresponds to an in-phase wrinkling. It does not necessarily give 
the critical strees since the full expression may have more than one minimum. 

The critical stress computed from the full expression is plotted as f J L  versus ,U for the range 
of rj of 0.1 to 20 at Figs 4 to 7 for values of 66*q/p = (1 - u2)L2/EC of 2.5 x 10P4, lop*, 
2 -5  x 10-5 and 10-5 respectively. 

For out-of-phase buckling we consider the odd part of w, i.e., W21x sin (nnx/a) sin (mnylb) and 
obtain directly: - 

n2n 
a2 - ft =. DP + C/h 

so that 

for which 

Hence . .  (35) 

This mode is short-wave buckling or wrinkling and is shown as the limiting lines on Figs 4 
to 6. 

These results for honeycomb filling are basically those obtained by Hemp (R. & M. 267Z2), 
who made use of the fact that for such a material 2, and 2, are functions of x andy only (see 
equations 3 and 4), thereby being enabled to integrate the equations of equilibrium of the filling 
directly. 

It will have been noted that the displacements of a filling of isotropic or aeolotropic material 
contain hyperbolic functions of z while those of a honeycomb filling do not. This indicates 
that a disturbance initiated at  the boundary of a large mass of the former would be dissipated 
while that in a honeycomb material would be transmitted indefinitely. However unreal the 
latter may appear, the possibility of the elastic form considered being a fair approximation to 
the truth is not precluded when confined to plates of no great thickness. 

6. Simplijed Mechanism of Long-Wave BuckZing.-The most important result so far obtained 
is that over a great range of conditions the long-wave buckling stress of flat panels in compression 
is independent of the form of the filling: of its elastic constants only the transverse shear modulus 
is of concern. It will now be shown that the approximation leading to the common formula 
for the critical stress is equivalent to the replacement of the actual filling by an idealised form, 
allowing the development of equations treating the plate as a whole. This concept greatly 
facilititates the handling of problems where the use of a double Fourier series becomes unwieldy. 

In the theory of thin plates it is usual to consider the central surface as inextensible and that 
fibres initially perpendicular to it remain so. This approach, which in particular neglects shear 
deformation, results in the equivalent plate theory when applied to sandwich plates. If we 
denote by f e  the failing stress according to the latter theory of a simply supported panel in 
compression, we have 

16 



fe = nzE(2h (1 - o ” ) z  + t ) z  so that we can rewrite the formula 

If we denote by P, the shear stiffness, ZhL, of the filling and by P, = 2fet the strength of 
the panel according to equivalent plate theory, then q 1 4P,/Pe, so that parameter, 7, is a 
measure of the shear stiffness in terms of the strength of the plate as a whole and also of the 
accuracy of the equivalent plate theory. 

It is therefore natural to modify the equivalent plate theory by some such device as assuming 
that the fibres initially normal to the neutral surface remain straight but deflected by the action 
of shear forces, necessarily assumed uniform across the filling. This leads to the following 
formulae for the displacements of the central surfaces of the faces:- 

24,- - ( h + $ t ) - +  - a u f  ax hZx L 1 
.. . .  

where the transverse displacement, w, and the filling shear stress, 2, and 2, are’assumed constant 
along any normal. 

Hence, neglecting the stiffness of the faces themselves, we have:- 

I -  
- h M = -- 

ay 

where nX, I@!,, a,, are the stress couples of the sandwich as a whole. 

For equilibrium:- 

and 

so that 

and 

!= . .  . . .. 

J 
Now for a plate in compression the condition for equilibrium of the normal forces is:. 

azw az, az, 
ax 2ft 2 = (2h + t)(-  ax + -) ay . . . .  . .  . .  . .  . .  

(37) 

(39) 

B 
17 
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which on eliminating (2 + 3) gives 
ay 

If w = W sin (nnxla) sin (mzylb) then from equation (38) it follows that 
Hence by equations (37) are also proportioned to sin (nnx/a) sin (nzzylb). 

well as w = 0 at the edges x = 0, a and y = 0, b of the panel, satisfying the boundary conditions 
for a simply supported panel. 

Substituting for w in equation (40) gives 

'' 
( 1  + r l ) z '  

which result is the same as (26), and demonstrates that the f c  - (P + . 
L -  lu 

that  is - - 

approximation leading 'to .the common formula for the long-wave buckling stress is equivalent 
to accepting the simple concept of shear deformation enunciated earlier in this section. 

7 .  Long,, Flat Panel with Clanz$ed Edges under Uniform Covzpression.-VC'e will define clamping 
of the edges by the boundary condition ze, = awlay = 0 holding throughout the thickness of 
the plate. This implies that the filling as well as the faces is fullv constrained, a condition not 
likely to be attained in practice, but it is of interest to investigate the effect of maximum 
constraint. 

Consider long-wave buckling, for which the approach outlined in the previous section is 
suitable. 

Equation (40) states:-- f F4w 
-G 4- 

2P 
Assume that w = W ( y )  sin ( A m / b ) ,  which, when substituted into the above equation, gives:- 

d4W A2n2 

dY4 
. .  

The failing stress will be least for the simplest wave-form across the panel, so that 
be an even function of y ,  if the edges are taken to be at  y = f b/2.  Therefore put 

2w.y 2PY . W = .A cosh - + B COS - b b 
The boundary conditions w = awlay = 0 at y = & b / 2  reduce to i-- 

1 

A cosh w. + B COS ,6 = 0 
a A  sinh 01 - ,623 sin /I = 0 

M tanh U. $- p tan B = 0 .  Hence 

Also 

and 

. .  . .  . .  . .  

M 2 P 2  = 16 [ d  (1 + 3) - 11 J 

(41) 

W must 

since W satisfies equation (41). 
18 



These last three equations are solved numerically by finding the least value of 7 corresponding 
It is found that the following expression fits the numerical results within 

per cent:- 
to a given value of 4 .  

- f e  
r3  alternatively j - 

- 7g3 + 3 . 6 8 ~ ~  + 3.67 - 1.3 

where j e  is the equivalent plate critical stress for the clamped-edge condition. 
Equations'(42) break down when q passes through unity with the wavelength tending to zero 

in a similar fashion to the approximation in the simply supported case. 
It will be noted that the critical stresses for both cases tend to the common value of 

L ( p  $- l ) * / Z p  as 7 tends to 1, presumably due to the lessening influence of boundary conditions 
with decreasing wavelength. 

The correction factors to the equivalent plate stresses for both cases are plotted a t  Fig. 8 
and the buckling half-wavelengths are plotted against 17 at Fig. 9. 

8. 'Simply Supported Curved Plates under Uniform Com$ression.-In the first instance we 
shal1,regard the problem of curved plates under long-wave buckling as an extension of that of 
flat plates 'as treated in section 5. We will assume that w and 6 can be expanded in powers 
of h/R, viz.:-- 

hw* hr2w** 
R R2 U' =' w, + - + - + . '  

+ . . . ,  hd* ' h2d** 
6 = s o +  -+- R R2 

where w,, w*, w** may be expected to be of the same order. Clearly w,, 6, will be the displace- 
ments of hypothetical flat plate of the same dimensions constrained to buckle with the same 
wavelengths (i.e., the same m and n) and are therefore known functions. 

Substitute these expansions for w and 6 into the equilibirum equations (8), ( l O ) ,  (15) and 
(19) and neglect second order terms. In effect all terms in l /Rz  other than the term 
Etw,/(l - 02)R2 arising in equation (19) are ignored. It should be noted that such terms as 
Fhw*/R2 that arise are small since Fh is small compared to Et, while all derivatives are small. 

Now since w, and 6, are a solution to the equations obtained when the terms in l / R  are ignored, 
the equations of equilibrium of the filling (8) and (10) on the substitution of the expansions, 
reduce to 

where F1, F ,  are known functions of x independent of w* and 6*. 

Put w* = w, + w, + w, 6" = 6,  + 6 ,  + s, 
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where w, and 6, form the particular solution of equations (44) and (45) and w, and w, are the 
odd and even parts of the complementary solution; 6, and 8, correspond to w, and w3 and are 
even and odd functions of z respectively. 

From 
equations (8) and (10) it will be seen that F ,  and F ,  are even and odd respectively, so that w, 
and 6, are odd and even respectively, the opposite of w, and 6,. 

First suppose that w, is an even function of x and therefore 8, an odd function. 

In a similar fashion equation (15) for the equilibrium of the faces reduces to:- 

where F ,  is an odd function of x, and the top and bottom signs refer to the faces x = & h. 
Adding the two forms of this equation corresponding to the two faces together we obtain:- 

Now w, and 6, are also a solution of this equation and in addition w,, 6, and w,, 8, are both 
complementary solutions of equations (44) and (45) and both w, and w, are even functions and 
6, and 6, odd functions. Since both pairs of functions only contain two constants of integration 
apiece, they must therefore be identical except for a common factor. Hence the addition of 
hw,/R to w, makes no difference to the solution and we may put w, = 6, = 0. 

Since 
w,, 6, are a solution to the left-hand side of this equation taken alone, when f = fo the failing 
stress of the hypothetical flat plate, this equation now reduces to 

Consider the equation of equilibrium (19) for the normal forces acting on the faces. 

Etw, . .  . .  . .  
= F&O, no, WO) - ( I  - 2)RZ . .  (47) 

where F,  is an odd function of x. 

forms of the last equation corresponding to the faces, we obtain:--. 
As we have shown w* to be an odd function of x and 6" an even function, on adding the two 

. .  . .  . .  (48) . .  . .  f - (P + - 
L -  that is 

where e = 2b2/n2R(2h + t ) .  
r + (r + l ) e  + r(rir + (r -I- ~)e"1>"2 

r 2  - '1 - e2  For a panel m = 1, and ii2 has the nearest value to 
provided 7 > $[I + (1 +- 4 ~ ~ ) ~ 9  for q less than this value has no minimum, so,, that the 
approximation fails. The ratio of this stress to that of the corresponding flat panel is plotted 
at  Fig. 11. 

The odd functions w, and w, are not zero; they are determined by the two equations that 
are obtained by subtracting the forms of equations (46) and (47) corresponding to opposite 
faces from one another. 

20 
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It has already been observed that in deriving equation (45) for the equilibrium of filling a 
term of order w/R2  has been ignored, which may in fact be of consequence if the wavelength 
and radius are of the same order. The presence of such a term would make F ,  in equation (45) 
no longer an odd function and invalidate the argument. Nevertheless, let us extend our results 
to cover a complete cylinder. 

For the complete cylinder b = nR and wz can take the value zero in equation (48), so:- 

O 2  f - (P -I- f iz  +,) . .  . .  . .  . .  . .  I - 2p' ( n ~ q  qn 

where ?i2 has nearest value to eq / (q  Q) 

. .  (49) 

(1 - O 2 ) L R Z  

Ehi! andnow q = 

e = 2R/(2h. + t ) .  

For a long cylinder this may be written:- 

. .  . .  . 1  

provided z < 1. E t 
( I  - 2 ) L  * R where T =  

This result is plotted at  Fig. 12. 

It can be shown that the buckling half-wavelength is approximately z(1 - t )Rh ,  which for 
normal dimensions will be small compared to the radius but sufficiently large compared to the 
thickness not to invalidate the equations. It therefore seems probable that the expression for 
the critical stress is valid provided t is not too large, but as a check the same result will be 
obtained bv a different method. 

In section 6,  equations were derived for treating the flat panel as a whole; these will now be 
extended for curved panels. It will be assumed that equations (37) for the stress couples still 
hold; this can only be true for symmetrical buckling of a cylinder where the displacement ZJ is 
zero. Allowances must be made for the effect of the circumferential stresses due to curvature 
on the normal forces. Since we are dealing with the whole plate we must add the stresses of 
the two faces together, and these cancel except those due to the y-wise strain wlR arising from 
the expansion of the cylinder. Hence equation (39) is modified to:- 

Putting w = W sin (%%/a) sin (my/b) gives the previous expression 

. .  . .  (51) 

so that we arrive at  the same formulae for the critical stresses for a panel and for a cylinder, 
by either method despite the fact they form weaker approximations a t  opposite ends of the 
range of curvatures considered. 
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9. Simply Supported Flat Panel under an Uniform Shear Load.--(a) Short Panels.-For 
short panels in shear energy methods will be used employing the approximations developed in 
section 6 .  

Putting w = XWmn sin (nnxla) sin (mnylb), we have from equations (38) 
mn 

a 
f12 + m2 nn 

2h n2-l-m2+.I;r a 2, = ~ 

2h + L E ( -  

f12 + m2 mx . -  w,, sin cos 9) * b 
zy, = ~ 

i iz+mm"+17 b a 
2h + L Z (  

Clearly the boundary conditions 

From equations (36) therefore:- 

U = - (h + +tj C "17 
b 

re met for edges at x = 0, a andy  = 0, b. 

cos - sin - a b 
+iw,fl 

E' + m2 + 17 

a 
"q m W m n  
b v = - (h  + i t )  E{ 

E2 + m2 + 7 

Neglecting the contribution from the bending of the faces, the strain energy of the panel is:- 

! L n2 (ii2 + m2)3W2,n 
h b  + - 7 ( h  + *t)2 C 

(E2 + m2 + d 2  

- n2 at (,U + 1)2 (a2 + m2)2W2,n _ - -  
8 b  ,U L Z  i i " m Z + q  * 

The work done by the shear force 2qt on buckling is:- 

Hence 



The critical stress is that value of q which makes the following system of equations 
compatible :- 

. .  

L n2a (/A + 1)2  A = - -  
q 64b ,U 

where 

If we order the double sequence of terms W,, in some manner so that it can be represented 
by a single sequence Bi = W,, then the last equation can be written as 

m 

C aijQ, =: ,IQi, i = 1 to CO . 
I =  I 

An approximate answer for 2 is obtained by considering a system of equations for the form:- 
k 

This is tantamount to ignoring all aij, i > k with j  -6 K, and assuming that A and Qi, i = 1 to k ,  
found from the last equation together with 0; = 0, z > k ,  is a reasonable approximation. This 
is unlikely to be the case if any ad, i > K, j < K are not small though the condition for them 
to be small is sufficient rather than necessary. When p = m + 1, q = n + 1 the coefficients 
of equation (52) ,  on dividing through by q ,  are approximately - - 
n not small. As m and n increase together this quantity will not be small when (E2 + m2) is 
of the order of q .  Therefore an accurate solution cannot be expected unless q is reasonably 
large: the minimum value of q will depend on the ratio a/b,  for as this departs from one more 
equations have to be considered since +i moves more slowly as n increases. For a = b it is 
suggested that q should be greater than 10. 

The equations (52) split into two systems, for since (wz - $) and (q  - n) are both odd 
numbers, (@ + q) is odd or even whenever (m + n) is odd or even, so that terms W, with (i + j )  
both even and odd do not occur in the same equations. The system with (m + n) even may 
be expected to give the least value of q,, since it contains terms corresponding to the longest 
wavelength. 

If terms involving suffices m and n greater than three are ignored, the characteristic deter- 
minant of (52) reduces to:- 

mn + [ (E2 f m2)/q1 for and 
(B2 + m2)Z 4 

1 
c,, 
4 
9 
- 

0 

0 

0 

4 
9 

A 

- 

c,, 
4 
5 

4 

I- 

- 5  

36 
25 

0 

4 
5 

0 

A 
c,, 

0 

0 

36 
25 
- 

0 

0 

1 
c,; 

= o  



8' + m2 + r j  

(2 + m')' where c,, = 

4(b/a)' + 4 + 2@25 2025 
- 50625[1 + + 1 + 9(b/a)' + 9 4- @/a)' 
- 

706 2025 '- ' [[l + ( b / ~ ) ~ ] '  [I + 9(b/n)']' [9 + (b/a)']* 

Hence for a square plate:- 

and for a plate with dimensions in the ratio 5 : 4 

4 c  = 3*92(p + 1)' - 
L P((V + 6*56)(rl + 4*07)11'2 * 

These results expressed as correction factors to the equivalent plate stress, i.e., q/{(q + 8) 
(7 + 5.19))1/2 and v / ( ( q  + 6 - 5 6 ) ( ~  + 4.07)}1/2 are plotted at  Fig. 13. 

(b) Long PaneZs.-A solution is possible by a method analogous to that used in section 7 
for the panel in compression with clamped edges. 

The counterpart to equation (40) is:- 

Put b 
7c 

w = sin - (nx + ay) A cosh E Py + A' sinh b 

I + cos 9 (Ax + ay){ B sinh py + B' cosh By b 

I + cos (1% + a 'y )  D sinh p'y + D' cosh 2 B'y b 

where a Jr i and a' f i p' are the roots of v in 

v 4  - 24bav3 + ~ ~ 2 ~ ~ 2  - z+,qa2 + r j ) v  + a* = o . . . .  . .  . .  (56) 

4 = 2 P q / L ( P  + 1)'. where 

Take the boundary conditions to be w = a%/ ax' = 0 a t  y = & b/2. 
either the primed or t4e unprimed constants of integration are zero. 
solutions are the same except for a shift in the origin of x by a quarter-wavelength. 

It is easily shown that 
The two alternative 
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The boundary conditions now reduce to:--- 

n a  x sec2 - tanh - @ , 2 2 
xa’ sec2- tanh 3,6’, 2 2 

I 
zcc z a  tan - - tan - 2 2 

x a  n ), (7’ - y” + Zap  tan - tanh - @  tanh2 2 8’ 2 2 2 a p  (1 + tan2 tanh2 2 p) ,  2a’P’ (1 + tan2 2 2 2 2 
n a  - 2a’B’ tan - tanh 

x a  na’ 
y 2  tan2 - - y” tan2 - 2 2 

) -2agtanh7G,6+2a’B’tanh74@‘ 2 + 2a‘,6‘ tan ?E‘ tanh 748’ , 

2 

za’  n 
2 2 y r 2  sec2 - tanh - p’ (y’ sec2 7 tanh E 2 

2 ) 2 2 2 2 + 2 a p  tan - tanh’ - p , z a  

. .  . .  . .  (57 = 0 . .  . .  . .  

where y 2  = a 2  - p 2 ,  y ‘ 2  = %’2 - p. 

From equation (56) we have 

. .  . .  . .  . .  (58) a + a t  = .#?. . .  . .  . .  . .  . .  

. .  . .  . .  (59) a2  + a‘2 + p 2  + 8 ‘ 2  + 4ax‘ = 21.2 . . . .  . .  

a(a’2 + 8’2) + a‘(cc2 + 8 2 )  = +A(l .2  -+ q )  . . . .  . .  . .  . .  (60) 

. .  . .  . .  (61) (2 + p”(a’2 + 8 ’ 2 )  = A4.  . .  . .  . .  . .  

The equations could be tackled in the following manner. For a given value of +A a set of 
curves can be plotted of /3 versus ,6‘ for different a by means of equations (57) and (58). A second 
set of such curves can be plotted by means of equations (58), (59) and (61). The intersection 
of corresponding curves gives a pair 8,  8’ for every a :  these can be converted to a pair A ,  7 for 
every CL by means of equations (58), (59) and (60). Repeating the process for several values 
of +A a set of curves of A versus 7 for different .#A is obtained; this can be converted to a set of 
curves of C/I versus il for different q giving the critical stress for values of q.  

As the computations involved are longer than can be readily undertaken, resort is made to 
an approximation analogous to that used by Timoshenko3 for the long, homogeneous plate. 
Assume therefore that 

w = W sin (zy/b) sin ( n / b )  (nx - my) where n, m are not necessarily integers. 

This assumes that the troughs of the buckling wave form are straight, which is well known 
not to be so, as is also obvious from equation (55). Furthermore, the conditions of simple 
support are imperfectly satisfied. 

Instead 
of integrating over the whole panel for the strain energy and work, integrate over the 
parallelogram nx - my = 0, b;  y = 0, b, and we obtain respectively:- 

We now proceed as with the short panel and choose wz and n to give the least stress. 

1 4n P cn2 + (1 + + + n2 + (1 - + q 
n2tL (P + {n2 + (1 + m)2)2 (n2 + (1 - ??2)2}2 - .  

and 2mn 2qt 
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4 - (P + 
E -  8pmn [nZ + (I + m)' + q 

in2 + (1 + m)z>z (n2 + (1 - 
n2 + ( I  - m)2 + q 

hence 

To find nz, n to make 4 least, put n = 2/r  and m = S / Y  and differentiate giving:- 

Z ( Y  + s)U + (Y + q 2  - (1 + (Y + s)z>2 {(r + s) + 7 4  

- s)U + (Y - s)2> - (1 + (Y - s)')' ((Y - s) + rr> 
1 + (Y + sI2 + w2 (1 + (Y + s)2 + 7 Y 2 Y  

(1 + (Y - s)2 + 7 Y 2 2 2  

4s(r + s){l + ( y  + s)22 - 2s(r + s)U + (Y + )s2Y - (1 + (Y + s)2>2 
1 + (Y + q2 + T Y 2  1 + (Y + s)2 + v2 

4s(r - s)(l + (Y - sy} (1 $- (Y - s)2}' 

1 + (Y - s)' + qr' 1 + (Y - s)2 + qrz 

= o  + 1 + (Y - s)Z + "172 

(1 + (Y + s)2 + T Y 2 Y  

2s(r - s)(l + (Y - sy}' 

and 

- = o  - 
+ (1 + (Y - s)2 + qY2}2  

Approximate by expanding the latter pair of expressions in terms of 1/17 and neglecting 
second and higher order terms:- 

1 
7 Y  

(Y' - s' - l)(rZ + s2 + I)  = { P  - 3P(l + 6s' + 5s4) - 2(1 + 9)') 

and 9(6y2 + 3s' + 2) - (1 + Y')' 

For q very large we find Y = (3/2)'" and s = (1/2)''' and as a second approximation we 
obtain:- 

Y = &1- ;) 

To give the correct stress for very large 7 the constant in the above equation should be 2.69 
instead of 2-83: this discrepancy is the same as that found for the homogeneous panel in Ref. 3 
and is due to the initial assumptions. It is likely that the other numerical constants in 
equation (62) will have the same order error. 

As r decreases the buckling wavelength shortens as in the other cases; also the angle the 
trough in the wave form makes with the sides sharpens slightly. 

At Fig. 13 are plotted the correction factors to the equivalent plate stresses for the three panels 
for which formulae have been derived. 

If a parabolic interpolation of the form K ,  - (K,  - K , ) ( l ~ / a ) ~  is made between the curves 
in Fig. 13 for the square and the long panel, a good fit is obtained for the curve for a : b = 5 : 4, 
which suggests that such interpolations may give reasonable results for all values of a : b. 
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FIG. 1. Co-ordinate system. 
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FIG. 2. Critical compressive stress for simply supported flat panel with isotropic filling. 
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FIG. 3. 
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Critical compressive stress for simply supported flat panel with isotropic filling. 
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FIG. 4. Critical compressive stress for simply supported flat panel with honeycomb filling. 
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FIG. 5. Critical compressive stress for simply supported flat panel with honeycomb filling. 
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FIG. 6. Critical compressive stress €or simply supported flat panel with honeycomb filli .ng. 



FIG. 7. 
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Critical compressive stress for simply supported flat panel with honeycomb filling. 
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FIG. 8. Critical stresses of long flat panels in compression, 

34 



J w 
Z 

a4 

E 
3 

r n l  I I I I I I I I I I I I I I  I I I I I I I I I 1  I I I I I I I I I I 1  I I 1  I I I I I I I I I  I I I I I I I I I I I 1  I I  1 1 1  I l l  1 
1 0  20 30 40 50 60 fo 

PARAMETER = (I-s2)LbyTP Eht Y 7 
F I G .  9. Buckling half-wavelength for long flat panels in compression. 

35 



F IG.  0. 1 

U 
RAT10 OF PANEL LENGTH T O  WIDTH (?G- 

'actor of increase in critical compressive stress for simply supported panels 

i 

of short length. 

36 



2 4 Q 8 10 

PARAMETER bpR(2h+t)  

FIG. 11. Factor of increase in critical compressive stress due to  curvature. 
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FIG. 12. Critical stress for cylinder under axial compression. 
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FIG. 13. Correction factor t o  equivalent plate critical shear stress for.flat panel. 

m 
E 
2: 



Bublicaeions of the 
Aeronautical Researeh Council 

I 

A J Y ~ ~  TECwIaJHCAL REPORTS OF THE .&ERONAUTICAkBk JRESEARCI3 COUNCIL 
(BOUND VOLUrnS) 

1936 Vol. 1. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9s.) 

1937 Vol. 1. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. ~ o d . )  

1938 Vol. I. Aerodynamics General, Performance, Airscrews. SOS. (51s.) 

1939 Vol. 1. Aerodynamics General, Performance, Airscrews, Engines. 50s. (50s. II~.) 

Vol. 11. Stability and Control, Structures, Seaplanes, Engines, etc. SOS. (50s. Iod.) 

Vol. 11. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (61s.) 

Vol. 11. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (30s. ph) 

Vol. 11. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 

1940 Aero and Hydrodynamics, Aerofods, Airscrew, Engines, Flutter, Icing, Stability and Control, 

1941 AeIo and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 

1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 3d.) 
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 

1943 Vol. 1. In the press.) 
Vol. 41. t h the press.) 

dfuiTNlLJAlL rnPORTS OF THE mRONbUTKCu rnSBARCH CQ=IUNCHL- 

j 

63s. (64s. z d )  

Structures, and a miscellaneous section. 50s. (51s.) 

63s. (64s. 2d.) 
1 
I 

47s. 6d (48s. sd.) 

1933-34 IS. 6 6  (IS. ad.) 1937 25. (25. Zd.) 

1939-48 3s. (3% Zd.) 

1934-35 1s. 6d. (IS. Sd.) I938 IS. 6d. (IS. 8d.) 
April I, 1935 to Dec. 3x9 1936. $S. (4. 4d.) 

DmBX TO ALL R..EPORTS AND 1 W M O U N D A  PUBLIISFLED IN THE UNPJWM- 

April, 1950 - - - - - R. & M. No. 2600. 2s. 6d. (ZS. 7@.) 

AUTHOR HNDEX TO LULL REPORTS AND IW3iMOUPJDPa OF THE AERONAUTHCM, 

TECmHQJWIL REPORTS AND SEPAMTIELY- 

1 

P&SBrnCH COUSNCILH, 
1909-1949 - - - - - R. & M. NO. 2570. 155. (15s. 3d.) 

hlBTTDEXEB TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH 
COUNCHn;-- 

December I, 1936-June 30, 1939. R. & M. No. 1850. IS. 3d. (IS. 44d.) 
July I, 1939 - Jmle 30,194s. R. & M. No. 1950. IS. (IS. rid.) 
Jdy  1, 194s -June 3 0 ~  1946. R. & M. No. 2050. IS. (IS. 14d.) 
Jdy  I, 1946-December 31, 1946. R. & M. No. 2150. IS. 3d. (IS. 43d.) 
January I, 1947 -June 301 1947. R. & M. No. 2250. IS. 3d. (IS. 4Bd.) 
July, 1951. - - - - I R. M. NO. 2350. Is. 9d. (15. IoBa.) 

Prices in brackets inch& postuge. 

Obtainable from 

HER IYMJESTY'S STATIONERY OFFICE 
York House, Kingsway, London, T9r.C.z; 423 Oxford Street, London, W.1 (Post 
Orders: P.O. Box 569, London, S.E.1); 13a Castle Street, Edinburgh 2; 39 King Street, 
Mancliestcr 2; 2 Edrnund Street, Birmingham 3 ;  I St. Andrew's Crescent, Cardiff; 
Tower Lane, Bristol I ;  80 Chichester Street, Belfast or through any booksellcr. 

--_. I - a  _e___ -- -. " .--- _. 1 - 
__I.- I _. __ 

8.0. Code No. 23-2778 


