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Summary.--The drag of a non-lifting swept wing of infinite span is investigated for supersonic flow when the Mach 
lines from the wing apex lie ahead of the wing leading-edge. The wing section is assumed to be arbitrary but identical 
over the entire wing-span. The drag is found according to the linear equations of supersonic flow by considering the 
flow due to a system of superposed source planes. 

The drag of such a wing is found to be finite and the effect of the speed of flight independent of the section shape 
assumed. The variation of drag with the section shape is shown to be proportional to the integral over the chord of 
the product of the local wing thickness and the value of the excess pressure existing in incompressible flow at the same 
position. The drag of wing-sections given by certain types of formula is evaluated in general terms, and some numerical 
results are given : the drag of sections with bluff noses and finite trailing-edge angles is generally between 0 and 15 
per cent greater than the drag of a wing of the same sweep and thickness having a biconvex section. 

Finally, methods of reducing the drag by changing the section shape are considered. 

1. Introduct ion.--A question which is often raised in connection with supersonic aircraft 
is : how does the section shape affect the drag of a swept wing ? Experimental information on 
this point is at present limited, and the existing theoretical work is largely confined to wings of 
biconvex or double-wedge section: it is possible to determine the theoretical wave drag of 
other sections, but with the more '  realistic ' types of section shape the expressions to be evaluated 
are so lengthy that  the amassing of a comprehensive set of results presents a formidable prog- 
gramme of computation". Not only would such an analysis have to deal with the effect of section 
shape, but also with the variation of drag with aspect ratio and taper ratio, as well as with 
flight speed. 

We shall here t ry  to isolate the effect of section shape, by dealing only with constant-chord 
wings of infinite span having the same section at all spanwise positions. Clearly there is then no 
variation of aspect ratio or taper ratio to be considered ; nor, as we shall see, does the effect of 
flight speed modify the 'relative drag of various sections. We assume that  the speed of flight is 

* R.A.E. Tech. Note Aero. 2073, received 3rd April, 1951. 
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sufficiently low that  the Mach lines from the wing apex lie ahead of the wing leading edge;  
this is the only case of interest at the present t ime--indeed,  if this condition is not satisfied 
the question we have posed is a trivial one. 

It  might seem that  results for an infinite wing would, even so, be of little application. Certainly 
the results obtained do not apply exactly to finite wings but there is good reason to suppose 
that  they will afford a guide to the general problem as the drag of a finite constant-chord 
swept wing is concentrated in the region of the root, and above a certain aspect ratio, increases 
in the span cause little or no increase in wave drag, as will be shown below. 

Again, it may be objected that  the effects of taper ratio are important ; this is certainly so, 
but  a comparison of the relative drag of tapered wings of various sections would obviously 
depend upon the choice of a representative line of sweepback. No general conclusions on the 
effect of section shape alone can be drawn if the effect of varying sweepback is also included. 
This problem is outside the scope of the present investigations. 

We shall deal with sections, amongst others, which have round noses and for 'this reason we 
have to find the drag on a streamtube rear the wing surface and then to find the drag of the wing 
by allowing this streamtube to approach the surface. This method is necessary as R. T. Jones 
has shown 5 that  in the type of ' subsonic '  flow existing over the wing far outspan there is a 
contribution to the drag associated with the singularity at the round nose which is not included 
if we merely intergrate the pressure over the wing surface. 

From the general theory for the drag of an infinite wing we shall consider three applications : - -  

(a) We shall state the results in several forms which are of particular use when the wing 
section is defined by certain types of formula, or its subsonic pressure distribution is 
known. 

(b) We shall work out a few numerical examples to show the relative drags of various types 
of well-known sections. 

(c) We shall seek to find what features of the wing geometry are of importance both from 
the aspect of contributing to the drag and of reducing it. 

2. Drag of an Infinite Swept Wing . - -Accord ing  to the three-dimensional linear theory of 
supersonic flow 1, a uniform plane distribution of sources in the plane z ----= 0, bounded upstream 
by the line y -= m(x --  ~) and by the x-axis will produce, if 

- -  2 ) =  < 1 

i.e., if the Mach lines, from x = ~, are ahead of the plane source, a pressure distribution given by* 

f 
dp 2 n~ t 

q - 

L 
arg cosh .. (1) 

( x  - + (1 - 

where X = x - -  y- , a n d ,  is a constant. 
f/¢ 

* H e r e '  arg cosh '  denotes the inverse hyperbolic cosine, as in American papers ; later the funct ion ' l n '  is in t roduced 
to denote na tu ra l  logarithms. 
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The distribution of velocity in the z-direction is given by 

f* w _ a dx  
U az - ~  (2) 

and it may be shown that  as z -+  O, 

w 
U - -  sgn(z) e fo ry  ~> O, X > 

= 0  fo ry  >~ O, X < ~ : , a n d f o r y  ~< 0 J 
(a) 

Thus, for small values of e this discontinuity in normal velocity satisfies the boundary con- 
dition for a semi-infinite oblique wedge having a small wedge angle 2e, as shown iffTig. 1. 

Similarly, by  superposition, it may be shown that  a uniform plane distribution of sources in 
the plane z = 0 bounded upstream by the lines y = -¢-m(x - -  ~) will produce , if ~ ~< 1, a 
pressure distribution given by 

i.e., 

A p  = e[ f ( x  - -  8, y ,  z) + f ( x  - -  ~, - -  y ,  z)] 
q 

A p  _ 2eg(x - -  ~, y ,  z), say . . . . . . . . . . . . . .  (4) 
q 

where, from (1), 

f 2 
f ( x  - -  ~, y ,  z) = - 

I 

L 

arg cosh 
x-~--Y)~ +(2-~) 

and which satisfies the boundary condition for an infinite oblique wedge symmetrical about 
the x-axis and having a small wedge angle 2e. 

For the purposes of the present investigation we shall define such infinite source planes by  
their leading boundaries, and we shall call the quant i ty  e the strength of the source plane. Thus 
a system of such Source planes formed by : 

(a) a source plane bounded by y = 4- m x  of strength z'(O), 

(b) a distribution of source planes bounded by y = 4- m ( x - - ~ )  of infinitesimal strength 
z"(~) d~, for all values of ~ where 0 ~< ~ < c, 

(c) a source plane bounded by y = ± re (x - - c )  of strength - - z ' (c ) ,  

will together yield a flow which satisfies the boundary condition for an infinite swept wing 
with leading edges along y = -b rex, trailing edges along y = i re (x - - c ) ,  and a thickness 
distribution z = 4- z ( X )  as shown in Fig. 2. 
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The normal  veloci ty  dis t r ibut ion at  any  point  due to the sys tem of sources described above 
is given by  

U - az z' (0) g(x ,  y ,  z) d x  - -  z'(c) g ( x  - - c ,  y ,  z) d x  
o o  o o  

~z ~ g(x --  2, y,  z) dx d2 
o o  

and  since g = 0 in front of the  Mach cone from the point  x = 2, y = O, 

w flz,(2) g u -  ~a2 . . . . . . . . .  (s) 

Similarly, the  pressure dis t r ibut ion is given by  

~ P -  2 ~'(~) ~ d~ . . . . . . . . . . . . . . . . .  (~) 
q 0 ~x 

Here  the pressure field is described as due to a superposit ion of source lines each giving an 
incrementa l  normal  displacement  z'(2)dS. This form of description is preferable to t ha t  of 
superposed source planes if z'(0) is infinite. 

Consider an infinite s t r eamtube  enclosing the  wing whose section far ups t ream in the  plane 
x = constant  is formed of the  two s t ra ight  lines z = -4-~. 

The  equat ion  for a section of this s t r eamtube  in the  plane y = constant  is, according to the 
l inear theory,  given by  

clz w I 
dx --  U ly . . . . . . . . . . . . . . . . . .  (7) 

so tha t  the  drag on such a section is 

fll )(fl ) dz a p  dx = --  2q z'(~) ag ag q dx q ~ - ~ \ o o  ~ d ~  z'(~) ~xd~ dx 

where  y is t r ea ted  as a cons tant  and z is re la ted to x by  equat ion  (7). The drag on the  complete  
wing is t h e n  given by  

f; I+ (F )(fl ) D 8q lira ~g ~gd8 dx . .  (8) = - ~_+o ~y ~'(~) ~ d ~  ~'(~) ~-; . .  
d - - c o \ d 0  

where  the  l imit  is t aken  to mean  the value of the  in tegrand  as the  s t r eamtube  selected approaches  
the  surface, 
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From (4), if x - -  e >~ ~ ~/(y2 + z ,) 
m 

~g 1 
~ z  :¢ 

x - -  e - - ~  ~ y  

x - s +  + ( ~ - ) ~  

× Z t 

~ g  1 [  
Ox az 

(Y' z') -Y (x - e) mS+@ - m  

x - - ~ - -  + (1 --  /~) ~ 

+ 

y= Z 2 ) 
7 + @  + Y--(~- ~) ¢4¢ 

x - -  ~ + + (1 -- / ,2)  

and both  derivatives are zero if x --  ~ < ~ V'(y ~ + z~). 
m 

As was shown in Ref. 1, the integral  

~'(~) a~ 

vanishes as z - +  0, except for those values of x and y such tha t  for some value of ~ between 0 
and c, 

x _ e _ _ Y = o  
g/g 

i.e., on or near  the wing surface. Near  such a point, 

f z ( V(1 - ~,') limOg - - - -  ~ )  ~-+00z -'~ lim ~m ' z ~ ,-+0 x -  ~ --~ + (1 - - /~ )~-~  

and the integrat ion m a y  be confined to values of ~ close to ( x  _ Y ) .  
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Thus, near z = 0, we may write equation (5) as 

f 
o ~'(~) ~ 

~' ~ ~ V(~ ~ )  z2. • ~ (9) . - -  - -  , , , ' , , , , 

::" U ~ m  0 ( ~ - ~ ) ~ + ( 1 - ~ ) ~ m ~  

7£2 
so that inti:oducing independent variables X and y, from (7), -~ and z become independent of 

y ; and instead of (8) we may write 
C 

D = 8 q l i m  lim ag d y  d~ .~dX . .  . . . .  (10) 
" q ~ - - ' - - ~ O  b - . - . . ~ o  ~ v  X ,, 

But if(1 - - e ~ ) m  --y ) • ( X - -  ~)~+ (1 -- ~ ) ~  -- ( X - -  S) 

@ 2:r(1 -- ~2)8s2 arg cosh 

x -  ~ + (1 - ~)  Z 
~44 

e ( x  - ~)~ + (1 - e ~) @ 

@ + @  

~ 2 ( x -  ; ) ~ -  (1 + ~ ) ~  + ( x -  ~) 

~@ 4~ ~q-  4 ( X - -  ~ ) ~ q -  (1 - - e  2 ) ~ - t -  ( X - -  e) 2 
arc tan 

~ ] q 2  

2~ 

where 

2 ( x  - ~ ) / ~  - (1 + ,~) @ + ( x  - ~) 

~@ 4fl ~ -4- 4 ( X  - -  ~)fl q- (1 - -  #~) ~ q- (X - -  f)" 
arg tanh I B ( ~  -- f l ) ]  

2 @ 2 2 4(X--~)c~q-(1--t~ ) ~  (X--g)  (1--#~)m - / q - 2 ( X - ~ ) m  y q-(X--~) --# ra ) 
J 
i.t2 

4(X-- ~)~-}- {1-- ~=) ~ + ( X -  ~) . (1--~2) -1- 2(X-- ~) ~ -}- (X-- t:)2-- ~ 2 ~  m 1 
1/2 

B = 
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Z ~ 
(1 - -  ~ ) ~ -  ( X -  8)~ 

~ =  ( x  - ~) 
and  

= [ (1 - ~ ) ( x  ~)~ 

On the other  hand,  if 

= _ 

+ (1 + e')~ zvn~] 

2 ( x -  ~) 
( 1  - ~) 

,/( ") ( 1 - ~ ' ) Z ~ < ~  ( x - e ) ' + ( 1 - ~ ' ) @  - ( x - e )  

then  

Hence  if b ~ oo and  z --~ O, 

~xx dy 2~(1 --  ~2)~/~ 
1 

in 

( x  e)' + (1 - ¢) 

,~b ~) ( x - e )  S g n ( X  ~ ) + o ( ~ ) }  - [ z~] + c l + c ~  - 

where c, and c, are constants  involving b, and z has been included only in those .connections 
which affect the singularit ies of the integral  in the limit as z ---, O. 

N o w ,  

lim z'(~)[cl + c~ sgn (X ~)~d~ = 0 
tv----~O 

so tha t  

where  

D 
--  lim 

,p----NO fill'l-...,.. 

L ,/t 

( x -  ~). + (1 - ¢) 

v ,  - ~2 ( x = , )  + (1 - ~2) ~ , o ( x  - e) ~ + (1 - ¢ )  2 Z2 Z~ ' 



The integral involving V5 is merely proportional to the drag force on the given wing section 
in two-dimensional incompressible flow, and may be shown to be zero, Hence 

D _  lim f ~ :  V l d X .  
q VJ---)-O 

This integral may be simplified by finding the limiting value of the integrand as z ~ 0, and 
then integrating with respect to X whence 

; E;0 ] D 4m 5 3 - -  1.5 z(~) d~ dX,  
- ( 1  - 1.5) ,5 - x 

0 

an expression which we shall put  in a more useful form by writing 

X ~ t 
- s ,  - = z ( x )  = ¢ ( s )  

C C 

where t is the maximum thickness of the wing. 

Then, D 1 3 -- 1.5 I . . . . . . . . . . . . . . . .  (11) 
qmSt 2 -  = (1 - -  1*~)a/5 

where filll 1 
I = ¢'(s) ~'(~)in ~ , - - o  dsda . . . . . . . . . . .  (12) 

This equation applies to wings of infinite span. 

A more detailed examination of equation (10) will show that  for wings of finite span, far 
outboard the local drag is negative and tends to zero inversely as the cube of the span. The 
drag of a high aspect ratio wing is, therefore, equal to the drag of the infinite wing if we neglect 
terms of order 1/A 5 and higher compared with unity, where A is the aspect ratio. In terms of 
the drag coefficient based on the wing area S the drag of a finite wing of high aspect ratio is 
given by 

D _ (t/c) ~ 1 3 - -  t, 2 I 
CD -- qS tan A ~ i l  -- ~5)a/~ ~4 tan A 

For a wing of biconvex section I = 4,  and a comparison of this approximation with correct 
theoretical values for finite untapered wings of biconvex section is shown in Fig. 8. 

3. Applications of Result.--3.1. Drag of Some Elementary Wing Sections with Round, 
Angular and Cu@ed Edges . - -The quant i ty  D/qmS# as obtained from equation (11) is the product 
of two terms, one depending only on the Mach number and sweepback angle (i.e., on 1.), and the 
other a function only of the section geometry ; we may write 

D h(1*) Z 
qmSt~ --  

~4 1.5 
w h e r e  h(1*) = i  ~ (1 - -  1.5)3/5 

is plotted in Fig. 4. 
At a given Mach number, two infinite wings of the same sweepback and thickness have a drag 

which is proportional only to I :  accordingly the drag of various elementary sections* can 
usefully be quoted in terms of I as in Table 1 or Fig. 5. 
--  * I n  t h e  s ec t i ons  w h i c h  fo l low we sha l l  u se  t h e  t e r m  ' d r a g  of s e c t i o n s . . . '  w h e r e  we s h o u l d  m o r e  c o r r e c t l y  w r i t e  

' d r a g  of a n  in f in i t e  s w e p t  w i n g  w i t h  s e c t i o n s  . . . ' .  
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I t  may legitimately be objected that  the theory is not applicable to sections with round noses, 
because the perturbation velocities are not small in the region of the nose. In particular, at the 
wing-root leading-edge the pressure is infinite:  but far outspan the pressure distribution re- 
sembles that  in linearised two-dimensional incompressible flow. However the analysis in section 2 
remains valid if we allow z'(O) to approach infinity. 

Fig. 5 displays the fact that  sections having a continuous slope and round edges generally 
have a high drag. The drag may be reduced by sharpening the edges, and still further reduced 
by cusping. The relatively low drag of the double-wedge sections is also evident. Most of the 
theoretical data on finite wings have been obtained for biconvex and double-wedge sections. 
I t  will be seen from Fig. 5, that  the drag of the ' conventional ' section, which resembles those 
commonly used on aircraft, is just over 10 per cent greater than a biconvex section, and over 
60 per cent greater than a double-wedge section. 

3.2. Drag of  Wing Sections expressed as a Fourier Series.--Wing profiles are commonly 
derived from formulae of the type 

¢(s) = ~:. /~s inn0,  where 1 - -  cos 
1 2 = s . . . . . . . .  (13) 

with some modification of the shape near the trailing edge. I t  may be shown that  for sections 
given by equation (13) 

~2 2m+l 

I -- 2 ~ nil'2 . . . . . . . . . . . . . . . . .  (t4) 

From equations (13) and (14), or otherwise, it may be shown that  the profile having the least 
drag for a given cross-sectional area is the ellipse. However, apparently there is no optimum 
shape of profile having the least drag for a given thickness. I t  is always possible to find a section 
which has a drag less than any given finite value, so that  the minimum value of I is theoretically 
zero. Such ' low-drag'  sections as are obtained in this limiting process are characterised by 
their thin (or cusped) edges and very marked regions of concavity. 

In section 4.4 it will be shown that  any modification to the shape of a double-wedge section 
(with maximum thickness at half-chord) to produce less drag, will introduce a region of concave 
curvature. 

Thus, of the sections having no concave curvature, the double-wedge section has the smallest 
drag for a given thickness. 

3.3. Drag of Wing Sections in Terms of the Subsonic Pressure Distribution.--An alternative 
form for I which is of interest is obtained as follows : 

I :  ¢'(s) ln 1 ds d~ = ¢'(s) ds d~ 
O" - -  S 

' =  ;i . . . . . . . . . . . .  

IAp] is the pressure distribution over the section in linearised two-dimensional where q-1no 

incompressible flow. Generally, special wing-sections are designed for a given simple low-speed 
pressure distribution, and together with the tabulated list of ordinates, equation (15) can be 
a useful method for computing I numerically--especially if the formal expression of the surface 
shape is obscure. 
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This method was used to compute the drag of the RAE 100-104 series of aerofoil sections* 
and the results are given in Table 2. The drag of these wings is only 5-10 per cent higher than 
the biconvex section. 

Because most practical ' t ow-drag '  sections are designed to have a more or less uniform 
pressure distribution in incompressible flow (i.e., with no high suctions), it follows from equation 
(15) that  their relative drags are roughly proportional to the sectional area. 

3.4. Drag of a Thin  Wing Section derived f rom Conformal Transformation of Circle.--I f  W 
is the complex potential of an incompressible flow (with velocity U parallel to the x-axis at 
infinity) about a thin profile, let us consider the expressio n 

c ~ v Y d Y =  c ( u - - g - - i w ) ( x + i z ) ( d x + i d z )  . . . .  (1~) 

where C is a closed contour, u and w are the velocity components parallel to the x- and z-axes, 
and Y = x -}- iz. 

We wish to find I, where, from equation (15), since the profile is thin, we have 

I=4~fi(u--t ~ u U )  z d x  . . . . . . . .  . . . . . .  (17) 

Now if the contour C is formed by the zero streamline (including the upper surface of the 
profile) between x = R and --R, and tile large semicircle /~ in the upper half-plane of radius R 
about the origin, then, from equation (16), using the fact that  on a streamline w dx = u dz, 

( U - -  u)z dx = U z dx + J ~ U Y d Y  
JP 

where, since the profile is thin, we have neglected terms of powers higher than 9, in w/U and 
z/c. Thus the problem of finding I is reduced to that  of evaluating the integrals on the right- 
hand side of equation (18). 

Let us assume that  tile profile is derived from a transformation of a circle in tile (~, ¢)-plane, 
where 

y = f ( H )  = H + ~ + ~ + . . . . . . . . . .  . . . . . . . .  (19) 

and where H = ~ + i¢. Now, in the absence of circulation, if the profile is symmetrical about 
the x-axis, 

w = u H'  + ~ . . . . . . . . . . . . . . . .  (20) 

where H'  = H --  h, h being a positive constant < a, and a being the radius of the circle to be 
transformed. 

* The sections were ca lcu la ted  to give a ' roof- top. '  
and  the  section ord ina tes  are given in Ref. 2. 

pressure d i s t r ibu t ion  b y  the l inear  incompressible-f low theory ,  
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I t  follows t ha t  in equat ion  (18), if we let R - +  oo, 

f l  ( u -  U) z ( x ) d x = [ ~ r ( a 2 - ° q * ) -  V I U  

where 

Thus,  f rom (17) 

V = l 
et c 

0 

z(x) dx, and  e~* ---- ~(cq). 

. . . . . . . . . .  (21) 

4z [~(a~ _ cq*) --  VI . . . .  (22) I = - ~ -  . . . . . . . . . . .  

Now from equat ion  (12) it  is clear t ha t  the  value of I depends only on the  profile, or re lat ive 
shape, and  is independen t  of the  th ickness /chord  rat io of the  section. Bu t  it is i m p o r t a n t  t h a t  in 
(22) the  values of t and  V are those for which  the  values of a and  ~ ob ta in ;  i.e., t hey  are the  
geometr ical  character is t ics  of the  profile obta ined  b y  the  t ransformat ion.  

As a simple example,  consider the  Joukowski  t ransformat ion  given by  ~ = ka ~ and  
~2 = ~ = = 0. This t ransforms the  circle wi th  centre  at  the  origin into an ellipse 
wi th  a th ickness ichord  rat io of (1 --  k)/(1 + k). F rom equat ion  (22) we find 

I - -  
2 

as ob ta ined  in section 3.1. 

3:5. Drag of Wing  Sections Given by General Algebraic Formulae.--Generally ,  the  expression 
for the shape of an aerofoil in terms of a Fourier  series (as in equat ion  (13)) is inadequa te  because 
the  trai l ing edge is ei ther  cusped or round.  For  this reason, if a wing section is der ived to give 
a cer ta in  pressure dis t r ibut ion and is expressed as a Fourier  series the  section shape is of ten 
modified over  the  rear  par t  t o  give a finite trai l ing-edge angle, and to remove any  concave  
curvature .  Once this is done it is not  possible to express the drag in such a simple m a n n e r  as 
described in equat ion  (14), and  the elegance of this me thod  of expression is lost. 

Generally,  it  is possible to fit wing sections to a formula  of the  type*  : - -  

: G(s) (O~<s~<So) "~ (23) 

J 
. , , , . ° , . . , . ° 

; = < s < 1) 
where  " 

and  

¢ d s )  = a, s 
n = O  

2 m  

cds)  = b s'< 
n = 0  

* For example (Current Paper 68~), the N.A.C.A. have published the formula of the NACA 0012 section in the form 
---- als 11~ + a~s + a~s 2 + a6s ~ + ass 4 

and the NACA 0012-63 section is given by a formula of the type 
~1 = al sl/~ + a~s + a~s ~ + a6s ~ \ .  

J G=bo +Gs +b4s ~+bGs 3 
Again, the thickness distribution of the Clark Y section has been fitted to equations of the type 

~1 = als + aa s~12 + a5 s5/2 + a7 sT/2 ~. 

J ~2= bo +b2s +b4 s2 +b6 s~ +bs  s4 
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In  part icular  a0 = 0, and it is usually sufficient to assume tha t  bl = b~ . . . . .  b~,,_~ = O, 
(i.e., tile rear part  of the  section may  be fit ted by a polynomial  in s). 

If the formula  is made  up of two different expressions (i.e., So ~ 1), the  expression for I is 
l engthy  and its calculation labourous. However,  it may  be shown that ,  if So ---- 1, the  expression 
for I reduces s imply to 

( ~ ) ~  [ '1 [(q--1)12] 1 2,, ~m 2p (-- 1)~--(--  1) l n 2 +  Z 
I = Z Z 

p=l q=l + q 2 2~ 

~:  ~- . .  (24) ~-o p - - 2 ~ - - 2  . . . . . . . . . .  J 
the  square brackets  denot ing the integral  part  of the  upper  limits of summation.  

In  particular,  if the  p's and q's are all even or all odd, 

~,, p-2 Ip p _ q ( p  1 1 
I = 2 ~ ~, apaq 

~=~ p + q  - - 2  ~ - p - - 4  + ' ' "  

+ q + ~  + ~ . . . . . . . . . . . .  (25) 

We may  apply equat ion (24) to the  calculation of I for the  N.A.C.A. uneambered  ' f ou r -  
figure ' airfoil series, whose profiles are given by  the formula : - -  

½¢ = 1. 484s 1/2 -- 0- 630s --  1.758s ~ -}- 1- 421s 3 -- 0. 508s 4. 

These sections have a small finite thickness at the  trailing edge, but  as this is only 1 per cent of 
the  m a x i m u m  thickness its effect may  be neglected. The nose radius of curvature  of these  
sections is 1.1t~/c, the trailing-edge angle is 2.3@ radians, and the  m a x i m u m  thickness is at  
30 per cent chord. The value of I computed  from equat ion (24) is 4.47. 

4. Effect of Changes of Profile Shape on Drag.--4.1. Effects of Changes in Nose Radius and 
Trailing-Edge Angle.--Ideally, it  would be useful to be able to s ta te  the drag of a wing section 
m terms of its main  geometrical  features ; for example, the nose radius of curvature,  the  chord- 
wise position of the  m a x i m u m  thickness, and the trailing-edge angle. 

From the few worked examples of the last sections it will be noticed tha t  sections which have  
a small radius of curvature  and a small trailing-edge angle also t end  to have a small drag. In  
general if a family of sections is described by an equat ion whose parameters  are related to the  
three  geometrical  features named  above, then  this effect is very  pronounced.  

A simple example  will i l lustrate this : if we  choose as the  family of profiles those given by  the  
formula 

4 
(s) = ~ ,  /3~ sin nO + B sin" 0, n=l 

the value of I is s imply 

I --  2 ~ '  n/3"2 + 8~B 

s 1 --  cos 0 )  - 

3)  + 4BL 
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Accordingly the drag may be quoted in terms of :m 

(a) leading-edge radius of curvature 

(b) maximum thickness position, and 

(c) trailing-edge angle 

since tile five parameters may be found in terms of these quantities, and the implied conditions 
tha t  

(d) the section ordinate is known (¢ = 1) at the chordwise position of maximum thickness 

(e) the trailing-edge is sharp. 

The results are shown in Fig. 6 where the value of (I/4)--which is the drag of the section relative 
to tha t  of the biconvex profile--is plotted as a function of nose radius for various trailing-edge 
angles and positions of maximum thickness. 

The increase in drag with increase in nose radius and trailing-edge angle is evident from an 
examination of the figures. But  this effect has little significance either quant i ta t ively or quali- 
tatively. For we shall seek to show in the two following sections tha t  : - -  

(i) an increase in trailing-edge angle leads to a decrease in drag (and under certain conditions 
so also does an increase in nose radius), i f  the necessary increase in the section ordinates 
only affects the shape of the profile over a limited and localised region of the 
chord (section 4.2) ; 

(ii) a change in profile shape leaving the three named geometrical features unaltered, can 
produce a change in the drag of the same order as the difference in drag we are attemp- 
ting to find (i.e., the difference in drag between the chosen profile and tha t  of the 
biconvex section), as shown in section 4.3. 

These conclusions mean that  the value of nose radius or trailing-edge angle is no guide to the 
drag of the section per se. The effect on drag of an increase in nose radius or trailing-edge angle 
will depend upon the way in which this increase modifies the shape of the rest of the section : 
the modification can- -and  generally does--produce an increase in drag, but  if performed in a 
certain particular manner it can have the opposite effect. 

4.2. Localised Variations of Shape.--To obtain an insight into the effect of localised variations 
of profile shape, let us assume that  we change a profile whose ordinates are given by ~ = ~(s) 
by  adding an infinitesimal increment so tha t  the shape is given by 

= + 

Then from equation (12), 

. . . . . .  

+ d'(~) d'(s) In ~ - - G  d~ ds 

which we may express, as in equation (15), in the form 

o / 

where EAp[q]i~c is the linearised incompressible pressure distribution over the undistorted profile. 
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For the general group of profiles defined by  equation (23) the pressure distribution is given by 
Ref. 3. Near the leading edge of the wing : - -  

- -  a~ I n  - -¢- C1 + 0 ( £ / 2 )  . . . . . . . . . . . . .  ( 2 8 )  
q 

Similarly near the trailing edge : - -  
~ p  
- -  = ~ ; ( 1 ) i n  I 1 - o l  + G + o ( 1  - ~) . . . . . . . . . .  (29 )  
q 

where the values of the constants C1 and C~ are determined by the general shape of the profile, 
and may be either positive or negative. 

It follows from equation (29) that, since G'(1) is negative for sections with a finite trailing-edge 
angle, [Ap/q~i~o is positive near the trailing edge, and therefore from (27) any small increase in 
the ordinates near the trailing edge will reduce the drag. A change in the ordinates near the 
leading edge might work one way or the other, as for a round-nose airfoil the coefficient a~ in 
equation (28), which has no simple geometrical significance, could be either positive or negative. 

4.3. Variatio~ of the Shape of the RAE 101 Sectior~.--We shall now at tempt to justify the 
fact that  the drag can be changed significantly by a change in profile shape which leaves the 
nose radius and trailing-edge angle unaltered. This conclusion may be justified most easily by 
an example. 

Let us consider a variation of the profile shape of the RAE t01 section. The change in drag 
due to an increase in the ordinates of the section at s = ¢ of amount ~ (¢) is given by equation 
(26), where the tinearised incompressible pressure distribution over the undistorted section is 
given by 2 

AIq lifo= - - 2 . 9 5 7 ( ~ )  f o r 0 ~ < ¢ ~ < 0 . 3  

. . . .  ( 30 )  

= (5 . 707a -- 4. 669) ( { ) ,  for0.3~< a~< 1. 

A variation which will produce a first-order decrease in I is such that  

6(s) ~< 0 f o r s  ~ 0 . 8  
6(s) ~> 0 f o r s > ~ 0 . 8  

since [Zp/q]i~o = 0 approximately at 0.8c. In particular we have 
6 ( 0 )  = 6 ( 1 )  = 0 

and we shall assume further that  the leading-edge radius of curvature and the position of maxi- 
mum thickness are left unchanged. Such a modification aft of the maximum thickness, however, 
is liable to introduce a concave curvature which is undesirable. Accordingly we shall assume 

~( s )  = - ~ [ s ~ ( 0 . 3  - s ) ] 3 - ,  s ~< 0 . 3  

= 0 ,  s ~> 0.3. 
We then find from equation (26) that  

dI = -- 0"0111e q- 0-0000421eL 

If we are to avoid any concave curvature on the nose, e must be less than about 35, so that  if 
we chose e = 30 we are making a ' reasonable ' modification and we obtain a reduction in drag 
given by ~I = -- 0.30 so that I = 3.89 (i.e., a 7 per cent reduction of the figure quoted in Table 2 
for the undistorted RAE 101 profile, bringing it to a value less than that  of a biconvex section). 
The required change in the section ordinates are listed in Table 3 ; the changed shape is shown 
in Fig. 7 together with the effect on the pressure distribution, which is small. 
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4.4. Variatiom for the Shape of the Double-Wedge Sectior~.--We shall now seek to show that  the 
double-wedge section is tha t  which has least drag for a given thickness at half-chord, if regions 
of concave curvature and discontinuous .concave changes in profile slope are precluded. 

1 1 
Suppose that  the incremental addition to the wing ordinate at ~ .= ~ 4- 2~/2 ' where 

is lel  > 0 .  Then 

The linearised incompressible pressure distribution over a double-wedge wing with maximum 
thickness at half-chord is given by : -  

tic In kT(f Z T))J . . . . . . . . . . . . . . .  

inc ?'6 

If we are to obtain any first-order decrease in drag by a small variation of the section shape, 
it follows from equations (27) and (31) that  it is sufficient to increase the thickness near the 
leading or trailing edges (where the pressure is high) and decrease the thickness near the maximum 
thickness (where pressure is low). But  the thickness cannot anywhere be decreased if the position 
of maximum thickness is left unaltered, since the curvature must not be concave. Thus the wing 
ordinates may only be increased. 

i l t c  

a (o )  - d ~  > 

and 
1 _ " m 

because of the restriction on surface curvature. Thus 

1 / 2  f l/2 ¢~ 

By considerations of symmetry, it follows that,  in equation (26) 

aI1 >~ 0 

and since aI~ is essentially positive 

a l>O . -  

da = 0, from (31). 

Hence any change of section shape which leaves the maximum thickness and its chordwise position 
unaltered, and does not introduce concave curvature, increases the drag. 

If the maximum thickness position is ahead of the half-chord point, then the double-wedge 
section is no longer the shape having least drag and some thickening of the wing ahead of the 
maximum thickness position reduces the drag. 

5. Comlusions.--(a) The drag in supersonic flow of an infinite swept wing with edges swept 
behind the Mach lines, may be expressed as the product of two terms, one a function of Mach 
number and of sweepback, and the other depending only on the section shape. It  follows that  
the relative drag of two wings of different section is independent of Mach number (see equa- 
tion (11)). 
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(b) If the shape of the wing section is given by a formula which is 

(i) a Fourier series, 

(ii) a conformal transformation of a circle, 

or (iii) a general algebraic polynomial, 

the drag of various sections may be computed in terms of the parameters of the formulm, as 
given in equations (14), (22) and (24). 

(c) The drag of various sections is proportional to the integral along the chord of the product 
of the section ordinate and the local value of the excess pressure existing over the profile according 
to the linearised incompressible-flow theory (see equation (15)). 

(d) A wing of elliptic section has the least drag for a given cross-sectional area. I t  is possible 
to construct a section which has a drag smaller than any given finite value if only the maximum 
thickness of the section is fixed. If concave curvature of the surface is inadmissible, the double- 
wedge wing yields the least drag for a given half-chord thickness. 

(e) The drag of infinite swept wings with sections having round noses and sharp trailing-edges 
is generally between 0 and 15 per cent greater than that  of wings with biconvex section. The 
following figures refer to the relative drag of sections having the same maximum thickness : - -  

Ellipse 1.23 

NACA 0012 series 1.12 

RAE 101 1.05 

Biconvex 1.00 

Double-wedge (max t/c at c/2) 0.69 

(f)  An increase in nose radius or trailing-edge angle of a section generally leads to an increased 
drag, but  this largely depends upon the manner in which this change affects the shape of the rest 
of the profile. 

(g) I t  is possible to deduce the change of shape required to reduce the drag of any particular 
section if its low-speed pressure distribution is given. 

(h) The absolute drag of high aspect ratio constant-chord wings is higher than that  of the 
infinite wing with the same sweepback and wing section, but  the difference is due to a term which 
varies inversely as the square of the wing aspect ratio. Thus it is reasonable to suppose that  
the results quoted above are a guide to the drag of finite wings of moderate aspect ratio 
(e.g., A tan A >~ 4) at low supersonic speeds. 

a 

an, b~ 

b 
C 

h 
~44 

LIST OF SYMBOLS 

Radius of circle in (~/, C)-plane 
Coefficients of polynominal in s 1/~ representing C(s) 
Semi-span of wing 
Chord of wing (measured in free-stream direction) 
Distance of centre of circle in (~, C)-plane along real axis from origin 
cot A 
Difference between local and static air pressure 
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q 
S 

t 
U 

W 

z (x)  
A 

CD = 
D 

I = 

(i/4) 
M 
S 
U 

V 

(dW/dY)  = 
X = 
Y = 
) 

J (  ) 
H = 

H '  -= 
A 

O~ 

0( n 

g. 

= 

c ' ( s )  = 

(,7, 

0 

# 

P 

72 ~ _  

y~ 

Fix  etc. 

{p U ~ 
X / c  
Thickness of wing 
Component of air velocity parallel to the x-axis 
Component of air velocity parallel to the z-axis 
System of Cartesian co-ordinates,, origin at wing apex, the point 
(c, 0, 0) being tile wing root trailing edge, and the wing being in the 
plane z = 0 
Value of z as a function of X on surface of wing section 
Wing aspect ratio (=2b/c) 
D/qS 
Wing drag at zero lift 

Drag of section relative to that  of biconvex section 
Mach number of speed of wing relative to air 
Wing area (=2bc) 
Free-stream velocity 

Cross-sect ionalareaof  w i n g s e c t i o n ( = f ° o z ( X ) d x )  

u --  iw 
x - y / m  

x + i z  
real part of ( ) 
imaginary part  of ( ) 

+ i ~  
H - - h  
Angle of sweep of wing leading edge 
Trailing-edge total angle 
Coefficient of H -"  in conformal transformation between Y and H 
Real part  of c~,~ 
Coefficient of sin n0 in Fourier series for ¢(s) 
Incremental change in ¢ (s) 
Semi-angle of wedge (except in section 4.4) 
2z(X)/  
d~/ds 
System of co-ordinates in plane of flow about a circle 
arc cos (1 -- 2s) 
m v ' ( M  ~ -  1) 
Value of X corresponding to leading edge of source plane considered 
Air density 
Leading-edge radius of curvature in Fig. 6 

Wing chord 

Thickness/chord ratio 
Half-depth of streamtube at x = -- o~ 
Value of the function F with X (a variable) held as constant and 

arbitrary 
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TABLE 1 

Relative Drag of Various Sections 

Section 

Ellipse 

Conventional 

Joukowski 

Biconvex 

Biconvex cusped 

Double-cusp 

Double-wedge " 

Flat-sided 

Double-wedge 

Formula 

~(s) = 2F(1--s)s~] in 

3~/3 
~(s) = ~2-- (1--s) (s)l '2 

16 
~(s) = ~ (1 - - s )a /2 ( s ) l l2  

o "V ,., 

¢(s) = 4(1--s)s 

25 fi 
¢(s) = 6-~/ ~ (1-sV1~s 

~(s) = 8E(1--s)s3 a/2 

Discontinuous 

l 

Discontinuous 

Maximum 
thickness 
position* 

~c 

~c 

~c 

½c 

~C 
5 

lc 

J 

0.15Cto ) 

0-45c 

L.E. 

Round 

Round 

Round 

Angular 

Angular 

Cusped 

Angular 

Angular 

T.E. 

Round 

Angular 

- Cusped 

Angular 

Cusped 

Cusped 

]Angu la r  

Angular 

yC 2 

- -  4.93 
2 

9 
- -  4.50 

2 

47~ 2 
- -  -- 4.39 

9 

4 = 4-00 

625 
-- 3.86 

162 

37c 2 
-- 3.70 

8 

r 4 In 2 =2-77 I 

I 
3 3 

(~  in 4q-41n ~ ) = 2 -  99 

4"56 

* The drag is unaltered when the sections are reversed (i .e. ,  when s is changed to --  s). I t  is assumed that 
profiles with the maximum thickness behind the half-chord are of little interest. 

TABLE 2 

Drag of RAE 100-104 Sections 

Section 

RAE 100 
101 
102 
103 
104 

Maximum t ic  position 
per cent chord 

27"0 
31  "0 
35"6 
39"0 
41 "9 

L.E. radius × chord 
(thickness) ~ 

1.10 
0" 76 
0-69 
0.68 
0"59 

T.E. angle (radn) 
(t/c) 

1 "71 
1- 79 
1 "91 
2.09 
2"37 

4"38 
4-19 
4"21 
4"31 
4-42 
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TABLE 3 

Modification to Nose Shape of RAE 101 Section t,o Effect 7 per cent Reduction in Drag 

0 
O. 005 
0.01 
O. 025 
0-05 
0-1 
0 .15 
0 .2  
0 .25 
0 .3  

Ordinates  of unmodif ied 
sect ion 

(Maximum thickness  ~- 2) 

0 
0.1741 
0-2453 
0.3834 
0.5319 
0.7215 
0.8440 
0-9261 
0.9770 
0.9994 

Ordinates  of modif ied 
section 

(Maximum thickness  = 2) 

0 
0.1723 
0.2406 
0.3663 
0-4901 
0.6368 
0.7428 
0.8414 
0.9351 
0-9994 
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