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Summary.--In using any of the Relaxation Techniques near a stagnation point difficulties arise if the variable is 
tog 1/q. This tends to infinity and the difference equation no longer represents adequately the differential equation 
without special modification. 1Vfethods are given whereby larger squares can be used than had been previously prac- 
ticable. As little variation as possible has been introduced into the procedure so that if an electronic calculator is used, 
the alterations to the circuits would be reduced to a minimum. 

1. Treatme~# of the Stagnation Point in Arithmetical Me thods.--The writer has long advocated 
the use of the conjugate functions log 1/q and 0 in obtaining solutions to certain flow problems 
by ' squaring ' methods. Where the physical boundaries are specified we operate on 0 and then 
pass over to q. When the velocities are specified we operate on q and pass over to 0 and so find 
the physical boundaries to give the specified velocities. In the case of mixed problems, e.g., 
determination Of free streamlines, part of the boundary is physical and part has a specified 
velocity either constant or, in hydraulic flows, a function of height. Accordingly, for these 
pi"oblems the O and log 1/q fields are used alternatively passing from one to the other at the 
boundary at each alternation. 

For certain problems the above methods are satisfactory, but where a stagnation point exists 
a difficulty arises since log 1/q then becomes infinite at  one point. In a recent paper (Current 
Paper 761 ) the difficulty is got over by comparing the field close to the stagnation point with the field 
w = k z  2 which represents the flow inside a right-angle bend. Here we have log dz/dw=log 1/(4ke) 1/~ 
- -  ~i$ where w ---- ee ~ so that  q = 2(kq) 1/~ and 0 = --$/2. Putting k ---- i we get the values of log 1/q 
shown in Fig. 6. Note that  for any other value of k these figures will merely be increased or 
decreased by a constant. 

Assume that in the arithmetic process of working over the field (Ref. 2, 5, 7) we operate on 
diamonds, i.e., the squares with a vertical diagonal. The usual difference formula for application 
to Laplace fields is 

Central value = Mean .of corner values . . . . . . . . . .  (A) 
but near the stagnation point at the origin the neglected terms become large and a correction, 
A, has to be added to the right-hand side of (A). The actual values of/ t  necessary to make (A) 
apply to the diamonds in Fig. 6 are shown in Fig. 7. It  will be seen that  as the origin is left 
behind/ t  rapidly approaches zero. It is important to note that, in forming the values in Fig. 7, 
instead of using oo at the origin of Fig. 6 the mean of the four surrounding values has been used- -  
in fact (A) has been used with no A. Also bear in mind that  in using the above procedure any 
other value of k adopted in forming Fig. 6 will give identical values of/1 in Fig. 7. 

* Oxford University Engineering Laboratory Report No. 53. 
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Suppose now that we are working over the field at the nose of a symmetrical aerofoil or similar 
blunt-nosed body. It is found that the difficulty of dealing with the infinity at the stagnation 
point is overcome to a great extent if we correct the value for each diamond by applying the 
values of A shown in Fig. 7. When a subdivision of the field is made the same values of A are 
again available. This is because Fig. 7 is quite independent of scale and applies for all sizes of 
square, provided each bears the same relation to the stagnation point as in the figure. As has 
already been emphasised it is also independent of velocity scale and so is universally applicable. 
The above process has been successfully used (Ref. 1), but it was found necessary to subdivide 
the grid into very small squares in the immediate neighbourhood of the nose. 

The trouble arises from the fact that the comparison field is bounded by two straight lines 
at right-angles while the actual field is bounded on one side by the approach stagnation stream- 
line and on the other by the curved aerofoil nose. The present paper shows how to take account 
of the curvature by comparison with conditions at the front of a cylinder or a parabola. 

2.1. Approximations to the Circle.--If we take the usual relation giving the plane flow (velocity 
= U) past a circle of radius a and transfer the origin to the stagnation poin t - -a t  x = a,y = 0 we 
obtain 

w + 2 a v  = V { z  + a + a /(z + a)}  . . . . . . . . . . .  (1) 
Reversing we get 

Z -  2 g  + + 
o r  

If we take the first two terms 

........ . . . . . . . . .  (2) 

z - 2u + . . . . . . . . . . . . . . . .  (3) 

we obtain the flow past a parabola and the velocity is found to be 

1 1 a 1 ( ' a  "~ ~/= 
q~--4U ~ ~- ~oU ÷ 2-U \ o U J  cos 8/2 . . . . . . . . . .  (4) 

where 
¢ ~---e cosfland~0 =esinfl. 

It  will be noted that when ~--+ oe, q--+2U where U was the velocity originally assumed at infinity. 
The discrepancy is caused by the neglected terms in (3). These neglected parts would also 
produce terms in el/2 O, el/,, etc., in (4) but none in ~-1/2. So it appears that  close to the origin 
only the second and third terms are signficant. It follows that in the region where the approxi- 
mation is valid the flow past the circle has become the same as the flow past a parabola, the air 
in the latter case having twice the velocity at infinity. Fig. 1 shows the streamlines, etc., at the 
nose of the parabola plotted with non-dimensional variables ¢/aU and ~o/aU. But for this diagram 
the velocity at infinity is 2U, whereas near the stagnation point itself an identical diagram with 
identical velocities will be obtained for the flow past a cylinder of radius a (the nose radius of the 
parabola) and velocity U at infinity. 

If we specify the velocity vector by q and O, we also find by differentiating (3) 

tan 0 = -- sin/~/2 - -  ((~/aU) 1/2 + cos/3/2) . . . . . . . . .  (8) 

In what follows we shall drop the minus sign and treat 0 as a positive angle. 
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It  is not difficult to show that  (4) and (5) become approximately 

log 1/q = log (a/4eU) 1/2 + (e/aU) ~/~ cos/~/2 . . . . . . . . . .  (6) 
and 

0 = ~/2 (e/aU) 1/2 sin/~12 . . . . . . . . . . . . . . .  (7) 

We have thus simple expressions for log 1/q and 0.in terms of the grid co-ordinates ¢ and ~ in 
the neighbourhood of the stagnation point. 

2.2. The Correction for Curvature.--We shall again adopt the procedure outlined in section 1 
at the stagnation point. That  is, instead of oo write at this point the mean of the four values at the 
surrounding diamond points, making use if necessary of symmetry  to obtain the fourth. The 
values of 3 to be used in recalculating the adjacent points during the next repetition should be 
taken from Figs. 2 to 5. The points on these graphs were determined as follows. 

Using (6) we can write down the value of log 1/q at each of the points B, G, and C (Fig. 2). 
Call these LB, L~, and Lc. The artificial value of log 1/q at S follows as explained above (see 
also Fig. 2). Using (6) again we find LE, LF, and L~. 3G is then determined by 

La = ¼(Ls + L~ + Ln + LF) + AG. 
This process can be repeated for each point in the field. I t  is found tha t  A's for the various points 
are all of the form 

A = K1 + K~(e/aU) 1/2 . . . . . . . . . . . . . .  (8) 
where ~ is the side of the unit square in the grid, i.e., the half-diagonal of the diamond. 

Values of K1 and Ks are given in Table 1 for the points in the immediate neighbourhood. I t  will 
be seen that  K1 is identical with the values of/1 in Fig. 7 for flow in a right-angled corner. Thus 
the term.K2(~/aU) 1/~ is the correction for curvature a being the radius. It  will be found tha t  this 
term gets smaller very rapidly as the origin is left behind. 

An analogous form can be obtained for 0 from (7), namely 
A = C ,  + . . . . . . . . . . . . . . .  (O) 

Values of C1 and C~ are given in Table 2. 

I t  ought to be explained that  in so far as (6) and (7) are assumedto  give the condition at the 
stagnation point of a circular cylinder, the procedure outlined is correct, but  if it is really intended 
to apply the corrections to a parabola, the velocity at infinity would actually be 2U. Thus for 
example in Fig. 2 the line marked AG ---- 0. 1733 -- 0. 0822r calculated as above refers really to 
a cylinder. The same line displaced 1/V'2 to the left and marked P refers to the parabola. 

The question now arises as the validity of these values of A when the diamond becomes large 
compared with the region in which the aerofoil approximates to a circular form. To investigate 
this a large number of actual values were determined in the fields round a parabola, a circle and 
an aerofoil. The full expressions (4) and (5) were used for the parabola. The points so obtained, 
although shown under ' Parabola, '  have not been displaced as explained above. They thus run 
into the straight line (8). A number of points were calculated from the full expression (1) for 
flow past a cylinder. These are shown under ' Circle' and apparently lie on or close to the straight 
line from (8). They ought to do so near the origin but it has not been established analytically 
tha t  (8) holds far out in the field. 

Finally a number of points were calculated round the nose of the aerofoil of Ref. 4 - -a  laborious 
process in which help was voluntarily given by Mr. Hume-Rothery. An aerofoil with a nose 
radius a cannot be expected to give values identical with a circle of the same radius, but its 
values may well be between the circle and the parabola. That  is between the line for the circle 
and that  marked P, and it appears tha t  the actual aerofoil points are running into this region 
in Fig. 2. 



Fig. 1 gives some idea of the region in which we are working. Thus the ' s q u a r e '  marked 
SEHF centred at G has, on Fig. 1 an e/aU of ½- and so according to Fig. 2 is still of such a size 
that  the uncertainty in the log values would be less than 4-0.01, i.e., less than 1 per cent on the 
value of q at the point G. This is not large enough to have an appreciable effect on the velocities 
further along the surface. 

2.3. Values of 0.--A similar comparison has been made for the 0 values (Fig. 3). It should be 
noted that  the value of 0 at the stagnation point is assumed to be ~/4 since this is the limiting 
value as ~o--+0. Again it is not possible to distinguish the values for the circle from the straight 
line approximation. 

2.4. Values of log 1/q when the Nose Radius is not known.--I f  we are constructing a shape to 
give a specified velocity distribution on the surface and the squaring has to be carried over a 
stagnation point, in general the leading-edge radius will not be known until the solution is 
complete. 

A way out of the difficulty is to find some parameter dependent only on the velocity field from 
which the A's can be determined. It is necessary to discover a parameter which will as far as 
possible suit all cases. The writer has no idea how this could be done rigorously, but after many 
attempts an approximate solution has been found. 

Referring to Fig. 2 define LQ by 
3LQ = (Z~ + Zc + Lc) -- (LA + L~I 4- Zv) . . . . . . . . . .  (10) 

Using the approximate relation (6) it is possible to express the A at any point in terms of LQ. 
Thus consider the diamond SEHF centred on G. We easily find after some work 

A G --~ 0. 05239 + 0.34885L 0 . 
For the diamond centred on C we find 

Ac = 0.09420 4- 0.22818L 0. 
These lines have been plotted in Fig. 5 and compared with values for the parabola, circle and 

aeroIoil. As the diamond shrinks, i.e., as L o increases, all values presumably converge on the 
straight lines, and this would apply with any other similar parameter, but other parameters, 
so far tried show a much wider divergence for the larger diamonds. 

Comparing Fig. 5 with Fig. 2 it seems that LQ is a better parameter than (e/aU) 1/~. The reason 
probably is that L0 is built up from values well out in the field which are affected not only by 
the nose but by other parts of the surface. Only by trying other shapes can it be established that 
this method is really reliable for large diamonds. It must work for the finer mesh. 

Values of A in terms of LQ have also been determined for two other diamonds of half-diagonal e. 

Point Co-ordinates of centre A 

E - -e ,+e  A=0-02183+0.01747LQ 
F + e , + e  A=0.01330+0.04212L~ 

For other points it is probably sufficient to neglect curvature and use tile constant part from 
Fig. 7 without further correction. 

3. Obtaining the Conjugate Functio~¢.--In the above  sections the method is outlined for 
settling the L and 0 fields, but it is also necessary to pass from one to the other on tile boundaries. 
As has been explained in several previous papers (R. & M. 24402, R. &. M. 16043) the straight- 
forward formula for this purpose is of the form 

L~ -- Lb = ~ d~ . . . . . . . . . . . . . . . .  (11) 

where L and 0 or ~ and ~p may be interchanged to give three other similar expressions, any one 
of which may be required. Any other pair of conjugate functions such as x and y can be treated 
in t h e  same way. 
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I t  has also been shown that  if, for example, 0 is constant along a boundary ~o = constant, 
then (11) can be replaced with good accuracy by a simple form involving only multiples of four 
neighbouring values of L (see Ref. 4 and 7). 

But the above breaks down at a stagnation point and it is now necessary to obtain approxi- 
mate relations which will operate. 

Again after experiment a simple method was found. In Fig. 4, A is at (--e,  0) and B is at 
(-- 2e, + 2~). We find for the parabola 

q A / U =  2'/ '(-~ -- 0,) " sin -~ 

= 1.518 -- 1.290 0B. 

This value is compared in Fig. 4 with values for circle and aerofoil. 

I t  is possible tha t  a better method may be developed, but in the meantime this method will 
prove satisfactory for diamonds of a reasonable size. 

3.1. The Trail ing E d g e . - - L e t ,  = half the trailing-edge angle. Then the flow near the trailing 
edge approximates closely to 

w = 

where 
= - g .  

With the notation of section 2.1 the velocity is 

q = nK~ ~ where m = (n --  1)In = ~/~. 

If, as before, we agree to put a nominal value of log 1/q at the trailing-edge equal to the 
arithmetical mean of the surrounding points, then it is easy to show from (11) that  A at any 
point is equal to the A for a right-angle multiplied by 2m. I t  is not known what the exact effect 
of curvature will be but  in many  cases the curvature is very small at the trailing-edge so that  the 
first term derived above is probably sufficient. 

4. Determination of x on Sur face . - -when ,  on any particular approximation, we have determined 
0 and q, and it is necessary to determine x along the surface, we apply the expression 

X = f q C O S O d ¢ .  

This, however, cannot be used too close to the stagnation points. For many cases x is pro- 
portional to ¢ with considerable accuracy, e.g., for a circle 

x = ¢/2U. 

For the front portion of the aerofoil previously considered, we find 
¢/¢o ~Xl¢ 
0" 05 0"8124 where 
0.1 0.8147 ~bo = ¢ interval corresponding to the whole chord. 

0.15 0-8171 
0.2 0.8196 

I t  is tentat ively suggested that  for other aerofoils, a relation such as 

gx(1 +  tlc)/¢ = 1 

will give results of reasonable accuracy in the region of the leading edge. 
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At the trailing edge, on the other hand, using the nota t ion of section 3.1, we find for flow in 
a corner 

xq/¢n c o s  ~/n = 1. 

This expression applies satisfactorily for an aerofoil, as is shown by the following values calculated 
for the P P P  aerofoW : - -  

A, 

0-025 
0-05 
0.1 
0.2 
0.3 

xq 

4'*~ cos =#~ 

1" 005 
1 "010 
1- 014 ¢ measured 
1. 020 from trailing edge 
1. 030 

5. Squaring on x and y . - -S ince  V~ 2 = V~y = 0, we can operate on either c0-ordinate. At a 
s tagnat ion point, the work is easier for x than  for log 1/q. The corrections are smaller ; e.g., for 
the d iamond centred on G (Fig. 2), we find tha t  A is the  same for both  x/a and y/a, being given by  

zl = 0 + 0.0686 (~/aU)l/~. 
Thus only the small curvature term remains. 

6. Conclusion.--An a t t e m p t  has been made  to produce constants  which will enable tiae usual 
squaring me thod  to be carried over the s tagnat ion point. The values in Fig. 5 have been used by  
Dr. A. S. Thom in one or two actual solutions 8. In these solutions it was found advantageous 
to use values of zl ra ther  larger than  those shown, but  this was probably due to the  peculiar 
na ture  of the problem which was asymmetric.  

If the me thod  is to be used on some type of electronic calculator, it seems desirable to upset  
the ordinary procedure as lit t le as possible, and there would almost certainly be, in any case, 
some means of applying A's to the  means. Certainly this would be so if the  machine were in tended  
to solve Poisson's Equat ion.  

z 

q,O 
W 

L 
A 
a 

2~ 

¢c 
U 

tJc 

LIST OF SYMBOLS 

= (x + iy) ; physical plane 
Modulus and ampli tude of velocity vector  

= ¢ + i ~  
_ (¢3 + ~)1 /~  

-~ tan -1 ~0/¢ 
Side of square (or half-diamond diagonal) in w-plane 

= log~ 1/q 
Central value in a d iamond less mean of corner values 
Radius of cylinder, or nose radius 
Trailing-edge angle 

- -  ~ / ( ~  - ~) 

= ( n  - 1 ) I n  = , - /~ 
= (7 at leading edge) -- (¢ at trailing edge) 
= Undis turbed  velocity for cylinder and aerofoil. 

for parabola) 
= ( 8 / a g )  1/2 

Thickness/chord ratio 

(See section 2.1 
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T A B L E  1 

w = 3 e  - - 0 . 0 0 0 4  - - 0 . 0 0 1 5  - - 0 • 0 0 0 4  + 0 • 0 0 0 5  

w = 2 e  + 0 . 0 0 1 5  - - 0 . 0 0 8 1  + 0 . 0 0 1 5  + 0 . 0 0 1 9  

~ = e  0 . 0 2 7 9 - - 0 . 0 0 4 1 r  + 0 . 1 7 3 3 - - 0 . 0 8 2 2 r  + 0 . 0 2 7 9 - - 0 . 0 0 9 9 r  + 0 " 0 0 1 5  

~ = 0  - -  0 + 0 . 1 7 3 3 - - 0 • 0 5 3 8 r  - - 0 ' 0 0 8 1  

¢=o ¢= 

Values of A to be used squar ing log 1/q near  a s tagna t ion  point .  The value in each  rectangle  is the  value  of A to be 
used for the  d iamond  with  corners in the four neighbouring points• Log 1/q at  origin is to be t aken  as mean  of four  
neighbouring points,  r = (e/aU) 1:2. 

T A B L E  2 

~o = 2e - -  0 .0048 + 0.0018r 0 ' - -  0 .0024r  + 0.0048 - -  0 .0015r 0 + 0 .0004r  - -  0-0005 + 0-0004r 

~o = e 0 + 0. 0100r 0 - -  0 .0687r ! 0 + 0. 0041r - -  0- 0048 + 0.0023r  - -  0- 0011 + 0. 0008r 

~ o = 0  - -  - -  - -  

I ¢ = + 3 e  

Values of A to be used squaring 0 near  a s tagna t ion  point ,  r = (e/aU) lr~. Take  0 at  the  s tagna t ion  poin t  as ~z/4. 
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FIG.  1. Grid near  ver tex  of a parabola.  
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nose. S tagna t ion  point  is at  S. 
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~ / / ' \  / \ .  / \ . 
_...~___ + O- 17_32___- O:OO BI ~_0..0015 _ 

LINES OF S Y M M E T R Y  

THESE F I G U R E S  APPLY TO ANY SCALE 

PROVIDED THAT THE D I A M O N D S  ARE IN 
S IMILAR P O S I T I O N S  WITH R E S P E C T  TO 

'THE AXES 

FIG. 7. Adjus tments .  Values of A (derived from Fig. 6) to be 
used when squaring the field w = kz  2. 

A typical  d iamond  is outlined heavi ly  to identify it with tha t  
on Fig. 6. 
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