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Summary.--The paper describes and applies exact methods of calculating the incompressible flow about thick 
aerofoils of general shape in a free stream, and a.bout symmetrical aerofoils between channel walls. One of these 
methods is extended to an approximate treatment of subsonic compressible flow by making use of yon K~irm~n's 
transformation. 

General Introduction.--The paper introduces new and exact methods of calculating the 
inviscid flow about two-dimensional aerofoils. Parts 1, 2 and 3 are concerned with incompressible 
flow, but with only slight modifications the work is applied ,to compressible flow in Part  4. 
Part  1 deals with a symmetric aerofoil at zero incidence in a channel or free stream, while the 
asymmetric case and the effect of circulation a r e d e a l t  with i n  Par t  2. The method gives 
velocities throughout the field of flow, and, at least for incompressible flow, is much quicker than 
the relaxation methods that  have been applied to this problem. The principle is to replace 
the aerofoil by  a series of small arcs on which it is assumed that  the product of the radius of 
curvature and the velocity is constant. I t  is almost equivalent to replacing the aerofoil by  a 
many-sided polygon, for, at some distance from the aerofoil, the field due to a polygon and t h a t  
due to a profile composed of arcs as defined above, is sensibly the same. The method is termed 
the Polygon Method. The number of arcs selected to replace the aerofoil is governed by the 
accuracy required in the final results. In Part  2 the problem is solved first for zero circulation, 
and then solutions for any desired circulation can be obtained almost immediately.* This feature 
gives the method a marked superiority over ' relaxation ' for which each angle of incidence is a 
separate problem. 

In Part  3 we describe and extend a method of calculating incompressible two-dimensional 
flow similar in character to the Polygon Method developed in Parts 1 and 2. I t  was originated 
by Thom and termed by him the ' Inf luence Factor Method '. His work on symmetrical 
aerofoils is extended to asymmetric aerofoils, and his approximate equations for the bounded 
stream are replaced by the exact forms. 

Part  4 contains two new approximate treatments of compressible flow. The first is similar 
to the linear pertubation theory but  gives results a little more accurate than this theory. The 
second is similar to von K~rm~n's well-known approximation, and appears to be more accurate. 
In both methods tile equations are reduced by  approximations and transformations to Laplace's 
equation which is then solved by the methods of Parts 1 and 2.* Finally an exact relaxation 
treatment is outlined which has some advantages over relaxation methods already developed. 

Examples illustrating tile methods are given throughout the paper. 

A summary of the Polygon Method equations and details of their application to the calculation of the compressible 
subsonic flow about aerofoits is given in Ref. 21. This reference, written some time after the present paper, also 
contains tables which considerably reduce the labour involved in applying the method to given aerofoil shapes. 
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PART 1 

Incompressible Flow about a Symmetr ical  Aerofoil in  a. Channel or Free s t ream 

1. In troduct ion . - - '  Relaxation ,3, and 'Squar ing ,1 have been employed in various ways to 
find the incompressible flow about a two-dimensional aerofoil. The relaxation method outlined 
in section 2 is new in some features although the general principles have been employed by 
7Fhom 11 for many years. He initiated the method of using the network composed of velocity 
equipotentials and streamlines (the ($,~)-plane) as the square grid on which to solve the usual 
difference equations for a Laplacian field. Working in this ($,v;)-plane has two outstanding 
advantages : - -  

(a) From the point of view of relaxation, it avoids the irregular ' s tars '  in the (x, y) or physical 
plane, with their consequent interpolation formulae. 

(b) I t  makes possible the method of calculating incompressible flow described in sections 3 
and 4 below. 

The basic principle of the method describeci in this paper is the replacement of the aerofoil 
by a polygon with an infinite number of sides, i . e . ; a  polygon for which the change in direction 
of adjacent sides is an infinitesimal angle 80°. (The suffix 0 will be used to denote surface 
values.) The exception to this is at the trailing and leading edges at which, in general, re-entrant 
finite angles of *a and *b occur. There may be other sharp corners on the profile~ and these can 
all be included in the term ,i, i ---- a,b,c . . . . .  The fields in the ($,~)-plane due to these angles 
800 are combined by an integration along the aerofoil boundary and the result added to the sum 
of the fields due to *i. It  proves convenient in practice to assume tha t  the product Rqo, where 
R is the radius of curvature of the boundary, and q0 is the velocity magnitude on the  boundary, 
is constant over small ranges. The integration is then performed for each range and the results 
added to give the total  effect due to the whole aerofoil. T h e  number of such ranges is governed 
by the accuracy required in the final results. In the typical example given in section'9 the 
author found tha t  twelve were sufficient to give accuracies better tlaan one per cent in the 
velocity increment due to the aerofoil. 

Working in the ($,~)-plane involves the difficulty tha t  initially the exact boundary conditions 
are not known, i.e., the exact relation 00 = 00($) is unknown, and remains so until  the exact 
solution has been found. However starting from some assumption for q0($), e.g., that  q0 is the 
same as the free-stream value at infinity, U, we can calculate approximate boundary conditions. 
These can be used in the polygon method to find a more accurate relation qo = qo($), and hence 
to find more accurate boundary conditions and so on. This iterative process converges rapidly 
as demonstrated by the examples in sections 8 and 9. Only two or three rounds of the process 
prove necessary. Once q0($) ~s determined accurate values of q ---- q(O,~) can be found immediately 
without further iteration. The relations x----x($,~), y----y($,~) can then be found and the 
solution is complete. 

The relaxation method described in section 2 below has two disadvantages:--  

(i) There is no convenient method of dealing with the outer boundary condition, log(U/q) ~- 0 
at infinity. Inversion is the  only exact method, and this is clumsy numerically. The 
difficulty is much greater for the unbounded field than for the field confined between 
channel walls. 

(ii) Relaxation is very slow for this type of problem, in which normal boundary gradients are 
specified rather than boundary values. Furthermore the only fixed value is at infinity 
and so the errors are likely to be  the greatest on the aerofoil surface. 

2. The Differential Equat ion and Boundary  Cond i t ions . - -Le t  (q,O) be the velocity 
dw 

vector in polar co-ordinates, z ~ x + iy, and w = $ + iv, then qe -i° -~ - -  Therefore 
dz" 

log + iO = log \ d w /  = f '  say. Thus , apart from possible singularities, f is an analytic 



function and it therefore satisfies VPf=  0 in both the z and w-planes. We shall write 

L -~ log (U) ,  and so f = L + iO. The Cauchy-Riemann equat ionshold ,  e.g., in the w-plane 

OL ~0 OL O0 
a ¢  - 0 v  = - . . . . . . . . . . .  . . .  ( 1 )  

On the aerofoil boundary 00 is specified or can be calculated from the aerofoil co-ordinates. The 
distance measured from an origin along a streamline or boundary will be denoted by s, then 

(O¢)_~ o = qo, and (Os)~_O o = --  R. Thus from (1)the normal boundary gradient can be written 

o =  - o 0 -  . . . . . . . . . . . . . .  ( 2 )  

The other aerofoil boundary conditions are the locations of the stagnation points and sharp 
corners, if any. The rear Stagnation point will be fixed at the trailing edge (Joukowski 
condition), while, for the general asymmetric aerofoil, the location of the front stagnation point 
will depend upon the incidence (or circulation) imposed. For a symmetrical aerofoil the non- 
linear boundary conditions (2) can be dealt with as follows. 

Init ially an approximate relation qo ----- q0(¢) is assumed. The origin for ¢ and s is taken to be 
the trailing edge. Let the value of $ at the front stagnation point be ~. The distance s(¢) 
from the trailing edge to ¢ is found from 

¢ # 

= | d¢/qo, . . . . . . . . . . . . . . . . . .  
( s )  

d 0 

since qo = Ts  o" Let the known relationship between the semi-perimeter p and the chord c be 

- [ ¢ d ¢  " - = -~'(¢). Usingthis  relationship in p = mc, say, then c ---- ml J0 ~0' and,using this in (3) we have cS 
6 

R = R  c ' which can be calculated from the aerofoil co-ordinates, enables us to calculate 

C C C 
R -- R (~)" From the assumed values of qo(¢) and the  derived values of c and _~ (¢) we then find 

the approximate boundary conditions ~ = - -  The values of the boundary gradient 
o Cq0 

found in this way are reasonably close to the 'true values; e.g., an overestimate in the value of 
q0 reduces the value of c subsequently determined, and so the product (Cqo) remains reasonably 
close to the true value. Furthermore along the greater part  of the aerofoil chord R varies slowly. 
With these approximate boundary conditions, either the usual relaxation t r ea tmen t  or the 
method developed 'in this paper can be used to calculate new and more accurate values of q0(¢), 
v~hich are then used to determine more accurate boundary conditions by the method described 
above. Relaxation or the polygon method is again applied to find a new relationship qo($), 
and so on. The process converges rapidly and even if the initial assumption qo = U, is made, 
only two or three integrations along the surface are necessary. In section 7 this is made the 
initial assumption for a circular-arc aerofoil. The first approximation is compared with the 
exact analytical solution and the agreement is very good. 

Before dealing with the new method of this paper two further difficulties peculiar to the 
relaxation t reatment  wiJl be mentioned. 

(a) The Outer Boundary Condi t iom.- -Some remarks have already been made about this ill the 
introduction. For the bounded field the difficulty is not so great. On the channel walls R is 
specified, so OL/8¢ can be found, Now L = 0 at infinity upstream and downstream, but  it is 
sufficient to assume that  L ---- 0 at distances of two or three chords upstream and downstream 
from the aerofoil centre, for it is known that  the channel walls rapidly damp out the influence 
of the aerofoiP 2. 
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For  the unbounded  field the  b o u n d a r y  condit ion is L = 0 at infinity in every  direction. 
Short  of inver t ing the plane to limit its extent ,  we can only use approximate  methods,  such as 
replacing the aerofoil by  a subst i tu t ion vo r t ex  and calculat ing theoret ical ly  the values of L on 
an outer  boundary ,  say two to three chords radius from tile centroid of circulation. Invers ion 
produces a curved  b o u n d a r y  and  is thus  c lumsy numerical ly.  A subs t i tu t ion  vor tex  has been 
used by  the au thor  for  an asymmetr ic  aerofoil and  it p roved to be sufficiently accurate  provided  
the outer  b o u n d a r y  was t aken  to be at  a radius of at  least two chords TM. This resul ted in a large 
field in which to ' relax ' and  therefore the calculations were very  slow. 

(b) The Singularities i n  log (U/q) at the Stagnation Po iu t s . - -Me thods  of dealing wi th  these 
infinities have  been dealt  wi th  at length elsewhere 16, bu t  the principle will be briefly indica ted  
in the  appendix.  

3. The Velocity Field Due to a Symmetrical  Aero fo i l . - -The  aerofoil is at zero incidence m i d w a y  
be tween symmetr ica l  channel  walls. Fig. 2 shows the w-plane field repea ted  at  intervals  of 
h in the  $ direction. In  this ex tended  field tile aerofoil is a slit on w = 0, 4- ih, 4- 2ih, . . . , 
and s o _ f ( w ) = f ( w + i r h ) ,  r - -  4- 1 , 4 - 2 ,  . . . , w h e r e f - - = l o g ( U / q )  + i 0 .  From s y m m e t r y  
f (w) = f ( i rh  + ~), the  bar  denot ing conjugates;  in par t icular  

f($o ÷ iO) = f($o ÷ irh - -  i0); f(,bo ÷ ½ih --  iO) = ~ o  + ¢h(r - -  ½) ÷ iO) . .  (4) 

+ i0 and  --  i0 denot ing the upper  and  lower edges respect ively of $ ---- 0. We shall assume 
tha t  f (w) has singularities at  w = $s, s = 1, ~,,° . . . , due to discontinuit ies in 0, i.e., sharp 
corners on the  aerofoil surface. Elsewhere f is analytic,  and  so if the  singularities are excluded 
by  small semi-circular indentat ions,  Cauchy's  integral  t aken  a round the  contour  0 in Fig. 2, 
gives 

1 [{ + ;"---0 + + c ÷ - 
- J ~ ~-0+ ½ i h - w  

- R  r = l  $r+p ~ n + p  . - -  

÷ Y, Is ÷ Io + Ibm, . . . . . .  (5) 
S .A 

where w is a point  wi thin  the contour,  Is is the contr ibut ion to the integral  f rom the  inden ta t ion  
about  the s ingular i ty  at w = Ss, and Ia, Ib are the contr ibut ions  from the ends of the rectangle.  

Referr ing to Fig. 1, in which  there  is a corner of angle - - z  at tile origin, we see tha t  the  
Schwarz-Christoffel t ransformat ion  from the z to the w-plane is 

dz 1 
_ _  e i a w  - .1#,  

dw K 

where  K and t are real constants .  Thus  

f =-- log \ dw/  --  --  - log w + constant .  

This result  shows tha t  in the  ne ighbourhood of a d iscont inui ty  in 0 on an aerofoil we can 
expand  f (w) thus  : - -  

/(w) --  
7t  

- - - - - l o g ( w - - C s ) + a + b ( w - - 4 s ) + c ( w - - 4 , )  3 + .  . 

where a, b, c are independent  of ] w -  4s[. Thus for small values of p, 
If(C, + Pe'~) ] = - l iogp ÷ 0(1)I. Since w is wi thin  the contour  ]¢s + pe i~ --  w I has a lower 

~f= I l ogp÷0(1 ) l  d,<.. * bound,  k say, and  so [Is] ~ 0 [ ¢ s + P e  ; ~ - w l  k p l l°g P ÷ 0 ( 1 ) l - > ' 0 a s p - - ~ 0 "  
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In  the l imit  then as p -+ 0, (5) becomes 
R hi2 

f(w) --  2~i [ j_R  ( S o - - w )  d$o --  , _ R  ¢o + ½ih --  w __o R + ivo --  w dvo 

h/2 
_ ¢ ~ : < -  n + ivo> dvo} . . . . . . .  <~> 

_o - - R + i v o - - w  

The conjugate point  ~ lies outside contour  ' 0 ', and so 

- ,("" :IR + i~o) o - 1 (" :(:o + io) d:o (" f(:° + ~ih io) d:o + R + ivo -- dvo 

hi2 

- i J" : / -  R + ivo) dvo} .. <7) 
- o  - -  R + i w  - -  ~ . . . .  

Adding the conjugate of this equat ion to (6) and using 2i0 = f -  f .  we find 

-R ~ o - - W  ~ o + ½ i h - - w  4 ~ o - - ½ i h - - w  ~ o + ½ i h - - w  J 

1 (h/~{ f(R+ivo) + ~R+ivo) _¢_ : ( - - R + i v o )  ~ - - R + i v o ) }  
+ ~ 3 o  R - - i V o - - W  R + i v o - - W  R - - i V o + W  - - ~ - ~ - ~ ¥  dvo. 

Applying the same method  to the r 'h contour,  and making  use of (4), we have 

o=~__~/+~T~_~-:o+¢(~+½)h_~ :o+¢(~-½)h-~-:oT~+½)h 
1 (h/.{ f(R + iv o) + :(R + iVo) + f ( -  R + iVo) 

-¢- ~ 3o R + i r h - -  ~Vo-- W R + irh + i v o - -  W R + i r h - -  ivo-C- w 

+ R + irh + ivo + w 
dvo. 

Adding these equations for r --  ± 1, 4- 2, . . . 4- n to the equat ion for f(w) we get 

1(~) d$o 

_ f(R + ~Vo) 
~ J_~ 4o + i(n + ½)h --  w 2~30 . . . .  ( R + irh --  iwo --  W 

( { f ( - - R + i v o )  + f _ ~ - - R + i v o )  }dVo. 
1 ~/~ ~ R + i r h - - , V o + W  R i r h + i v o + w  + ~ o  . . . .  : 

In  the  l imit  as n -~ oo this becomes 

= 0(~o + i0) c o t h ~  (¢o -- w) --  0(~o + ½ih -- iO) t a n h ;  (~0 --  w) d~o f(~) h _R 

l:.( - ~ ( R + W o - - W )  dVo (R --  ivo w) + f i r  + ivo) c o t h ~  + f ( R  + ivo) c o t h ~  
~ 0  

+ 2-h Jo f( --  R + ivo) coth ~ (R --  iv0 + w) + )~ --  R + ivo) coth ; (R + ivo + w) dvo. 
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If  at  ~ = oo, L = log U/a ,  and at  4 = -- ~ ,  L = log U/b; then  in the  l imit  as R --~ oo we have 
finally 

f ( w )  = ~ 0 coth ; ($0 -- w) -- 0* t anh  ; ($o -- w) dG + ½ log ~-~ , 
- - c O  

where 0 refers to the aerofoil and 0* to the  channel  wall. Selecting U = @(ab) ,  we have for the  
flow in an asymmetr ic  channel,  width  h i2  in the  w-plane,* 

f(w) = ; 0 coth 1~ (~bo -- w) -- 0* t anh  ; (~0 --  w) d~0 . . . . . . .  (8) 
- - c O  

The functions 0 and 0* must  sat isfy 

1 (o --  o*) rico -= ½ log ~ (9) 
- -  l o g  = ~ _ co , . . . . . . . . . .  

obtained from (8) by  pu t t ing  ]w I = oo: 

Pu t t i ng  0 " , =  0, and then let t ing h -+ oe, we find for a symmetr ica l  aerofoil at  zero incidence in 
an unbounded  s t r e a m  

_,.foo , 0 d,bo 
. . . .  w )  . . . . .  , . . . . . . . . . . . . .  ( 1 0 )  

We can reduce the range of in tegrat ion to ( A , H )  for if the  aerofoil lies in this  interval ,  then  
outside (A,H), 0 = 0 .  

d 

' d|%_u dO ( 4 0 )  0 ,  . . . . . . . . . . . . . . . . .  . .  ( 1 1 )  

another  useful result, i s  s imply one of the  condit ions t h a t  the  profile is closed. 

If  ins tead of adding the conjugate  of (7) to (6) we subt rac t  it, we find corresponding to (8) the  
conjugate equation* 

i (co {L c o t h ~ ( ~ 0 -  w) --  L* t a n h h ( ~ 0 -  w)}dG, (12) J I - l -  . . . . . . .  

where the axes in the z-plane are adjus ted  to make  0(oo) = 0( --  oo), i .e. ,  the  flow directions at 
inf ini ty  make  equal angles wi th  tile x-axis. Tile functions L and L* must  sat isfy 

, I f  ~ _co (L -- L*) d$0 0(oo) 0( -- oo) ----- 0. 

In  an unbounded  s t ream 
cO 

f ( w ) -  _co o-W' _co " . . . .  

These conjugate equations p lay  the same role in aerofoil design as do (8) and (10) in the  
calculation of the flow about  a specified aerofoil. 

The appropria te  value to use for h in the  above formulae is clearly 

h = Hoa, . . .  .. . . . . . . .  , . . . . . . . . . .  (14) 

where Ha is the  channel  wid th  in the  z-plane at  a point  where the veloci ty is known to be uniform 
and equal to a. Th.e prescribed condit ions at inf in i ty  fix these quanti t ies.  

* Equat ions  (8) and (i2) are applied to a number  of fluid motion problems in Ref. 22. 
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4. Numerical Solution of the Equations.--(a) Unbounded Field.--Integrating. ( 1 0 ) b y  par ts  

1 A 
f(w) = --  - log (¢o -- w) dO(Co), . . . .  . . . . . . . .  (15) 

7g 
$0 = H  , 

since 0 = 0  at ¢ o =  ± m .  Now 0(¢0) is continuous except  at  a number  of points  ¢ 0 = ¢ , ,  
where there is jump in 0 of ~, say. F rom (1) and (2) 

( a L ~ d ¢ o  - 1 d0(¢o) = - -  \ ~/o R q o  d¢o . . . . . . . . . . . . . . .  (16) 

Subdividing t h e  range (A,H) into (¢1, ¢~,,- • . ,  ¢,, . . . .  . ¢ , ) ' and  using (16), we can t ransform 
the  Steil t ies integral  in (15) into 

1 
f(w) =-= n olOg(¢° w) d¢o ~ , -  Xv, l o g ( ¢ , - - w )  . . . . . .  (17) 

= - l o g  (¢0 - w)  d¢o  - -  - Y~ 3,  l o g  (¢ ,  - -  w)  . . . . . .  ( 1 8 )  
:N i = l  de ,  i ~'g s 

is carefully made wi th  n large enough, we can write approximate ly  

f(w) = - 1  1 E r ,  log (¢, --  w), ..  . .  . .  (18) 
~rg Y'C s ;=, ~-~,  [ l o g  ( 4 0  - w ) ] , , ,  - - 

If  the subdivision 

(~--~) ~¢ i,h where 0¢ ; is the  mean  value of ~-~ in the  

logar i thm in the i th range, and  ~¢; = ¢/+~ -- 

range, [log (4o --  w)l~, is the mean  value of the  

4i. On ~ = 0, (18) becomes 

loa . . . .  , 

an equat ion which must  be solved b y  an i terat ive process as q appears o n  bo th  sides of the  
equation. This  i tera t ion has been described in section 1 and is summarized in Section 7. W h e n  
(19) has been solved (18) can be used wi thout  fur ther  i terat ion to determine L(¢,w) and 0(¢,~) 
th rough6ut  the  field. For  example the  real par t  of (18) is 

1 n~l ( ~ q ) ~ l o g  ((¢0 - -  ¢) 2-{- ~ J 2 } l / 2 1 m i - - l ~ T s l O g ( ( ¢ s _ _ ¢ ) 2 ~  ~j2})1/2 L(¢,~) = ~ ,-=1 , ~ , 
L 

The mid-range values of the logar i thm m a y  be t aken  instead of the  mean value except near  the 
s ingular i ty  (¢o,0). 

(b) Bounded Field.--Assuming for s implici ty  tha t  0* " 0 in (8) we find 

,fy f(w) - -  ~ s- s i n h ;  (¢o w) d¢(¢0), . .  . .  . . . . . .  (20) 

then  as before 

1 ~1 a¢ [log s m h x  (¢o,"  w ) ~ , -  - f ( w )  = ~ , : ,  
7C 

1 Z , ~  log sinh ~ (¢, --  w), (21) 



and  in par t icular  

log ( U )  1 ~ *  (6~q) [log . zc 1 . z~ = - smh ~ (Co --  C)]m~ --  - E 3, log smh ~ (C, -- C)- . .  (22) 
Yg i = 1  i " ~ s 

An al ternat ive  approach to the  bounded field is given in section 6, which avoids the need to 

compute  [log s i n h ~  (¢0 -- ¢)],,,~. 

5. Doublets.--Near a nose wi th  a small radius of curvature  it  is useful to have  formulae for 
the  effect of a corner ~ at a distance ~C0 from an equal and opposite corner - -  , .  The influence 
of a doublet  between parallel  channel  walls is from equat ion (20) 

f(~) - 3 [log sinh z ~ (C0 + ~C0 -- w) --  log sinh ~ - - - ~ ( C 0  - w ) l  

. . i x .  = aCo {log sinh ~ (¢o --  w)}, 

i.e., f(w) --  (3 aC0 ) coth ~ (Co --  w). (23) 
h , . , o . . . , . . . ¢ . . 

For  the unbounded  field this becomes 

f(~) - ~(~ ~C%o ) " _  (24) 

The effect of the  channel  walls on the doublet  i s  

A f  = (3 ~¢o) tcot h z (w --  Co) - -  

h 

1 } 
(w - Co) h 

_~ (3 ~¢0)(w -Co){1 _ 1  C0)=}. (2s) 

6. Increment due to Straight Parallel Wai l s . - -From (8) and (15) this increment  is 

Af(w) --  lfA f 
~rg 1 A 

- log s i n h ~  (¢0 --  w) d0(¢o) + - log (¢o --  w) dO(Co) 
4 0  = H  7 g  ¢ 0  = H  

i f  C 
- log cosh ~ (¢0 - -  w)  dO* (C0L 

at/:  6 0  = D  

assuming the walls are s t ra ight  and parallel  outside the range (C,D). Now the functions d0(¢o ) 
and d0(¢o) occurring in this  equat ion are not  quite  the same, bu t  since the blockage effect is 
fair ly uni formly dis t r ibuted over the aerofoil, only a very  small error is commit ted  in assuming 
dO(Co) = d0(¢o). Doing this  and making  use of (11) we find 

d r -  I f  A 1 sinh (~/h) (60 w) I f  c 
- - log cosh ~ (¢o - -  z a )  dO*(¢o) 

8 



_ t - x _  _ _  _ _  

6h~ ~o= ( ¢ o -  w) ~ 1 - gO ( ¢ o -  ~)~ do(Co) 

x f c  l ( h )  ~ } - 2-~ ~o=~ (4,0 - ~)~ 1 - ~ (4,0 - w)'  do*(¢o)  (26) 

Now h = H U  (see (14)), and so if 0* = 0, then wi th  the  aid of (16), (26) becomes 

- -  (4,0 - -  ¢ ) 2  1 A L = log qb --  log ~ 6(/-TU) ~ ~ o d ¢ o  

7g 2 

3(HU? (¢' - ¢)~]' 

where qb and q, are the velocities in the  bounded  and unbounded  streams respectively.  

Now A L = - - I o g ( q b / q , ) = - - l o g ( q , + q b -  q,) /q, = -- log 1 + - " - - - -  

approximat ion ¢0 ~ Us, -"  Uxo, i.e., q0 = 1, we have 

Aq and so with the 
q, 

Aq = [ 1 - -  1 A 

x (Xo - x)" dxo]} (27) 

from which the  effect of .blockage on the aerofoil surface can be found  immediately .  I f  
doublets are employed in the  calculation an addit ional  term, readily calculable from (25), will 
appear in (27). 

7. Summary of Iterative Method of Solution.--Take the origin of s and 4, to be at the  trail ing 
edge say, and let ¢ = ¢ at the  leading edge. 

(a) From the aerofoil co-ordinates find (i) ~ = ~ , 

(ii) semi=perimeter p = inc. 

(b) Assume a relation qo----qo(4,) (qo = 1 for example),  and calculate 

s(4,) = , c =- m , and c = c (4,). 
0 0 

6 6 
From this the relationship R --  R (4,) can then  be deduced. 

(c) C 
Using the assumed q0(4,) and the  deduced values of c and  ~ (4,) calculate approximate ly  

- -  as a function of 4,°. Subst i tut ing this value in the  r ight -hand side of  equat ion (19) 
Cqo 

yields Ld(4,) say, from which qol(4,) can be found. 



(d) Repeat steps (b) and  (c), using q0~(¢) to find q0~(¢), which will bemore  accurate. 

(e) Repeat step (d) until qo(¢) remains unchanged in successive steps. 

(f) Values of L and 0 in the outer field can now be found directly from (18) using the 

accurate values of ( R )  1 from the last calculation of step (e). 
. C ~ 0  , '  

(g) The (¢,w) and (x,y)-planes are now related by 

f f  ~sin 0 x = x (¢ ,~ , )  = c°s- -2  d e  - [ d ~ ,  
s0 q ' J o  q' 

y = y (,~,~) = f~ sin 0 d~ + f,Ocos o a~,, 
J , ~ o  q J o  . - 

and hence from step (f) we finally have the solution L = L(¢,~0), 0 = 0(¢,~). 

Section 15 gives an aiternative method of calculating 0 in step (f). 

A similar process applies to the bounded field. One important  point arises in step 3. The 
trailing and leading-edge angles, 2zh, and 2,° say,, should not be given their actual values in 
(19), otherwise the equation corresponding to (11), i.e., 

,=1 , - x , ,  = o . . . . . . . . .  . .  . .  . . . .  (2s) 

will not be satisfied. It  is clearly satisfied by the true values of za and 3h only if n = oo. The 
best method of determining appropriate values of ,a  and *h is to find the position of that  tangent 
to the aerofoil which is parallel to the x-axis, and then 3° is taken to be equal to the sum of the 
(d¢/Rq)i between this point and the leading edge, while 3h is the sum of the remainder of the 
(~¢/Rq)~. 

- 8 .  Example: :A -CircularS-Arc Aerofoii. " (a)Ex-act :Theory i The approximation derived from 
the initial assumption that  q0 = 1, will be compared wi th the  exact theory for the yon  Kffrm~n-' 
Trefftz profile shown in Fig. 3. The following notation will be used: - -  

t the maximum thickness 

23 the trailing and leading-edge angle 

a the radius of the circle in the C-plane into which the profile is transformed 

k 2(~ ~i 

The following expansions correct to (t/c) ~ will be used: - -  

2, { 3 = - -  R =  k - = 2  1 - - -  • . .  
C ' 4- '~ '  

~ I • m (29) 

The transformation from the z-plane to the  ~-plane is 

z (1 + a / ~ )  k +  ( 1 - - a / Q  k therefore dz z ~ -  (ka) ~ 
k~=(l+a/~) ~ - ( 1 -  a /¢ )  ~ '  . ~ = . , ~  - -  a ~ ~ " ' ; ' 
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Also w = ¢ + a2/¢, (stream funct ion for cylinder radius a), 

dw a ~ 
therefore ~ = 1 --  ~ .  

¢ = ae ' ,  then Id~ = I1 -- e-~"q = 2 s ins ,  If 

and d~ ]P--  (ka)21. 
= 2a ~ sin e •z 

[(17 dw ] dw I l ~z d¢ 4 sin2e Thus the  surface veloci ty qo = = ~ = k ~ [ (z /ka)  ~ - I I 

z (I + e-')' e-') k {4 } 
Now ~-~ = (1 + e-;~) k + ( 1 -  --  (1 --  e-~) k = i cot k -~ ½i log (tan a ½e) , 

therefore sin~ {4 k @ / l o g  [tan k/2 (e/2)]) I 

_ F(tan' _ q ,  

With  ¢ = ae i*, w = ¢ = 2a cos e, which is used to eliminate e from the above equations giving 
finally 

I - - ( 2 4 @ ) '  --2¢/c~ 'I' [I --2¢/c'~-'/ '  - - 2 - I - 4  sin'  ('#k~=]. , ,  + , ,  . .  . .  ( 3 0 )  

At the  point  of max imum thickness on the profile s = ½s, 

4 sin 2 (sk/4) 
therefore q = k~ , 

and using (29) we have approximate ly  

4 t 24 ---~ 

(b) Polygon Method.--The first approximat ion  is q0 = 1. Therefore from 
Thus from (17), wi th  origin at  the midpoin t  of the chord, 

= - log (¢ --  ¢0) d¢o 2t log (½c + ¢) --  -- log (½c -- ¢)  L 0 ( ¢ )  ,~ _ ° / ~  - c c ' 

4t Elog (11 + 2¢/c~7 4t 
---- ~c-- - - 2 ¢ / c / J , c !  ~c' 

• ° ° ° 

1 
(29) Rqo 

(31) 

4t 
6 2 

therefore 
[4t¢ - -  2 ¢ / c ~  

q o =  e x p ( ~ ) e x p  [ ~ - ~ l o g ( l  1 + 2¢/c/} "" (32) 

"'- 1 + 4 1 - /  log 
+ 2¢/clj ' 

11 

• ° (33) 



correct to the first power of t/c. At ¢ --  0, (32) becomes 

-~ -~ + . . .  cf. (31) . . . . . . . . . . . . .  (34) 

Equat ions  (30) and (32) are compared in Fig. 3. The greatest  error in the second approximat ion 
(32) is only 7 per cent of the velocity increment.  The thi rd  approximat ion cannot  be found 
algebraically, but  using ari thmetical  methods  we find tha t  it is indistinguishable on Fig. 3 from 
the exact theoretical  result. This illustrates the  rapidi ty  of convergence of the method.  

9. Example: An Aerofoil Inverted from a Hyperbola.--This aerofoil is one of the series 
developed by Piercy, Piper and Preston TM, and having a theoretical  solution is thus a suitable 
example  to il lustrate the polygon method.  The results obtained here are 

(a) velocity distr ibution on the aerofoil surface, and 

(b) a few values of the velocity at representat ive points in the field, for both  the open and 
bounded  fields. 

The  velocity distr ibution for the open field is compared with the exact theoretical  curve, while 
the  other  results are compared with the values given by Thorn and Klanfer 1~ obta ined by  more 
laborious ' squa r ing '  methods.  

The aerofoil co-ordinates and the derived values of 1/(R log 10) and s are given in Table 1. 
(log 10 was int roduced as it was convenient  to use logari thms to base 10.) The curve 

C X .  
v -  is shown in Fig. 4. The initial assumptions a r e : - -  

2 . 3 R  c 

(i) ¢ = 0 at the  leading edge, and ¢ = 10 at the trailing edge. 

(if) q0 = 1, i.e., c = 10. 

The aerofoil is represented by arcs of constant  Rqo centred at ¢ = 2,1 1,1~,2~-,3,4,5,6,7,8,9,9~.1 1 a 
The range ¢ = - 0 -  } is not  included as it was more convenient  to introduce a doublet  at  
¢ = 0 to represent  this small range. 

Open Field.-- Fig. 5 shows the first approximat ion to qo-= qo(X/C) based on the assumption 
qo = 1. The second and th i rd  approximations together  with the correct theoretical  curve are 
also shown. Table 2 sets out the integrat ion of d¢/qo, based on the second approximation,  
to de termine  new values of 1/(Rqo) to be used in the  third, and in this case, final approximation.  
The columns of this table tha t  are not  obvious will now be described. 

Column 3: obta ined from the  second approximation.  

Column 4: s = ~¢/qo, calculated from columns 2 and 3. One difficulty here is the integrat ion 
from ¢ = 0 to 1, (and ¢ = 10 to 9) since a t  the  lower linlit the in tegrand becomes 
infinite. This difficulty is dealt  with in the Appendix.  The trailing-edge angle 
for this aerofoil is 21 deg, and so from (165) 

= ( 4 / { )  1 . o o 2  x 1 
- -  = 1" 066, (cf. col. 4) 

1 - -  O" 0 5 t ~  O" 942 

Column 7: 

Column 8: 

x/c determined from column 6 and Table 1. 

From column 7 and Fig. 4 c/2.3R can be found for each point,  then from columns 2 
and 3, wi th  c = 8.861, ~6/(2" 3Rq0) can be deduced. 
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Table 3 sets out in mat r ix  form (to save space) the solution of 

which follows from (18) and (24), a doublet  being int roduced at  tile nose. 
be wri t ten  in the mat r ix  form 

This equat ion can 

l ([Aki] {Bi} + {Ck}), {Lo($,)} = 

where B i =  k R q / i  i - ~  1,2, . . . n - l ,  

= - -  ~i, i = a,h, (Note :  F r o m  (28) E B i  must  be zero) 
i 

C k =  - -  (3  k = l ,  . . . n - - 1 ,  

A m = l o g ( 6 k - - $ i ) , k =  1, . . . n - -  1,  i = a , h ,  

= [log ($k --  $0)]mi, k , i  = 1,  . . . n - -  1.  

In Table 3 logari thms to base 10 are used, and the  matrices in the table are related to those 
defined above by 

103A 104B 104C 
A ' = -  B ' - - - -  C ' - -  

2 . 3 '  2 . 3 '  2 - 3 '  
10'L0 

L o ' - -  2 " 3 '  

2 .3  
and so {L0'($h)} = ~ EA'] {B'} + {'C}. 

104 
Now from (16) (3 05)---- ~$, and extrapolat ion of the values of ( 10 '  

2-7-" 3 " 3 ~ o  t2 .3  Rqo i 

8O 
to $ ---- ~ yields a value of  1020, also $$ = - - ¼ ,  and therefore Ck' - -  

in g' 

B o u n d e d  F i e l d . - - H  in (26) was t aken  equal to 20 units. The first approximat ion based on 
the unbounded  field results and calculated from equat ion (26), is compared in Fig. 5 wi th  the 
results obta ined by ' relaxation '. Table 5 sets out the results for the bounded  and unbounded  
fields on the  aerofoil surface, while T a b l e  4 gives outer field results at  four representat ive 
points. 
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T A B L E  1 

The Piercy, Preston and Piper A erofoil 

50438 
49866 
49291 
48142 
46990 
45834 
44674 
43511 
42344 
41174 
40000 
38822 
37639 
36453 
35263 
34068 
31663 
29239 
26793 
24323 
21828 
19303 
18028 
16745 
15452 
14149 
12835 
11509 
10169 
8813 
7439 
6043 
4621 
3164 
1654 

0 

Y 

0 
982 

1375 
1901 
2275 
2565 
2799 
2990 
3147 
3275 
3379 
3461 
3524 
3570 
3599 
3613 
3600 
3536 
3426 
3272 
3077 
2841 
2709 
2567 
2415 
2254 
2082. 
1901 
1709 
1507 
1294 
1068 
83O 
578 
307 

0 

S 
- x 104 
C 

0 
225 
365 
613 
853 

1089 
1323 
1557 
1790 
2023 
2257 
2491 
2725 
2960 
3196 
3433 
3910 
4391 
4877 
5368 
5867 
6370 
6624 
6880 
7138 
7400 
7665 
7930 
8198 
8469 
8745  
9025 
9311 
9604 
9907 

10240 

C 

2.3R 

10"12 
2.78 
2.08 
1.19 
0.863 
0.738 
0.493 
0.457 
0.382 
0.348 
0.305 
0-265 
0.265 
0.241 
0.213 
0.191 
0.165 
0"155 
0.142 
0.132 
0"116 
0'119 
0.112 
0"101 
0"103 
0"100 
0"110 
0"089 
0"097 
0-107 
0"077 
0-085 
0-092 
0-082 

X 
- x 10 a 
C 

0 
11 
23 
45* 
68 
90* 

115 
138" 
161 
184" 
207 
231 
253 
278* 
3OO 
325 
372* 
420 
469* 
518 
567 ~ 
618 
643 
668* 
694 
720 
746 
772* 
799 
825 
853 
880* 
908 
937 
967 

1000 

Trailing-edge angle = 21 deg 
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• T A B L E  2 

Integration to Determine Boundary Gradients 

(1) 

0 

1 
2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

¢ 

(2) 

1 

1/qo 

(3) 

0.894 

0-839 

0-840 

0.837 

0.840 

0.852 

0.868 

0-888 

0.907 

0-962 

1.002. 

~s 

(4) 

0.554 

0.432 

0.420 

0.419 

0.838 

0-846 

0.858 

0.878 

0-898 

0.935 

0.982 

1-066 

(5) 

" 0 

0.554 

0.986 

1.406 

1.825 

22.663 
3.509 

4.367 

5-245 

6-143 

7.078 

8-060 

9-126----p 

s/c 

(6) 

0 

0.062 

0.111 

0.158 

0.205 

O. 299 

O. 393 

0 . 4 9 i  

0.589 

0.689 

0.794 

0.904 

1- .024=m 

x/c 

(7) 

0 

O- 046 

O. 092 

O. 140 

O. 186 

0.279 

0.374 

0-471 

0.570 

O. 669 

O" 773 

0.881 

1.000 

(8) 

0.0932 

0.0405 

0.0245 

0.0267 

0.0240 

0.0176 

0.0150 

0-0130 

0-0113 

0.0106 

0.0099 

Note: 

c = p / m  = 9.126/1.024 --  8.861 

The results in column 7 should be compared with the results in Table 1 marked with a star, which are for the 
same values of ¢, and it will be seen that the maximum error in the location of the equipotentials is 0.3 per 
cent of the chord. 
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TABLE 3 

Third Approximation, Unbounded Field 

A, 

---301 --1036 --321 . --5 
0 --321 --1036 =-321 --43 296 475 602 699 778 845 903 942 

+176 --5 --321 --1036 --234 +168 395 544 653 740 813 875 917 
301 +174 --5 --321 --894 --20 +296 475 602 699 778 845 889 
477 398 +300 +174 --59 --735 --20 +296 475 602 699 778 829 
602 544 477 398 +273 --20 --735 --20 +296 475 602 699 756 778 
699 653 602 544 459 +296 --20 --735 --20 +296 475 602 677 699 
778 740 699 653 588 475 +296 --20 --735 --20 +296 475 574 602 
845 813 778 740 688 602 475 296 --20 --735 --20 +296 439 477 
903 875 845 . 813 796 699 602 475 +296 --20 --735 --20 +243 +301 

__+954 +929 +903 +875 +837 +778 +699 +602 +475 +296 --20 --735 --175 

207 +395 +544 +653 +740 +813 +875 +929 +966 + 9 7 8 -  
954 
929 
903 
845 

O_ 

Cj = 0 ½ 1 1½ 2{- 3 4 5 6 7 8 9 9~ 10 

2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

X 

B' C' 
- - -2112~ ---164' 

+932 / --82 
405 /  --55 
245 --41 
267 --27 
240 I --20 
1761 2.3 
15ol ~ + =14-16 l 13Ol -12 
113 --10 
106 I --9 
99 I  - - I 

--797~ 

TABLE 4 

VelocitiesintheOuter Field 

LI 
- - -511~ 

--760 
--7781 
--788 
--747 
--680 
--600 
--502 
--374 
--212 

_ +39J 

Position 
Origin L.E. 

(¢,¢) 

(-5, o) 
( 1 , 4 )  
(6 ,10)  
(11, 2) 

Open Field 

' Squaring' 
Results 

0.9804 
1.0253 
1.0119 
0.9757 

Polygon 
Method 

0.9813 
1.025 
1.012 
0-9759 

Bounded Field 

' Squaring" 
Results 

0-9883 
1.0373 
1.0305 
0.9906 

Polygon 
Method 

0.9899 
1.038 
1.030 
0.9910 

TABLE 5 

Velocity Increments on the A erofoil Surface 

¢ 
Open'~ Polygon 
Field J Exact 

Bounded~ Polygon 
Fielded ) ' S q u a r i n g '  

1 
2 

O. 125 

0.137 

I - 

0.191 
0.191 

0.204 
0.204 

15 2 
0-196 0.199 

- -  !o-2oo 

0.210 0-213 
- -  0.213 

3 
0.188 
0.188 

0.201 
0.202 

4 
0.169 
0.171 

0.184 
0.184 

5 
0-148 
0-148 

0-162 
0-162 

6 
O. 123 
O. 122 

O' 137 
O' 135 

7 
O. 090 
0"090 

O. 103 
O. 102 

8 
0.051 
0.050 

0.061 
0.061 

9 
--0-009 
--0-009 

O -  002 
0"001 
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FIG. 3. 10 per cent circular-arc symmetrical aerofofl. 
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FIG. 4. Piercy-Preston-Piper aerofoil. 
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FIG. 5. Velocity distributors. 
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PART 2 

Incompress ible  F low  about an Asymme t r i c  Aerofoi l  in  a Free S tream 

10. I n t r o d u c t i o n . - - I n  section 12 equation (10) is generalised to apply to an asymmetric 
aerofoil at zero circulation. I t  is necessary to work in the plane of zero circulation because 
only in this flow plane are distances defined uniquely, i.e., are independent of the path  taken. 
In section 11 it is shown that  once the problem has been solved at zero absolute incidence (zero 
circulation) then it is simple to deduce results for any angle of incidence. To complete the 
solution it is necessary to compute the zero-lift angle. Tile method is quite simple and is set 
out in section 14, while section 15 summarizes the application of the polygon method to an 
asymmetric aerofoil. 

The example selected to illustrate the method is a high-speed 10 per cent propeller aerofoil 
(NACA 16), which has a very small nose radius. In Fig. 8 surface results obtained from the 
polygon method are compared with results (a) from a previously computed relaxation solution TM 

and (b) obtained experimentally at the National Physical Laboratory. There is good agreement 
with the experimental results except near the trailing edge, where of course the effects of 
viscosity are not negligible. 

11. A s y m m e t r i c  Aerofoi l  wi th  C i rcu la t i o~ . - -Th i s  section reduces the general problem of an 
asymmetric aerofoil with circulation to the problem of an asymmetric aerofoil without  
circulation. Fig. 6 shows the various transformations used in this section. In this figure 

~. is the absolute incidence 

is the complex variable in the plane in which the aerofoil is transformed into a 
circle of radius a, 

a s 

i.e., w = ¢ + T  . . . . . . . . . . . . . . . . . . . . .  (35) 

and w' is the flow plane with circulation, 

aZe - ia  
i.e., w'  = ei~¢ + ~ + 2ia sin ~ log ¢ . . . . . . . . . . . . . .  (36) 

In the w-plane the aerofoil is represented by a slit extending from 2a to -- 2a. In (36) the 
circulation has been selected so that  the Joukowski condition holds, i.e., the rear stagnation 
point H coincides with the trailing edge. 

I t  is required to express the velocity in the w-plane in terms of the velocity in the w-plane. 
From (35) and (36) 

q,e_iO, _ _ dw' _ dw' de dw 
dz de dw d z 

qe -i° ( e  ia - -  __ a ~ 2ia sin ~. 1 -- , 

From (35) 2¢ = w + (w 2 -  4a2) t/~, the positive sign being selected so 
d w  

where qe-i° = __ 
dz"  

that  the ¢ and w-planes are identical at infinity. Thus * 

- -  2 a /  j qe-~°,  (37) 

~An a l te rna te  proof  of this  resul t  appears  in Ref. 21 
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in which the first factor  is the wel l-known solution for a flat plate  at  an angle of incidence ~. 
Thus if the solution at zero incidence can be de termined,  t ha t  at  incidence is found by  
mul t ip ly ing  by  the corresponding flat plate  solution. This simple rule can be expressed concisely 
in terms of elliptic co-ordinates (~,7') defined by  

w - - - - - - 2 a c o s h t ,  t = ~  + i y ,  . . . . . . . . . . . . . . . .  (38) 

when  (37) reduces to 

q'e -i°' -= (cos ~ × i sin ~ t anh  (t/2)} qe -~° . . . . . . . . . . . . .  (39) 

7' = 0, defines the  s tagnat ion  streamline,  while ~ ----- 0, or w ---- ~ ---- --  2a cos 7', . .  (40) 

defines the slit represent ing the aerofoil. Thus on the-aerofoil  (39) becomes 

q0' = (cos ~ + sin ~ tan  }7') q0 . . . . . . . . . . . . . . . .  (41) 

The angle y is shown in Fig. 6. At  the trai l ing edge y ---- 0, and  at the front s tagnat ion  point  
corresponding to zero circulation, y = ~. F rom (41), when 7 = 0, q 0 ' =  q0 cos ~, bu t  when  
7' = a, q 0 ' =  c~ × qo. However  qo' remains finite since at  7' = ~, q0 = 0. 

12. A s y m m e t r i c  Aerofoi l  at Zero I n c i d e m e . - - T h e  method  a l ready developed for a symmet r ica l  
aerofoil at zero incidence, together  wi th  the equat ions given above, solves the problem wi th  
flow wi th  circulat ion about  a symmetr ica l  aerofoil. I t  remains now to de termine  dw/dz  = qe -~° 
for an asymmet r ic  aerofoil at  zero incidence. 

Consider the t ransformat ion  

w = - - 2 a c o s h t ,  t = ~  + i y ,  

a l ready used in the  previous section. Fig. 7 shows the relat ion be tween the w and t-planes. 
The whole of the w-plane  maps into each of the  semi-infinite strips 

o~<v~<co, 2~r~<~<2~(r+l) ,  

0 / > ~  ~ > - - c o ,  2 ~ r ~ < ?  ~ < 2 ~ ( r +  1), 

where  r = 0 ,  4 -1 ,  4- 2, . . . .  E l imina t ing  7' from 

$ + iv ---- --  2a cosh ~ cos y --  2ai sinh ~ sin y, 

q~2 ~02 
we have  4a ~ cosh 2 ~ -4- 4a~ sinh ~ ~7 - - 1 ,  

and  so ~ = 4- constant ,  is an ellipse in the w-plane. 

The only singularit ies in f occur on the aerofoil surface at simple discontinuit ies in 0. The 
t ransformat ion  (38) is conformal except  at points ]3 and  D (Fig. 7), and so f, being analyt ic  in 
the w-plane in which points  B and D and  the surface singularit ies are excluded by  indentat ions ,  
will be analyt ic  in the  corresponding region of the #p lane .  As in section 3 the  contr ibut ions  
to Cauchy 's  integral,  t aken  a round  the  contour  indicated in Fig. 7, from the indenta t ions  
excluding the singularities will t end  to zero as the  radius of the  indenta t ion  tends  to zero. We 
can therefore omit  fur ther  considerat ion of these singularities. 

I t  is clear tha t  f and its derivat ives are cont inuous across the family of lines AB, bu t  while 
f is cont inuous across ~----0, its derivat ives are not.  However  this does not  affect the 
appl icat ion of Cauchy 's  integral  to the rectangles 0 ~ ~ ~ k, 2a t  ~ 7' ~ 2=(r + 1), since 
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V = 0 lies only  on the  contours .  Suppose P(t) is a po in t  inside the  rec tangle  0 ~< ~ ~< 2a, 
0 ~ V ~< k, t h e n  P ( -  7) (the bar  deno t ing  ' c o n j u g a t e  ') is a po in t  inside the  rec tangle  
0 <~ ), <~ 2~, 0 >/~  >~ - -  k, i.e., outside the  first rectangle .  Thus  for P(t) we have  

f ;o o o )  2,, 0 k, f(k,fl) [ f(~7,0) 
1 [ ( i(,j,/7!i dt7 + /(V,2:~) d~7 + _ t i  dt7 + dv 

f(t) = 2~i t do if7 - -  t o v + 2i~ - -  t ~, k + ifl Jk v - -  t ' 

which,  since f(v,y) = f(v,9' + 2~), we can wri te  

l {S"l f(o,/7) 
f(t) - 2~i o ~ ~ - - 7  

) ;( , , )  } f ( k d )  i dfl -p- - -  (42) 
k + iS - -  t o n + 2i~ - -  t v - -  t f (n,O) &7 • . .  

Also for P( - -  D we have  

) , ,) 1 [ ( ' " ( f (O , f l )  f ( k f l )  i d/7 + f ~ + + ~7 0 - -  2ui t Jo  \ ' ~ f i T ?  k + 7/7 -¢- f o 2iu / ~ -  _¢_ f f(%0) d~7}. . .  (43) 

A d d i n g  the  con juga te  of equa t ion  (43) to (42) we h a v e  

1 [ (~:(2iO(O,fl) f(k,/7) 
f(t) - -  2~7 {do \ - ~  ~ - {  - -  k + i/7 - -  t 

.ilk,~7) t) i d~ 
k - -  i ~ +  

k 

o i T + 2 i ~ - - t  V - - t  
/~)+ + d,} 

,7 t U - 4 - 7 )  • 
(44) 

Similarly,  t a k i n g  Cauchy  in tegra ls  a round  the  rec tangles  2~r ~< ? ~< 2(r + 1), 0 ~< ~ ~< k, 
r = ± 1, 4442, . . . -t-n, and  add ing  the  resul ts  (all zero on the  l e f t -hand  side) to (44) we 
find 

~ { , " o  , 2io(o,/7) f(ks) _ i(k,,) ) id ,  

k 

+ ( i ( 
• 'o . . . .  ~ - f - 2 i ~ + 2 ~ i r - - t - - v + 2 ~ # ' - - t - - ~ 7 + 2 ~ i r - - 2 ~ i + t - -  + 2air + 

In  the  l imit  as n ~ oo this  becomes  

¢S ,f- f(t) = G 0(0,fi) co th  ½(i/7 - -  t) d/7 - -  G {f(k,tT) co th  ~(k q- it7 - -  t) 
o 0 

-4- j~k,/7) co th  ½(k - -  i/7 -p- t)} dil. 

Suppose  f(oo,/7) = iO ~o, i.e., q<o ----- U, t hen  w h e n  k -+ oo, we have  finally 

f(t) = ~ O(fl) coth  ½(ifl - -  t) dfl, . .  (45) 

where  0 .  - -  2= 0 (/7) dt7 . . . . . . . . .  

The  range a l te ra t ion  is permissible  since 0(fl) = O(fl q- 2=). 
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If instead of adding the conjugate of (43) to (42), we subtract  it, we can derive the conjugate  
equat ion to (45): - -  

f(t) = ~1 f_ , ,  L(E) coth ~(iE, - -  t) dE - -  io~o, . . . . . . . . . . . .  (47) 

ra 

I . . . .  (48) where L(E) satisfies L(E) d3 = O. . .  • . . . . . . . .  

Equa t ion  (47) is a more general form of an equat ion due to Lighthil l  s*. His equation,  the basis 
Of his me thod  of aerofoil design, is obta ined by  put t ing  t = iy in (47):--  

0 & )  = N Z(3) cot  ½(E - ~,) dE. 

13. N u m e r i c a l  So lu t ion  o f  :the E q . u a t i o n s . - - I n t e g r a t i n g  (45) by  parts 

1 S log sinh ½(i3 - -  t) dO (E) . . . . . . . . . . . . .  (49) f(t)  = - -  ~ ~=-,  

Now 0(E) is continuous except  at a number  of point  s E = 3 ,  where there is a jump in 0 of ~,, 
• 

say. From (38) and (16) ¢0 = -- 2a cos E, i.e., do(E) = --  o2a sin E d~, and so the  Stieltjes 

integral  in (49) can be wri t ten  

= - -  ~(~E - -  t) d3 - -  N v, log sinh ½(E , -  t) (50) sin E log sinh 1 • _ . . .  

On the  aerofoil surface, ~ -= 0, this becomes 

2 a (  sin fi log sin ½(3 --  ~) dE - Z 3, log sin ½(3, --  ~), . .  . .  (51) L0(~) 
d 

an integral  equat ion which can be solved by  the  i terat ive me thod  set out  in section 15 

b e l o w  Whe ,h,   eeo do e o ,  so  o ved 

directly. 

Of course if 0 = 0 (E) is specified algebraically, (45) could b e  used directly to calculate f ( t ) .  
However  since an aerofoil of arbi t rary shape can be much  more  closely approximated  to by  
a s suming  tha t  Rqo r e m a i n s  constant  over small intervals  of  3 than  by assuming the  same for 
0, equat ion (50) has an obvious advantage  over (45). 

As in Part  1 we divide the range o f  integrat ion i n t o  n -  1 small intervals, $ j + 1 -  ¢j, 
j = 1, 2, . . . n --  1, in each of which Rqo can be taken, wi th  negligible error, to be constant.  
The size of the  intervals at  any point  on the  aerofoil chord  is de te rmined  by  the  rate of change 
of (1/Rq)o, and needs to be quite small in the neighbourh6od of a nose of small radius. This 
point  is i l lustrated in the example of section 17 below. 

Suppose tha t  in the  jt~ interval  (1/Rq)o = (1/Rq)j, and tha t  G'+I --  SJ = d¢j, then  (51) can be 
wri t ten 

1 t ~; (~$~ sin ½(E --  , , l og  sin ½(E, ~) J' "" (52) = - [log - -  r)]ms E . .  Lo(~) ~ ts=~ ' ,~q /s  

* See Ref. 23 for all extension of Lighthill 's method to compressible flow. 
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in which ' m j '  indicates the mean value of the logari thm in the fh  range. The mid-range value 
can be used except near the singularity/3 = 7, when, in the absence of special tables, we must  
u s e  

1 [ 7 -/3-]~s+,. [log sin ½(/3 -- r)]~J -- 2 ~¢~ cos/3 --/~ sin ), -- 2(cos f3 -- cos 7) log sin ~ A ~ "  (53) 

Equat ions  (52) and (53) prove a little laborious to use. The following procedure reduces the 
work and avoids the need to use (53). 

We can write (49) as f ( t )  - -  ~ log sinh ½(t - -  i/3) dO (/3), in virtue of 

f do(~) = o . . . . . . . . . . . . . . .  . . . .  (54) 

which is one of the conditions that  the profile is closed (cf. equation (11)). 

f(t) - 

Thus using (54) 

1 (" log sinh ½(t ifl) dO(fl) 1 ~ log sinh ½(t + ifl) dO( /3) 
2l: o . 6 = o  3T = 0  

I t _f  log {sinh ½(t -- i/3) sinh ½(t + i/3)} d{½(0(/3) + 0( --/3))} 
2~ " / ~  = 0  

- f a  / sinh l(t  - i/3) } 
1 ~ log [sinh½(t +i /~)  d{l(0(/3) -- 0( --/3))} 

1 A ~" sinh ½(t -- i/3) 
--=- ~- J ¢,,=H ( log (4,0 - -  w) d F  + ~1 J~=o log sinh ½(t + i/3) dG, 

where F - --  ½{0(/3) + 0( --/3)}, G ---- ½{0(/3) -- 0( --/~)}, 

and we have assumed that  in the w-plane the aerofoil lies between the stagnation points A 
and H, which are at ¢0 = 2a, and ¢0 = -  2a respectively (see equation (38)). If the only 
discontinuities in 0 are *A a n d  rn  at the s tagnation points (the usual case), then subdividing 
the range, and writ ing 

where T and C are taken to be constant in each interval,  we find 

_ ,-1( [1 sinh l ( t -  i /3)-]  ¢..) f =  =IE, Tj.[log(Co__W)]~s~¢~+C j °g ~ ~-~ 4-//~)/ ' '  ' ~ ,  . 

± 1 vA log (2a - -  w) - -  1 ~ log (2a + w) 
YC ~ . . . . . . .  

~{1 1 } 
dG = C de = ~ ~ ( / 3 )  - -  ~ (  _ f3) d¢, 

(55) 
On the aerofoil surface 

r, - I - ~ j = ,  ~. [log (40 - 4)],~;~¢o +_~ ci uog ~ 1(7 + ~ o; ; 

i . 1 1 . ,  
- - ~ l o g  (2a - ¢) - .  ~ l o g  (2a + ¢), 

2~: ~ . . . . . . .  
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in which the range of ~, is reduced to (0,~) and the positive sign gives values on the upper  surface 
and  the negat ive sign values on the lower surface. 

For a symmetr ica l  aerofoil Cj = 0, and so the  Tj give the effect of thickness, and the Cj the  
effect of camber. In  the  absence of special tables 

E, sin½(r - - /~ ) - ]  = 
~og s-i-ff ½(r + ~ A  ~ Elog(~ - $o)]~i - log 4a --  2 [log sin ½(~, -t- ~)lmj, 

in Which it is sufficiently accurate to use mid-range values for the last term. 

Equa t ion  (54) can be wri t ten  
/ v  t *  

2 1  + 0 ( -  = 2 !  dF( ) = o: 
Ja = 0  d f l ' = 0  

corresponding to which we ,have 
n - - 1  

Z T;O$j + , ~  + , ~  = 0 . . . .  
j = l  

assuming tha t  the  only finite angles are *A and ,~. 

. ,  (57) 

14. The Zero-Li f t  A n g l e . - - I n t e g r a t i n g  (46) by  parts we have 0 ~ = 2--~ ¢=_~ 

i.e., 0 o~ - -  a l ~ fl sin fl 1 X 

the last term of which vanishes if ½~A at ~ = u, ½,x at  fl = --  a, and Ts at fl = 0 are the  only 

finite angles on the profile. Thus in this case 0 ~ = --  - ,  Rqo ~ d~. 

The angle between the  chord and 'the streamlines at infinity, i.e., the zero-lift angle ~o, is 
given by  

a (~sin fl 
~ J~ Rqo ~ d~, . .  

= - - ~ d ( ½ ( 0 ( ~ )  - 0 (  - ~ ) ) }  
7¢ ~ = 0  

• ° ( 5 s )  

"' Yg = 0  

n - - 1  
= _ ~ ~ f ~ .  a ~ - ,  . . . . . . . . . . . .  

j = l  

where ¢~j is the  value of/~ at the  mid -po in t  of th  e fh  range, ~i+1 --  6j. 
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From (58) we can deduce an approximate  equation for ~0, by  assuming tha t  4a = Cqo, where 
c is the aerofoil chord, when 

1 F ~sinfldfl. (60) i - .  . . . . . . . . . . . . . . . .  

15. Summary of the Method.iFollowing is a summary  of the steps to be taken to find the 
incompressible flow about  an asymmetr ic  aerofoil wi th  circulation. I n  practice, of course, 
all the differentiations and integrat ions  of this  section are performed numerically.  I t  will be 
convenient  to take the  origin for s and ~b at  the trai l ing edge, H. 

(a) Determine from the profile Co-ordinates 

(i) c =  i T / ' "  . . . . . . . . . . . . . . .  ( 6 1 )  
~ 0  

f{ .(ii) semi-perimeter  p = mc, say, from p = ½ 1 + 

c =ce"Y {1 + ( ~ V t  -=~= and  (iii) ~ dx ~ \dx/ J . . . . . . . . . . . . . . . .  (62) 

(b) Assume an approximate  relat ion q0 = q0(¢), . .  
from which qo = qo(fl) follows immediately.  

(6a) 

' 1 _-- ~¢d¢ and c - -  • . . . . . . . . . . . . .  (64) Since s(¢) Oo qo' ~ qo' 

= 2mfod¢lqol@¢l @ 
6 C 

and hence R --  R (¢)' " . . . . . . . . . . . . . . . . .  (65) 

follows from (61) and (62). The infinities occurring in dd~/qo at the  s tagnat ion  points  are dealt  

wi th  in the appendix.  An approximate  value of the bounda ry  gradient  ( R ) 1  (66) 
cq0 

i • 

follows from (63), (64) and (65). 

(c) Intervals ¢s+i -- Cj are selected so that the aerofoil will be adequately represented, and 
approximate Ts, Cs, j = I, 2, . . . n- I, are calculated using the values (66). v~ and VH 
must now be selected so that (57) is satisfied. Only when the number of intervals, n- I, 
tends to infinity will VA and zH become equal to the actual leading and trailing edge angles. 
Otherwise ~H will usually be very nearly the exact trailing-edge angle, but even with a relatively 
fine mesh, ~A will have a. value quite different from z, except perhaps for very large nose-radius 
aerofoils. In practice ~H is made equal to the sum of the (~¢/Rq)~between the points of contact 
of parallel tangents on the aerofoil and the trailing edge. vA is then selected to satisfy (57), 
when clearly it will be equal to the sum of the (d¢/Rq) between the points of contact of the 
parallel tangents and the leading edge. 

(d) L0 is found from (56), and a new and more accurate relation q0 = q0(¢) is deduced to use 
in step (e). 

(e) Steps (b), (c) and (d) are repeated unt i l  there is no fur ther  change in q0. 
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(f) The values of T i and Cj found in the last round of this iterative process are now used in 
(55) to find values of L in the outer field, i.e., L = L(~,y), and hence from (38) 

L = . . . . . . . . . . . . . . . . . . . .  ( 6 7 )  

can be deduced. 
t 

(g) 0(¢,~o) follows from 

. . . . . .  

= 0 ( ¢ o , o )  + o & - " " 

which holds in virtue of the Cauchy-Riemann equations relating L and 0. 
of 0 on the aerofoil and is thus known. 

(h) The (¢,W) and (x,y)-planes are now related by 

. . . .  ( 6 s )  

0(¢o,0) is the value 

f* ~ sin 0 x = = c°s--2 d e  - f 
¢o q Jo q 

Y 

and hence 

= ~* sin 0 de + (~e°sO d~ , .  . . . . . . . . . . . . .  (69) 
=Y(¢ '~)  J~o q Jo q 

from (67) and (68) we have the solution 

q = q(x,y), o = O(x,y). . . . . . . . . . . . . . . . .  (70) 

(i) The zero-lift angle ~0, is now calculated from (59). 

10. If ~c is the angle of incidence measured from the chord, then putt ing ~ = ~.c ,-/~0 in (41) 
and using (38), (69) and (70) we can find q' = q'(x,y), O' = O'(x,y), for any given ~,. 

In the 'iterative process described above, the position of A, the front stagnation point, is 
determined by  an integration commencing at the trailing edge. Init ial ly it can be assumed 
with little error that  A is at the semi-perimeter point, P say. Suppose a subsequent integration 
indicates tha t  A should be moved a small distance ~s* from P, then, since both R and q change 
rapidly in the neighbourhood of an aerofoil nose, this small movement will result in a relatively 
large change in Tj and Cj near the nose. When q0 = q0(¢) is calculated and the integration 
performed, i t  may  be found that  according to this integration A should bep laced  at a distance 
greater than as* on the other side of P. This diverging oscillation of A about P certainly occurs 
for an aerofoil of small nose radius such as that  of secfion 17 bel6w, and so another method must 
be used to help locate the position of A. This is given in the next section, but  during the early 
stages of the calculation it is better  to maintain A fixed at P until  the velocity distribution has 
' settled ', and only then to allow A to move. 

16. Location of Front  Stagnation Poin t  A.--From equation (56) it follows tha t  the difference 
in  velocity between the upper and lower surface of the aerofoil is due entirely to the coefficients 
C s. We shall calculate an approximate value of the displacement of A (as) due to a small change 
OCjin the values of Cj, j = 1, 2, . . . n -- 1. 

Consider the effect of one ~Cj at ¢ = -- 2a cos/~j, on the velocity at ¢ = -- 2a cos 7. Suppose 
this velocity q is increased to q + aq, then, with a¢ constant, if as was the original length of an 
element, (ds)q/(q + ~q) will be the new length of the element, i.e., the dement  changes in length 

approximately as aq _ aq a¢ as). q q~ (since 05 -= q 
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Now OL = --  log (q + ~q) - / l o g  q -"- - -  dq/q, 

i.e., f r o m  (56) dq _ ~Cj, s in  ½(;~ - -  ¢~j.) 
--  ~-- ~og sTff½(~ + ~) '  

Therefore change in length of e lement  at ~ = --  2e cos ), 

m 1 I ~C s ,  s in~(y--¢3i)~$.  
q - log sin 1 

Thus the  total  displacement  of A due to dCj. is approximately  

[~log sln -- . 2a ~Cj. sin/3s, 
__2a c3Cy sin ½(y ¢?~.) sin y dy -~- = 

where q is an average velocity over the aerofoil. 

Hence, since 4a/q  = c, the displacement  ds due to all the dC,. is 

~S ~-~ 
c .= C~- sin ~j . . . . . . . . . . . . . . .  . . . .  (71 

We use this equat ion in the  following way. Suppose tha t  initially A is taken to be at P, the 
semi-perimeter  point,  and tha t  a subsequent  integrat ion indicates tha t  A should be moved  
a distance ds*, which m o v e m e n t  will change the Cs to C~. + dCs.. Equa t ion  (71) gives 
immedia te ly  the approximate  displacement  ds tha t  will result. This displacement  will probably 
be larger than  bs* and of opposite sign. If however  a smaller displacement  of A is made  in 
tile direction of ds*, then  ~s calculated from (71) will be reduced and even changed in sign. I t  
is clear tha t  the acEua~ displacement  ds' should be selected so tha t  it and the ds subsequent ly  
calculated from (71) are equal. This me thod  involves a small amount  of trial and error, but  
the process does converge, and it only takes a small t ime to calculate beforehand, with reasonable 
accuracy, the  effect of any given displacement  of A. The me thod  was applied to the aerofoil 
discussed in tile next  section. 

17. A n  E x a m p l e :  N A C A  16.--This aerofoil received some a t ten t ion  in a previous paper  is. 
Table 6 gives the profile co-ordinates, and Table 7 sets out  the values of q0 at ~ = 0 deg, 
2.15 deg and 4 .3  deg. Equa t ion  (41) was used to calculate the values of q0 = 2.15 deg and 
4-3 deg from the value of q0 at ~ = 0 deg. This equat ion can be wri t ten  q o ' =  qp(~) × qo, 
where qo = cos ~ + sin ~ tan ½-y. Values of qp are shown in the table. 

Fig. 8 shows the velocity distr ibution curves. From these it is clear tha t  the aer0foil was 
designed for an absolute angle of incidence of about  2.15 deg. There is reasonably close 
agreement  be tween the  results found using relaxation at ~ = 4 .3  deg, and the  polygon method.  
The exper imental  curve shown was deduced from a curve for which the s t ream Mach number  
was 0 .4  by using tile Glauert  factor (in tile absence of low-speed results). Agreement  is good 
over the  front par t  of the chord, but  as can be expected, there is increasing disagreement  
towards the  trailing edge, where viscosity effects cannot  be ignored. 

There is another  impor tan t  difference between tile exper imental  and theoretical  results. 
The exper imental  value of ~0 is 2 .3  deg, whereas equat ion (59) yields ~o = 2 .72 deg. Thus 
theoretically at a = 2.72 d e g -  2 .3  deg = 0 .42 deg, the aerofoil should give about  10 per 
cent of the lift it  has at ~ = 4 .3  deg, whereas in fact it gives zero lift. The exper imental  lift 
at  ~ = 4 .3  deg is about  16 per cent less than  the  theoretical  value, and it would seem tha t  
in this case the  boundary  layer is still causing an appreciable loss in lift near  the zero-lift 
angle. 
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T A B L E  6 

Ordinates for 10 per cent Aerofoil NACA 16, 5 in. Chord 

(Figures supplied by the National Physical Laboratory) 

1 
Distance 

from L.E. 

O. 000 
O- 005 
0.010 
0.015 
0.02 
O. 025 
O. 03 
O. 035 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0-10 
O. 125 
0.15 
O. 175 
0.2 
0.25 
0"3 
0"35 
0"4 
0-45 
0-5 
0"6 
0"7 
0"8 
0-9 
1-0 
1"1 
1-2 
1"3 
1"4 
1"5 

2 
Upper 

Surface 

0.0000 
0.0165 
0.0236 
0.0292 
0.0339 
0.0382 
0.0420 
0.0455 
0.0489 
0.0550 
0.0605 
0.0657 
0.0705 
0.0750 
0.0793 
0.0893 
0.0982 
0.1065 
0.1142 
0.1283 
0.1410 
0.1526 
0.1634 
0.1734 
0.1828 
0.2001 
0.2156 
0.2296 
0.2424 
0-2540 
0.2647 
0.2744 
0.2833 
0.2914 
0.2987 

3 
Lower 
Surface 

1-6 
1-7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4-4 
4-5 
4.6 
4-7 
4.8 
4.9 
5.0 

o2oooo 
o.o146 
0.0202 
0.0243 
0.0277 
0.0306 
0.0332 
0.0356 
0.0377 
o.o416 
0.0450 
o.o481 
0.0509 
0.0535 
0.0599 
0.0613 
0.0660 
0.0702 
0.0741 
0.0809 
0.0868 
0.0921 
0.0968 
0.1012 
0.1052 
0.1125 
0.1189 
0.1245 
0.1297 
0.1345 
0.1389 
0.1429 
0.1465 
0.1498 
0.1528 

2 

(All measurements in inches) 

0.3052 
0.3100 
0.3151 
0.3206 
0.3244 
0.3274 
0.3299 
0.3316 
0.3325 
0.3327 
0.3324 
0.3313 
0-3295 
0.3269 
0.3235 
0.3192 
0.3140 
0.3079 
0.3007 
0.2925 
0-2832 
0-2729 
0-2614 
0-2487 
0.2345 
0-2188 
0-2016 
0.1829 
0.1627 
0.1410 
0.1177 
0.0927 
0.0658 
0.0366 
0.0050 

0.1555 
0.1579 
0.1601 
0.1620 
0-1636 
0.1649 
0.1659 
0.1666 
0.1671 
0-1673 
0-1671 
0.1666 
0.1658 
0.1645 
0.1628 
0.1607 
0.1580 
0.1548 
0.1511 
0.1467 
0.1417 
0.1361 
0.1299 
0.1231 
0.1156 
0.1076 
0.0989 
0.0897 
0.0797 
0.0690 
0.0576 
0.0455 
0.0327 
0.0192 
0.0050 

Trailing-edge radius = 0.005 in. 
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(a) Upper Surface. 

T A B L E  7 

Veloci@ Distributions 

0 
0.020 
0.040 
0.075 
0.125 
0.225 
0.40 
0.75 
1-25 
2 
3 
4 
5 
6 
7 
8 
9 
9.75 

10 

X 

C 

0.0016 
0.0056 
0.0098 
0.0144 
0.0206 
0"0327 
0.053 
0"093 
0.145 
0-222 
0-320 
0.417 
0-512 
0"607 
0.700 
0-795 
0.890 
0"970 
1.000 

Rqo qo 

0 
0.543 
0.660 
0.747 
0.810 
0.879 
0.946 
1.003 
1.042 
1.076 
1.106 
1.125 
1.138 
1.149 
1.149 
1.133 
1.067 
0.930 
0 

a = 2 . 1 5  deg 

qp 

0-2100 
0.0680 
0.0900 
0.0402 
0.0658 
0.0525 
0-0585 
0.0356 
0-0428 
0.0358 
0.0327 
0.0237 
0.0413 
0.0498 
0.0680 
0.0735 
0.0508 

O 0  

0.843 
1.591 
1.446 
1.332 
1.247 
1.183 
1.1309 
1.0985 
1.0744 
1.0566 
1.0451 
1.0368 
1.0297 
1.0239 
1.0180 
1-0119 
1.0035 
0"9993 

qo' 

1.001 
1.050 
1-080 
1-089 
1-096 
1.119 
1.134 
1.145 
1.186 
1-169 
1-176 
1.180 
1.183 
1.176 
1.183 
1.080 
0.933 
0 

a = 4 . 3  deg 
1 

qp qo' 

CO 

2.685 1.458 
2.182 1.440 
1"890 1.412 
1-663 1-347 
1.492 1.311 
1.365 1-291 
1.2605 1.264 
1-1957 1.246 
1 . 1 4 7 4  1.235 
1.1118 1-230 
1.0889 1.225 
1.0722 1-220 
1-0581 1-216 
1-0463 1.202 
1.0347 1.172 
1.0223 1-091 
1-0056 0.935 
0"9972 0 

(b) Lower Surface. 

0 
0-020 
0.040 
0.075 
0-125 
0.225 
0.40 
0.75 
1.25 
2 
3 
4 
5 
6 
7 
8 
9 
9.75 

10 

--0.0016 
--0.0001 
+O.00O2 

0.0020 
0.0050 
0.0123 
0.0263 
0.060 
0-106 
0.178 
0.276 
0.375 
0.475 
0.575 
0"675 
0.776 
0.882 
0.97O 

+1 .000  

0.4700 
0.3080 
0-3930 
0.1680 
0.1770 
0.0770 
0.0522 
0.0228 
0.0214 
0.0152 
0-0144 
0-0149 
0-0208 
0-0296 
0.0317 
0-0370 
0-0205 

0 
0.802 
1.230 
1.508 
1.480 
1.379 
1.271 
1.183 
1.141 
1.110 
1-096 
1.088 
1.083 

1 -077  
1-070 
1.045 
0-994 
0-902 
0 

(30 

0.155 
0.407 
0.552 
0.666 
0-751 
0-815 
0.8677 
0.9001 
0.9242 
0.9420 
0"9535 
0"9617 
0.9689 
0.9747 
0"9806 
0.9867 
0.9951 
0-9993 

0.138 
0.476 
0.803 
0.939 
1.006 
1.017 
1-015 
1.020 
1.020 
1.028 
1-035 
1.040 
1.043 
1.042 
1-023 
0.980 
0.898 
0 

CO 

0"691 
0"188 
0.104 
0.331 
0.502 
0.629 

0"7339  
0"7987 
0.8470 
0-8826 
0.9055 
0-9222 
0.9363 
0.9481 
0-9597 
0-9721 
0.9888 
0.9972 

0.617 
O- 220 
0.151 
0-470 
0.672 
0.785 
0.859 
0.905 
0.935 
0-963 
0.982 
0.997 
1-007 
1-014 
1 "001 
0-965 
0"892 
0 

~ther Results. e 9.268, CL 8ha  . 20n . = = - -  S1YI a = a c 9.286 sm 

i.e., CL -- 0.253 for ~ = 2.15 deg; CL = 0 ' 5 0 7 f o r ~ = 4 . 3 d e g  

~o = 2.72 deg. 
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FIG. 8. V e l o c i t y  d i s t r i b u t i o n s  fo r  N A C A  16. 
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PART 3 

The  In f luence  Fac tor  M e t h o d  of  Calcula t ing  Incompress ib le  F l o w  

18. ! n t r o d u c t i o n . - - T h o m  ~3 developed a method for calculating the incompressible flow about 
a symmetrical body at zero incidence in an open or bounded stream. The author's polygon 
method has points of similarity with Thorn's influence factor method. The calculations to 
both methods are performed in the (¢,~) or flow plane, instead of the more usual (x ,y)  or 
physical plane. Thorn uses the conjugate harmonic functions x and y as dependent variables 
m the (¢,~o)-plane and obtains a solution x = x(¢,~o), y =y (¢ ,~ ) ;  whereas in the author's 
method the conjugate harmonic functions log (U/q) and 0 are the dependent variables in the 
(¢,~)-plane. Since the boundary conditions are usually specified in the (x,y)-plane an iterative 
method of solution is required for both the polygon and influence factor methods. However 
convergence to the exact solution is rapid. Details of the iteration for the polygon method, 
and a demonstration of the rapidity of convergence was given in Part  1. 

Some time after this paper was written it was discovered that  Goldstein and LighthilP had 
established equations equivalent to (74), (75) and (76) for what they termed the ' complementary 
funct ion '  in the Janzen-Rayleigh method of computing compressible flow. They did not 
however link these equations with the incompressible flow or make any use of them to find 
the flow about aerofoils of arbitrary shape. 

Thom, whose original work appeared in an unpublished R.A.E. report in 1942, used a semi- 
empirical method to develop his equations, and while the majori ty of these are correct, a few, 
as he states himself, are approximations only. In the following sections the equations are 
derived mathematically, and several extensions are made. An iterative method of solving 
the integral equations for an arbitrary aerofoil is given in section 23, and applied in section 26 
to the aerofoil already considered by the polygon method in. section 9. 

19. The  I n f l u e m e  Factor  E q u a t i o n s . - - W e  define a ' displacement ' function 

5 = £ + i:~ = {Ux(¢,~o) -- ¢} + i {Uy(¢,W) - -  W} : Uz - -  w . . . . . . .  (72) 

for which V,,,2g = V ¢,~2(Uz - -  w) = U V  ,.~2z = O, 

since z is an analytic function in the (¢,~)-plane. From (72) we have on the boundaries 

- I h 1 . . . . . .  y(¢,O) = Uyo, and y(¢,~ ) = Uy* - -  v h . . . . . . . .  (73) 

where h = U H  (H is the channel width), Y0 refers to the aerofoil, and y* refers to the channel 
wall. 

Now in the proof of equation (8) it was assumed only that  L and 0 were conjugate harmonic 
functions in the (¢,~o)-plane, such that  f ( w )  was finite at infinity. Suppose that  near infinity 
w = Vei°z + constant, i.e., "~ = z ( V d  ° - -  U) - -  constant, then if ~ is to remain finite at infinity, 
0 = O, U = V ,  i:e., the flow at infinity must be parallel to the x-axis, and U must be the velocity 
in the channel at both + oo and --oo. With this limitation, ~, being harmonic and having 
boundary conditions similar to f(w), must satisfy an equation of the same form as (8), i .e.,  using 
(72) and (78) 

z = U + ~ { y o c o t h ~ - ~ ( ¢ o - - W ) - -  ( y * - - ½ H )  t a n h ~ ( ¢ 0 - - w ) } d ¢ 0 . . .  (74) 
- - c O  

The origin is selected so that  ~(oo) + ~( -- oo) = 0, and Yo and y* must satisfy 

2 f  ° - - o o )  = ( 9  - ½ H  - -  y )  
- - c o  
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Equation (74) can be regarded as an equation for the flow in an asymmetric channel of width 
½H. Putt ing y* = }H and taking the limit as H ~ 0% we find for a symmetrical aerofoil 
in an open stream 

w Yo d$0 (75) 

For an asymmetric aerofoil in an open stream we have in a similar way corresponding to (45) 
the result 

w i f  ~ z -- U 2-~ y° coth a(t - -  i~)dE, . . . . . . . . . . . .  (76) 
- - c O  

of which (75) is only a special case. 

Since there is no circulation w = Uz 4- O ( ! ) ,  

w 0 (  1 ) - ~ 0  as w-+oo.  i.e., z U - -  

Using this in (76) we find Y0 must be measured from a chord selected to make f yo(5)d$ = O. 

Equations (75) and (76) are only true for zero circulation. The effect of circulation is given in 
section 23. 

20. The Iterative Method of  So lu t ion . - -The  equations developed above require tha t  y0 = Y0($0) 
be known, whereas in fact the given aerofoil profile yields the relation 

yo = yo(Xo) . . . .  . . . . . . . . . . . . . . . .  (77) 

only. This difficulty is readily overcome as follows. 
Consider for example equation (75) on ~p = 0 : - -  

i f  yod¢o . . . . . .  (78) 
Xo(+) = + g _ oi4'o- . . . . . . . . .  

y0 = y0(¢0) can be determined from (77) and (78), but Since this solution occurs under the integral 
sign in (78), the equations taken together define an integral equation, which can be solved by 
the following iterative process:-- 

(a) Assume a relation Y0 = Yo(¢o), e.g., assume 6o -"- x0, then y° = Y0(¢0) is simply the profile 
equation. 

(b) Solve (77) and (78) to find a first approximation yo~(¢0). 

(c) Use y01(¢O) in (77) and (78) to determine a second approximation y0~(¢o). 

(d) Repeat these steps until  yoi+l(¢0) -- y0i(¢o) is negligible. 

Only two or three iterations are required for normally shaped aerofoils. When yo($0) is finally 
determined in this way, equation (75) can be used directly to find z($,~o) away from the aerofoil. 
A Similar treatment is applicable to (74) and (76), but with this latter equation, as in section 15, 
some difficulty may be experienced in locating the front stagnation point. A procedure along 
the lines of section 16 could probably be developed to obviate this. 
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Suppose tha t  we have to solve (75) for an aerofoil for Which the profile (77) is defined 
numerically.  If the aerofoil lies in the range a ,"~-60 ~ b, which is subdivided into n -  1 

intervals, as in section 4, such tha t  (d~Y~ \dCV0 can be taken to }lave the constant  value 

dmd($~+l -- ¢~) in the  i th interval  with negligible error, then  integrat ing (75) twice by parts, we 
find 

] , z(w) u ;, o(¢O - zv) {log (4o - w) - 1} 

o_1 } 
- -  E ~m; [ ( 4 o -  zv){log ( ¢ o -  w ) -  1}],~{ ~ 

i =1  

where [ lm~ denotes the mean value of the function in the  i ~a range. 
t reated similarly. 

. . . . . .  (79) 

The other  equations can be 

21. Calculation of Yelocities.--Since dz/dw = d°/q we could use the  solution z = z(w) found 
above to deduce the values of q and 0, but  it is more convenient  to calculate these by  direct ly 
differentiating the equations for z. Equat ions  (75), (74) and (76) become respectively 

e ;° 1 1 ~'* yod¢o  2 (8o) 

¢ ° 1  ~ f * {  q --  U + (U-H) ~ Go cosech 2 ~ (¢o --  w) 
- - o 0  

} - (y* - ½H) sech ~ ~ - ~  (40 - -  w) a¢o . .  (81) 

¢0 _ 1 i F yo d a  
(82) 

q U 8a~ sinh t J _ s i n h  2 ½(t --  i~) . . . . . .  
D D • 

Alternat ive forms of (76) and (82) are of some interest.  Equa t ion  (76) may  be wri t ten  

Z - -  

w 

U ff~ o 
{yo(#) coth ½(~ - -  i#) + yo( - -  #) coth  ½(t + i#)} d# 

. w l f~  d,o ( s inht~  
= U + ~  0(Co--W) T- - iC . s i n /~ / ,  "" "" 

where T is a ' thickness parameter  ', i.e., T = ½{y0(fl) - -yo(  --  P)}, 

and C is a ' camber parameter  ', i.e., C = {{Y0(fl) + yo( -- fl)}. 

(83) 

Differentiating (83) we have 

e ;° 1 I f  ~ d$0 I (1 - -  cos # cosh t ) ]  
q- = - U  ,4- ~ o (¢o - -  w) 2 T -}- iC siE-fi-~n--h}- ' (84) 

which enables the effects of thickness and camber to be invest igated separately. 
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Approximate Theory.--Useful approximate equations can be derived from those given above 
by assuming that  on the aerofoil cos 0 -"- 1, and tha t  d¢o '"- q ds -"- q dXo, where ~ is the mean 
velocity over the chord. For example on the aerofoil equation (80) becomes 

~( ~(~ ~o_~,o.~ 
q - u 1 + ~ - - ~  (Xo - x ) V '  

in which the origin is taken at the midpoint of the chord, c, and yo = 0 when [xof > ½c. We 
shall write 

= U  1 - - ~  where ~(x)--  1 ~12 Yo dxo 
,~ ~ _ ~  (Xo - x) ~ . . . . . . . . .  (8s )  

i.e., q-"-U 1 + ~ - + ~  ~ . 

Now ~ -~- U(1 + ~), and so ignoring terms O(d ~) we find 

~ -  u { 1  + ~ + ~(~ - g)}. . ,  . . . . . . . . . . . . . .  (86) 

From (85) we have $ -  
1 -cl~ . -*12 

4 _c/2 
i.e., g = ~ JI'_~l~ Yo dXo 

1 - ( 2 X o / C )  2 . . . . . .  . ( 8 7 )  

A similar t reatment for equation (81), in the special case y* = gH,1 yields 

~(x) = ~ (ci,. cosech~{_~H(Xo_x)}yodxo, and 
( u ~ ) ~ J _ c ~  

_ ~ (el2 sinh(c~/UH)yo dxo 
(UH)2"J -cI~ sinh (~/UH)(Xo -- {-c) sinh (q~] UH)(xo + ½c)" 

The assumption ¢0 1 qXo -"- -- 2a cos/~ can similarly be used in (84)i 

Example . I I f  t is the thickness of a symmetrical circular-arc aerofoil, then, 

~sing ~his ~n ~85~ ~nd ~87~ ~o ~nd ~0~ _-- ~4(~)~- , = ~-2(!)' which substituted ~n ~86~ yield 

q(0) ---  u 1 + ~-4 + ;-5 . . .  . .  . . . . . . . . . .  ( ss )  
J 

Comparing this with equation (31), which was based on exact theory, we find there is an error of 
only 11 per cent in the coefficient of the last term, which demonstrates that  even the first 
approximation of the iterative process described in section 20 will be reasonably accurate. 
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The corresponding calculation for the same aerofoil in a s traight-walled channel  yields 

q(0) ----- u 1 + 4 + § c • 
Y~ 

Comparing this result  wi th  (88) we see tha t  the blockage factor (see equat ion (27)) is given by  

Aq _,._ ( ~ ) ( t ) (  c )~ _.._ ~A where A( -"- -~ct) is the area of the  profile. 

This ~s the accepted value. 

For  the  asymmetr ic  circular-arc aerofoil y0(/~)= ½t sin ~ fl, i.e., C ( 3 ) =  ½t sin ~ fl, T = 0, we 
find from the approximate  equat ion corresponding to (84) 

q ( 2 ) - " - U  (1 + --Ut) = U(1 + 2F), where /~  is the  camber. 

Similar ly q( - -  2)  -"- U(1 --  2F). 

theoret ical  results : - -  

q(: '~= U(1 + s i n e ) ,  q ( - - ~  = U ( 1 - -  sin e), w h e r e t a n e = 2 F .  
kZ/ k 

These results agree to the first power of / '  wi th  the  exact  

22. Numerical Solution of the Velocity Equations.--Consider for example equat ion (80). 
Proceeding as in section 20 we obtain 

( ° ) d ° 1 1 [m($o) log (w --  6o)? b --  Edm,  Elog(w --  ¢0)~mi , . .  . . . .  (89) 

where m-~  (dy/d$)o. We notice fur ther  tha t  closure of the profile requires t ha t  

m,b=o + m,~=~ -- ~, aml ----- O, . . . . . . . . . . . . . . . .  (90) 

which is the corresponding equat ion to (28) for the polygon method.  S tar t ing  from an assumed 
Yo = yo(¢o), we find 6m ----- ~m(¢0), and from (89), q = q(¢). F rom equat ion (3), i.e., 

= f d 0/q, 
0 

and Y0 = yo(S), which follows from the profile equation, we then  obtain a new relat ionship 
yo = y0($o). The process is repeated a number  of t imes unt i l  no fur ther  change occurs. 

The other  veloci ty  equat ions can be t rea ted  similarly. 

23. The Effect of Circulation.--Equation (39) gives the relat ion between the velocity vector 
(q',O') for an angle of incidence ~., and the veloci ty vector (q,O) for zero incidence. I t  can be 
wri t ten  

e ;°' cosh ½t e ~° 
q' cosh (it + i~) q 
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and hence from (82) we have for an asymmetr ic  aerofoil in an open s t ream at an angle of 
incidence ~ :  

e;~_~ ' _ cosh ~t f 1 
q' -- cosh (½t + i~) [ U 

i f" yo(~)d~ } . . . .  (91) 
8az sinh t _ s i n h  2 {½(t -- i~)} " "" 

Thus  once the problem has been solved for zero incidence it is a simple ma t t e r  to find the 
solution at  a given angle of incidence. The incidence referred to here is of course the  ' absolute 
inc idence '  measured from the zero-lift angle. On the  aerofoil surface (91) assumes the 
f o r m  

q --  cos (l~ + d) + S a ~ s i n ?  _ s i n  2{½(?-/~)} . . . . .  

24. A Comparison with Equations given by Thom.--The miscellaneous comments  in this 
section refer to equat ions given by  Thorn 13. Throughout  this section U is t aken  to be uni ty .  

(a) A Solution to Laplaee's Difference Equation.-- 
2 n -  1)}224-~-2~ 

is an equat ion which applies to a point  loading of y0 = 1, at  the  origin in the (¢,~)-plane on a 
square mesh of size 2, i.e., H satisfies 

H(¢ q- 1,w + 1) + H(¢ + 1,W --  1) + H(¢ --  1,V + 1 )+  H(¢ -- 1,~o -- 1) ---- 4H(¢,w).. 

Thorn's  ' H '  funct ion corresponds to the y of this  paper, and so from equat ion (75) we can 
deduce the corresponding solution for Laplace 's  differential equat ion (in which the loading 
has been dis t r ibuted from ¢ = --  1 to ¢ = 1), 

d¢0 _ 1 tan_  ~ + tan_  1 , 
= ; _1 ( ¢  - ¢ ° ) 2  + - 

a result  which Thorn obta ined by  let t ing the mesh size tend  to zero. 

(b) An Approximate Equation for Channel Flow.--For flow about  a symmetr ica l  aerofoil a t  
zero incidence between s t ra ight  and parallel channel  walls Thorn gives the  approximat ion  
(writ ten here ill our notat ion) 

~p 

± - 2 H  2), . . . . . .  i ( ~ - )  . . . . . .  

whereas the  correct form, from the real par t  of equat ion (74) in which y* ---= ½H, is 

__-- y0 ~r/cos h [  sin ( 2 ~ / H )  d¢o ~. 

C o m p a r i n g  these forms we find tha t  Thorn's equation,  besides sat isfying the bounda ry  
conditions, is reasonably  accurate in the  field close to the aerofoil. The greatest  error is l ikely 
to occur midway  between the boundaries.  

Take  for example H ---- 2~, then  ~ ---- ½~ is midway  between the boundaries.  If  we define 

1 (from Thorn's  equat ion on ~ = ½z) and f~ = (sech¢)/2~ (exact fl : -  3 ~ ( ¢ 2  + (~/2p-)(¢2 + ~2) 
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form of ~0 = ax), then  the following table gives some idea of the error in Thom's  f o rm: - -  

¢ 0 1 2 4 6 

f~ O- 152 O" 098 O" 0413 O" 0078 O. 00021 

f~ 0. 159 0. 103 0. 0422 0. 0058 0. 00079 

Miss K .  Br i t t en  1, who established the influence factor equations for a symmetr ica l  aerofoil in 
s t raight-walled channel  by  use of a Green's function, has made a '  detailed comparison of 
Thom's  approximat ion  wi th  the  exact  form. 

A (c) Displacement of Equ@otentials in a Channel at In f in i ty . - -Thom gives ~(oo,~o) --. 2H  

(where A is the  profi le  area) which is a very  close approximat ion  for the  displacement of the  
equipotent ials  a t  infinity.  F rom (74) 

~(~,~)  = _~ Yo(¢o) lim coth ~ . , +o  ~ (¢o - ¢ - iv )  d¢o, 

lfo i.e., 2(oo) = ~r Yo(¢o) d¢o . . . . . . . . . . . . . . . . .  (94) 

If the mean veloci ty over the aerofoil can be wri t ten q = (1 + ~), then a close approximat ion  
to (94) is 

~(oo) = - (~ + ~) A 

which verifies Thom's  result. 

(d) Solution to Poisson's Difference Equation at Infinity in a Bounded F i d d . - - I n  our nota t ion  
Thorn's  solution can be wri t ten  

1 

where L(oo,w) is the contr ibut ion at  inf ini ty  obtained by  ' r e l a x i n g '  the  residuals xi a t  (¢J,wi). 
The field is bounded  by  s t ra ight  and parallel  lines of s y m m e t r y  distance H apart .  The equat ion 
can be established as fol lows:--  

Suppose tha t  in the derivat ion of equat ion (20) we had had  logari thmic singularit ies not  only 
on the boundary  but  also in the  field, such tha t  for j = 1,2, . . . n, (n < oe) 

Ty yc 
f(w) --+ -- --log sinh (wj --  w), (zj independent  of arg (%. --  w)), 

then  the contour mus t  be modified to exclude these singularities. Doing this  we f i n d t h a t  the  

te rm 1 E ,j log sinh ~ --  ~,.=1 ~ (wj -- w) mus t  be added to the r ight -hand side of (22). Thus  for small 

values of ~ 1% -- %1, i.e., in the neighbourhood of wj, 

L(w) _~_ =1 Tj log s m h ~  (%. --  w) 

-1.- 1 Tjlog I 
I 

where ~,e i° = w -- wj. 

~ )  1 l o g ( =  ) = - g-~,. E r r  , (95) 
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Now for Poisson's equat ion V2L = k($,~0), we define the  relaxation residual on a square mesh  
at  w s by 

4 

Rs = E L,  - -  4Ls - -  a2ks, 
S = I  

where L,, s = 1,2,3,4,j are the values of L at the points of the  mesh labelled in Fig. 9, and k: 
is the  mean  value of k($,~0) over the  square of side a centred at w s. If initially L = 0 throughout  
the  field, R s = --  a2ks = X s, say, and ' relaxation ' is the  systematic  process of modifying the  
L field to reduce the residuals R, to zero (or near zero). We can relate t h e ,  to the  initial 
residuals Xj thus : - -  

ff ff L X s = a 2 k s =  k d S =  V 2 d S =  ~ d s ,  

where the  integrals apply to the  square about w s and ds is an e lement  of distance along the  
square contour. Distort ing this contour  into a circle (the only singularities are at the  mesh 
points), we have, using (95) 

f 2~ 0L f2~ X j  = --g-; r dO - -  ~ dO = - -  2~j. 
0 T ~ 0 

i 

Thus the  addit ional  te rm due to the singularities can be wri t ten 

f (w)  = ~ ~ I X j  log sinh ~ (ws --  w). 

For large values of ~, f(w) = ½Jr ~. Xs{log (½i) + ~ (4 --  ~i)). 
J 

If f (w)  is to remain finite at  infinity EX i must  be zero, when 

L(oo) - -  1 EXs$ i . . . . . . . . . . . . . . . . .  (96) 
2H s 

Thorn's equat ion was deduced for the  special case of an t i symmet ry  in X s about  ~ = 0. In  
this special case (96) assumes the  form 

1 
t(oo) - H 

since only half of the  residuals occur in the summation.  Thus Thom' s  equat ion is verified 
mathemat ica l ly .  

25. E x a m p l e :  A Symmetr ica l  A e r o f o i l . - - T h e  example is the  one already used to illustrate 
the polygon me thod  in section 9. Only surface values for the  velocity for the unbounded  
s t ream have been calculated by the  influence factor me thod  and since the  i tera t ion described 
in section 22 is similar to tha t  of section 9, for present  purposes the exact relationship 
y0 = Y0($o) was adopted  immedia te ly  from the  theoret ical  solution. Thus the  correct value of 
q should have  been obtained in the  first and only application of equat ion (89). 

We shall describe the  tables set t ing out the calculations to the problem. 
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Table 8: Calculation of ~m~ 

Columns 2 and 3 set out the true values of x0 and Y0 as functions of ~. 

Column 4 is m~ = (yi+l -- y~)/(~+~ -- ~). 

Column 5 is ~mi = m i + ~ -  m~, except for the values opposite ~ = 0, and ~----10. 
values are simply m,=0 and m~=~0 (cf. equation (89)). 

Column 6 is the value of cos 0 determined from columns 2 and 3. 

These 

Table 9: Calculation of (cos O)/q 
To save space this table is set out in the form of a matr ix equation:--[Ao.][Bj] = [Ci]. 

Wi th  the exception mentioned below, the elements of the f i rs t  matrix are defined by 
A~j = 108 (log ~ -- $o)M. For convenience the logarithms in the table are to base 10. The  values 
of ~ and ~b s are shown bordering the matrix. The exceptional elements of [A] are those in the 
first and last columns. Mean values of the logarithms are not taken for these elements (@ 
equation(S9)). The elements of B i are Omj, except BI( = m~=0) and B13( = m¢=10). Values 
of the function 

log 10 (co S 1) [A~][Bi ] × _ 103 0 
7~ i 

are shown in the column matr ix [C~]. Using the values of cos 0 given in Table 8, q can be 
deduced immediately. 

Table 10: Comparison of Velocities 

This table sets out the surface velocities obtained from (a) exact theory, (b) the polygon 
method, and (c) the influence factor method. The results indicate tha t  the polygon method 
is more accurate in the neighbourhood of the nose for a given size of interval than the influence 
factor method. 

PART 4 

Com~bressibIe Flow 

26. Introduction.--The following additional notation will be used in this pa r t : - -  

($,~o) the compressible-flow plane for, zero circulation (such tha t  the aerofoil is a slit along 
= O) 

i as a suffix to denote incompressible quantities 

M0 undisturbed stream Mach number; M, the Mach number 

p0 stagnation point density; p the density 

a0 stagnation point sound velocity 

The theory will be based on the equations 7 

80 1 8q_0,  80 1 8q_0,  
8~ + ( ! - M  s) q as as q0 n  

8L 8O 8L i.e., 8o (1 -- M s) = 0, -- + 0, (97) 
an ~ 8s -g; . . . . . . . . . . .  

4 0  ' .  



in which s and n are distances measured along and normal  to a streamline. 
condit ions are 

(a) L ~ log (q/U) = 0, a t  infinity,  and  

(b) 0nO q _ Rq (zero vor t ie i ty  condition), 

3L  1 .ao 
i.e., O n - -  R - -  as' "" "" 

on the  aerofoil boundary .  

Now since d$ = q ds, dw = o_C q dn, 
Po 

The bounda ry  

8L  p 8L  
we have an  po q a~'  i.e., from (98) 

8L  p 1 

3~ Po Rq  

From (99) i t  follows t ha t  

dx - -  cos____0 d$ po sin__0 d~, 
q o q 

sin 0 po c o s  0 

q p q 
d~, 

i .e . , i f  z = x + iy ,  
el0 

dz = - (de + i P___o d~), 
q p 

and so the (x,y) and (4,~0)-planes are related by  

f eiO z = ~ (de + i &0p d~). 

. . . .  (98) 

. .  . . . . . . . .  (99)  

. . . .  (lOO) 

. . . .  (101) 

27. A n  A p p r o x i m a t e  So lu t ion  i n  the I n c o m p r e s s i b l e - F l o w  P l a n e . - - F o r  incompressible flow 
d$~ = q~ ds~, d~i = q~ dn~. We shall assume tha t  ds~ -= ds, dnl = tin, i.e., the  angle between 
the incompressible-flow vector a n d  the compressible-flow vector  is negligible. (For a cyl inder  
at M = 0 .4  this  angle is less t han  3 deg th roughout  the  field.) W i t h  the  addi t ional  
approximat ion  t ha t  (1 --M~)I/°" = (1 --Mo~)~/2==---~o, say, equat ions (97) become 

80 8L 80 8L _ 0.  

Cross-differentiating and wri t ing f = L + iO we find 

aV + & 2 a V  _ 0. 
a4o ~ 

. .  (102) 

Apply ing  the t ransformat ion  G = k(~i, ~ = kiloton, f ,  = v f ,  
to (102) we obtain Laplace 's  equat ion 

. .  ( 103 )  

a ~  a ~  
a~p? + g~-47 = O. 

. .  (104) 

k and v are constants  in this  affine t ransformation.  
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Thus  if fr = F($,,Wr) is a solution of (104), then  

f = 1_ F(a¢,, a~oV,,) 
72 . .  (10s) 

is a solution of (102). In  the next  section we shall solve equation (104) by  the polygon method,  
and then wi th  the aid of (105) we shall have the solution to equat ion (102). 

28. Integral Equation Solutions.--(a) Symmetrical Aerofoil at Zero Incidence in an Open 
Stream.--Equation (10) gives the  solution of (104) in this  case, 

l fee o e ' d ( , , '  . 
i.e., f~(+~,w) = ~  - e e ~ r ' - - + r - - i ~ o r  

O[ i s  the bounda ry  value of 0r, and is a function of S/ .  Hence from (105) we find 

f(*,, w,) = 1 fee 0/d(,~¢ v) (106) 
- -  , . . . . . . . . . . .  ~ . 

w c  _ ee J ' ~ i '  - -  2 q ~ i  - -  i ) ~ f l o ~ ° . ,  

I t  still remains to t ransform 0/. There are two ways of doing this:  either 0/  t ransforms in 
the  same way  as the  solution 0r, i.e., from (103) 

0 r '  = v 0 ' ,  . (107) . . . . . . . . . . . . . . . . .  o • ° 

or 0e' t ransforms as a consequence of the  applicat ion of (103) to its conjugate function L/,  i.e., 

, ( 0 0 r ' d + r =  ( O L r ' d + r =  - (0(72L')  72 COS'U+;. 
or = 3 o4r - -  3 ave 3 o(Z#oV, i) d ( z ~ d  - -  fio3 av, i 

Now from (98) it  follows t ha t  on the aerofoil surface 

OL' OL' On 1 
owi On ow~ Rq ' 

a result  which is clearly true for bo th  compressible and incompressible flow, 

aL' a l l  aOi' 00' 
i.e., 0~0----7. = OVJ, = -  a-7~ = -  a~----~' 

since on the aerofoil bounda ry  0 / =  0'.' Using this  in the expression for 0/  we find 

' " 0 ' .  . ( 1 0 8 )  .0r = F o  . . . . . . . . . . . . . . . . . . .  

If  we are using equation (106) to calculate 0 in the field then to be consistent wi th  (103)  we mus t  
use (107) to t ransform 0/, whereas if we are calculat ing L we must  use (108) to t ransform 0[. 
Combining these calculations we find tha t  

i 1 fee Ot d~it 
L ( ~ .  v,~) ~-  ~o 0 ( + .  ~i) = ~o-g _ ~  + / - -  +~ - -  i~o~i " . . . .  (109) 

Ful l  details of the  solution of (109) in the  case of flo = 1 for an a rb i t ra ry  aerofoil have been 
given in section 4, and will not  be repeated here for this  s l ight ly different form of the  equation.  
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For  incompressible flow 

1 
Z,(¢,,  floW) + io,(¢~,, ~o~,) = 7~ 

f co O' d4,/ 
_co ~ '  - ~ , . -  iP0~'  

and so from (109) 
1 

z(~,, ~,) = E z,(4,~, aov,), 

= /  ~ \ {q"('kL~.~" °~'~!) 1/~°, • (110) i .e.,  -~ \ ~ /  . . . . . . . . . . . . .  

and 0(6~, ~,) = 0~(~, Bl0Ws) . . . . . . . . . . . . . . .  (111) 

On the aerofoil surface q = (~)x/p0. . . . . .  . . . . . . . . .  (112) 

I t  is interesting to compare (112) with the Glauer t -Prandt l  law for the pressure coefficients, 

i.e., G = (c~)dao . . . . . . . . . . . . . . . . . . . . .  (113) 

Now t o  the same order of accuracy Cp = -  2 ( q -  U)/U, and (Cp)i-----  2 ( q ~ -  U)/U, and 

so (113) can be wri t ten q = U + (q~ --  U) Equat ion  (112) can be e x p a n d e d : - -  
80 

q = u +  q ' - U  ( q i - u )  2 ( 1 - 8 0 ) + . . .  
8---7- + 2! ~o 2 

to which (113) can be regarded as a first approximation.  The Glauer t -Prandt l  law underest imates  
the effect of compressibility. This is also true of equation (112) but  there is some improvement  
as can be seen from Fig. 10, in which the equations are compared for M0 = 0.7.  

(b) Symmetrical A erofoil at Zero Incidence in a Channel . - - I f  he is the channel width in the 
($e,w,)-plane, t h e n ,  f rom equation (8), a solution for (104) in the case of a straight-walled 
channel is 

l f c o  , ~ f~(~, ~,) = ~ 0e coth fte (~ '  --  ~" --  i~e) d~, ,  
- - ¢ 0  

i.e., from (103), (107) and (108) 
¢O 

~o 0(4,, Z f 0' coth ax L(4,, ?,) + i ~') --  fl0h, _co -~  (¢'' - -  4' --  i~0~,)d$/. 

Now he i s  a fixed distance measured in units of We, and so from (103) t ransforms into 2fl0h. 
Fur ther  if H is the channel width in the (x, y)-plane,  by  considering the conditions at  infinity 
we find tha t  h = UH. Using these results we have  finally 

i 1 fco 
L(~,, ~,) +EO(~o,~o) =~o-gHu _~°' c° th  ~ - Y o  (~'' -- ~' --  i~o~,) d ~ , ' . . .  . .  (114) 

09 

Now ~(~,,  ~o~,)~ao - -  1 0' coth HV--~-o ( ¢ / - -  ¢' - -  i~o~,) d¢, ,  
- - C O  

where 2~(~i, ~o~O;)mo denotes the incompressible value of f at  (~i, ~o~) in a channel of width H~o 
in the (x,y)-plane. 
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Thus 
1 

i.e., . .  (115) 

and 0(6~, ~ ) ,  - -  0,(4~, ,eoW,)~ao. 

Channel B l o c k a g e : -  
On ~¢; = O, (109) and (114) become 

.. (116) 

1 f ~  0' d$/ and 
L = ~o~ _~ ~7  - ~ '  1 f ~  L,  g,fio~H 0~' coth H---~oU, (qo/ - -  ~) d$/ ,  

- -  o o  

respectively, where ' c '  denotes  channel  values. Litt le error is in t roduced by assuming tha t  
0($/) = 0/~/) .  Now the channel  blockage ~ is defined b y  the s imultaneous equations 

G ( 1  + ~) = u ,  qe(4,') = q(4 / ) ,  

i.e., log(1 + s ) = L ~ - - L ,  a n d s o  

, 

U~o ~H _ o~ 
U-doll 

3fioaH ~U~ 2 _ 

- -  ( ~ / -  ~<) 

(~,.' --  ~)0'  d6/  

--  c o t h ~  (4/ --  $i) 

.. (117) 

On the  aerofoil surface we can write approximately  ~b, = qix, where q~ is the mean incompressible 
veloci ty over the  surface in the  open stream. If in addi t ion we write 

q~ = g(1 + a) = U,(1 + ~)(1 + 6) -~- U~(1 + e + 6), and 0 '-~- dy'/dx,  

then equat ion (117) assumes the form 

• oo 

log (1 + ~) --  ~ f 3 ~ j H  ~ (1 + 2a + 2~) _ 

~A 
e -  6fio~-ffH 2 (1 + 2~), . . . . . .  i . e , j  

where A is the cross-sectional area of the  aerofoil. 
result obta ined by  the  linear per tubat ion  theory 4. 
has been dealt  with at  length in another  paper  2°. 

(x' - :~) dy ' ,  

. . . . . . . . . . . .  (118) 

This equation, wi thout  the  a term, is the  
Incompressible and compressible blockage 

(c) Asymmetr i c  Aerofoil  at Zero Incidence in  a Free S t r e a m . - - I n  this case a solution of (104) 
is (see equat ion (45)), 

L(te) - G 0o' c o t h  ½(re - -  ibe) dbo, .. (119) 

where ¢e + i~oe = - -2a~cosh  t,, t , -= n~ + i~,~, ¢ / - - - = -  2Gcos be, and 4ae is the  length of the  
slit represent ing the aerofoil in the (G,~oe)-plane. We shall write 

4i + iflo~Oi ----- - -  2a cosh t, t = ~ + i),, and ¢ / =  -- 2a cos b. 

44 

. .  (12o) 



2 disappears since ae is measured in units of ~e, and so t ransforms to ha. Using (103), (107) 
and (108) in equation (119) we have 

i 0 i f O' (121) L ( t )  + (t) _ 2; 0 e o t h  l ( t  _ ib) db ,  . . . . . . . . . .  

an equation of which (109) is a special case. Equat ions  (110) and (111) are also true in this 
general case. 

(d) The  Effect  of  Inc idence  in  a Free  S t r e a m . - - I f  ,~ is the angle of incidence in the 
($~, ~v,)-plane, then from equation (39), 

i t - "  qe  It e - iOdt  = (COS 0~ e -[- i sin ~e tanh  ~ ~) q~ e '% 

where (q~';, 0o') is the velocity vector a t  incidence , , ,  and (q~, 0e) is the velocity vector at  zero 
incidence. Dividing by  the velocity at  infinity and taking logari thms we have 

I t  1 • • • f~ (t~) -~ f~(te) - -  log (cos ~, + i sin ~ tanh ~t,) . . . . . . . . . .  (122) 

At  ~7 ~ 0% i.e., at  infinity in the ($e, ~)-plane,  f~'(oo) : f~(oo) - -  i~,, which shows tha t  the flow 
at  infinity is at  an angle ~, to its original direction. Now c~ is a boundary  condition and so 
must  t ransform either by  equation (107) (when it is required to calculate 0) or by  equation (108) 
(when it is required to calculate log (U/q)), i.e., 

L .  
either vf"(oo) ~ vf(oo) - -  iw,  or vf"(oo) : vf(oo) - -  i~ rio 

Comparing these equations with (122) we deduce tha t  

" I ~ 
L"(t) ~ L(t) - -  log,  cos ~-o + i s i n ~  tanh½t , 

and O"(t) ~ O(t) - -  arg {log (cos ~ + i sin ~ tanh  ½t)} . . . . . . . . . . . .  (123) 

Now L/'($~, ~o~)o/~0 = L~(6,, ~o~,-) --  log [-cos ~/~0 + i sin ~/~o tanh ½t], where L/'($i ,  ~0~),/ao denotes 
the incompressible L" at  the point (~i, $ 0 ~ ) a t  an angle of incidence -/~o. 

Therefore L"($i' ,  ~)~ ~ L($i,  ~i) + L/'(d~i, fl0~i)~/~0 -- Li(~, flolv~), 

q" = qi" i.e., ~- (~, ~o~), q~(~,[~.~'~)~/eo . . . . . . . . . . . . . . .  (124) 

Similarly (0" --  0)(~,~0~)~ = (0/' - -  O~)((~,~o,~V~)~. . . . . . . . . . . . .  (125) 

F rom equation (124) we deduce that ,  since circulation and lift are proport ional  to incidence, 
compressibility increases both in the ratio 1/~o. 

29. A More  Accurate  Trea tmen t  in  the Compress ib le -Flow P l a n e . - - R e t u r n i n g  to equations (97), 
we see tha t  with the aid of (99) they assume the form 

8L aO p 8L 80 P ° ( 1 - -  M ~ ) ~  = O, ~-~¢+ - - - - 0  . . . . . . . . . . . .  (126) 
8~ p Po 8~ 
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W e  Shall wr i te  dr = (1 - -  M~) ~/~ d L ,  • . . . . . . .  . . . . . . .  (127) 

a n d  = P_o(1 _ M~)~/~ ,  
p . .  (128) 

w h e n  (126) becomes  
O0 Or aO 1 Or 

, ~ ,  = 0 ,  ~ + - 0 ,  
m a~v . .  (129) 

N o w  f rom (128), 

specific hea ts .  

m = {1 q - ½ ( y -  1 ) M 2 } * / ( v - ' ( 1 -  M2) 1/2, where  y is the  ra t io  of the  

There fo re  m = 1 ar + 1M~ + (r + 1)(~ - 3) 
24 M°~ + " ' ' ' 

a n d  so it is suff icient ly accu ra t e  to wr i te  for subsonic  flow 

r~ ~ rn0 ~ -  {1  + 1 ( ~  _ 1 ) M o 2 } 1 / ( , - ,  (1 - -  M 0 2 ) "  2, 

excep t  nea r  the  sonic speed.  

a 2 

+ mo~a¢ ~ = O, 8 ~ o ~  . . . . . . . . . . . .  

where  we h a v e  wr i t t en  g = r + iO. This  equa t ion  has  t i le solut ion 

g = !6(~¢, ~mo~o) . . . . . . . . .  

O~ge O~& - -  O, in wh ich  where  G(¢e, ~e) is a so lu t ion  of ~ + ace2 

¢ e = Z ¢ ,  ~ 0 ~ = Z m 0 w ,  g e = v g  . . . . . . .  

T h e  t r a n s f o r m a t i o n  for Oe' i s  easi ly found.  As before  it  

Oj : ¢0 . . . . . . . . . . . . . . .  

or it  t r ans fo rms  t h r o u g h  its c o n j u g a t e  func t ion  re', 

too /  ( a r e d ¢ ~ =  ,, l 'ard¢ ' 
i.e., 0/  = J-g-¢-ce d¢, = - -  ./g~-~e m - ~ J ~  f rom (133). 

e q u a t i o n  (100) can  be wr i t t en  

a r _  aL  Or po 1 ( 1 - - M ~ )  1/~ m_ , , _  mo 
OW a~o a L  = p R q  - -  R q - -  R---q" "" 

Using  this  resul t  in  the  e q u a t i o n  for 0 / w e  find 

f 
w h i c h  is c o n v e n i e n t l y  the  same  as the  direct  t r a n s f o r m a t i o n  (134). 

f ( 1  - -  M2) 1/2 dL . . . . . . . . . . . . .  g 
, I  

° ° ° . . . . .  

W i t h  this  a p p r o x i m a t i o n  in (129) we can deduce  t h a t  

. .  (130) 

. .  (131) 

. .  (132) 

. . . . . . . .  ( 1 3 3 )  

e i ther  t r an s fo rms  direct ly ,  i .e. ,  

. . . . . . . .  (134) 

W i t h  the  aid of equa t ion  (127) 

. . . . . . . .  ( 1 3 5 )  

I n t e g r a t i n g  (127) we have  

. . . . . .  (13G) 
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N o w  since M 2 = y ~ 1.4,  (qla°)  d L  - dq 
1 --  ½(), - -  1)(q/ao) ~' q '  

a n d  ~ 2 =  1 - - M  ~ =  1 (q/ao) ~ 
1 --  0.2(q/ao) "~' 

(136) can be w r i t t e n  r = (1 - -  $~)(6 - -  ~2)" 

~/6 log[1 -- (/~/%/6) 
Therefore  r -  2 1 - -  (flo/~6) ] l°g 1-- /~°1+~o 1 1 + (#o/V6) + ½ 

× l + ( ~ / V 6 )  1 - - / ~  1 +  
.. (137) 

in wh ich  the  c o n s t a n t  of i n t eg ra t i on  has  been  'selected so t h a t  r = 0, w h e n  L = O, i.e., w h e n  
fi = 80. Thus ,  since fl is a k n o w n  func t ion  of L we h a v e  f rom (137) a re la t ionsh ip  

r = r(L) . . . . . . . . . . . . . . . . . . . . . .  (13S) 

Fina l ly  we note  f rom (136) t h a t  a t  an  infini te d is tance  f rom the  aerofoil,  

r(oo) = f flo dL  = ~oL(oo) = O. . .  (139) 

30. The Corresponding Integral Equation So lu t ions . - -These  c a n  be  deduced  i m m e d i a t e l y  f rom 
the  incompress ib le  equa t ions  (10), (8), (45) a n d  (122) w i th  the  aid of (133) a n d  (134). 

(a) A Symmetrical  Aerofoil at Zero Inc idence . - - In  this  case we  find f rom e q u a t i o n  (10) 

1 ~o 0' de' . . . . . . . . .  (140) 
g ( ¢ ,  v )  = 7~ _ _ ~  ¢ '  - ¢ - i m o v  . . . . . .  

(b) Symmetrical  Aerofoil at Zero Incidence in a Straight-Walled Channe l . - -Equa t ion  (8) 
becomes  

t oo ' 2~: 

g(¢, ~) _ ~ f_ooO' coth__o_o_o_o_o_o_o_o_ff~ (¢' - -  ¢ - -  imo~) d ¢' . . . . . . . .  (141) 

in wh ich  we h a v e  used  h = ($oUH)/mo, which  comes  f rom (99) appl ied  to the  channe l  a t  
inf ini ty .  

(c) Asymmetr ic  Aerofoil a t  Zero Incidence in a Free Stream. E q u a t i o n  (45) becomes  

i f  ° g(t) - -  f~  O' co th  ½(t - -  ib) db, . .  . .  . . . . . . . . . . .  (142) 

whe re  ¢ + imo~O = - -  21 c0sh t, ¢ '  = - -  2a cos b . . . . . . . . . . .  (143) 

(d) The Effect of Circulation in a Free S t r e a m . - - E q u a t i o n  (122) assumes  the  form 

g"(t) = g(t) - -  log (cos ~ + i sin ~ t a n h  ½t), . . . . . . . . . . . .  (144) 

where  t is def ined as in (143). 
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When these integral equations have been solved, equation (101), with the aid of (138), enables 
the relationship between the (¢,W) and (x,y)-planes to be established, and then the solution is 
complete. 

If we assume tha t  the relation between the (¢i, ~pl) and (¢,W)-planes is approximately the 
same as tha t  between them at infinity, then using (99) we can write 

¢ = ¢i, v~ = ~0v, i!~o . . . . . . . . . . . . . . . . . . .  (145) 

With this approximation we find that  equation (140) becomes 

if  0' 

i.e., g(¢~, W,) = j~(¢i ,  floWi), • . . . . . . .  , . . . . . . . . . .  ( 1 4 6 )  

the real and imaginary parts of which yield 

O(¢e, ~,)  = 0, (¢ , ,  floV,), (cf .  ( 1 1 1 ) ) ,  

and r(¢i, wi) = Li(¢, ,  floV~) . . . . . . . . . . . . . . . . . . .  ( 1 4 7 )  

These equations also apply to an asymmetric aerofoil in a free stream. 

Similarly for channel flow we find 

g(¢;, ';~)~ = J~(¢;, floV;)U~o . . . . . . . . . . . . . . . . .  (148) 

while the effect of incidence is given by 

(g" - -  g ) ( ¢ ; , ~ , ) ~  : ( f"  - - / ) (¢~ , /~o~p;)o .  . . . . . . . . . . . . . .  ( 1 4 9 )  

On the aerofoil surface (147) yields r : L;, i . e . ,  q~ ----. U e  -r .  . . . . . . . . . .  ( 1 5 0 )  

This approximate solution for compressible flow was first obtained by yon K£rm£n~i whose 
method is discussed in the next section. Equations (146) to (148) should be compared with the 
corresponding equations of section 28. It  will be found tha t  the equations for 0 are the same in 
each method, but  tha t  L calculated by the f i r s t  me thod  is related to the r of the second method by 

L = r ico . . . . . . . . . . . . . . . . . . . . .  (151) 

Of course the correct relation between r and L for the second method is given by equation (138), 
an equation which leads to an appreciably larger value of L than does (151). This is illustrated 
in Fig. 10, in which equations (112) and (150) are compared at M0 ---- 0 . 7 .  

Integral equations of the same form as those given above have received detailed t reatment  in 
Parts 1 and 2; for example on the aerofoil surface (140) becomes 

f~  0' de 1 _~¢'  r(¢) ~ _ ¢ ,  

which, by a similar argument to that  of section 4, can be written 

r(¢) = ~1 f ~_~ R~'I log (¢' --  ¢) de' --~1 ~; j  log (¢i -- ¢), • . . . . . . .  (152) 
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a, nd  the calculation proceeds jus t  as in .section 4. However  one n e w  point  d o e s  arise i n - t h e -  
calculat ion of the distance along the  aerofoil surface, 

(~*d¢ Sm-Jo q ' D 4 . .  ( 1 5 3 )  

measured from a s tagnat ion  point  at  which the d iscont inui ty  in 0 is --  v, say  (e.gl, at a trai l ing- 
edge angle of 23). The in tegrand  becomes infinite at  t h e  s tagnat ion  point.  The problem 
has been solved for incompressible flow le, the  solution being s = ¢~*/qi*(1 --  ~/~) where q~* is 
the  veloci ty  at  ¢~*, see equat ion (165). From (152) we see t ha t  sufficiently near  a d i scont inu i ty  
in 0' of amount  - -  3, 

r(¢) -"- ~ log [¢1, 

where we have taken  the origin at the  discontinuity.  The complexi ty  of equat ion (138) renders 
fur ther  algebraic progress impossible, bu t  if we accept  the  approximat ion  (!51), we can write 

* logl¢] ,  i.e., = where k = 3 
L(¢) --  ~ao ' ~ao" 

Using this  in (153) we find 
¢* 

S. -~-  
q * ( 1  - 

. . . .  (154) 

Of course this  approximat ion  is only used over the  first mesh in te rva l ,  which should be reasonably  
small, ad jacent  to a s tagnat ion  point  (or sharp corner, if any). 

31. Comparison with yon Kdrmdn's  Approximat ion. - -Brie f ly  yon K~rmgn 's  method  is as 
follows. Equat ions  (126) are t ransformed so tha t  q and 0 are the  independent  variables. This 
t ransformat ion  to the hodograph-plane linearizes the equa t ions .  Then wi th  the use of (127), 
(128) and the approximat ion  (130) the equations 

02¢ a2~o a=W 
a~¢ + + = 0 ,  ar---~ ~ -  ~r ~ O0 ~ 

follow, but  since these equations also hold for incompressible flow if r is replaced by  Li, i t  is 
concluded t ha t  r =  L;, and so q~ = Ue-" (cf. (150)). Then wi th  the same degree of approx imat ion  
as in. (130) yon Kgrm~m deduces tha t  

q ' - -  U2~ 
L ~ = m 0 ( L +  4a0 ~. / ,  

i.e., (--~f/m° = ( q )  e-(~'- v=)/~°~ . .  ( l S S )  

• Von K~rmgn 's  theory  was developed ini t ia l ly  for the case of zero circulation, bu t  Lin 9 later  
extended the theory  to flows with  circulation. The author ' s  theory  is quite general. Experi-  
menta l  evidence shows t h a t  (155) is reasonably  accurate for slender bodies up to about  
M0 ----- 0.6, but  t ha t  it underes t imates  q at the higher Mach numbers.  Fur the r  since .it is .only 
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a velocity correction factor, it reproduces the  compressible velocity peak directly above the 
incompressible velocity peak, whereas experimental evidence shows that  the velocity peak 
travels towards the trailing edge, with increasing Mach number, slowly at first, but  quite rapidly 
by the time sonic speed is achieved locally. 

The author's method is similar to yon K~rm{m's, except that  the hodograph transformation 
is not used. In fact the calculation leading to (150) in. the previous section may be considered 
an alternative approach to von Kirm/m's  approximation. Equations (140) to (144) however 
should be more accurate, and do not depend upon previous knowledge of the incompressible 
flow. 

Three approximations are made in the yon Kgrmdm method: - -  
(a) m = m0, in the differential equation 
(b) m = too, when calculating the relation between r and L, 
(c) changes in the boundary profile due to the approximations are ignored. 

Approximation (c) is not made in the author's method. This is a big advantage over yon 
K i r m l n ' s  method as the flow round a given profile can be found directly. If increased accuracy 
is required in yon Kgrmgm's method it is necessary to calculate the distortion to the profile, 
and then to recalculate the problem starting with a profile so modified that  the hodograph 
transformation distorts it into the desired shape. Of course it is clear that  the application of 
an equation such as (140) to the problem will be a much lengthier process than the simple 
application of yon Kgtrmdtn's approximation, but  it would certainly be simpler than the 
iterations required to apply his method accurately to the problem of t h e  flow around a given 
profile. 

Approximations (a) and (b), while apparently equivalent, do not necessarily result in the 
same magnitude of error in the final answer. Approximation (b) is ~/nnecessary, and has not 
been made in this paper. This inconsistency can at least be justified empirically. Fig. 10 
shows the (e-r,q/U) and (qi/U, q/U) curves at M0 = 0.7 given by (138) and (155). A close 
examination of (152) reveals tha t  Ue -r calculated from it, will be a little smaller than qi, but  
from the figure it can be seen that  a given value of Ue -r corresponds to a much larger value of 
q than does the same value of qi by yon Kgrmgn's  method. The overall effect is tha t  the 
author's method results in larger values of q than does von Kirmdm's method, and this is 
certainly supported by the experimental evidence. 

32. Modification to the Method.--The method of sections 29 and 30 requires tha t  M must be 
less than uni ty (e.g., (127)), and this has the disadvantage of not permitting even an approximate 
solution to be found if a small supersonic patch makes an appearance in the field. Further, 
from equations (129) we can deduce tile exact equation 

= o ,  . .  ( 1 5 6 )  

which suggests the possibility of an exact relaxation solution for r. This approach would have 
the advantage tha t  Li is a close approximation to r, and hence could be used as a starting point 
for the relaxation. I t  is clearly desirable to use the best available approximate theoretical 
solution as a starting point when solving non-linear equations by  relaxation. The method 
suggested amounts to doing this. However, working i n  the (6,~)-plane has the disadvantage 
tha t  the relation between the (x,y) and ($,~)-planes is a function of M0. If boundary values 
on the aerofoil are the only objects of the calculation, this disadvantage is negligible. The 
application of relaxation to the method of this paper, such tha t  there are no difficulties in super- 
sonic patches, requires the modifications given below. 
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If in (126) we write dv = ~ dL ,  the equations become 
P0 

80 O r _  80 ~ m 2  8v 

and so ~ +  m s ~  = 0 .  

= _  4), 

a result  obta ined with the aid of the  equations following (136); and therefore 

v = dL = (1 + 0 .2M2)  2'5 = - -  ~ M2(1 + 0"2M2) 35' 

in which v = 0, when L = 0, i.e., when M = Mo. The solution to this equat ion is 

lo~( 2 + 1"~ 1 1 1 
v = ½ ~ \ ~ _ g  s 2  5 3P ~ 2' 

where p = (1 + 0 .2M2)  ~/~, and so 

v = v ( L )  . . . . . . . . . . . . . . . . . . . .  

follows. 

Similarly we can make  the  subst i tut ion du = po (1 - -  M ~) d L  in (126) and find 
P 

O2u 0 ( 1  Üu) 143+ ~ ~ =o,  

in which u f % 0  (1 - - M  2) dL .  Making the  same subst i tut ions as for v we find tha t  

{2 + 1~ 2o ~23 u=½1og \~&- - i_ l}  + - - -  - -  P,  

u = u (L ) ,  . . . . . . . . . . . . . . . . . .  

. .  (157) 

(lSS) 

(159) 

(16o) 

from which (161) 

follows. 

Now from the  definitions of u, v and m we have 

½(m dv + d ~ )  = ( 1 - -  M2) ln  d L  = dr, 

and so using the approximat ion  (130) we have 

where the star is in t roduced to distinguish this modified function from the previous one. Then 
from (159) and (161) we can deduce a relation 

r* = r*(L) ,  . . . . . . . . . . . . . . . . . . . .  (162) 
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which is not of course the same as (138), having real v~ilues of r* for M o > l .  (e -~*, q/U) is plotted 
in Fig. 10, and can be compared there with (e -~, q/U). There is little difference except close 
t o  the sonic speed, e-,,,0v and e -~/~0 are also plotted against q/U for comparison. The former 
curve, (e .... 0~, q/U), is indistinguishable from von K~rm~n's law for (q~/U, q/U). Some use of 
this curve is made in the next section. 

The modification then, is merely that we use r* as defined above in place of r to ensure that  
we obtain real values in supersonic patches. 

33. An Exact Relaxation SoIutio~.--Equation (157), which is exact, may be solved by 
relaxation, and without difficulty ill the supersonic patches (provided of course a continuous 
solution does existlO). It  is clear from the previous section that a first approximation to v is 
Li/mo. Li can be found by the methods of Parts 1 and 2, in the (~i, ~)-plane, then using the 
approximation (145) we will have a reasonably accurate approximation to v in the (6.~)-plane. 

From (158) and the definition of v we find that  dm 2 = 2.4M4(1-b 0.2M~) 7"5 dv, and so (157) 
can be expanded 

~2v ~O~v ( ~v~ ~ 
S-~ + ~ ~ + 2"4M'(I + O'2M~)~~k-~$/ = O  . . . . . . . . . . .  (163) 

Equation (160) is not suitable for a similar treatment since it follows from the definition of u 
that  a given value of u corresponds to two values of L, one supersonic and the other subsonic. 
Details of the relaxation treatment  of (157) will not be given since it is of the same form as an 
equation already treated by relaxation 1~, and a similar treatment will hold. 

From equation (100) we note that  the boundary condition for v is 

= L = po 1 _  p_ _ 1 .  . . . . . . . .  ( l S 4 )  
O~/J O~p OL p Rq po -- Rq . . . . . .  

When v has been found 0 can be deduced by integrating the equations preceding (157), while 
q follows from (162) and q/U = e -r. The relation between the (x,y) and ($,W)-planes follows 
from (101), and the solution is complete. 

The method outlined in this section would be much quicker than the relaxation method 
developed elsewhere ~, ~. 

34. An Example.--The aerofoil selected as an example is one used by Emmons (1946) in a 
relaxation treatment  of compressible flow. Fig. 11 shows the velocity distributions given by 
Emmons for this aerofoil at M0 = 0, and M0 = 0.7. Emmons'  solution for M0 = 0 was 

" checked by the polygon method. The results of this calculation are shown in the figure, and 
are almost identical with Emmons'  results. Results from yon K{trmgn's approximation and 
the approximation of section 32 are also shown in the figure. The latter approximation is 
certainly superior to yon Kdtrm{m's, but it did not displace the velocity peak down the aerofoil 
as far as was expected. However further work is necessary on this example before definite 
conclusions can be drawn, since (a) Emmons'  compressible solution needs checking by the exact 
relaxation t reatment  of section 33, and (b) a much smaller mesh interval than that  used in the 
region of the nose is desirable. This point arises since (154) is not a good approximation, and 
so if the first interval (over which (154) is used) is too large, the whole velocity distribution 
will be displaced along the chord. It  may well be that  such an error has accentuated the 
discrepancy shown in Fig. 11. 

General Conclusions.--The method developed in Parts 1 and 2 obtains with a minimum of 
computation accurate results for the flow of an incompressible fluid about a two-dimensional 
,body of arbitrary shape. The body, if symmetrical, may be placed in a symmetrical channel 
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of arbitrary shape. While the examples have been given for a channel with straight walls, the 
• extension to the more general case is quite simple. Integration will have to be performed along 
both boundaries, and along some suitable equipotential connecting them. 

Relaxation becomes very tedious for the type of problem treated in this paper, i.e., a problem 
that  involves a field with a fixed value at infinity only, and with specified boundary gradients. 
(Fixed boundary values would reduce the work many times.) If results throughout the field 
are required, the method of this paper should be used to compute values of log (U/q) on the 
boundaries of the field, and on a coarse mesh throughout the field. The method is quick and 
accurate for the calculation of surface velocities, b u t  the elliptic co-ordinates may render the 
calculation of field values a little tedious, and so from this stage it would be quicker to complete 
the solution on a fine mesh by relaxation, maintaining the values initially calculated constant. 

The influence factor method given in Par t  3 is also quick and relatively simple to apply, but  
the polygon method is more accurate for the direct calculation of velocities, and for the inverse 
problem of designing an aerofoil (not given in this paper). The influence factor method may 
be more convenient for the calculation of the actual fl0w pattern, although if both flow pattern 
and velocity field are required the polygon method followed by integration (equations (69)) 
would probably be the quickest. The author has not succeeded in extending the influence 
factor method to compressible flow, whereas, as shown in Part  4, the polygon method can be 
adapted to the calculation of compressible subsonic flow--a calculation which is a little more 
accurate than the well-known approximation of von K~rm~n. I t  also has tile advantages 
that  the calculations can be performed directly for an aerofoil of given shape, and that  relaxation 
can be applied subsequently to solve tile exact non-linear equation of compressible flow. This 
would be possible in the hodograph-plane but with the disadvantages of curved boundaries 
and singularities i n  the mapping. 

Both tile polygon and influence factor methods appear simpler to apply a n d  more direct 
than the method due to Theodorsen and Garrick 15. Their method is based on the conjugate 
harmonic functions ~ and fl defined by z = 2a cosh (~ + i/~). These functions are not as 
fundamental in aerofoil theory as either of the conjugate pairs (log (U/q), O) or (x -- ¢, y -- 9). 
Exact  and direct aerofoil design can be achieved by either t h e  polygon or influence factor 
methods. All tha t  i s  required is to interchange the roles of the conjugate functions. 
Theodorsen's method apparently lacks this flexibility, for instead of aerofoil design he discusses 
tile creation of families of wing sections, the properties of each member being unknown until  
tile calculation is complete. 

TABLE 8 
, %  . .  Calculation of ~rni 

1 

¢ 

0 
1 
2 

1 
15 
2~- 
3 
4 
5 
6 
7 
8 
9 

10 

2 

X 

8.8620 
8-4585 
8.0530 
7.6442 
7.1311 
6.4048 
5.5632 
4.7075 
3.8352 
2.9426 
2.0221 
1"0617 
0"0000 

3 

Y 

0.0000 
0.3340 
0.4507 
0-5254 
0.5840 
0.6272 
0.6325 
0.6019 
0.5406 
0.4510 
0.3340 
0-1876 
0.0000 

4 

mi 

+0.668O 
0.2334 
0.1494 
0.0943 
0.0492 

+0.0053 
--0.0306 
--0.0613 
--0.0896 
- -0 .1170  
--0.1464 
--0.1876 

5 

~mi 

(0.6680) 
0 . 4 3 4 6  
0.0840 
0.0551 
0.0451 
0.0439 
0.0359 
0.0307 
0.0283 
0.0274 
0.0294 

+0-0412 
(--0"1876) 

6 

cos 0 

n 

0.9311 
0-9753 
0.9890 
0.9952 
0.9995 
0.9999 
0.9985 
0"9963 
0.9936 
0-9904 
0-9866 
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TABLE 9 

. ( c o s  0 Calculation o J!  -~ 1 } 

[A;A 
(co~ 0 _  1)10  a 

¢ 0 ½ 1 1½ 2~ 3 4 5 6 7 8 9 10 {Bj} {c,} 

.l. 
2 

1 
1½ 
2 
3 
4 
5 
6 
7 
8 
9 

---301 --1036 --323 
0 --323 --1036 --323 -{--40 296 474 600 698 778 845 903 954 

+176 --5  --323 --1036 --235 +166  397 544 653 740 813 875 929 
301 +172 - -5  --323 --835 --23 +296  474 600 698 778 845 903 
477 397 +299 +173  --73 --735 --23 -]-296 474 600 698 778 845 
602 544 476 397 +270 --23 --735 --23 +296 474 600 698 778 
699 653 602 544 458 +296  --23 --735 --23 +296 474 600 699 
778 740 699 753 587 474 +296 --23 --735 --23 +296 474 602 
845 813 778 740 688 600 474 +296 --23 --735 --23 +296  477 
903 875 845 813 769 698 600 474 +296 --23 --735 --23 301 

+954 +929 +903  +875  +837 +778  +698 +600  +474 +296 --23 --735 0 

- -5  +206 +397 +544 +653  +740 +813 +875 +925 + 9 7 8 7  - + 0 . 6 6 8 0 -  
--0.4346 
--0 .0840 
--0.0551 
--0.0451 

× - -0 .0439 
--0-0359 
--0-0307 
--0-0283 
--0.0274 
--0-0294 
--0-0412 
--0-1876 

- -2100~  
--20381 
--18301 
--17181 
--15731 
--14461 
--13001 
--11161 

--883 I 
--563 I 

L - - z ,  1 

¢dl 

0 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

TABLE 10 

Comparison of Velocities 

Exact  

0-000 

1.191 

1-" 200 
1.188 
1.171 
1" 148 
1" 123 
1.090 
1.050 
0"991 
O" 000 

3 

Polygon 
Method 

0-000 
1.125 
1.191 
1.196 
1.199 
1 "188 
1.169 
1" 148 
1" 123 
1" 090 
1.051 
0"991 
0"000 

4 

Influence 
Factor  

0.000 
1-178 
1.224 
1.211 
1-201 
1-188 
1-170 
1 • 148 
1.121 
1.090 
1.049 
0.989 
0.000 
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APPENDIX 

S i n g u l a r i t i e s  i n  the R e l a x a t i o n  Process  

In the w-plane close to a corner of angle ~ on an aerofoil, e.g., at the nose or trailing edge, 
log (U/q)  can be expanded in the form (as in section 3) 

,-g 

L - -  log lwl + a + b I~1 + c lw"l + . . . ,  

in which the origin is at the corner and a, b, . . . are independent of I w]. The dominant term, 
-- , /= log Iwi, is the contribution to L from the corner itself. In the ¢-direction 

L - -  T 

717 
- - - - - l o g 4 , + a ' + b ' 4 , + . . .  

Therefore ¢ , ( O " L ~  7: ¢a (O3L~  - -  23 4 , , ( a " L ~  
t a ¢ ~ / = . ~ '  t a 4 , ~ / =  - g - - '  • • • ',,a4,"/ 

= ( - ) " ( , ~ -  1)! ~,/=, 

since close enough to the corner the coefficients a', b', . . . are negligible. Using these relations 
and similar ones for the w-direction, difference equations for L on the mesh points neighbouring 
the infinity can be found enabling the relaxation to be performed in this region TM. 

A further difficulty occurs when the integrand of becomes infinite at a stagnation point 

(or sharp corner). Let q = 0 at ¢ = 0, and q = q* at 4, = 4,*, then since 

L ~ - - E l o g ¢ ,  q- . ' , -q*(¢- - '~"=.  = \¢*/  

Therefore s(4*) = (4,d__4 _ 1 k*" / ¢ \ - ' / " d  = 4 "  
q q* J0 + . .  ( ~ 6 s )  
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