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Summary.--In this paper, which is a continuation of two earlier ones (R. & M.'s 2713 a4 & 271748), the subsonic flow 
past untapered swept wings, at zero incidence, is further investigated using linear theor.y. Methods for calculating 
' lower ' and ' upper '  critical Mach numbers are given, the solution of the main problem being preceded by a short 
analysis of critical Mach numbers for the simpler cases of infinite wings (straight, sheared and yawed). 

The determination of critical Mach numbers depends on tile knowledge of velocity distribution over the wing surface, 
the problem dealt with in the previous reports mostly for the case of the simple biconvex parabolic profile. These 
earlier results have been extended here to cover a wide class of profiles. Hence it has been possible to determine critical 
Mach numbers for wings with four different profiles, showing the effect of thickness ratio and of angle of sweep-back 
(or sweep-forward) in each case. The method applies strictly to wings of large aspect ratio, but  no significant corrections 
are necessary except for very low aspect ratios. 

The results and examples, illustrated by a number of tables and graphs, provide a basis for more general discussion. 
Several conclusions concerning the practical use of swept-wing design are presented. 

1. In t roduc t ion . - -The  delay in the onset of shock-waves, i.e., the raising of the critical Mach 
numbers, due to the use of swept wings, was apparently first mentioned by Busemann 3 in 1935. 
During the years 1939-1945, the idea was further developed in Germany, notably by G6thert 6' 7 
and Ludwieg 8' 23, and led not only to further experimental research, but also to practical attempts 
at producing fast flying aircraft with highly swept-back wings. After the war, the conception 
spread far and wide, considerable research work has been done and, at present, the swept-back 
wing is almost a commonplace in high-speed design. And yet, the fundamental problem of 
actually calculating critical Mach numbers has not hitherto been solved, and so the true advantage 
to be gained through sweep-back in various conditions has been only vaguely known. The in- 
adequacy of our knowledge in this respect was strongly emphasizedat  the Anglo-American 
Aeronautical Conference of 19474o . I t  appeared that, while the designer had to pay heavy 
penalties in several aspects of his work for sweeping the wings back, he could not estimate 
precisely what he was getting in return. 

The present report is a Continuation of two previous papers (R. & M. 2713 *~ and 2717 .8) and 
aims at solving this problem theoretically in the case of untapered swept wings of large and 
medium aspect ratios with arbitrary profiles. There are usually a number of additional factors 
to increase the complexity of the problem, such as : more elaborate wing geometry (taper, twist, 
spanwise profile changes, very small aspect ratio, etc.), varying incidence, and fuselage or nacelles. 
All these have been ignored here, and even so the problem is much more complicated than it 
seemed to be in the initial stage. 

* R.A.E. Report Aero. 2355, received 24th November, 1950. 
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Tile originM approach consisted in considering ±he simplest case of an infinite straight wing, 
yawed through an angle ~ from its initial position at right-angles to tile wind (Fig. 3, upper part). 
Resolving the flow into components parallel and perpendicular to the wing edges, one sees that  
the first component is without significance (apart from the effects of viscosity) and all tha t  
matters is the wind component normal to the edges. The flow to be considered is two-dimensional, 
and this problem may well be termed ' quasi two-dimensional '. The normal component flow 
has tile undisturbed velocity U cos 9, and the ' effective ' Mach number can be taken as 11//0 cos 9, 
where M0 is the Mach number of the undisturbed flow U. Therefore, if a certain value Me of M0 
has been found ' cri t ical '  for the given wing at 9 ---- 0, then, foi a yawed wing, critical conditions 
will only occur when M0 cos ~ ---- Me, or M~y ---- M0 sec 9. This simple ' secant law'  applies 
rigorously only to an infinite yawed wing. I t  shows, e.g., that  if 9 ---- 60 deg, then the critical 
Mach number is doubled. 

Unfortunately, an infinite yawed wing is not a proper basis for aircraf t  design; the latter 
reqmres a wing formed by joining two symmetrical finite semi-wings, with a kink in the middle. 
Such a wing does not achieve the whole gain in critical Mach number predicted by the above 
oversimplified ' theory '. However, it achieves some part of the expected gain, and it is clearly 
important  to know what that  part is. 

The main reasons of the large discrepancies between the ideal sec ~ law and the true gain are 
as follows. First of all, a simple yawing of the wing, although so easily performed in tunnel 
experiments, is not usually the designer's procedure. The latter will rather consider as funda- 
mental the profile of a section parallel to the main symmetry plane of tile aircraft, i.e., parallel 
to the usual flight direction. Both parts of the swept wing are not yawed but 'sheared ', its 
consecutive sections h'aving been shifted backwards or forwards from their positions in an 
unswept wing, the profile shape remaining unchanged. The profile in the section normal to the 
wing edges has thus its thickness ratio increased in the ratio sec ~ : 1 compared with that  of 
tile fundamental section (see Fig. 3, lower part, or Fig. 29). The critical Mach number for a 
.profile in two dimensions depends effectively on thickness ratio, decreasing when the latter 
increases. Therefore, tile gain in Me for a sheared wing must be lower than for a yawed one, 
although still quite considerable*. A still more important  reduction of the gains in critical M 
is due to the sharp kink, or geometrically more complicated junction, with which the two halves 
of the swept wing are joined. There is a region round the junction, where the flow is far from 
' quasi two-dimensional ' but essentially three-dimensional, and here serious changes in the flow 
take place, causing a significant reduction of M0, and requiring a more elaborate treatment.  
Similar, though usually less important, complications occur near the wing tips. 

It  is now recognised that  tile problem of critical Mach numbers for swept wings is a serious 
scientific problem which cannot be solved by an empirical ' guess '  (such as, for instance, the 
notorious but  shortlived ~/(sec 9) law). A rational solution reduces to the following four 
stages : 

(a) Rigorous definition of the critical conditions of the flow, i.e., of those conditions which 
being reached and overpassed make supersonic phenomena (shock-waves) possible, at 
least locally. 

(b) Determination of the velocity distribution over the surface of the wing, especially 
maximum incremental velocities (supervelocities) and their location, first at low Mach 
numbers, i.e., in incompressible flow. 

(c) Determination of modifications in the velocity distribution with increasing Mach numbers 
(in high subsonic flow), especially the maximum supervelocities at high Mach numbers. 

(d) Combination of t he  results of the three above investigations for calculating critical Mach 
numbers for particular wings. 

* It is important to  differentiate between the two methods of producing oblique wings and in appreciating their 
perfolmance, and especially to guard against applying the experimental results obtained with a Straight model at several 
angles of yaw--to swept wings with similar angles of sweep but with a constant profile parallel to the direction of wind: 
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There was,' a t  first, some confusion with respect t o  the stage (a). I t  was known that  critical 
conditions occurred when the local velocity of the flow reached the local sonic value, but  i t  was 
not quite clear whether this applied to the total  velocity or to some Component of i t .  Treating 

q an infinite yawed or sheared wing on the lines of Bu~emann s initial Suggestion; it was natural  
to conclude that  only the velocitb~ eomponenl~ , normal to the wing edges had to reach :~he sonic 
value, and this  point of view was advocated by Betz and LudwiegS. Surprisingly enough;: 
G6thert 7 insisted on the total  velocity being taken into account, and thus obtained much more 
pessimistic results even for infinite sheared or yawed wings. The question was studied, from a 
more general point of view, by Ringleb 5, Scherberg ~5 and Bickley tin6, and gradually the way has  
been paved for the gemral criterior~ of critiCal condition, s which is" tha t  ~he velocity component 
in the direction of the pressure gradient (or normal to the isobars) becomes equal to t he  local 
sonic value. The criterion was finally substantiated by Bickley (R. & M. 23302~)i on s t r ic t ly  
mathematical grounds. I t  is clear that,  for thin sheared or yawed wings, ' normal to the isobars ' 
means simply ' normal to wing edges ', and hence Busemann's original idea is a particular case 
of a more general one. A yawed or sheared wing may be viewed as a device for making isobars 
run at a required angle relative to the wind, so as to create in some cases the possibility of 
' f lying at supersonic speed, while pretending to fly subsonic ', i.e., being subject to subsonic 
aerodynamics. The general criterion also solves the problem for the troublesome regions near the  
kinks or tips. I t  becomes clear tha t  not only the maximum velocities but  the entire velocity f/eld 
over the wings must be  determined, and t h a t  only the velocity components normal to the is0bars 
play the decisive part in defining critical conditions. Since the isobars cross the  central kink 
section at right-angles, the full velocities in this section mus t  be taken into account,, and hence 
the ' local critical Mach number '  will always be less than .1. I t  is seen that  critical .conditions 
are not reached simultaneously on the entire wing surface, and therefore the present report 
suggests introducing the notions of ' l owe r '  and ' u p p e r '  critical Mach numbers. The former 
refers to critical conditions being reached at a single point of the ' first danger section ' (often, 
but not always,, the central kink), the l a t t e r  to the entire wing being embraced by critical or 
supercritical condi t ions .  Thus, we have to deaJ with a critical range of Mach ~umbers, ins tead 
of a single critical value*. 

Th e importance of stage (b) can now be seen. • The first (unsuccessful) a t tempt  to  ,determine 
the velocity distribution over swept wings wi th  a kink was made by Ludwieg 23 and, after several 
more efforts by different authors 84, .~8, ~, ~3, ~8 the problem may be considered as theoretically solved 
at least for untapered wings, of small thickness (linear approximation), whether of infinite or 
finite aspect ratio. Owing to  mathematical difficulties, all previous papers dealt mostly with 
the simplest profile (biconvex parabolic--see Fig. 5, profile B), and this was a serious handicap 
from the practical point of view, especially as no experimental data for wings wi tk  such a profile" 
have been available. I t  has therefore been decided to t ry  to generalize'the earlier method so as- 
to obtain effective solutions for a wider class of profiles. These soIutions, for all symmetricbt 
profiles expressible by polynomial equations of a degree not exceeding 5, are given in Appendix III.  
Several examples have been worked out, namelylfor .the profiles C and Q-(Figl 5), and illustrated 
by graphs of velocities and pictures of isobars (see Figs. 6 to 19). These e~/amples make it clear, 
when and why the maximum velocity may occur not in the k i n k  section but  in the.regular region 
of the wing, and sometimes even at the tips. The analysis of the examplesifinally leads/co the 
conclusion that,  for actually .. calculating critical Mach numbers, .it suffices to work ou~ the 
maximum supervelocitieS in the kink section and in the regular region, and this can be done for 
every profile. Tables 5 to 8 contain these max ima  for 4 profiles B, C,• Q, R, the latter having 
a rounded nose. Figs. 20 to 28 illustrate the results for a w~de-range of angle of sweep. 

:Y , _ " " ;  :7 : : °;" 5 

* I t  should be mentioned tha t  Griffith ~1 and McKinnon Wood 2~ have interpreted Bickley's criterion in such a way  
fha t?  on the wing surface the normal  acceleration due to curvature must  also 'be included. Th i s  interpretation would 
i'ead ' to surl~rlsing and paradoxical results, entirely different from those generally acceptecl, even in two-dimensional 
problems. The question is a very  difficult one. I n  this  paper, the normal  acceleration has been left out, in accordance 
with the common practice (see further  remarks  in the footnote Under secti6n;5)~ • , : :: 
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The stage (c) had its ground well prepared by the Glauert-Prandtl law I, 2, ~ which, h6wever, 
was initially known in its two-dimensional form only, and was sometimes applied wrongly to 
three-dimensional problems. The law is based on the linear perturbation theory for thin wings, 
and is therefore only approximate. There were several attempts at improving the accuracy of 
this law by introducing higher order corrections 9,1~, 1~, ~ None of these corrections has been 
used in this report, as the velocity field in incompressible flow past swept wings can only be 
predicted to the first order accuracy, and hence higher accuracy in a later stage would be illusory. 
The correct generalization of the law for three dimensions was first produced by G6therP. There 
were some misinterpretations and controversies, especially as regards bodies of revolution ~'~7, 
but  the method does not now present any difficulties, at least within the first order accuracy. 
A clear and rigorous exposition of the method, in the form particularly suitable for swept wings, 
was given by Dickson% 

By combining the above results, it is possible to work out simple methods for calculating the 
critical Mach numbers, and this has been done in this report, first for infinite straight wings 
(section 2), then for infinite yawed or sheared wings (section 3), and finally for finite swept-back 
and swept-forward wings (section 4). Several examples have been worked out numerically, 
involving four different profiles, as shown in Fig. 5. Final results are given in Tables 9 to 12 
and illustrated by Figs. 30 to 33. 

Section 5 contains a discussion of advantages to be gained by sweeping the wings, and several 
general conclusions for the designer's use. 

Acknowledgements are due to Mrs. J. Collingbourne for her help in working out numerical 
examples of velocity distribution, to R. P. Purkiss who has done most of the computational work, 
and to A. R. Beauchamp who has prepared the illustrations. 

2. Critical Mach Numbers for Infinite Straight Wings (two-dimensional).--Before dealing with 
more complex cases, it will be useful to summarize the results for the simple case of two- 
dimensional flow past an arbitrary profile (Fig. 1), using the linear theory. Suppose that ,  in 
incompressible flow, the maximum velocity occurs at a point A~ of the profile, and is equal to 
U(1 + ~). Then, in compressible sub-critical flow, at Mach number Mo, the maximum velocity, 
according to Glauert-Prandtl law I, 2, should occur at the same point A,~ and be equal to : 

- . . . . . . . . . . . . .  

Critical conditions will be reached when V,~ is equal to the local speed of sound which differs 
from that  (a0) corresponding to conditions of undisturbed flow, and may be found from the 
Bernoulli equation for compressible flow" 

7 - - 1  7 - - 1  
- -  U '  V 2 a 2 . ( 2 . 2 )  

2 + a°~ - -  2 + ' " . . . . . . . .  

where V and a are local flow velocity, and local speed of sound. In this equation, we may put  
U = M0a0, where M0 is the Mach number of undisturbed flow ; also, if conditions are to be critical, 
V and a must be equal and may be denoted either by V~ or a~. The equation (2.2) then yields" 

- -  2 \ 1 / ~  

a c = a o  1 _ 7  1 (1 - M o ) J  • (2.3) 
7 + 1  ' . . . . . . . . .  

which may also be writ ten:  

2 1 - -  Mo2~ 1/2 
V , = U  1 + 7 +  1 ~ i~  / ' " . . . . . . . . .  (2.4) 

and it is seen that  the critical value a~ -~ Vo is greater than U, and less than a0. 

4 



The critical conditions occur when I7,, becomes equal to V~ and, equating (2.1) and (2.4), and 
denoting by Me the critical value of 5/o we obtain the fundamental equation : 

2 1 -- Mo~ 1/~ 1 + 1  ~I7  / - - 1  . . . . .  (2.5) 

This equation was first given, in almost identical form, by B. GSthert 6. The equation is not 
simply solved for Me, with given $~. However, it is easy to tabulate ~ against Me, and interpolate 
to find Me corresponding to any given ~ ,  with any required accuracy. Tables 1 and la* give 
the values of ~ versus M~, or M~ versus ~ ,  respectively, the range being 1 > M~ > 0-54, 
or 0 < ~ < 0.60. The relationship is also represented graphically in Fig. 2 (full line). 

I t  should be noticed that  equation (2.5) is a first order approximation, since the incompressible 
profile characteristic ~ and the compressibility correction used in deriving the corresponding 
critical Mach number are each calculated by linearized theory. This is the justification for 
using the Glauert-Prandtl law or its three-dimensional equivalent throughout this report. To 
use one of the several more refined formulae, proposed as alternatives to this law 9,1~, 17.~4, would 
only produce an illusion of greater accuracy so long as $~ remains a first order approximation. 
The first order method is the only one at present available for the theoretical determination of 
the supervelocities for swept wings, and therefore it would not be reasonable to introduce any 
refinements to Glauert-Prandtl law. The matter  is not so simple when we have to deal with 
experimental results, or with highly accurate theories of two-dimensionaI flow, and some relevant 
remarks are given in Appendix I. In Fig. 2, an additional thin curve shows the correction which 
would be introduced if yon K~rm~n's correction to the Glauert-Prandtl rule were used. 

The formula (2.5) may be criticized from the opposite point of view, as being too complicated 
(especially insoluble for Me). This question is also discussed in Appendix I, and it is found that  
a simpler formula can hardly be derived to replace (2.5) without the risk of too great errors. Very 
crude approximate formulae (I.36, 37), corresponding to a similar formula of Liepmann and 
Puckett  3~, may only be recommended for rough estimates. A better approximation may be 
obtained by using series (1.33, 35), but those are almost more complicated than (2.5). 

Fig. 2also contains a graph of the first derivative (-- dMJd~), obtained by differentiating (2.5) ; 

d~ 
dMo 

I 2 1 -- Mc 4 1 
Mc 1 + '7  +~1 M2 

(1--M2)1/2 1+ +1 J 
(2.6) 

and it is seen that  its value, while varying from oo to 0, does not differ much from 1 in the interval 
about 0.04 < ~ < 0.19, or 0 .9  > Mc > 0.75. Most interesting practical cases lie within this 
interval, and hence we may risk a very crude mnemotechnic rule: a reduction of 0" 01 U in the maxi- 
mum supervelocity gives a gain of about 0-01 in the critical Mach number. The latter gain, 
which is equivalent to about 7 miles per hour, is certainly not negligible. This shows that  errors 
in ~ should not exceed 0.01, or if possible should be kept below this value. The linear 
perturbation method can generally ensure this for thin profiles; for thicker ones, the errors in 
~ may become greater, but the values of the derivative (-- dMc/d~) decrease rapidly, so that  
the accuracy of Me should be little affected. I t  is seen that  the first-order theory may be 
considered as sufficient for practical needs, but one must not expect greater accuracy than within 
0.01 error in the critical Mach number. 

* When calculating the tables, ~, was assumed to be 1.403, following R. & M. 18911°. This applies to all following 
tables and numerical data, unless stated otherwise. The value 1 "4 is often used now. The difference is irrelevant l o t '  

o u r  purposes, the order o5 accuracy of the theory being low. 
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The formula (2.5), Tables 1 and la, and diagram in Fig. 2, apply to all profiles, One must 
bear in mind, however, that  while the parameter ~ (maximum supervelocity ratio in incom- 
pressible flow) is proportionai to thickness ratio ~ = tic for every thin profile, the proportionality 
factor ~J4 assumes different values for particular profiles. The matter  has been illustrated by 
Several examples in R. & N. 271334, and it has been shown that,  for instance : 

(a) For an ellipse, the proportionality factor has the value 1 (this being the lowest known 
value by linear theory), i.e., O~ = 4, hence our tables and diagram apply directly, 
with ~ meaning simply thickness ratio. 

(b) For a biconvex parabolic profile, the proportionality factor is 4 = 1.273, and ~ = 1. 2734, 

thus the critical Mach number will be lower than for an ellipse of the same thickness 
ratio. 

(c) For every other profile, t h e  proportionality factor assumes a definite value characteristic 
for the profile, and this may range from 1 to 2, and sometimes even higher. For 
example, for the profile (I.19) of R. & M. 2713 a~, with maximum thickness at 1/3-chord, 
and with a trailing-edge cusp, we have ~ ~ 1. 6674, and a similar value of the propor- 
.tionality factor applies to the round-nosed profile (I.44) of R. & M. 2713 a~ (although 
m this case the value is somewhat doubtful as the maximum velocity occurs so very 
near the leading edge). The critical Mach number will be much lower for such profiles. 

How far these differences affect M~, will be shown by  the following figures : - -  

' Critical Mach numbers for d~fferent profiles and thickness ratios 

t ellipse ProNe : .(~ : 4 = 1) 
B (biconvex parabolic) 

($, : 4 = 1.273) 
C (cubic of Fig 5) 
(d~: 4 ' =  1 "667) 

poor p rone  
(3, : 4 = 2) 

4 = 0 .10'  
v~ = 0.20 

M, = 0.826 
M ,  = 0.741 

O. 800 
O. 704 

0.766 
0.659 

O. 741 
O" 626 

I t  is seen that,  while the thickness ratio is of primary !importance, the effect of profile shape 
maY also be very large. 

In Fig. 2, a few additional horizontal scales in 4 are added, referring to a few particular profiles. 
They enable one to read critical Mach numbers directly off the diagram for a given profile with 
a given thickness ratio. 

3: Critical Mach Numbers for  Infinite Yawed or Sheared D~ngs (quasi two-dimensional).--The 
two cases to ~ be considered here are theoretically almost equivalent, as every infinite yawed wing 
'..can also be  viewed as Sheared, and vice versa. The only difference lies in the choice of the 
fundamerftalprofile of the infinite Straight wing (9 = 0) to be used as a basis of comparison. 
I f  ~;he 5ring in the oblique position i s, considered as yawed (Fig.,3, upper part) ,  then the funda, 
mental pr0file:is the section normal to the leading and trailing e~tges ; for a sheared wing (Fig. 3, 
lower ~ part), i t  is the section parallel to- the Velocity U of undisturbed flow. 

In  both cases, the isobars run parallel to the edges, so t h a t  it is sufficient to consider only tim 
c6iTi~dnerit flo~xT-at rightCangles fo ~cliem. This  flow has t he  undisturbed velocity U cos 9, and 
the corresponding ' effective ' Malch number is Mo cos 9, while M0 = U/ao always denotes the 
Math _number of the full undisturbed flow, equivalent to ' f l ight  Mach  number ' . . T h e  local ~ 
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speed of sound in critical conditions will now be obtained from (2.3) by replacing 3/o by M0 cos 9 : 
( )1/2 

a t - - a 0  1 y - -  l ( l _ M 0 2 c o s  ~ )  (3.1) 
7 + 1  ' " . . . . . .  " 

which may also be written, as critical value of the normal component (cf. 2.4): 

( 2 , - M°" co ' . . . .  (3 .2)  
V~c= Ucos9  1 +~) + ~  Mo 2cos2~ . . .  

This critical value of the speed of sound, or of the local normal velocity component, must now 
be equated to the true maximum normal velocity for the given wing. This will take different 
forms for a yawed or sheared wing, if the fundamental section is the same in both cases, with 
thickness ratio # = t/c and maximum supervelocity ratio in two dimensions ~ .  

(a) For a yawed wing (Fig. 3, upper part) the fundamental section is normal to the edges, 
hence the maximum normal velocity in incompressible flow is U cos 9 • (1 + ~). In com- 
pressible flow, the incremental term ~ must be divided, according to Glauert-Prandtl law, by 
V'(1 -- Mo" cos 2 ~0), and hence: 

V,~ .... -- U 1 + ( 1 - - M o  ~cos ~)1/2 cos9 . . . . . . . . .  (3.3) 

By equating (3.2) and (3.3), and denoting the critical value of M0 by M~y we obtain the fundamental 
formula for infinite yawed wings : 

I (  2 1--M~'2c°s2q~) ~/2 ] 
~ = ( 1 - - M ~ y  2cos 29) ~/2 1 +~,+----~ M 2 -- 1 (3.4) 

cy C0S2 9 

I t  is seen t h a t  this equation may be obtained directly from (2.5) by replacing M0 by Mcy c o s  9 -  

(b) For a sheared wing (Fig. 3, lower part) the section normal to the edges has the same thickness 
t as the fundamental one, but its chord is reduced from c to c cos ¢ ,  hence the thickness ratio 
is increased from # to # sec 9. The maximum supervelocity ratio (incompressible) varies in 
proportion to thickness ratio, thus it amounts now to ~ sec ¢, and therefore the maximum 
normal velocity in incompressible flow is U cos ~ (1 4- ~ sec 9) ---- U (cos ¢ 4- ~). In com- 
pressible flow, the incremental term ~ sec ~ must again be divided by ~/(1 -- M0' cos 2 ¢), and 
hence : 

V . . . .  = U c o s  ~ + (1 - M 0  ~ c o s  ~ ~)~/~ . . . . . . . . .  (3 .5 )  

B y  equating (3.2) and (3.5) and denoting the critical value of M0 by M~,, we obtMn the fundamental 
formula for infinite sheared wings : 

[( 1 ~ =  ( 1 - - M ~  2cos ~)1/~ 14-  r 4- 1 M ~ 2 c o s ~  -- 1 cos % ..  (3.6) 

and it is seen tha t  this equation may be obtained directly from (2.5) by replacing M~ by Mc~ cos % 
a n d ~  by ~ sec ~. 

The two fundamental formulae give the critical Mach numbers for infinite oblique (yawed ~ or 
Sheared) wings, as functions of two parameters ~ and 9 ; they are illustrated by two families of 
curves inFig.  4, and the relevant numerical values may be found in Tables 2, 3. The computation 
of those tables has been greatly facilitated by the use of the previous Table t. 

For given values of ~ and ~, critical Mach numbers for yawed wings are higher than for sheared 
ones. Fig. 4 shows that  the differences are quite appreciable and rise quickly with both ~ and % 
The important  fact is that,  with large angles ~ and not too large 8~, critical Mach numbers well 
above unity may be obtained. This is particularly easy for yawed wings, but also possible for 
sheared ones. Were it possible to design finite wings with similar propertieS, we could achieve 
supersonic flight w i th  subsonic aerodynamic characteristics. 
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The diagrams of Fig. 4, as those of Fig. 2, apply to all profiles, provided the abscissa $~ represents 
the true supervelocity ratio for the given profile. As ~ is proportional to thickness ratio ~, it 
again suffices to provide an additional uniform scale on the horizontal axis for the diagram to 
apply directly to any given profile with varying thickness ratio. A few of such additional scales 
are added in Fig. 4, relating to several particular profiles. 

4. Critical Mach Numbers for U~tapered Swept Wings.--4.1. Definition of Lower and Upper 
Critical Mach Numbers and their Analysis Based on Studying Velocity Distributions.--When 
dealing with infinite oblique wings, there was a single critical Mactl number for each wing, since 
the flow in parallel sections of such wings was identical, and the critical conditions in all sections 
were reached simultaneously. When we consider other wings, such as kinked swept ones (infinite 
or finite), or simple sheared ones (semi-infinite or finite), the aspect of the flow is different in each 
section, and the sonic (and supersonic) conditions are not reached simultaneously but gradually. 
The problem becomes more complicated, and one of tile chief difficulties is that ,  once a local 
supersonic area with shock-waves has been created, the entire velocity field undergoes changes 
which are difficult to predict. Tile local sonic conditions will be reached first at a certain single 
point of one particular section (' first danger section '), at some value of M0 (Mach number of 
undisturbed flow) which will be called 'lower critical '. When Mo increases above this value, 
the sonic conditions penetrate progressively further portions of the wing, and the shock-wave 
area s p r e a d s .  I t  seems natural to expect that ,  at a certain higher value of M0 the sonic (or 
supersonic) coriditions will reach every section of the wing, and that  value will be called ' upper 
critical Mach number '. We have now: (a) to find methods of determining both lower and upper 
criticals for various wings, and (b) to interpret their meaning as regards the aerodynamic pro- 
perties of the wings. 

• For the solution of the first problem, the velocity distribution over the surface of the wing 
• must be determined. This can be clone on the lines of Refs. 34 and 48 for the case of incompressible 
ttow. It  is known that,  when the Mach number of the flow increases, the velocity field changes 
gradually due to compressibility. At any particular (subcritical) Mach number, the field may be 
determined, to the first order approximation, by applying the three-dimensional similarity law 
i(generalized Glauert-Prandtl law), i.e., by correlating the compressible flow past the given wing 
with the incompressible flow past an ' equivalent ' wing (see Fig. 29), the concept originally due 
to Gothert 6 and later elaborated by Dickson 26. 

The methods of Refs. 34 and 48 have been effectively applied only to the simplest case of the 
biconvex parabolic profile but they are suitable for any symmetrical profiles, expecially those 
represented by polynomial equations. I t  was thought essential to study and compare critical 
Mach numbers for wings with different profiles, and four profiles B, C, Q and R have been chosen 
as examples, see Fig. 5. The equations of the profiles, and detailed calculations of the velocity 
distributions, are given in Appendix III .  

Once the wing profile has been chosen, there are two independent geometrical parameters for 
untapered swept wings, i.e., angle of sweep and aspect ratio. But if the latter is not very small, 
say not below 2, its effect on velocity distribution and critical Mach numbers may be neglected, 
with inappreciable error. For it has been shown in R. & M. '271748 that ,  for wings of not very 
smM1 aspect ratio, considerable parts of both semi-wings are ' r egu la r '  regions, with isobars 
running almost parallel to the wing edges, and with velocity distributions almost the same as 
for infinite sheared wings; also, that  the velocity field in the kink region of a finite wing differs 
only negligibly from that  of an infinite swept wing. Similarly, the velocity field in the tip region 
of a finite wing is almost the same as that  in the corresponding region of a semi-infinite sheared 
one. Similar remarks apply to finite sheared wings whose velocity fields may be regarded as 
consisting approximately of a central ' regular '  region and two tip regions (' upstream t i p '  and 
' downstream tip '). The degree of accuracy of this approximate method is shown in Figs. 8 and 9, 
Wtiere the isobars on finite wings of indeterminate aspect ratio (with profile B and W ----- 
53 deg 8 rain) have been produced by using only velocity diagrams for tip and kink regions of infinite 
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wings (Figs. 6 and 7). Comparing Figs. 8 and 9 of this report with rigorous solutions as represented 
in Figs. 19 and 23 of R. & M. 271748, for aspect ratios 1 and 2 respectively, we see that  the 
discrepancies are very small. Also formulae (4.1.8, 10; 4.3.2, 3) and Fig. 24 of R. & M. 27!7 ~8 
show clearly tha t  the effect of finite aspect ratio on maximum supervelocities in kink or tip sections 
is negligibly small for normal wings. The only important  difference between wings of large and 
small aspect ratio is that ,  on the former, the regular regions occupy major parts of tile surface, 
while on the latter the regular regions are merely small intermediate portions between the kinks 
and the tips. 

In view of the above reasons, it would not be justifiable to derive and use very complicated 
rigorous formulae for velocity distribution on finite wings (as in R. & M. 271748). Therefore, 
only formulae referring to semi-infinite, sheared or infinite swept wings (as representatives of 
tip and kink regions, respectively) are given in Appendix III.  The general formulae (III.18) 
and (111.22) apply to a wide class of profiles represented by polynomials of the 5th degree at the 
most (form.III.7). The profiles B, C and Q are examples of this class--of 2nd, 3rd and 4th degree 
respectively. Figs. 10 to 14 represent velocity diagrams and isobar patterns for the profile C, 
Figs. 15 to 19 for Q*. The round-nosed profile R is not one of the ' polynomial '  class, and it 
would be more difficult to work out similar diagrams for this case. This work has not been 
attempted till now, more so as the material represented in Figs. 6 to 19 seems to be quite sufficient 
to give a general idea of the flow in various cases and of the effect of typical peculiarities of the 
profile shape. 

Returning to the problem of critical Mach numbers, let us examine first the simplest flow 
pat tern of Fig. 9 (for profile B) and consider three characteristic sections of the wing : - -  

(a) Central kink section.--Here the isobars cut the section at right-angles, the normal to the 
isobars coincides with the direction of the flow, and therefore we must reckon with the total  
velocity of the flow. The crucial point is A in Fig. 9, where the total  velocity reaches its 
maximum. Conditions for critical Mach number are reached when this velocity at A becomes 
equal to the local velocity of sound. I t  is obvious tha t  the relevant critical Mach number must 
always be less than 1. I t  is the true lower critical because nowhere does the  velocity of the flow 
exceed that  at A. 

(b) Section in the regular region, i.e., a section at a considerable distance from both the kink 
and the tip. The flow here is almost identical with that  on an infinite sheared wing of the same 
profile and angle of sweep, and we assume that  it is not appreciably affected by transonic changes 
occurring in the kink area. Only the maximum velocity component normal to the isobars 
(i.e., normal to wing edges) must be taken into account, and the critical conditions may be 
defined exactly as in section 3 (formula 3.6); the relevant Mach number may be considered as 
upper critical. When the 1Kach number of the flow increases gradually from its lower critical 
value, critical conditions spread sideways from the kink section, to embrace ult imately almost 
the entire wing when the upper critical value is reached. The upper critical may, of course, 
exceed 1. 

(c) Tip section.--In the case represented in Fig. 9, the maximum supervelocity at the tip is 
approximately half that  at tile kink section, and also appreciably lower than tha t  in the regular 
region; the latter fact is due to the angle of sweepback not being very large. The isobars bend 
sharply in the tip area to run nearly parallel to the flow. The critical conditions are reached 
here much later than in the central kink, and apparently also later than in the regular region. 
The tip area seems not to play a significant part in this case, and there is hardly any sense in 
trying to define a '  t ip critical Mach number '. I t  is true that  there are points in the rear 
portions of the tip area, where tile isobars run locally at right-angles to the main flow, and 

* I t  may  be mentioned that,  while in Fig. 8 the two tips present identical flow patterns (only inverted) owing to the 
fore-and-aft symmetry  of the profile, it is not so in Figs. 13 and 18, where the two tips exhibit quite different patterns. 
I t  is essential to discriminate between ' upstream tips ' and ' downstream tips ' in all cases when there is no fore-and-aft 
sylimletry. For details of calculation, s e e  Appendix I I I .  
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for each of such points a local critical Mach  number could be determined, lying sometimes 
between the previously defined lower and upper critical, sometimes above the latter. However, 
i t  seems that  there is little point in trying to analyse the complicated phenomena at the tips. 
If some local shock waves appeared in these areas before the entire regular region became 
shock-stalled, the effect on the performance of the whole wing would probably be insignificant. 
I n  addition, the flow in the tip areas may be strongly affected by small changes in the 
geometrical shaping, and the investigation of this flow would be not only difficult but also of 
little promise. 

The above analysis of Fig. 9 leads to the simple conclusion that  the lower critical Mach number 
Should be determined from the conditions prevalent at the central kink section, while the upper 
critical may be taken as that  corresponding to an infinite sheared wing of the same profile and 
angle of sweep. This would mean that  the upper critical could alwaTs be obtained by a simple 
interpolation from our Table 3 while the calculation of the lower critical would require a complete 
knowledge of the velocity distribution in tile kink section for the given profile and for a wide 
range of the angle 9. This is comparatively easy, as we possess a general formula for this velocity 
distribution (see R. & M. 271384, form. 7.5): 

(Vx) ldnk = ( (Vx)~=O 
U In 1 +sin )cos  . . . . . . .  (4.1.1/ 

" 1 -- sin 

The formula has been used, as expounded in Appendix III,  for calculating supervelocity 
distribution in the kink section at varying 9, for four profiles B, C, Q, R (formulae III.34, 39, 45 
and 53 respectively), and the results are represented in Figs. 20 to 27. There are two diagrams 
for each profile, giving respectively the curves of 

V~ 
( - -  ~U cos 9;) and ( - -  ~v~)) . . . . . . . . . .  (4.1.2) 

against ~. The first provides a comparison of the supervelocity distribution in the kink section 
at any 9 to that  ' at inf ini ty '  (meaning, really, in the ' regular '  region); the second gives the 
same supervelocity distribution as compared to that  on an unswept wing. The important  
maximum values of the quantities (4.1.2) are tabulated in Tables 5, 6, 7 and 8, illustra~ted in 
Fig. 28*. 

The problem of critical Mach numbers for swept wings is not quite so simple as would appear 
from tile above reasoning, based mainly on analysing Fig. 9. The following circumstances must 
be taken into consideration. 

(i) The upper critical Mach numbers for swept-back and swept-forward wings, i.e., for positive 
or negative 9's of the same numerical value, are identical, whatever the profile. This is generally 
~ot true for the lower critical, unless the profile i ssymmetr ica l  fore-and-aft (as, for instance, 
profile }3). Therefore, the lower critical must usually be calculated separately for positive and 
negative 9's. 

(ii) Even in the case of a profile with fore-and-aft symmetry, the tips may play a more important 
part  when 9 is large enough. The maximum supervelocity at tile tip may become greater than 
that  in the regular region; this will occur when the value of (-- vx/OU cos 9) .... exceeds more 
than twice the corresponding value for 9 = 0. I t  will be seen from Table 5 that  this will occur 
for the profile B if 9 exceeds ~78-5 deg. I t  might seem that  such angles would not be used. 
However, the angle of sweep which matters is not that  of the true wing but that  (appreciably 
larger) of the G6thert's equivalent wing (see Fig. 29), hence the case may occur in practice. 

* It must be ii{entioned that, as shown in Figs. 26 and 27, it is impossible to determine, by applying tile linear 
perturbation method, the maximum supervelocities for negative cp's, i.e., for swept-[orward wings, in tile case of profile R. 
This is due to the fact that the profile possesses a rounded leading edge, hence F'(x) becomes (-- oo) at tha tedge  (see 
form. 4.1.1). The true maxima must, of course, be finite, but undoubtedly very large. A similar behaviour is to be 
expected generally for profiles with rounded nose and maximum thickness well forward. Such profiles are clearly most 
inappropriate for swept-forward design. 
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I f  it does, the isobars in the tip area ~ of a swept-back wing must run more or less similarly to 
those in t!le kink area of a swept-for, ward wing, cutting the tip section at right-angles. In such 
a case a tip critical Mach number may be defined. This will l i e b e t w e e n  the  lower cri t ical  
and unity. Its physical meaning 'is Such that,  when M0 gradually increases, first the kink area 
becomes shock-stalled, later shock waves appear at both .tips, and  only afterwards the three 
shock wave areas coalesce. The importance of this ' intermediate ' critical must not be over- 
estimated. However, it is interesting tha t ,  in some cases, the critical conditions may, so to speak, 
at tack each semi-wing from both flanks. 

(iii) Tlae problem of the lower critical Mach numbers becomes more complicated if the wing 
profile is not symmetrical fore-and-aft. The reason is that,  for such profiles, the point of maximum 
ordinate and tha t  of maximum velocity (in two-dimensional flow) do not coincide. In typical 
cases, the maximum thickness will be in the front half of the chord (between 40 per Cent and 25 per 
cent chord, say), and the point of maximum supervelocity will usually be located even further 
'forward. For instance, the data for profiles C, Q and R are: 

Profile 

I 
Posit ion o f  I Position of 

. m a x i m u m  1 m a x i m u m  supervelocity 
thickness (in two dimensions) 
(per cent) (per cent) 

C 33.83 27.2 
Q 80 20-1 

30 ~-~0" 

* 0 per  cent according to linear theory  ; t rue position very  near  the leading edge. 

Let us now consider the supervelocity distribution in the central kink section, for a family of 
swept-back wings with a certain constant profile and with gradually increasing 9. At the point 
of maximum thickness we have F'(x) -- 0, and hence the ratio (-- v,/4 U cos ~) will not change 
with 9 (see form. 4.1.1). Ahead of or behind this point, the ratio will decrease or increase, 
respectively, as ~ increases. Hence, the point of maximum supervelocity in the kink will gradually 
move'backwards (as usual), b u t  the maximum of (-- v~/dU cos ~) will initially decrease. Only 
'when t h e  point of maximum supervelocity moves to behind that  of maximum thickness (.see 
Figs. 22, 24 and 26), will the maximum of (-- v~/#U cos 9) again increase, t o  reach eventually 
Very high values, Consequently, for small angles of sweep-back within a certain range, the 
maximum supervelocity at the kink will be smaller t h a n '  at infinity ', so that  ihe picture of isobars 
:will differ greatly from t h a t  of Fig.  9, and will be similar to that  in Fig. 19 (for profile Q). I t  is 
seen tha t  some of t h e '  higher ' isobars (e.g., those marked 0.9 and 1.0 in Fig. 19) bend sharply and 
double back on themselves, without reaching the kink section. I t  does not seem legitimate in 
this case to  base the determination of the lower critical Mach number on the maximum super- 
velocity in the kink section alone, while higher supervelocities occur in nearby sections of the 
kink area;there being, i n addition, points in the front parts of each section where the isobars 
run in the y-direction, so tha t  the full Velocity: U • plus local supervelocity must be taken into 
account whent0oking for critical conditions. As all (or almost all) of t hese highest isobars present 
such points in a Comparatively narrow area near the kink, it seems reasonable simply to replace 
the kink maximum by iha t  at infinity. In Fig. 28, the:curve of (-- vx/~gU cos 9)max against 9 
possesses a considerable part lying below the point K corresponding to 9 ---- 0. T h i s  part  should 
be replaced by a horizontal chord through K. This applies, of Course, to profiles C and R as well, 
but  ltl the former case the difference is insignificant while in the latter it is quite important*. 

* Tile r e ade r  wil l  notice that ,  in Tables  6, 7 and 8, the columns marked  ' k ink area 
chords  in Fig.~ 28,, as oppose d t o  ' k ink section ' 

' correspond to the horizontal 



I t  is interesting that ,  if the lower critical Mach number i s  based on the kink maximum super- 
velocity, it may sometimes be greater than the upper critical; but this will never happen if the 
maximum supervelocity ' as at inf ini ty '  is used for calculating lower Mo. 

(iv) When the angle of sweep-back is large enough then, even in tile case of a 2brofile with no 
fore-and-aft  symmetry,  the maximum supervelocity at the kink will exceed that  ' at i n f in i ty ' ;  
hence the former should be used for calculating lower M0. However, it may  happen for such 
profiles that  the maximum supervelocity at the tip is even greater than tha t  at the kink. One 
must  keep in mind that ,  according to the linear theory, the maximum supervelocity at the tip 
of a swept-back wing should be equal to half that  at the kink of a corresponding swept-forward 
wing. Now, examining caiefully Fig. 28 (and corresponding Tables), we see that,  for very large 
~0's, this tip maximum supervelocity may exceed tha t  at the kink. In such cases, the tip section 
becomes ' first danger spot ', and the tip critical Mach  number becomes true lower critical. Here 
we find the explanation why, contrary to the original assertion by Ludwieg 23, shock-waves may 
start  first at the Lips of a swept-back wing, instead of in the centre area (see Ref. 40, Clarkson's 
contribution). 

The f inal  conclusion is tha t  the calculation of lower critical Mach numbers for swept-back 
wings should be based either on the maximum super-velocity at the kink, or ' at  infinity ', or at 
the tip, whichever is the highest. There will generally be no similar complications in the case 
of swept-forward wings, for which the kink section will be the first danger spot, unless some quite 
unusual profiles are used (with maximum thickness far behind 50 per cent chord). 

4.2. Method of Calculating Critical Mach  N u m b e r s . - - I n  Fig. 29, the sketch on the right 
represents the true wing, past which the compressible flow is being considered (Mach number Mo). 
The wing on the left is the fictitious or ' analogous'  (GSthert's) wing s' 7, defined in such a way 
that  all dimensions in x-direction are unaltered, while those in y and z-directions are both reduced 
in the ratio ~,(1 7- M°~)" Hence the thickness, thickness ratio and angle of sweep of the analogous 
wing will be t ,  v~ , 9 ', related to t, #, 9 of the true wing by means of the following relationships* : 

t ' -- t(1 -- Mo2)I/~; . . . . . . . . . . . . . .  (4.2.1) 
# '  = #(1 -- Mo~)~/2; . . . . . . . . . . . . . .  (4.2.2) 

, t a n 9  9 '  ( I _ M o ,  )~/2 sin~o 
= • sin ~0' -- (4.2.3) tan 9 (1 -- Mo2) 1/2 ; cos = cos ~o 1 -- Mo 2 cos 2 ~o ' (1 -- Mo 2 cos 2 ~)~/"" 

If the two-dimensional maximum supervelocity ratio (in incompressible flow) for the true wing 
profile (in xz plane) is ~, the analogous parameter for the fictitious wing will, by  linear theory, 
be reduced in the same ratio as #, i.e. : 

~ i ' =  ~(1 -- 21//o2) 1/~ . . . . .  . . . . . . . . . .  (4.2.4) 

If the induced velocity components in x and y-directions, in incompressible flow past the fictitious 
wing, are v~' and v / ,  the corresponding components on the true wing (in compressible flow) will 
be, respectively : 

v~ = v~'/(1 - -  Mo~), . . . . . . . .  . . . . . . .  (4.2.5) 

v~ -= v / l (1  - -  Mo") 1/2 . . . . . . . . . . . . . . .  (4.2.6) 

We shall now consider, in turn, upper and lower critical Mach numbers. 

(a) Uplber cri t icals . - -Let  us consider a section of the true wing in the ' regular '  
section S in Fig. 29). The corresponding section of the fictitious wing will be S'. 
the flow at S' into components parallel and normal to the wing edges, we obtain" 

Vp'= Using', I 
/ (4.2.7) V . ' =  U(cos ~' + ~/). / 

region (normal 
Resolving 

* This  definit ion corresponds exac t ly  to GSther t ' s  original  concept.  Dickson ~6 gave a generalized scheme in which 
la te ra l  (y)-dimensions are reduced in the  ra t io  (1 - -  M~) 1/2 : 1, while normal  (z)-dimensions are reduced in the  ra t io  
(1 - -  M~)C~-l)/2 : 1, where N is an a r b i t r a r y  integer.  GSther t ' s  me thod  corresponds obviously  to N = 2. 
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Resolving in x and y-directions, we get: 

-- V / =  V / s i n  9' + V,,' cos 9'  = U(1 + ~ '  cos 9') , [ 

- -  V / =  V,' sin 9'  -- V / c o s  9 '  = U~ '  sin ~o'. 
• D (4.2.8) 

For the true wing, using (4.2.5) and (4.2.6): 

~ '  cos 9"~ 
- - V , = U  1 +  ] - - - - N ~ / '  

- v ,  = u 

(4.2.9) 

or, taking into account (4.2.3) and (4.2.4) : 

- -  V ,  = U 1 + (1 - -  M o  2 c o s  2 9)  1/2 1 

~ s i n  

(1 - -  M02 cos 2 9) 1/~" 

(4.2.10) 

Finally, resolving the veIocity at S into components normal and parallel to the wing edges, we 
obtain : 

V , = - -  V, c o s 9 - - V y s i n ~ 0 =  U c o s 9 - I - ( l _ M o  2cos ~9) ~/2 ' "" .. (4.2.11) 

V~ = Vy cos 9 -- V~ sin 9 = U sin ~ . . . . . . . . . . . . .  (4.2.12) 

I t  is seen that  GSthert's method gives the same result as the simple method used in the section 3 
of this report and illustrated in Fig. 3; formulae (3.5) and (4.2.11) are identical. That  was to be 
expected and, as regards the regular region, the new procedure may only be looked upon as a 
useful check. Further, it is clear that  the formula (3.6) gives the upper critical Much number 
for any given ~ and 9, and our Table 3 and Fig. 4 may be used in this connection. For every 
particular profile, we know the value of the ratio ~/~, and so we may find the upper critical M 
for any given ~ and 9, by interpolating Table 3. Thus our Table 4 has been computed, and 
illustrated by (upper) curves in Figs. 30 to 33. 

(b) Lower criticals.--Here, the method of ' analogous'  wing is essential. Let us assume first 
that  the maximum supervelocity occurs in the central kink section (as it aLvays must if the profile 
is symmetrical fore-and-aft, e.g., profile B). Suppose that  we possess, for the given profile, the 
numerical values of 

/ vz N 

tabulated against 9 (as in our Tables 5-8 for profiles B, C, Q,.R). Let us denote by H '  the value 
corresponding to the angle of sweep 9' of the analo.gous wang (Fig. 29). Then the maximum 
velocity ill the kink section of the analogous wing, in incompressible flow, is : 

V%ax---- U(1 + e ' H ' ) ,  . . . . . . . . . . . . . .  (4.2.14) 

and that  in tile kink of the true wing, in compressible flow, becomes (see 4.2.5 and 4.2.2) : 

- 

v ( 1  + _ = + . . . . .  (4 .2 .1s )  
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I t  will be seen tha t  Vma.~ may be made equal to the maximum.velocitY V,,, in two-dimens{onal 
flow, as given by (2.1), provided that  

H '  : . . . . .  (4.2.16) - -  ~ . . . . . . . .  , . ° . . . .  . . 

This simple formula really solves our problem. Suppose we want to determine lower critical 
Mach numbers for a range of angles of sweep, given the profile (and the respective H vs. ~0 table) 
and thickness ratio #. An arbitrary value of M0 = Mo being assumed, we find ~ from Table 1 
and then H '  from (4.2.16). Then 9' is found by interpolating the H vs. 9 table, and ~0 from 
!'4.2.3). Thus one pair of corresponding values of ~0 and M~ is'•determined, and the procedure 
is repeated for several values of M~ until  a required range Of ~0 is id0vered. :Repeating this process 
for several values of thickness ratio v~, we may obtain a comprehensive diagram similar to those 
given in Figs. 30 to 33. The computation is easy, once the H vs. ~0 table is available. ' The method, 
applies to both swept-back and swept-forward wings. 

I t  has been explained in section 4.1 that  the central kink is not always the first danger spot, 
and that  the calculation of the lower critical must often be based on the maximum supervelocity 
' a t  infini ty '  or at the tip, whichever the highest. The method of calculation remains unaltered, 
but correct values of H must be used. One must bear in mind particularly that,  to determine 
the tip criticals (for large positive 9's only), half tile values of H for corresp0ndmg negative angles 
must. be used. 

4.3. Examlbles.--(a ) Profile ]3" Formulae--see Appendix I I I  (Ili.31 to 36) 

Maximum superve!ocities--Table 5 

Critical Mach numbers--Tables 4 and 9' 

Diagrams--Figs. 6, 7, 8, 9, 20, 21, 28, 30, 34. 

This case is particularly simple, the lower and upper critical Mach numbers for swept-back 
and swept-forward wings being the same, and the kink section being always decisive for the 
lower critical. The final results are represented in Fig. 30. I t  is seen tha t  critical Mach numbers 
rise consistently with increasing angle of sweep and with decreasing thickness r a t i o .  The 
differences between the upper and lower criticals are small for small. ~0's but rise to ve}y highi 
values as 9 increases. . . 

(b) Profile C" Formulae---see Appendix I I I  (111.37to 41) 

Maximum supervelocities--Table 6 

Critical Mach numbers--Tables 4, 10, 10a 

Diagrams--Figs. 10, 11, 12, 13, 14, 22, 23, 28, 3t, 35) 

The calculation must be done separately for positive and negative 9, and the lower criticals are 
higher for swept-back wings than for  swept-forward ones. In the interv, al 0 < 9' < 43 deg 
the maximum supervelocity ati infinity is greater than at the kink (see Fig. 28); and therefore; 
ill this range, the former values should be used .  The lower criticals have firsf been calculafed 
on the basis of the conditions in the kink section, for the whole~ range of positive 9~s, and 
tabulated in Table 10. The additional (lower) values, based on supervelocities ' in the kink area ' 
are given in Table 10a, for the interval 0 < 9' < 43 deg. Fig. 31 contains the  ,curves of upper 
and lower Me. I t  is seen t h a t  the ~ alternative Solutions for moderate positive ~ s  differ little iri 
this case, the error in Mc z being~always less than 0 . 0 1 .  This  is obviously due to the fore-and-aft 
asymmetry being• not very pronounced in theJneighbourhood I of maximum ordinate. The tip 
criticals are not shown, as they are always higher than the lower crKicals in the range considered. 
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(c) Profile Q: Formulae--see Appendix I I I  (111.42 to 47) 

Maximum supervelocities--Table 7 

Critical Mach numbers--Tables 4, 11, l la ,  l lb ,  11c 

Diagrams--Figs. 15, 16, 17, 18, 19, 24, 25, 28, 32, 36. 

The profile has some peculiarities which make t h e  calculation more intricate. The maximum 
ordinate lies as far forward as 30 per cent chord, and the fore-and-aft asymmetry i s v e r y  
pronounced in the region of maximum thickness. At the same time, the rear part of the profile 
is rather thick, with an almost imperceptible inflexion. The result is that,  at zero sweep, the 
maximum supervelocity lies much ahead of the maximum thickness point, and the rear pa~t 
of the supervelocity curve (Fig. 24) shows an unusual inflexion. With positive sweep, we have 
a vast region (0 < ~0' < 75 deg) where the maximum supervelocities at infinity are greater than 
those at the kink (Fig. 28). Therefore, we have again alternative curves of Me z in Fig. 32, and 
the differences between them are quite appreciable. Obviously, the lowest curves should be 
considered as ' correct '. An unusual occurrence is that ,  at high positive values of 9, the super- 
velocity curves in Figs. 24 and 25 exhibit two maxima, the additional rear one being the result 
of the peculiar p rone  shape (see also Fig. 19 with the curious rear ' supervelocity peak '). If ~ is 
very large, the rear maximum becomes greater than the front one, which means a reduction of the 
lower criticals. Figs. 24and  28 also show that,  for negative , ' s ,  the maximum supervelocities rise 
to very high values which eventually become more than double those for positive 9's. In this 
region the tips become ' first danger spots ', and the  tip criticals should be taken as true lower 
criticals (see Fig. 32). This could be prevented, by a gradual change of profile in the tip areas 
so that,  at the very tips, the profile should be more or less similar to B. 

(d) Profile R: Formulae--see Appendix I I I  (III.48 to 59) 

Maximum supervelocities--Table 8 

Critical Mach numbers--Tables 4, 12, 12a 

Diagrams--Figs. 26, 27, 28, 33, 37. 

The profile possessing a rounded nose, the first-order theory is less reliable as regards the velocity 
field near the leading edge and-- in  the given case--it  fails for all negative ~'s, i.e., for swept- 
forwardwing.  I t  is clear, however, that  maximum supervelocities for swept-forward wings 
with such a profile will be very large, and so this profile would be most inappropriate for swept- 
forward design. We may also expect that  tip criticals will become important  for comparatively 
low values of positive 9, but they cannot be calculated by using the pure linear method. Fig. 33 
therefore shows only two sets of curves for lower critical Mach numbers (those based on maximum 
supervelocities in the kink section or ' i n  the kink area ') and, again, the lower curves are the 
' co r r ec t '  ones. The differences between the alternative curves are very considerable in this 
'case. Fig. 33 may only be consideled as correct, if the tips are designed with different profiles, 
so as to prevent the premature shock-stall at the tips. 

5. General Discussion and Conclusions.--The lower and upper critical Mach numbers have been 
defined in sub-section 4.1, the methods of calculating them given in 4.2, and several examples 
worked out as described in 4.3. The question now arises as to the practical meaning of both 
criticals and the basis they provide to a designer for predicting the characteristics and comparing 
the merits of particular swept wings. A complete quantitative analysis would require a solution 
of the formidable problem . of transonic phenomena. However, we can t ry  to clear the matter,  
at least qualitatively, by the following simple reasoning : -  

For an infinite straight wing (~0 = 0), there is only one critical Math number Me (always less 
than 1), the same for M1 sections. Below this there are no shock-waves, and no wave drag. 
Above the critical, shock-waves appear, initially in the region of maximum velocities, and 
simultaneously in all sections. The flow becomes transonic (subsonic and supersonic mixed)i 
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and a wave drag results*, the coefficient C. rising steeply up to about Mo = 1 when it reaches 
its maximum value. For Mach numbers above 1, tile flow becomes essentially supersonic 
(supposing the wing is thin, and there are no detached shock-waves), and CD decreases soon, 
following approximately tile Ackeret's law, i.e. : 

(c . ) ,=o  = K o " / ( M Z - -  . . . . . . . . .  (S.1) 

where K is a constant factor, depending only on the profile geometry. 

If t he  thickness ratio were very small, M~ would differ very little from 1 ; in such a case as M0 
passes through the critical value, the wave-drag coefficient would jump from 0 to its maximum 
value almost instantaneously, to fall afterwards according to (5.1). The transitory range of 
Mach numbers (approximately between M~ and 1) widens considerably as the thickness ratio 
increases. 

If the infinite wing is sheared through a n  angle ~, the fundamental behaviour remains very 
similar but, as only the flow component at right-angles to the wing edges counts, the critical 
Mach number assumes a new value M, , .  This is always greater than M~ ; it may exceed 1, if 9 is 
large and # not too large, but it can never exceed sec 9. In the case of vanishingly small thickness, 
the critical would be simply sec 9 ; usually, there will be a transitory range between M~, and 
sec 9, where C~ rises more or less steeply. When Mo exceeds sec ~, the drag coefficient will 
fall again, the equation (5.1) being replaced by (see Refs. 30 and 37) : 

= K  /(Mo - s e c  . . . . . .  ( 5 . 2 ) .  

Considering finally a true swept wing, with two symmetrical halves and a kink, we have to 
deal with two critical Mach numbers. The lower one (Me z) corresponds to critical conditions 
being reached at the first danger points, where the maximum total  velocities (in flight direction) 
coincide with the isobars running perpendicular to that  direction. These points often lie in the 
central kink, sometimes away from it (theoretically at infinity, practically somewhere in the 
kink area), and in some extreme cases at the tips. The lower critical normally increases with the 
angle of sweep, but always remains below 1. For the parts of the wing adjoining the first danger 
points, it plays a similar role to tha t  of Mc for unswept .wings. The upper critical M0,, is almost 
the same as tha t  (M~,) pertaining to infinite sheared wings with the same angle ~. There will 
be again a transitory range, from M~,, to sec 9- I t  must be borne in mind that  there is a conLinuous 
change-over from most endangered to least endangered sections, and hence there should be a 
continuous sequence of critical Mactl numbers, and even a continuous sequence of transitory 
ranges. I t  would, of course, be futile to t ry  to calculate ' local criticals '  

* The noticeable rise of the drag will normally occur for Mach numbers somewhat exceeding Mo. This is natural, 
as the intensity of the shock-waves must be very small initially, and so we must always reckon with a certaindelay 
of tile bMance-measurable effects. However, when discrepancies between the ' theoretical '  and all sorts of ' practical '  
critical Mach numbers were first noticed, they led to a trend of pessimism as to the significance of the former. This 
may be seen in some papers by Lee 29' ~3, and especially by Smelt 31 who went so far as to assert that ' this critical Mach 
number bears no relation whatever to the Mach number at which the drag begins to rise '. The opinion was at least 
premature at a time, when so little was known about actually calculating critical Mach numbers. 

All interesting method of accounting for the discrepancies between the calculated and observed criticals was suggested 
by Griffith ~1 and McKinnon Wood ~2. They both interpreted the criterion for wave drag (velocity component along the 
resultant acceleration = local velocity of sound) in s(leh all '  extremist ' way that, for particles travelling along the surface, 
the acceleration should include the component normal to wing surface, due to the curvature. Some two-dimensional 
calculations on these lines were done by Beavan and Lock 25' a2, without conclusive results. The method leads to some 
paradoxical consequences; e.g., at the point of maximum velocity the relevant velocity component would be zero. 
The matter is complicated and far from clear. It  seems that the interpretation has never been really adopted either in 
Britain or elsewhere. From the point of view of our linearized method, however, no such question arises. According 
to this method, the resultant velocities (and pressures) do not depend on the normal co-ordinate z, and tile isobaric 
surfaces are all cylindrical. I t  is therefore sufficient to consider the velocitTy field in xy-plane, and the velocity components 
normal to the plane isobars. 
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I t  becomes clear that ,  as a result of the geometry of a swept wing, we have finally to deal 
with a vastly extended ' t rans i to ry '  or transonic range of Mach numbers (from Mc ~ through 1, 
Me, up to sec 9). When M0 gradually increases through this range, the particular sections of 
the wing gradually experience their transitory stages. The flow over some sections is already 
essentially supersonic (with decreasing CD) while tha t  over others is still in the transonic stage 
(with sharply increasing CD), and some may still be in the subsonic stage (with no wave drag). 
The entire process is intricate and may present many  unexpected features. However, when 
3//o exceeds 1, the methods of supersonic aerodynamics may help to explain the course of aero- 
dynamic changes. Several authors "7, ,8, ~5, ~7, a9 have given results of drag calculations for swept 
wings in supersonic flow, mostly for the simplest case of double-wedge profile. The most en- 
lightening are perhaps von KSrmSn's results ~7. In connection with Fig. 13 of his paper, he shows 
how the wave-drag coefficient of an ' arrowhead ' swept-back wing (of considerable aspect ratio) 
varies with Mach number, on the basis of an approximate calculation. It  appears that  Cv starts 
with a very small value at M0 = 1 and then rises, first slowly and then at a strongly increasing 
rate, until it reaches a finite maximum at Mo = sec ~ ; finally, it decreases again, soon following 
the formula (5.2). The approximate method, as used by yon KirmSn, clearly does not take 
into account the incremental velocities (vx) due to thickness, and therefore, in his picture, 
the lower critical Mach number is 1 and the upper one sec 9 (cf. Fig. 9 of Ref. 37). Between 
these values, the ' r egu la r '  region of the wing is in subsonic conditions (M0 cos ~v < 1), and 
almost the entire wave drag originates in the kink area (see Fig. 11 of Ref. 37, where the drag 
distribution on a finite sheared wing is shown). I t  is interesting that,  according to yon K i r m l n ,  
the resultant wave drag of the downstream tip is zero, and this seems to confirm our suggestion 
[section 4.1) that  the seemingly critical conditions in the tip areas are of little importance*. 

In reality, the variation of tl~e wave-drag coefficient with iKach number should differ somewhat 
from the simplified yon K i r m l n ' s  picture. Its first appearance should not occur at M0 = 1 
but at M, z (or somewhat higher, if we look for clearly appreciable effects). Similarly, the maxi- 
mum drag should take place not at Mo = sec ~o but rather at M,,~ (or possibly at some value 
between M,,, and sec 9). If we aim at utilizing the swept-wing design in order to avoid wave 
drag completely, then the flight Mach number must clearly not exceed M, ~, and then the only 
important  thing would be to raise this lower critical as high as possible. If, however, a snlall 
wave drag can be tolerated, then the flight Mach number may exceed M, z t o  a certain extent;  
in such a case, we should aim at as low rate of increase of CD as possible, and also keep well 
below M~,,. From this point of view, the upper critical may be quite important, and it should 
be as high as possible. The best formulation perhaps would be, tha t  the difference (M, ~, -- M, t) 
should be as large as possible. I t  must be stressed, however, that. this reasoning applies fully 
to wings of fairly large aspect ratio only, where the regular regions embrace a major part of the 
wing surface, thus the wave drag caused by the small kink region is of comparatively little 
significance. As the aspect ratio decreases, the regular regions gradually dwindle and almost 
disappear, so that  little but the kink and tip areas remain. Hence, at small aspect ratios, the 
upper critical becomes less and less important. This is corroborated by Fig. 14 of Ref. 37 which 
shows that  in such cases, the values of C~ at M0 ~ 1 are very much larger than at large aspect 
ratios, while the peaks (at M0 ~ sec 9) are considerably reduced. 

The most important question for a designer is to know how the critical Mach numbers depend 
on the main design factors which are: thickness ratio, angle of sweep, and profile?. This is 
what our Figs. 30 to 33 aim at showing, for four representative profiles. It  is seen that,  although 
the four pictures are qualitatively similar, the numerical differences are considerable. Ludwieg "~ 
expected tha t  at least the gains in the (lower) critical Mach numbers due to sweep should be 

* At least as long as the maximum supervelocities at the tip do not exceed those in the regular part.  If  they do, 
we should expect wave drag at the tips, and therefore our ' t ip critical 3gach numbers ' in the case of large 9 and profiles 
strongly asymmetrical fore-and-aft (see section 4.1 (iii)) should have some practical significance. One must realise that  
yon K~irmSn's graphs apply to the double-wedge profile only ; for other profiles the results may differ, but the calculation 
would be laborious. 

I t  is hoped to describe the effects of taper in a later report. 
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practically the same for different profiles. To check this, we have replotted the values of Me 
at varying ~o against Me for 9 -- 0, for all four profiles, in Figs. 34 to 37. I t  is seen tha t  Ludwieg's 
prediction was not correct, the four diagrams differing very appreciably. The differences in the 
effect of szaeep-fofward are particularly striking: for the profiles strongly asymmetrical fore-and- 
aft, small or moderate sweep-forward may often be detrimental for Mc z, and only for very large 
negative ~0's there is some, rather disappointing, gain*. It  is obvious that,  if swept-forward 
wings are to be used, their profiles should be nearly symmetrical fore-and-aft, perhaps even with 
maximum thickness slightly further back than 50 per cent chord--if  compatible with other 
requirements. 

As to the swept-back ze;i~cgs, the following point should be stressed, with reference to Figs. 38 
and 39 containing comparative diagrams of Mc,~ and Me z for different profiles and thickness 
ratios 0.1 and 0-2. At small q/s, the decisive factor for the lower criticals (as always for the upper ' 
ones), is the maximum supervelocity ratio: the lower the value of C, the higher that  of Mc ~. 
Hence, in this range, B seems the best, C and Q follow next, and R is the worst of the four profiles 
considered. The position alters considerably for large ~0's. At about 45 deg, there is little 
difference in the performance of the profiles, and above that,  the order of precedence is part ly 
inverted. However, at quite large 9's, the wings with profiles Q and R will be severely 
handicapped by their ' tip criticals '. To avoid this, the simple method is to change the profiles 
spanwlse towards the tips, so as to have nearly fore-and-aft symmetry  there. 

Another interesting question may now be considered. I t  has been suggested a8 that  a 
considerable improvement in the (lower) critical Mach number could be obtained by such a change 
in the geometry of the kink and possibly also by such fuselage interference effects, which would 
result in artificial straightening of the isobars in the kink area. I t  might be said that  it is hoped 
to impart the properties of an infinite sheared wing to the (less fortunate) k i n k  area. The idea 
may seem promising, but  the matter  is not so simple. 

Even if it is possible to straighten the isobars so that  the supervelocities become constant 
along the ~-parallels almost down to the cen t ra lk ink  section, it does not follow that  the critical 
conditions in the kink area will be the same as in the regular regions of the wing. The isobars 
must cut the central kink plane at right-angle# *' a~, and thus the lower critical will depend on the 
total  velocity U (not on U cos ¢) plus an appropriate supervelocity. Therefore the lower critical 
will always be less than one, while the upper critical may exceed unity. The only possible gain 
is an increase in the lower critical (to a value always less than one), due to a certain decrease in 
the supervelocity, as in the case of profile B. But, in many cases, especially if the profile is strongly 
asymmetrical fore-and-aft, and if the angle of sweep-back q0 is not very large, the maximum 
supervelocity in the original kink may be less than that  in the regular region. In such cases, 
the effect of straightening the isobars would be to increase the supervelocities in the kink area. 

The magnitude of the maximum supervelocity in the kink section is of more importance for 
the lower critical Mach number than the shape of the isobars. In addition, it is difficult to 
obtain even approximately rectilinear isobars in the kink area--and even if this were achieved 
at a certain Mach number, the shape of the isobars would alter with the Math number. 

* This is shown in Fig. 3Po for the profile Q, but not in Fig. 37, because the lower criticals cannot be determined for 
the profile R and negative ~0 by the first-order method. The effect should, of course, be even more pronounced for the 
p rone  R. 
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LIST OF SYMBOLS 

A 

g¢ 

~o 

gc 

B 

b 

bl 

C 

Cp 

Cp 

C 

F(x), F(x  + y tan 9) 

FI 

F2 

F~ 

F5 

H 

k 

In 

M 

Mo 
M, 

M,,, M~, 

¢/go, ~Y~I, TH'2, ~q4a 

P 

P 

p o  

m ~  

Coefficient, see (III.7) 

Speed of sound 

Speed of sound ill undisturbed flow 

Speed of sound in critical conditions (local Mach number =: I) 

Coefficient, see (III.7) 

Half-chord of wing section 

Coefficient, see (III.31) 

Coefficient, see (III.7) 

2 (p -- P0) Pressure coefficient 
pV 2 

Pressure coefficient in critical conditions (local Mach number = 1) 

Pressure coefficient in incompressible flow 

2b Chord of the wing section 

Function determining the wing section or surface 

1 + 8 + ( r l - - 7 )  t a n 9  
= ~ / ( F ~ F s )  1--8- - (r2- -~7)  tan9 

r l + ( 1  + 8 )  s i n ~ c o s g + r ~ c o s 2 9  
r2 -- (1 -- 8) sin 9 cos 9 + ~ cos 29 see table of auxiliary func- 
rl + (1 + ~) cos 9 -- ~ sin 9 tions, Ref. 48, p. 32 
r~ -- (1 -- ~) cos 9 -- rl sin 

r 1 + ( 1  + ~ ) s i n g c o s g - -  
r~ - (1 - ~) s~n 9 c o s  9 - 

Vx 
( - - ~ )  ..... Maximum supervelocity ratio per unit thickness ratio 

Coefficient, see (III.7, 8) and (III.31, 32) 

Natural  logarithm 

V/a Local Mach number 

U/ao Mach number of undisturbed flow 

Critical Mach number (critical value of M0) 

Lower and upper critical Mach number for a swept wing 

Critical Mach numbers for an infinite wing, sheared or yawed 

Polynomials in ~, see (111.19) 

Polynomials in ~, see (III.11) 

Auxiliary variable, see (III.4) 

Pressure 

Pressure in undisturbed flow 
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Y~ 

T 

Tlk~. 
t 

t '  

U 

V 

V~ 

E 

Vx 

X 

Y. 

Y 
Z 

7 

a 

ai 

(J .i ' 

~7 

Y,o 

P 

Po 

! 

LIST OF SYMBOLS--co~¢ti,~med 

see (1II.5) 
V'E(1 + ~)2 cos~ 9 -- 2 (1 + ~) sin 9 cos ~ + ~]  

~/[(1 -- ~)~ cos ~ 9 + 2 ( 1 -  ~) sin ~ cos 9 + ~2] 

Auxiliary function of ~, see (III.26, 27) 

Value of T for ~ ---- C. 

Thickness of wing section 

Thickness of section of analogous (G6thert's) wing (see Fig. 29) 

Velocity of undisturbed flow 

Local velocity of the flow 

Local velocity in critical conditions 

Maximum value of V in compressible two-dimensional flow 

Local velocity component normal to the edges of a sheared or 
yawed wing 

Critical value of V. 

x-component of the induced velocKy, or supervelocity 

Chordwise co-ordinate, positive forwards 

Chordwise co-ordinate of the source filament 

Spanwise co-ordinate, positive to starboard 

Vertical co-ordinate 

Adiabatic constant 

-- ~- .... Maximum supervelocity ratio in two-dimensi0nal flow 

Value of ~ in incompressible flow 

Value of dx for analogous (G6thert's) wing 

t/c Thickness ratio of wing section 

y / b  Non-dimensional spanwise co-ordinate 

1 -- M~ ~ Auxiliary variable, see (I.25) 

First approximate value of ~, see (!.28) 

(x + y tan cp)/b Non-dimensional chordwise co-ordinate on a 
sheared or swept wing 

Value of ~ corresponding to maximum supervelocity 

Value of ~ corresponding to z ..... of tile profile 

Air density 

Air density in undisturbed flow 

Angle of sweep (positive for sweep-back, negative for sweep-forward) 

Angle of sweep of analogous (G6thert's) wing, see Fig. 29 
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A P P E N D I X  I (to Section 2) 

Derivation and Analysis of Formulae for Critical Mach Numbers in Two-dimensional Flow 

Let us consider a two-dimensional  compressible flow past  an arbi trary profile (Fig. la). The 
velocity of undis turbed flow is denoted  by U, while Po, po, ao, Mo are the  corresponding values of 
pressure, density,  speed of sound, and Mach number.  At a certain point  A of the  profile, the  
velocity will be :-- 

V = U(1 + ~) . . . . . . . . . .  . . . . . .  (I.1) 
' I 

and 19, p, a, M will denote  the  corresponding (local) values of the  respective quantities.  I t  will 
suffice to consider only tha t  point  where V (and hence ~) has its m a x i m u m  value, so tha t  ~ is 
the  max im um supervelocity ratio. 

If V (or ~) is known, we ma y  determine all other physical variables at A, in particular : - -  

from Bernoulli 's  equat ion:  

from adiabatic relat ionship:  

hence the  pressure coefficient : - -  

7 - - 1  
a '  = a° '  2 ( v '  - u ' )  , . . . . . .  ( I . 2 )  

( - ) -  P 1 , - -  1 V 2 U ~ ~' 
- -  _ _  - y - - 1  (I.3) 

Po 2 ao ~ ' " . . . . .  

2ao 
z 

a n d  the  local Mach number  : - -  

V ~ 
M ~ ~ 

, - 1  v ~ - u ~ h & ] ,  
2 go ~ / J 

( I . 4 )  

( I . 5 )  

The quanti t ies  a, 
as follows : - -  

1 + ½ ( 7 - -  1 ) M 0  ~ 
a ~ = a 0  I + ½ ( , - 1 ) M  ~'  

v ~ =  o'~ ½(" - l)  + l l M o  "~ 
½(7 - -  1) + 1 / M  ~' 

2 [ ( , - 1  
Cp = - -  7M02  1 --  1 -- 2 

V and Cp ma y  also be represented in terms Of the  local Mach number  M, 

1 + ½(, --  1)M ~ . . . . .  

( I . 6 )  

(1.7) 

(I.S) 

Suppose now tha t  the  local Mach number  M becomes --  1, which means tha t  Mo is critical 
for the  given profile, or al ternatively" tha t  V and Cp assume critical values for the  g iven Mo. 
Then (I.6, 7, 8) become : - -  

( ( ) V~ ~ = a ~  ~ =  U 2 1 + 7  + ~  M0 ~ / = a 0  2 1 7 + ~ - ( 1 - - M 0  ~) , . .  (I.9) 

(cf. 2.3), and :--- 

C j ; ~  - - 7 M o  2 7 +  1 

while the  critical value of the  superveloeity ratio ~ becomes : - -  

(  -_SoT 
~ =  1 ' n - , + l  Mo - - 1 .  . .  
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Suppose  n o w  t h a t  t he  Mach  n u m b e r  M0 is smal l ,  so t h a t  t he  flow m a y  be cons idered  as incom-  
pressible  (Fig. lb).  The  fo rmula  (I.4) m a y  t h e n  be  e x p a n d e d  a n d  yie lds  : - -  

C, ,  = - -  (V~2/U 2 -  1) = - -  (28, + ~ , ~ ) ,  . . . . . . . . . .  (1.12) 

w h i c h  is t he  k n o w n  re la t ionsh ip  b e t w e e n  Cp~ and  8~ in incompress ib le  flow. If  8~ is small ,  then ,  
to t he  first o rder  : 

C ~  -"" - -  2 ~  . . . . . . . . . . . . . . . . .  (I.13) 

I t  is n o w  in te res t ing  to  d e t e r m i n e  h o w  far  an  a p p r o x i m a t e  re la t ionsh ip  ana logous  to (I. 13) applies  
in compress ib le  flow. Le t  us e x p a n d  (I.4) in powers  of 

g 2 - -  U S 

ao~ - .  (2~ + 82)Mo~; 

we o b t a i n  the  fol lowing series : - -  

C, = - -  28 - -  (1 - -  M0~)~ ~ + Mo~(1 2 - -  7 Mo ~'~,/83 
3 

+ Mo ~ 2 --27 M0 ~ + (2 - -  7)(312 - -  27) Mo ~ ~ . . . . .  , (1.14) 

the  invers ion  of w h i c h  is* : - -  
/ 

8 = - } c ,  - 1(1 _ MhC, _ M :  M o ° ) C ?  3 

x½~( 5 _ 6Mo~ + 7 + 47 (7 + 1)(27 + 1) MoG)C/  
3 M°4 - -  3 " " " (I.15) 

I t  is seen tha t ,  again,  to the  first o rder  : - -  

C~ -"- - -  28 , . . . . . . . . . . . . . . . .  (1.16) 

a n d  t h a t  t he  error  due  to  t he  use of th is  a p p r o x i m a t e  re la t ionship ,  is r a t h e r  smal ler  t h a n  in t h e  
incompress ib le  case, b u t  still  appreciable .  

To ca lcu la te  t h e  c r i t i ca l  Mach  n u m b e r  for a g iven  profile, t he re  is a choice b e t w e e n  the  
fo rmu lae  (I.10) a n d  (I.11), i.e., b e t w e e n  bas ing  the  ca lcu la t ion  on t h e  pressure  ra t io  Cp or on the  
supe rve loc i ty  ra t io  ~. B o t h  fo rmulae  are exac t  t. I n  theore t i ca l  work ,  it  seems g rea t ly  preferable  
to use (I.11), no t  on ly  because  it is so m u c h  simpler ,  b u t  also because  all t heo r i e s  of po t en t i a l  
flow lead  d i rec t ly  to supe rve loc i ty  ra t io ,  no t  to pressure  ratio+ +. Howeve r ,  the  t h e o r y  of po t en t i a l  
incompress ib le  flow gives on ly  8~ (and h e n c e  @ ~), and  one more  re la t ionsh ip  is needed  to connec t  

* A s s u m i n g  y = 1.4,  we m a y  rewri te  the  expans ions  (1.14, 15) as follows : - -  
C~ = - -  2d - -  (1 - -  Mo~)d z -}- (Mo 2 - -  0.2Mo4)d 3 + (0 .25Mo ~ - -  0 . 3 M o  4 + O-01Mo6)64 . . . .  

= -- O- 5 C. -- (0.125 -- O. 125M0 ~) C, 2 -- (0- 0625 -- O. 0625Mo ~ + O. 05Mo 4) C~ ~ 
- -  (0'  0390625 - -  O" 046875Mo 2 -1- O. 0328125Mo 4 - -  O. 02375Mo6)C~ 4 . . . .  

t On the  a s s u m p t i o n  of Bernoul l i ' s  e q u a t i o n  a n d  ad iaba t i c  law. 

++ W h e n  ana ly s ing  e x p e r i m e n t a l  resul ts  (pressure plot t ings) ,  the  va lues  of C~ are given,  and  t h e n  t he  fo rmula  (I.10) 
is preferable,  b u t  a great  care is needed,  especial ly  to avoid  i l lusory c la ims as to  the  accuracy  of deduct ions .  
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with ~ (or Cp with C,~). Such a relationship is provided, to the  first-order approximation, 
by the G l a u e r t - P r a n d t l  ru le  which is expressed by : - -  

= ~,/%/(1 - M O )  . . . . . . . . . . . . . . .  (1.17) 
or  

C,  = C , / ~ / ( 1  - -  Mo  ~) . . . . . . . . . . . . . . .  (1.18) 

I t  should be noticed that  (I.17) and (I.18) are ~ot s t r ic t ly  equiva len t .  They lead to slightly 
different results, as shown by the following table (calculated with ~, = 1.4) : - -  

(1) 

Mo 

0.9 
0.8 
0.7 

(2) 

d~ 

O. 039230 
0.12 
O. 275091 

(3) 

C~ 
(from 1.12) 

--0"079999 
--0'2544 
--0"580279 

(4) 

d 
(from I. 17) 

0"09 
0"20 
O" 36 

(5) 

c~ 
(from 1.4) 

--0.181044 
--0"409890 

.--0.764819 

(6) 

c~ 
(from 1.18) 

--0'183531 
--0'424000 
--0'812553 

Difference between 
(5) and (6) 

absolute per cent 

0.0025 1.4 
0"0141 3"4 
0.0477 6.2 

In this table, d i has been chosen for every Mo in such a way as to give a predetermined round ' 
value of d, near to the critical value from (I.11). Hence the differences (shown in the two last 
columns) represent the maxima to be expected at the given Mach numbers. It  is seen that,  for ' 
large values of Mo, the errors are negligible ; they increase, however, with falling M0, and become 
appreciable for Mo < 0.8. If the entire calculation is based on the linear perturbation method, 
the formulae (I.17) and (I.18) may be considered as interchangeable. 

Some efforts have been made °, 13,17. ~ to improve on the Glauert-Prandtl rule so as to achieve 
higher accuracy. The alternative formulae are all based on theoretical considerations, but the 
final recommendation is usually based on a claim of better agreement with experimental data. 
They therefore usually refer to @, not to 0. The earliest and most known correction was suggested 
by yon KArmAn 9 in the form : - -  

C~ 
C, = (1 -- M0") 1/~ + ½C~, I1 -- (1 -- Mo~) 1/~] . . . . . . . . .  (1.19) 

The formula involves second-order correction in Cp~ (as do all other alternative formulae), and 
therefore its use in connection with linear theories is doubtful if not outrigt.at rejectable*. 

I t  may seem that  yon KArmAn's correction is most significarff when [1 -- %/(1 --M02)] is 
large, i .e.,  when Mo is nearly 1. However, the admissible sub-critical values of Cp~ are then so 
small that  the entire correction is negligible. The correction assumes appreciable values for 
smaller Mach numbers, i .e. ,  for thicker profiles, as shown below. 

A corrected formula for d, equivalent (to the second order of accuracy) to (I.19), cannot be 
simply obtained by introducing (I.13) and (I.16) into (1.19). To ensure the accuracy required, 
we must rather replace Cp~ in (I.19) by (I.12), and then use the expansion (I.15)--with two 
terms only. We thus obtain : - -  

= (1  - -  Mo~) ~/2 "-- ½ d , [ 1  + M o  2 - -  (1  - -  M o ~ ) ~ / ~ ]  " (1.20) 

* This does not prec]ude, naturally, on von K~rmAn's formula (or any alternatives) being studied and applied in 
connection with experimental data, or with theories of higher order of accuracy. 
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The formulae (1.19) and (1.20) are not exactly equivalent, but  the differences between their 
numerical results are negligible, as shown by the following table : - -  

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

Difference 
between (5) and (6) 

(7) 
Difference 

between (6) and (7) 

M 0 

C~ (from 1.12) 
(from 1.20) 

C~ (from 1.4) 
C, (from 1.19) 

Absolute 
Per cent 

C~ (from 1.18) 
Absolute 
Per cent 

0.9 
0- 036946 

--0.075256 
0-09 

--0.181044 
--0.181487 

0.00044 
0.24 

--0.172649 
O. 00884 
4.9 

0.8 
O. 108696 

--0.229206 
0.20 

--0.409890 
--0.413611 

O" 00372 
0-91 

--0- 382010 
0"03160 
7"6 

0.7 
0-225587 

--0.502064 
0-36 

--0.764819 
--0.781564 

0.01674 
2.19 

--0.703030 
0.07853 

10.0 

In this table, d~ has again been chosen for every M0 so as to give predetermined values of 
(same as in the previous table). The interchangeability of (I.19) and (I.20) is clearly shown by 
the negligible differences between (5) and (6), which are small of the third order. As to the 
magnitude of yon K~rm~n's correction itself, it is illustrated by the last two lines of the table, 
and it is seen to be appreciable, although obviously of the second order. 

I t  is now clear how the critical Mach numbers should be calculated for given profiles, i.e., for 
given ~ .  For first-order accuracy (expecially if ~ is only approximately known), we use (I.11) 
and (I.17), and replace the symbol M0 by Me, thus obtaining : - -  

~ = ( 1  "---Mc~) 1/~ l q -  7 +  1 ~ r 7  / - -  1 . . . . . .  (I.21) 

(cf. 2.5 and Fig. 2). If, however, the second-order accuracy is aimed at (which requires at least 
such an accuracy in ~), and we apply yon K£rm£n's correction, then we must use (I.11) and 
(I.20), and obtain : - -  

2 1 - -  Mc2~ 1/2 

(I.22) 
~ = 1 2 1 - -  M~2~ 1/~ 

The differences between (I.21) and (I.22) are not negligible, especially for smaller values of 
M0, i.e., for thicker profiles, as shown in the following table. 

Mo 

1 
0.95 
0.9 
0-85 
0.8 
0-75 
0-7 
0-65 
0.6 

d, from (I.21) 
(simple Glauert- 

Prandtl rule) 

, 

0.0137 
0.0407 
0.0784 
0.1210 
0.1875 
0.2615 
0.3511 
0.4597 

d, from (1.22) 
(with von K~rm~n's 

correction) 

0 
0.0133 
0.0382 
0.0720 
0.1095 
0.1663 
0.2289 
0-3045 
0-3960 

Difference 

absolute per cent 

0 0 
0.0004 3.4 
0.0024 6"0 
O-O064 8-2 
0-0115 9-5 
0-0212 11-3 
0.0325 12-4 
0.0466 13.3 
0.0687 13.9 

In Fig. 2, the thick curve of M, corresponds to (I.21), the thin one to (1.22). 
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I t  would  undoubted ly  be preferable to obtain higher accuracy, which seems to be possible by 
using yon K~rm~n's  correction (or any al ternat ive one, whichever  deemed most  reliable). If, 
however, the supervelocity ratio ~ itself is de te rmined  only wi th  the  first order accuracy, then  
using any of the  corrections would only give an illusory improvement ,  and serve no useful purpose. 
In  this report, the  two-dimensional  case is t rea ted  only as the  in t roduct ion to the  more complex 
case of swept wings. And, as the  only me thod  available for predict ing flow characteristics on. 
such wings is the  linear per turbat ion  theory,  the  simpler formula (I.21) is used. This seems to 
be in line with other similar efforts, e.g., those relating to critical Mach numbers  for ellipsoids, 
where the  simple Glauer t -Prandt l  rule is applied% Hence, the  fundamenta l  Table 1 is based on 
tha t  rule, and thus on the  formula (I.21). 

It  may  be noted tha t  the  formula (I.21) would become simpler for one particular value of the  
adiabatic constant,  i.e., for 7 = 1, in which case : - -  

(1 - -  Mo)(1 - -  M?) ~ '  
d~ = M~ . . . . . . . . . . . .  (I.23) 

An equivalent  formula was given by yon K~rm£n (Ref. 9, form. 68). The assumption y = 1 
means tha t  all changes of the  speed of sound are neglected. This sort of simplification does not  
seem quite legitimate. The error involved can be easily es t imated by  expanding (I.21) on 
assumption of (y --  1) being small  ; we then  get : - -  

< (1 - -  M~)(1 - -  M : ) ' ~ (  ) = M~ 1 7 - - 1 1 , ÷ M ~  
y ÷ 1  2 . . .  , . . . .  (I.24) 

and it is seen tha t  the  error on ~ amounts  to about  13 to 17 per cent. There is no reason for such 
an unnecessary error, the  more so as the  formulae (I.21) and (I.23) are almost equally easy for 
computat ion.  The simpler formula is just  as insoluble for M~, as the  more accurate one. 

This brings us to the problem of invert ing the  formula (I.21), i.e., solving it for Mo. The equat ion 
being of the  fourth degree in M, 2, no simple explMt  solution is likely to be found, and only a series 
expansion ma y  be tried. This should be done preferably in the  neighbourhood of the singular 
point  (M~ = 1, d = 0) of the  curve in Fig. 2, where both  O and 1 -- M~ 8 = ~ may  be considered 
as small, but  not  of the  same order. The singulari ty is easily recognised as a '  semi-cubic ' cusp, 
and the  equat ion (1.21) can be rewri t ten thus :  

~ = V'# 1 ÷ 7 ÷ 1 1 _  # . . . . . . . .  
o r  

~ = ~ @  l q 7  7 ÷ 1 ~ q 7 ÷  1 " ÷ r ' l ' ~ 3 " ' "  - -  1 , . .  (I.26) 
or expanded  : - -  

( 
7"1"1 

Let us put  : - -  

EO,(7 ' ÷ 1)] 2/3-- #o, 

then 

o r  

r -i- ½l ~ ÷ 
~ o = #  1-t Y ÷ 1 

27 .1 .1  ~2 
~ ° = ~ ÷ 3 ( r ÷ 1 )  ÷ 

(I.27) (r + 1) 8 " . . . . . . . .  

(1.28) 

H ÷ 7 ÷ ½ )~/3 
(r ÷ 1) ~ ~ 8 . . .  , . . . . . .  (1.29) 

5 7 8 ÷ 5 7 ÷ 2 " 7 5  
~3 (1.3o) 9 ( ~  + 1) 8 . . . . . . . . . .  
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Inverting this series, we obtain : - -  

27"+ 1 
= - 3(7" + 1) + 

whence : - -  

47" ~ -¢- 4y - -  1 
12(7. @ 1) 2 

~ 0  3 . . • , (I .31)  

5r 4- 1 3~ , 2 + 2 7 " - 3  
M~--V~(1- - f f )  = 1 - - ½ f r o + 2 4 ( 7 " +  1) f f°~-  48(7" + 1) ~ i f 03 . . . ,  .. 

or finally : - -  

1 (~ 57" + 1 37" ~ .+ 27 ~))? 
M~ = 1 -- ~[ ~(7" + 1.IVY+ 24(7" + 1) [~'(7" + 1)]~/3 -- 48(7 + [Oi(7. + 1]~... 

By a similar procedure, M~ may be expressed in terms of Cp~. 
we obtain : - -  

. .  (I.3S) 

. .  ( I . 3 3 )  

Using formulae (I.10) and (I.18) 

- - "  - -  7 Z V l  c L 7 .  - { -  1 ' " . . . . . . .  

this relation corresponds to (I.21). The solution for M~ in the form of an infinite series may be 
obtained by follo~4ng the lines of the previous transformation, and we obtain :--- 

5~ + 1 1 ,~4/3 

97 ~ + 8 ~ - 2 5 (  7-[- 1Cp~'~j 2 

- -  144(7 + 1) ~ \ (1.35) 

The two series (I.33) and (I.35) converge satisfactorily for moderate values of ~ or Cb~ , but  
they are not convenient for computation*. 

Bearing in mind that  the entire theory is only approximate, one is strongly tempted to keep 
only two terms in each of the two series, thus:  

o r  
Mc 1 - -  + (I .36)  

Mc ~ 1 -- ½- 2 : C~,. . . . . . . . . . . . . . . . . .  (1.37) 

The formula (1.37) was derived by Liepmann and Puckett% However, bot h (I.36) and (1.37) 
involve appreciable errors. A linear approximation is based on neglecting second and higher 
powers of the quant i ty  originally assumed as small, but in this approximation the 4/3rd power 
of-O~ or Cp~ is neglected. Liepmann and Puckett 's approximation leads to the lowest curve in 
our Fig. 2, and it is seen that  it considerably under-estimates the critical M;  it may therefore 
be used only for very rough estimates. Using three terms of our series (I.33), we should obtain 
the upper curve in Fig. 2; this curve follows the main one rather closely, but it slightly over- 
estimates the critical M. The curve representing Mc according to yon K&rmAn's correction lies 
below our main curve, and the results would be similar if Temple's, Greene's or Weber's corrections 
were used instead. It  is seen that  the series solutions in this case have some rather unfortunate 
features, and should only be used with great care. 

* As ment ioned in section 2, it was found more expedient  to calculate d~ for assumed values of Mc {Table 1), and then  
to interpolate to tabulate  Mc against  6~ {Table 2). 
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A P P E N D I X  II  (to Section 3) 

Approximate Expressions for Critical Mach Numbers of Infinite Yawed and Sheared Wings 

The approximate  formula (I.33) for the  critical Mach number  of an infinite s t ra ight  wing can 
be modified so as to give similar expressions in the  cases of infinite yawed, or infinite sheared 
.wings. In  the  former case, as shown in section 3, it is sufficient to replace M~ by  M~ y cos 
m the relat ionship per ta ining to the two-dimensional  case. Hence, for infinite yawed wings : - -  

5 y + 1  
M~, = 1 - -  ½EO~(? + 1)] 2/g @ 24(? 4- 1) [~(9' q- 1)]a/a 

3~ 2 --1-- 2? - -  3 
' ( 1 1 . 1 )  48(? -1- 1) 2 Edi(7 -~- 1)12" '"  i sec 50 . . . . . . . . . . .  

Similarly, in the  la t ter  case, Mc must  be replaced by M~, cos 50 and, at the  same time, ~ by  
~i sec 50. Thus  we obtain, for infinite sheared wings .'-- 

5 7 + 1  
Mc,~ = 1 -- ½[d~(r -}- 1) sec 912/a + 24(~ -}- 1) [d;(? + 1) sec ~]4/a 

3? 2 -~- 2? - -  3 

48(7 + 1) 2 E#,(? + 1) sec } sec 50 . . . . . . . . .  (II.2) 

Bo th  formulae are subject  to the  same reservations as the  original expansion-(I.33).  Wi th  all 
four terms of the series t aken  into account, t hey  are accurate enough, but  ra ther  inconvenient .  
Wi th  only three or two terms, t hey  are not  sufficiently accurate, and m a y  only be used for rough 
estimates.  

30 



A P P E N D I X  I I I  (to Sub-Section 4.1) 

SuperveIocity Distributions over Swept and Sheared Wings with Various Profiles 

(A) GeneraL--In this Appendix, we consider the distribution of the incremental velocity v, on 
semi-infinite sheared and infinite swept wings with various profiles. The general theory was 
given in previous reports (R. & M. 2713 ~* and 2717 ~8) and applied in the simplest case of the 
biconvex parabolic profile. I t  will therefore suffice here to show how the method can be applied 
to other profiles. 

For a semi-infinite sheared wing with arbitrary section, defined by the equation: 

z = F ( x + y t a n ~ o )  (0 < y < + co) 

( - - b < x + y t a n q ) < + b )  ..  

the general formula for v, at an arbitrary point (x, y) is, according to R. 
form. (3.5.3): 

2~v~ f~ F'(2) ( 1 +  y sec~0 ) 
U c o s g ; = - -  - ~ x - - 2 + y t a n ~ 0  E ( x - 2 )  ~ + y~]~/~ d2 . . .  

Introducing n0n-dimensional co-ordinates: 

x + y tan ~0 y 
-- b ' ~ -- -(" " . . . . . . . . .  

. .  (111.1) 

& M. 2717 aS, 

..  (111.2) 

. .  (111.3) 

the new non-dimensional variable of integration" 

2 -- x - - y  tan 
P =  

b , . . . . . . . . . . .  . o • 

and denoting for abbreviation: 

r = (p2 cos ~ 9 + 2Pr/sin 9 cos 9 -+- ~7~) 1/2 . . . . . . . . .  

we may  reduce (I.2) to the following form" 

u - ~  p . . . . . . . . .  

(111.4) 

( I I I .5 )  

( I l l . 6 )  

Suppose now that  F is a polynomial of any degree. The integral (11!.6) will be always calculable 
by elementary methods, and the only functions required, apart from simple polynomials, wi[l be 
some of those given in the ' Table of auxiliary functions of Ref. 48 (page 25). 

We shah limit ourselves to the polynomial of 5th degree, but higher degrees will involve only 
additional algebra. Let us put" 

z =  F(b~) = k~b(1 - -  ~)(1 + A t  @ B~ ~ + C~3) , . . . . . .  (III.7) 

where v~ is thickness ratio, and k a non-dimensional coefficient chosen in such a way  tha t  
Zmax = ~b, i.e., 

1 
k = (1 - ~,?)(1 + A~,~ + B ~ 2  + C ~ 2 ) '  . . . . . . . .  ( I n . s )  

~,, denoting the value of ~ corresponding to Zmax. 
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T h e  f i rs t  d e r i v a t i v e  of  ( I I I .8 )  b e c o m e s "  

F ' ( a ~ )  = ~ e [ A  - 2(1 - ~ ) ~ -  3 ( ~  - c ) ~  ~ - 
and h e n c e  

F 'Eb(~ + P ) ]  = 

where" 

q$1 = r :  

~4 2 = =  

5':/, 3 : 

T/~ 4 ~ : -  

4B~ 3 _.5C~ ~] , 

kO(no - -  n i p  - -  n~P ~ - -  nap ~ - -  n~P ~) , . .  . .  

A - -  2(1 - -  B)~ --  3(A - -  C ) ,  ~ - -  4 B ~  ~ - -  5 C P ,  

2(1 - -  B)  -F 6(A - -  C)$ -[- 12B~ ~ + 20C$ a , 

3(A - c )  + 1 2 B ~  + 3 o c ~  ~ , 

4 B  + 2 0 C $ ,  

5 C .  

The formula (111.6) then becomes: 

2~rv~ "'-~ (n~ + ~ P  + naP ~ + n~Pa)dP -- no 
k ~ U  cos ~ -~-~ -~_,~ 

f ~-~ a dP 
+ V _~_~ (n,~ -F ~hP + naP ~ + n~P) 7 " "" 

T h e  f irs t  t w o  in. tegrals  in (111.12) a re  e a s i l y  d e t e r m i n e d  as fo l lows  : 

(hi +. n~P + n~P ~ + n~P~)dP = 2n~ - -  2 n ~  -l- ~-na(1 + 3~ ~) - -  

a n d  (@ R.  & M. 2717  ~a f o r m .  I I . 7  a n d  t a b l e  o n  p. 25 ) :  

fi-~ r~dp = _ In F~ 
f + 

- ~ - ~  P ~  . . . . .  

T h e  t h i r d  i n t e g r a l  in (111.12) is s o m e w h a t  m o r e  c o m p l i c a t e d .  
f o r m u l a e ,  w e  o b t a i n  t h e  f o l l o w i n g  e x p r e s s i o n  for  t h e  i n d e f i n i t e  i n t e g r a l :  

I(n~ + n~P + naP ~ + n~Pa) dP -- 
• 

r + ~?dP 
P r  

. .  (111.9) 

; .  . .  ( I I I . 1 0 )  

. .  ( I l i . 1 1 )  

. .  (111.12) 

2 , ~ ( ~  + p ) ,  . .  ( i i i . l a )  

. . . . . .  ( II1 .14)  

B y  a p p l y i n g  t h e  u s n a l  r e d u c t i o n  

( 1 I I . 1 7 )  
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we f ind  t h e  de f in i t e  i n t e g r a l  as  fo l lows"  

_~_~ (n~ + n2P + nap ~ + n~pa) d P  r~ + r2 
r - -  cos  2 ~ (2B + ~ C ?  - -  ~ -  ~s Cv t a n  ~) 

_}_ r ~ _ _ - -  r~ [(3A - -  ~C +- 10B~ q- ~'~- C~ 2) - -  (6B  -]- -~,-~ s s C~)~7 t a n  ~ -}- 5C~°~t-~- ~ tan~ 9 - -  ~)] 
C O S  ~ 9~ . . 

In F~ 
-F ~ [n~ - -  ~2~7 t a n  ~ - / ~ 2 ( t a n ~  ~ - -  ½) + - n ~ a ( ~  t a n  9 - -  tan* 9)] . . . . .  

p-*  dP In F~ 
! 
J - 1 - ~  7 / C O S  

. . . . . . . . . . . .  (111.16) 

7' 

c o s 2 ~  {En2 - ~n3~,] t a n  q~ + n ~ 2 ( ] ~  t a n  2 T - -  ?)1 + (½-ha - -  ~ n ~  t a n  9 ) P  + }n~P 2} 

feP 
_ .  __L :~ t a n  q~ - -  t a n  a ~P)I T "" -t- [n~ n ~  t a n  ~ + narj~(tan~ q~ - -  ½-) ~h,?~(~- , 

w h i c h  m a y  b e  ea s i l y  c h e c k e d  b y  d i f f e r e n t i a t i o n .  
t h e  f o r m u l a  ( I I .6)  of  R .  & M. 2717  ~a 

. .  (111.15/  

I n t r o d u c i n g  t h e  l imi ts ,  a n d  t a k i n g  i n to  a c c o u n t  



Introducing (III.13), (III.14), and  (111.17) into (III.12), we finally obtain,  for a semi-infinite 
sheared wing • 

2~ v, 
k# U cos ~o --  m o +  no In F~ + [n~ --  n ~  t an  ¢ + n . ~ ( t a n  ~ ¢ --  ½) 

+ n~*(~ t an  9 --  t an  ~ ~o)] in F~ + 

where  : 

~ ] ( r ~ -  rl) 
• [m~ --  m ~  tan  ¢ + n ~ ( ~  ~- t an  ~ 9 --  ~)] 

COS 2 9p 

+ v(r~ + r2) (m~ --  ~n, ~ n~ tan  ~o) . . . . . .  (111.18) 
COS ~ 9) 

( B) 
t o o = 4  1 - - ~  + 6 ( A  ¢ C ) ~ + 8 B ~  :~+10C~  ~, 

m~ = (aA - ~C) + 1 0 B e  + -~-C$ ' , 

m~ = 6B + ~-~--~C~ , 

m~ 2B + -~ °-C~ = 3 , 

and  no, n~, n~, n3, n~ are given by  (111.11). 

(111.19) 

Two special cases deserve a t tent ion.  Pu t t i ng  ~ = 0, we get, for tile upstream t@ section • 

[ = + + + 
k # U c o s ¢  1 - - ~  1 - - s i n 9  ' "" 

. .  ( 1 1 1 . 2 o )  

and,  when  ~ - +  o% we obtain  (taking into account  the  expansions T.19, 20, 24, 25 of R. & M. 2717 ~8) 
for a section far away from the tip • 

~Ux I = m o + n o l n l  + 
k # U c o s 9  ~+~ 1 - -  ~" . .  (111.21) 

The formula  (111.21) can be ob ta ined  direct ly  b y  using the  general  me thod  for two-dimensional  
aerofoils, described in Ref. 34 (form. I. 14). The  formula  (III.20) represents one half of (III .21),  
wi th  the  k ink correct ion t e rm ln(1 + sin ¢)/(1 --  sin ~) included. The two cases provide useful 
checks of the  general formula  (III .  18). 

The next  step is to work  out  the  general  formula  for v,-distr ibution over an infinite swept-back 
wing (with a central kink). As shown in R. & M. 271748 (section 4.1), the  r ight  procedure  is to find 
the  cont r ibut ion  of the  left half-wing, by  replacing ~ by  (--  ~), and ~ by  (~ --  2n t an  9), in 
(III.18), and  then  to add together  the  contr ibut ions  for both  half-wings. This is a simple alge- 
braical  operation,  bu t  ra ther  long in the  given case. The final result  for an infinite swept-back 
wing is" 

~Vx 
--  k# U cos ~; = [too --  2(ml - -  m3~)~7 t an  ~o + 4(n3 --  n~)~  2 t an  s ~ - -  8n4~ 3 t an  3 ¢] + no In F1 

+ ~ t an  9(nl - -  2n2~ t a n  ~ + 4n~ 2 t a n  ~ ¢ --  8n4v 3 t an  3 9) In F2 

V 2 sin 9 
4- - - - I n 2  --  3n3~ t an  ~0 + n4~(7 t an  s ~0 --  ½)] In F4 

, C O S  2 

+ ~2 cos 3sin ¢9 (2n3 --  n4~ - -  7n4~ t an  ~o)(r2 --  rl) + n ~  0 cos 3 + r~)gsin ~0 (Ill.22) 
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There are again two impor tan t  special cases. Pu t t i ng  ~ = 0, we obtain,  for the  central k ink  
section : 

kOU cos 9 ,=o 

which is exac t ly  twice (III.20), as it should be. 
t ransformat ion  : 

~7)x ] 
- -  = m0 + no In 1 +_____~ 

kv~Ucos9  ~÷* 1 - - ~ '  

i.e., the  same result as ( I I I . 2 1 ) ,  as it should be. 

= t o o  + no l n (  1 + ~ 1 + s i n g )  . . . . .  (III.23) 
1 - - ~ l - - s i n 9  ' "" " 

Le t t ing  ~--+ co in (III.22), we get, after a long 

. . . . . . . . . . . .  ( 1 1 1 . 2 4 )  

I t  mus t  be in t imated  now tha t  the  formulae (111.18) and (111.22) apply  direct ly only if 
9 > O, i.e., in the  cases of a semi-infinite sheared wing wi th  an upstream tip, or of an infinite 
swept-back wing, respectively. However,  bo th  formulae can also be used w h e n  9 < O, i.e., in 
the  cases of downstream tip, or a swept-forward wing, but  then  special pains mus t  be t aken  to avoid 
errors. Examin ing  carefully the  formulae, toge ther  wi th  expressions T. 1, 2, 7, 8, 10, 11 of R. & M. 
27174~, we come to the  conclusion t ha t  following rules mus t  be observed : - -  

(1) t an  9 and sin 9 should be replaced by  (-- t an  9) and (-- sin 9) in (111.18) and (111.22); 

(2) values of r~, r2, F~ corresponding to the  given ~, ~, 9 should be replaced by  those of 
r~, r~, F4 corresponding to (-- ~), v, 9 ;  

(3) values of In F1, In F~, In F5 corresponding to the  given ~, ~, 9 should be replaced by  those 
of (-- In/71), (-- 111 F~). (-- In Fs) corresponding to (--  ~), ~, 9. 

The  supervelocity distribution in the k ink  section, given by  (111.23), is of pa ramoun t  interest ,  
and the m a x i m u m  value of the  superveloci ty is par t icular ly  important .  This m a x i m u m  can be 
determined by  equat ing to zero the first derivat ive of (111.23) with  respect to ~. This  leads to 
the  equat ion : 

( ) 2no 1 + ~ 1  + s i n 9  + [ _  ~ - - 0  . . . . . .  (III.25) 
m o ' - - n l l n  1 - - ~ l - - s i n 9  

where too' and ( - -n l )  are first der ivat ives  of the  polynomials  m0 and  n0 respectively.  The 
equat ion (III.25) cannot  general ly be solved for ~. However,  it m a y  be solved for ~0 when the 
value of ~ is assumed. We get from (III.25) : 

(1 + + 
in i - -  ~ 1 --s-l-if) = 2 T ,  . . . . . . . .  (111.26) 

where : 
mot no 

T - -  + 2n~ n~(1 --  ~ )"  
. . . . . . . .  (111.27) 

Hence,  denot ing by  L,, the  value of ~ corresponding to the  m a x i m u m  superveloci ty in the  central  
kink,  and by  T,, the  corresponding value of T, we obtain : 

( 1  - (1  + 
sin 9 = (1 --  ~,~) e2r,, + (1 + ~,,)' 

or a l te rna t ive ly  : . . . . . . . . . .  (III.28) 

(1 - 
cos 9 = cosh 2",. - -  ~,. sinh T,." 
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The m a x i m u m  value of the  supervelocity may  be found from (111.23) and (Il l .26)" 

v~ ~ k + 
~ U  cos 9 = ~ (too,, 2no,~T,,)  , . . . . . . . . . .  

where Po, , ,  no,, denote  the  values of the  polynomials  ib0, ~0 for ~ = ~,,. 

(1II.29) 

The normal  procedure will be to tabulate  T~, 9, (III.29), and 

v. k 
H = - -  ~ ~ = ~ (too,, + 2no,~T,,)  cos 9 . . . . . . . .  (111.30) 

for a range of values of ~,,. If required, the table may  be interpolated in order to produce a 
table  of ~ ,  (III.29), and H, against 9. In  such a way our Tables 5, 6, 7 and 8 have been prepared. 

(B) P a r t i c u l a r  c a s e s . - - T h e  above general results are now applied •to four part icular  cases, for 
t h e  profiles B, C, Q and R. 

P r o f i l e  B (biconvex parabolic), Figs. 5, 6 to 9, 20 to 21. 

Coeff ic ients 'A = B = C = 0 ,  ~ , = 0 ,  k = 2 .  

ProNe equat ion (III.7) • 

z = ~b(2 --  ~2). . .  . . . . . . . . . . . . . .  (Ill .32) 

Veloci ty distr ibution over semi-infinite sheared wing (III. 2s): 
2~v~ 2~ 

- -  4 -+- in F4 - -  2 ~  i n  F ~ ,  . . . . . . . . . . . .  ( 1 1 1 . 3 2 )  
v~ U cos 9 cos 9 

and over infinite swept-back wing (III.22) : 

~rv, 
--  4 - -  25 in F1 + 2~] tan  9 In F2 . . . . . . . . . . .  (Ill .33) 

- -  v~ U cos 9 

Veloci ty distr ibution in the  k ink  section (III.23) : 

v, __ 2 1 2 _ _ ~  l n ( 2  + ~ 2 + sin 9 ) ]  . . . . . .  (III.24) 
: --  v~U cos 9 --  ~ 1 - -  ~ 2 - -  sin 9 . . . . .  

Auxil iary quan t i ty  T ,  (@ III.27) : 

T ~  = - -  1 - -  ~ 2  . . . . .  . . . . .  . . . . . . . .  ( 1 1 1 . 3 5 )  

Maximum superveloci ty  in the  kink section (111.29)" 

~gU cos 91m,x ~ 1 --  ~,,~ . . . . . . . . . . .  

All these resultS have  been given in Refs.  34 and 48, and are repeated here  only for the  sake of 
check and comparison. 

P r o f i l e  C (cubic with cusped tail), Figs. 5, 10 to 24, 22 to 23. 

Maximum thickness at  33½ per cent. 

2 27 
Coefficients: A = 2, B = C ----- 0, ~. - -  3 '  k - -  32 - -  0.84375. 

Proftle equat ion (111.7)" 
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Veloc i ty  d i s t r ibu t ion  over  semi- inf ini te  shea red  wing  ( I I I .  18) : 

• ~ (2 + 6~ - -  3~ t a n  9) l n F ~  2~v, - -  (4 -[- 6Q + (1 + ~)(1 - -  3Q In G + 
kv~ U cos 9 

- 

+ cos 2 9 ' . . . . . . . . . . . . . . .  ( I I I .38  

a n d  over  infini te  swep t -back  wing  (III .22)  : 

xv, - -  (4 + 68 - -  6v t a n  9) + ( 1  + Q ( 1 - - 3 Q l n F ~  kv ~ U cos 

3~ ~ s i n 9  
- -  In F~ . .  ( I I I .38a)  + ~ t a n 9  ( 2 + 6 ~  6 ~ t a n g )  l n F ~ +  cos ~9 " "" 

Ve loc i ty  d i s t r ibu t ion  in the  k ink  sect ion (111.23): 

__ v, __ 27 - [ ( 4 + 6 ~ ) _ /  ( 1 +  Q ( 1 - 3 Q l n ( I  + ~ 1  + s i n g ) J  . .  ( I I I .39)  
U c o s 9  32~ 1 - - ~ l - - s i n ~ o  " 

Aux i l i a ry  q u a n t i t y  T,,, (cf. I I I .27)  : 

2-- 3 ~  
T , ,  = (1 + 3 ~ , , ) ( 1 -  G , ) '  " . . . . . . .  . . . . . .  (111.40) 

G, be ing  conf ined to the  range  - -  ½ < ~,,, < 1 ,  a n d  b e i n g ~  0 .4555  for 9 =- 0. 

M a x i m u m  supe rve loc i ty  ill t he  k ink  sect ion (111.29): 
I v~ 27 1 
- -  0 U  cos 9 ~ = 4-~ (1 - -  G)(1 + 3G) . . . . . . . . . . . . .  ( I l l .41)  

P r o f i l e  Q (quar t ic  w i th  max .  th ickness  at  30 per  cent) ,  Figs. 5, 15 to 19, 24 to 2"5. 

Coefficients:  A - -  0 .712,  B = 0 .79 ,  C - -  0, ~,, = 0 .4 ,  k = 0.8435914.  

Profi le  e q u a t i o n  (III .7)  : z = kf~b(1 - -  ~)(1 + 0 .712~ q- 0 .79~ ~) . . . . .  

Ve loc i ty  d i s t r ibu t ion  over  semi-inf ini te  shea red  wing  (III .18)  : 

27rV~ 

- -  kv~ U cos 

. .  ( 1 1 1 . 4 2 )  

- -  (2.9466 + 4.2725 + 6.32~ ~) + (0.712 - -  0.42~ -- 2-136~ ' -- 3.16~ :3) In F5 

f l  
+ ~ [(0 .42 + 4 .272~ + 9 .48¢  ~) - -  (2. 136 + 9.48~),] t a n  ~0 + 3.16,7"(tan ~ 9 - -  ½)] In F ,  

, ~(r2 - -  r~) [(2. 136 + 7.9~) - -  4 .74~ t a n  9~ -[- 1 .58~(r l  + r~) . .  (111.43) 
- r  COS2 ~ COS~ 9 " " 

a n d  over  infini te swep t -back  wing  (111.22)" 

k~ U c o s  7~ 
- -  [ (2.9466 -]- 4 .272~ -]- 6 .32~ ~) - -  (4 .272 + 10-64Qv t a n  9 + 12"64~ ~ t a n  29] 

+ (0"712 - -  0"42# - -  2" 136~ 2 -  3"16~ ~) In F1 

+ V t a n  9[(0"42 + 4 .272~ + 9 .48~ 2) - -  (4 .272 + t 8 . 9 6 Q ~  t a n  9 

n ~ sin 9 
+ 12"64~ ~ tan~ 9] In F~ + c o 7 ~ -  [(2. 136 + 9.48~) - -  9 .48~ t a n  9] in F~ 

3.16~ ~ sin 9(r~ - -  rl) 
+ cos 3 ~ . . . . . . . . . . . . . .  (III.44) 
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Velocity distr ibution in the  k i n k  section (111.23): 

- -  0.2685235 E(2.9466 + 4.272~ + 6.32~ ~) 
Vx 

v ~ U cos 9 
+ 

+ ( 0 . 7 1 2 - - 0 . 4 2 ~ - - 2 - 1 3 6 ~  ~ - 3 . 1 6 ~  3) l n _ l _ ~ l _ s i n g _ _ .  (111.45) i • 

Auxiliary quan t i ty  T~  (cf. III.27) : 

2" 848 -4- 5" 9G  --  4" 272&~ ~ --  9" 48G} 
T,~ = (1 --  ~")(0"42 + 4"272G~ + 9"48G)) . . . . . . . . .  (III.46) 

Maximum supervelocity in the  kink section (1II.29) : 

v ,  ~a~ = 0 " 2 6 8 5 2 3 5 I ( 2 " 9 4 6 6  • -7- 4"272G -P 6"325,, ") 
z~ U cos ~ " " 

q- 2(0.712 --  0 . 4 2 G ~ -  2. 136G 2 --  3.16&,})T~l . . . . .  (III.47) 

Prof i l e  R (simplest profile with rounded nose, max.  thickness at 30 per cent chord), Figs. 5, 26, 27. 

This profile is not a special case of (III.7), and its equat ion is: 

z = F(b~)  = k~b(1  - -  ~)~/~ (1 + ,)(1 + b~$), . . . . . . . .  (Ill .48) 

where k is a non-dimensional  coefficient chosen so tha t  F~.~ = 4b,  i .e.  : 

1 
k = (1 --  eD'~(1 + ~D(1 + bald . . . . . . . . . . . .  (111.49) 

The first derivat ive of (111.48) becomes:  

Ft(b~) = kZ~ - -  5 b 1 ~ 2  - -  (3 - -  b l ) ~  "~- (1 "-~ 231) ( 1 1 1 . 5 0 )  
2(1 --  ~ ) ~ / ~  . . . . . . . .  

and hence : 
3 G - -  1 

b~ = 2 + G --  5G ~ . . . . . . . . . . . . . . .  (III.51) 

In  the  given case: 

G = 0.4, bl ---- O. 125" k V(15) 0.8782275. 
' - -  4 . 4 1  - -  

T h e  velocity distr ibution over the  entire sheared or swept-back wing with this profile has not  
been worked out, this requiring a formidable array of elliptic integrals. However,  a formula for 
velocity distr ibution in the  k i n k  sec t ion  ma y  be easily derived by using methods  of R. & M.2713 ~ 
(App. I, form. 1.8, example vii ,  also form. 7.5), and the  result is: 

2~v~ 
-- 2V2(3 + ~ b, + 5bd) kz9 U cos q~ 

Sbl~ ~ + (3 - -  bd~ - -  (1 + 261) ( l n  V 2  + (1 - -  ,)1" + (1 - ~)1. \ V2- (1 - ~)-~ 
In the given case (bl = O" 125) : 

v, _ 5k L[-2~/2(~4 
U cos ~ 16n + ~) 

($ -- 0 . 4 ) ( ~  + 5) ( l n  ~ / 2  + (1 -- ~)~/2) + 

0 087  8 ) 
16z~ - -  

1 + sin 9 )  (111.52) 
- - l n l _ s i n ~  " 

, +sin ;)] 
(111.53) 

I -- sin " "" 
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The  m a x i m u m  supe rve loc i ty  is, again,  t he  mos t  i m p o r t a n t .  E q u a t i n g  to  zero the  first de r iva t ive  
of ( I I I .52) ,  we  obta in ,  a f te r  a r a t h e r  long t r a n s f o r m a t i o n :  

in 
1 + sin ~o 
1 - -  sin 9 

~/2  + (1 - -  ~. )~/2 
-- 2W = In ~ - ~ _  (1 -- *,,,)1/~ 

a n d  

2 1 2 ( 1 -  ~,.)]~/2 (1 + 1 2 b ~ ) -  ( 3 -  bl )~ , . -  15b~m ~ 
+ 1 + ~:,,~ (5 - -  4b~) + (21b~ - -  3)~,~ - -  15b~:,~ 2' 

sin 9 = t a n h  W .  

S u b s t i t u t i n g  f rom (III .54)  in to  (III .53) ,  we ob t a in :  

. .  ( 1 1 1 . 5 4 )  

. .  ( 1 1 1 . 5 5 )  

( v , )  16k~/2 (3 + bl + 4b~ ~) + (7b~ + bl")~ 
H = - -  ~ ~ = 3z(1 + ~,,) (5 - -  4b~) + (21b~ - -  3 ) ~  - -  15b~$,," cos 9 . . .  (111.56) 

T h e  fo rmulae  (111.54, 55, 56) enable  us to t a b u l a t e  ~o a n d  H agains t  ~ ,  a n d  then ,  b y  app ly ing  
in te rpo la t ion ,  to  r e - t abu l a t e  ~,, a n d  H agains t  % 

In  the  g iven  case (bl = 0.125) : 

V 2  + (1 - -  ~,,)1/2 212(1 - -  ~,,)]1/~ 
2 W  = In @ 2  _ (1 - -  ~,~)1/2 + 1 - /  ~,, 

2 0 - - 2 3 ~ , .  ---15~,. 2 
3 6 - - 3 ~ - - 1 5 ~ , .  ~ ' . .  ( 1 1 1 . 5 7 )  

H = 0 . 2 6 3 5 6 1  
68 + 19~,. 

(1 + ~ ) ( 1 2  - -  ~,. - -  5 ~ 2 )  co s  ~ .  

I n  pa r t i cu la r ,  for 9 = 0 (unswept  wing),  we h a v e  ~,~ - -  1, a n d  t h e n :  

. .  (111.58) 

H~_o 4k~¢/2(3 + 5b~) 
- =: 3~ = 1 . 9 1 0 8 ,  hence  ~ - -  1 .9108~ .  . .  . .  ( 1 1 1 . 5 9 )  

I t  shou ld  be m e n t i o n e d  t h a t  the  fo rmula  for H is va l id  on ly  for pos i t ive  ~o a n d  ~ < 1, i.e., for 
swept-back wings.  If  9 is nega t ive ,  t h e n  the  express ion (III .53)  becomes  ( +  oo) a t  ~ = 1 (see 
Figs. 26 a n d  27), a n d  the  t rue  m a x i m u m  c a n n o t  be d e t e r m i n e d  b y  the  1st o rder  m e t h o d .  The re  
is some d o u b t  a b o u t  the  v a l i d i t y  of t he  genera l  fo rmula  a t  9 = 0 a n d  ~ = 1. I n  this  case the  
m a x i m u m  ce r t a in ly  occurs  nea r  the  l ead ing  edge,  b u t  no t  at  the  edge  itself, a n d  we m a y  on ly  
hope  t h a t  the  va lue  o b t a i n e d  in this  case differs l i t t le  f rom the  t rue  m a x i m u m .  
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TABLES 1 and la 

Critical Mach numbers Mo in Two-dimensional Flow, for 
Varying Supervelocity Ratio ~ (incompressible), according to 

Formula (2.5) 

Table 1. ~ against Me Table la. Mc against ~ 

1"00 0-0000 
0.99 0-0012 
0-98 0-0034 
0-97 0.0063 
0-96 0-0097 
0-95 0-0137 
0-94 0-0182 
0-93 0-0232 
0-92" 0.0286 
0-91 0"0344 
0-90 0.0407 
0.89 0"0473 
0-88 0.0545 
0.87 0.0620 
0.86 0"0700 
0-85 0.0784 
0.84 0"0872 
0.83 0.0965 
0.82 0'1062 
0.81 0'1164 
0"80 0.1270 
0"79 0.1381 
0"78 0"1497 
0 '77 0"1618 
0.76 0.1744 
0"75 0.1875 
0.74 0.2012 
0.73 0'2154 
0.72 0.2301 
0.71 0"2455 
0"70 0.2615 
0.69 0"2780 
0"68 0.2953 
0.67 0-3132 
0.66 0.3318 
0-65 0"3511 
0.64 0.3712 
0-63 0.3921 
0.62 0"~138 
0.61 0-4363 
0"60 0"4597 
0-59 0.4841 
0-58 0.5094 
0-57 0.5358 
0.56 0"5632 
0.55 0-5917 
0"54 0.6215 

0 1.0000 
0.01 0.9593 
0.02 0.9363 
0-03 0-9175 
0.04 0.9010 
0.05 0-8862 
0-06 0-8726 
0-07 0-8600 
0-08 0-8481 
0-09 0-8369 
0-10 0-8263 
0-11 0-8162 
0 . 1 2  0-8066 
0.13 0-7973 
0-14 0.7883 
0.15 0.7797 
0.16 0.7715 
0.17 0.7635 
0.18 0.7557 
0.19 0.7482 
0.20 0.7408 
0.21 0.7337 
0-22 0.7268 
0 '23 0.7201 
0"24 0.7135 
0"25 0.7071 
0"26 0.7009 
0.27 0.6948 
0"28 0"6888 
0.29 0.6830 
0"30 0.6773 

0.30 0.6773 
0.31 0.6718 
0.32 0.6663 
0.33 0.6609 
0.34 0-6557 
0.35 0-6506 
0"36 0-6455 
0-37 0-6406 
0-38 0-6357 
0.39 0-6310 
0-40 0-6263 
0-41 0.6217 
0-42 0-6172 
0-43 0.6128 
0-44 0.6084 
0-45 0"6041 
0.46 0.5999 
0-47 0.5958 
0.48 0.5917 
0.49 0.5877 
O. 50 O. 5837 
O. 51 O. 5798 
O. 52 O. 5760 
0.53 0.5722 
0.54 0.5685 
0.55 0.5648 
0.56 0.5612 
0.57 0.5576 
0.58 0.5541 
0.59 0.5506 
0-60 0.5472 
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TABLE 2 

Critical Mach Numbers for Yawed Infinite Wings Mcy for 
Varying Angle 9 and Varying Supervelocity Ratio ~, 

according to Formula (3.4) 

9 (degrees) 
d~ 

10 20 30 40 50 60 

0 
0.01 
0-02 
0.03 
0.04 
0.05 
0.06 
0-07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0-14 
0.15 
0.16 
0.17 

, 0"18 
0.19 
0.20 
0-21 
0-22 
0-23 
0.24 
0"25 
0 '26 
0.27 
0 '28  
0"29 
0"30 
0'31 
0-32 
0-33 
0-34 
0-35 
0"36 
0"37 
O' 38 
0"39 
0"40 
0.41 
0"42 
0.43 
0"44 
0.45 

1.0154 
0.9741 
0-9507 
0-9317 
0.9149 
0.8999 
0.8861 
0.8733 
0.8612 
0-8498 

1.0642 
1.0209 
0.9964 
0.9764 
0.9588 
0-9431 
0-9286 
0.9152 
0.9025 
0.8906 

1-1547 
1.1077 
1.0811 
1.0594 
1.0404 
1.0233 
1.0076 
0.9930 
0-9793 
0-9664 

1.3054 
1.2523 
1-2223 
1-1977 
1-1762 
1.1569 
1.1391 
1.1227 
1.1071 
1.0925 

1-5557 
1.4924 
1.4566 
1.4274 
1.4017 
1.3787 
1.3575 
1.3379 
1.3194 
1.3020 

0"8390 
0"8288 
0'8190 
0"8096 
0"8005 
0"7917 
0-7834 
0"7753 
0"7674 
0'7597 
0"7522 
0"7450 
0"7380 
0-7312 
0-7245 
0"7180 
0-7117 
0"7055 
0"6994 
0"6935 
0"6877 
0"6822 
0.6766 
0.6711 
0.6658 
0.6606 
0-6555 
0-6505 
0-6455 
0.6407 
0.6360 
0.6313 
0.6267 
0.6223 
0.6178 
0.6134 

0'8793 
0"8686 
0-8584 
0-8485 
0"8389 
0"8297 
0'8210 
0"8125 
0'8042 
0.7962 
0"7883 
0"7808 
0-7734 
0-7663 
0.7593 
0.7525 
0.7459 
0"7394 
0.7330 
0"7268 
0.7208 
0"7149 
0-7091 
0-7033 
0-6978 
0-6924 
0.6869 
0.6817 
0.6765 
0.6715 
0.6665 
0.6616 
0.6568 
0.6521 
0.6474 
0.6429 

0"9541 
0"9425 
0'9314 
0'9206 
0"9103  
0"9003 
0"8909 
0-8816 
0"8726 
0"8639 
0"8554 
0"8472 
0'8392 
0'8315 
0"8239 
0"8165 
0"8093 
0"8023 
0"7954 
0"7887 
0"7821 
0"7757 
0"7694 
0"7631 
0'7571 
0"7512 
0'7454 
0'7397 
0"7340 
0-7286 
0-7232 
0-7179 
0-7127 
0"7076 
0"7025 
0"6976 

1-0787 1.2855 
1-0655 1.2698 
1.0529 1.2548 
1-0408 1.2404 
1-0291 1.2264 
1.0178 1.2130 
1.0071 1.2002 
0.9967 1:1878 
0.9865 1 1757 
0.9767 1 1640 
0.9670 1 1525 
0.9578 1 1414 
0.9488 1 1307 
0.9400 1 1203 
0-9314 1 1100 
0"9231 1 1001 
0.9150 1 0904 
0"9070 1"0809 
0.8992 1.0716 
0.8916 1.0626 
0.8842 1.0537 
0 '8770 1-0451 
0.8698 1.0366 
0.8627 1-0282 
0.8560 1-0201 
0.8493 1.0122 
0.8426 1.0042 
0-8362 0.9966 
0-8298 0.9890 
0.8237 0.9817 
0.8176 0.9743 
0.8116 0.9672 
0.8057 0.9602 
0"8000 0"9533 
0.7962 0-9465 
0.7886 0-9398 

2.0000 
1.9186 
1.8726 
1.8350 
1.8020 
1.7724 
1-7452 
1.7200 
1.6962 
1.6738 
1.6526 
1.6324 
1.6132 
1-5946 
1 5766 
1 5594 
1 5430 
1 5270 
1 5114 
1 4964 
1.4816 
1.4674 
1.4536 
1.4402 
1.4270 
1.4142 
1"4018 
1.3896 
1-3776 
1-3660 
1"3546 
1"3436 
1"3326 
1.3218 
1"3114 
1.3012 
1"2910 
1.2812 
i .2714 
1-2620 
1-2526 
1"2434 
i .2344 
t .2256 
1"2168 
1.2082 
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TABLE 3 

Critical Mach Numbers .for Sheared Infinite Wings Mcs for 
Varying Angle 9 and Varying Supervelocity Ratio ~, 

according to Formula (3.6) 

9 (degrees) 

d~ 
10 20 30 40 50 60 

0 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0-14 
0.15 
0.16 
0.17 
0-18 
0-19 
0.20 
0.21 
0.22 
0-23 
0.24 
0.25 
0.26 
0.27 
0.28 
0-29 
0.30 
0.31 
0.32 
0"33 
0-34 
0.35 
0.36 
0.37 
0.38 
0-39 
0.40 
0.41 
0.42 
0.43 
0.44 
0.45 

1.0154 
0.9737 
0.9502 
0.9308 
0-9139 
0.8989 
0.8849 
0.8719 
0.8598 
0.8484 
0.8375 
0-8272 
0.8173 
0.8078 
0-7986 
0.7898 
0.7813 
0.7733 
0.7653 
0-7575 
0.7500 
0-7428 
0.7357 
0.7289 
0.7221 
0.7156 
0-7092 
0.7030 
0.6969 
0.6910 
0.6852 
0.6795 
0.6739 
0.6685 
0.6631 
0.6579 
0-6529 
0.6479 
0.6428 
0.6379 
0.6331 
0.6284 

0 . 6 2 3 8  
0,6193 
0.6149 
0.6105 

1.0642 
1-0191 
0.9937 
0-9729 
0-9547 
0-9383 
0.9234 
0.9095 
0.8964 
0.8841 
0.8724 
0.8613 
0.8507 
0.8405 
0.8307 
0.8213 
0.8124 
0.8036 
0.7950 
0.7867 
0.7787 
0.7710 
0.7634 
0.7561 
0.7490 
0.7420 
0-7352 
0.7286 
0-7220 
0-7157 
0-7095 
0.7034 
0-6976 
0-6917 
0.6862 
0-6807 
0.6751 
0.6696 
0.6644 
0.6592 
0.6542 
0.6492 
0"6443 
0.6395 
0"6348 
0.6301 

1.1547 
1.1031 
1.0740 
1.0503 
1.0297 
1.0111 
0.9940 
0.9783 
0.9636 
0"9496 
0.9363 
0.9238 
0.9118 
0"9003 
0"8893 
0:8789 
0-8685 
0-8586 
0.8490 
0.8398 
0.8308 
0-8221 
0.8137 
0.8054 
0.7974 
0.7896 
0.7820 
0.7746 
0.7674 
0"7603 
0.7534 
0.7467 
0.7402 
0"7337 
0.7272 
0.7210 
0.7149 
0-7090 
0.7032 
0.6975 
0.6918 
0.6863 
0.6809 
0-6756 
0.6703 
0.6653 

1-3054 
1.2423 
1.2068 
1.1780 
1.1529 
1.1303 
1.1097 
1.0907 
1.0728 
1"0560 
1.0402 
1.0251 
1"0107 
0.9971 
0.9839 
0.9711 
0.9589 
0'9472 
0"9358 
0.9248 
0.9141 
0.9038 
0-8938 
0.8841 
0.8746 
0-8654 
0-8564 
0-8477 
0-8394 
0-8311 
0-8227 
0-8148 
0-8071 
0.7995 
0.7921 
0-7848 
0.7778 
0.7708 
0.7640 
0.7573 
0.7508 
0"7444 
0"7381 
0"7319 
0.7259 
0.7199" 

1.5557 
1.4714 
1.4244 
1.3862 
1.3530 
1.3234 
1.2965 
1.2716 
1.2483 
1.2265 
1.2059 
1.1866 
1-1678 
1.1501 
1.1331 
1-1169 
1-1012 
1-0862 
1.0717 
1.0576 
1.0441 
1.0310 
1.0184 
1.0062 
0.9944 
0.9825 
0.9712 
0.9602 
0.9495 
0.9391 
0.9290 
0.9190 
0.9094 
0.9000 
0.8908 
0.8818 
0.8730 
0.8644 
0.8560 
0.8478 
0.8397 
0-8319 
0-8241 
0-8166 
0-8091 
0.8019 

2-0000 
1- 8726 
1-8021 
1.7453 
1-6963 
1.6527 
1.6132 
1.5768 
1.5430 
1.5117 
1.4817 
1.4537 
1.4272 
1.4018 
1.3777 
1.3547 
1.3327 
1-3115 
1-2914 
1.2719 
1.2527 
1.2345 
1.2169 
1.1998 
1.1834 
1-1675 

.1-1520 
1-1369 
1-1223 
1.1082 
1.0944 
1-0810 
1.0680 
1.0553 
1.0429 
1.0309 
1.0191 
1.0077 
0.9964 
0.9855 
0.9748 
0.9644 
0.9542 
0.9442 
0.9344 
0.9249 
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T A B L E  4 

Upper Critical Mach Numbers for Untapered Swept Wings with Four Different Profiles, 
for Varying Angle 9 and Thickness Ratio ~9 (obtained by interpolation from Table 3) 

(1) P r o f i l e B  ~ = 4 v ~ -  - -  1 .2732~"  # = 0 . 7 8 5 4 5 ~  
:Tg J 

v~ 
4-~o 
(deg) O. 05 O. 10 O. 15 0.20 0.25 0-30 

0 
10 
20 
30 
40 
50 
60 

0.868 
0-880 
0.918 
0.988 
1.103 
1.287 
1.600 

0.800 
0.810 
0.843 
0.903 
1-001 
1-155 
1.409 

0.748 
0.757 
0.786 
0.839 
0.924 
1.056 
1.270 

0-704 
0.713 
0.739 
0.786 
0.861 
0.977 
1.160 

0.667 
0.675 
0.699 
0-741 
0-808 
0.911 
1.070 

0.635 
0.642 
0.663 
0.702 
0.763 
0.854 
0.994 

(2) Profi le  C d~ = 1. 6674~ ; v~ - O. 5997d~ 
v~ 

± ~  
(deg) 0-05 0.10 0-15 0.20 0.25 0.30 

0 
10 
20 
30 
40 
50 
60 

0.844 
0"856 
0.892 
0.959 
1"067 
1.241 
1.532 

0.766 
0"776 
0"807 
0.862 
0"951 
1.091 
1"318 

0.707 
0.716 
0.742 
0.790 
0.865 
0.982 
1.167 

0-659 
0.667 
0-690 
0-731 
0-797 
0"897 
1.051 

0.619 
0.625 

0"646  
0.683 
0-740 
0-827 
0.957 

0"584 
0"590 
0"608 
0"641 
0"692 
0"767 
0"876 

(3) Prof i le  Q ~ - -  1 .7214a  ; ~ =: 0 . 5 8 0 9 ~  

(deg) 0"05 O" 10 O" 15 O" 20 O" 25 O" 30 

0 
10 
20 
30 
40 
50 
60 

0"841 
0'853 
0"889 
0.955 
1.063 
1.235 
1.524 

0"762 
0.772 
0.802 
0.856 
0'945 
1.083 
1"307 

0.702 
0.710 
0.736 
0.783 
0.858 
0.973 
1.155 

0-654 
0-661 
0.684 
0.725 
0-789 
0-887 
1.038 

0.613 
0.619 
0.638 
0.675 
0.732 
0.816 
0.944 

0.577 
0.583 
0.601 
0.633 
0.683 
0.757 

(4) Prof i le  R ~ - -  1.9108z~ ; ~ = O- 5 2 3 3 ~  

± ~  
(deg) 0"05 O" 10 O" 15 0"20 0"25 0"30 

0 
10 
20 
30 
40 
50 
60 

0.831 
0.842 
0.878 
0.942 
1.047 
1.215 
1.495 

0.747 
0.757 
0.786 
0.839 
O. 924 
1.056 
1.269 

0.685 
0.693 
0.718 
0.763 
0.834 
0.943 
1.113 

0.635 
0.642 
0-663 
0.702 
0.763 
0'854 
0.994 

0.593 
0.599 
0.618 
0.652 
0.704 

0 . 7 8 2  

0.557 
0.562 
0.579 
0.609 
0-655 
0.722 

42 



(d~g) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4O 
41 
42 

TABLE 5 

Maximum Supervelocities in the Kink Section of a Swept Wing, Profile B 

7) x V x 

0.000 
0.009 
0.018 
0-026 
0.035 
0.044 
0.052 
0.061 
0.070 
0.079 
0"087 
0.096 
0.105 
0.113 
0.122 
0"131 
0.140 
0-148 
0.157 
0.166 
0.175 
0"183 
0.192 
0.201 
0.210 
0.218 
0.227 
0.236 
0.244 
0.253 
0.262 
0.271 
0.279 
0-288 
0.297 
0-306 
0.314 
0.323 
0.332 
0-341 
0.350 
0.358 
0.367 

1.273 
1.273 
1.274 
1-274 
1.275 
1.276 
1"277 
1.278 
1.279 
1.281 
1.283 
1.285 
1.287 
1.290 
1.293 
1"295 
1.299 
1-302 
1.305 
1.309 
1-313 
1.318 
1.322 
1.327 
1-332 
1-337 
1.342 
1-348 
1.354 
1-360 
1.367 
1.374 
1.381 
1.388 
1.396 
1.404 
1-413 
1.422 
1.431 
1.440 
1.450 
1-461 
1.471 

i 9  
(deg) 

1.273 43 
1.273 44 
1.273 45 
1-272 46 
1.272 47 
1.271 48 
1-270 49 
1.269 50 
1-267 51 
1.265 52 
1.264 53 
1.262 54 
1.259 55 
1.257 56 
1.254 57 
1.251 58 
1.248 59 
1-245 60 
1.242 61 
1.238 62 
1-234 63 
1.230 64 
1.226 65 
1.221 ' 66 
1.217 67 
1.212 68 
1.207 69 
1.201 70 
1.196 71 
1-190 72 
1.184 73 
1-178 74 
1-171 75 
1.165 76 
1.158 77 
1.150 78 
1.143 79 
1.135 80 
1.128 81 
1.119 82 
1.111 83 
1.102 
1.093 90 

:=~ ~er, ~ 

0.376 1.483 
0.385 1.494 
0.393 1"506 
0.402 1"519 
0.411 1.532 
0.420 1.546 
0.429 1-560 
0.438 1.575 
0-447 1-590 
0.455 1.606 
0.464 1.623 
0.473 1.641 
0.482 1.659 
0.491 1"678 
0.500 1"698 
0-509 1"719 
0-518 1"741 
0-527 1.764 
0.537 1"788 
0.546 1.813 
0"555 1-839 
0.564 1.867 
0.573 1-897 
0.583 1.928 
0.592 1.960 
0.602 1.995 
0.611 2"032 
0.621 2.071 
0.630 2.113 
0-640 2.157 
0"650 2-205 
0.660 2-256 
0"670 2-311 
0.681 2.371 
0.691 2.437 
0-702 2.508 
0-713 2"587 
0-724 2.675 
0.735 2-773 
0.747 2"885 
0;760 3.013 

1.000 

H 

1- 084 
1.074 
1.065 
1.055 
1.045 
1.034 
1.024 
1.012 
1.001 
0.989 
0 -977 
0.964 
0.952 
0.938 
0.925 
0-911 
0.897 
O- 882 
0.867 
0.851 
0.835 
0.819 
0.802 
0.784 
0.766 
0- 747 
0.728 
0-708 
0-688 
0.667 
0.645 
0.622 
0.598 
0.574 
O. 548 
O" 522 
0-494 
0-464 
0- 434 
0-401 
0.367 

0 
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TABLE 6 

Maximum Supervelocities in the Kink Section and Kink Area of Sw@t Wings, Profile C 

Kink  section 

9 
(deg) 

90 

84 
83 
82 
81 
80 
79 
78 
77 
76 
75 
74 
73 
72 
71 
70 
69 
68 
67 
66 
65 
64 
63 
62 
61 
60 
59 
58 
57 
56 
55 
54 
53 
52 
51 
50 
49 
48 
47 
46 
45 
44 

- - 0 . 3 3 3  

- -0 -090  
- -0 .079  
- - 0 . 0 6 8  
- - 0 . 0 5 8  
- -0"048 
- -0"039 
- - 0 . 0 2 9  
- -0 .020  
- - 0 ' 0 1 2  
--0"004 

0.005 
0 .013 
0.021 
0.028 
0"036 
0"044 
0"051 
0"058 
0.065 
0.072 
0-079 
0-O86 
0-093 
0.100 
0.107 
0.113 
0.120 
0.127 
0 .133 
0.140 
0.146 
0"153 
0"159 
0"165 
0"172 
0 .178 
0.184 
0"190 
0-196 
0 .202 
0 .209 

O,U cos 9 )  max 

2.704 
2.609 
2-527 
2-457 
2-395 
2-339 
2-288 
2-243 
2-202 
2- 164 
2. 129 
2 .096 
2.066 
2.038 
2.012 
1.987 
1.964 
1.943 
1.922 
1.903 
1.885 
1.868 
1.852 
1.836 
1.822 
1.808 
1.795 
1.783 
1-771 
1.760 
1.750 
1.739 
1-730 
1-721 
1-712 
1-704 
1-697 
1-689 
1-683 
1-676 
1-670 

0 

0.283 
0 .318 
0"352 
0.384 
0.416 
0"446 
0 '476  
0.505 
0-533 
0-560 
0.587 
0-613 
0-638 
0.664 
0-688 
0.712 
0.736 
0.759 
0.782 
0.804 
0 .826 
0 .848 
0 .869 
0 .890 
0.911 
0.931 
0.951 
0.971 
0 .990 
1.009 
1.028 
1.047 
1.065 
1.083 
1.101 
1".118 
1.135 
1.152 
1.169 
1.185 
1.201 

K ink  section K ink  area  
(~m ----- O. 456) 

9 
(deg) 

H H 

43 
42 
41 
40 
39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
2O 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 

9 
8 
7 
6 
5 
4 
2 
2 
1 
0 

0"215 1-664 
0"221 1"659 
0"227 1-654 
0"233 1-649 
0"238 1-645 
0"244 1-641 
0"250 1"637 
0-256 1"633 
0-262 1"630. 
0"268 1"627 
0"274 1"625 
0 '279  1 '622 
0 '285  1"620 
0"291 1"618 
0"297 1"616 
0"302 1"615 
0"308 1"614 
0"314 1"613 
0"319 1"612 
0 '325  1"612 
0 '331 1"612 
0"336 1-612 
0"342 1-612 
0"347 1"612 
0"353 1"613 
0-358 1"614 
0"364 1 615 
0-369 1 616 
0-375 1 618 
0"380 1 620 
0-386 1 622 
0-391 1 624 
0-397 1 626 
0"402 1"629 
0"408 1"632 
0-413 1 635 
0-418 1 638 
0-424 1 642 
0-429 1 645 
0-434 1 649 
0-440 1 654 
0.445 1 658 
0-450 1 663 
0-456 1 667 

1.217 
1.233 
1" 248 
1. 263 
1.278 
1" 293 
1.307 
1.321 
1" 335 
1.349 
1- 362 
1- 376 
1-389 
1-401 
1 "414 
1"426 
1-438 
1-450 
1.461 
1.472 
1-483 
1 "494 
1.505 
1 '515 
1.525 
1.535 
1 "544 
1.554 
1.563 
1.571 
1.580 
1.588 
1.596 
1.604 
1 "612 
1 "619 
1"626 
1" 633 
1" 639 
1" 645 
1-651 
1-657 
1- 662 
1-667 

1" 220 
1. 239 
1- 258 
1- 277 
1" 296 
1.314 
1.332 
1"349 
1.366 
1" 382 
1-398 
1-414 
1-429 
1-444 
1-458 
1-472 
1-486 
1-499 
1-511 
1. 523 
1. 535 
1" 546 
1.557 
1.567 
1"577 
1"586 
1.595 
1.603 
1.611 
1 .618 
1.625 
1.631 
1.637 
1.642 
1.647 
1-651 
1.655 
1.658 
1-661 
1-663 
1-665 
1-666 
1-667 
1.667 
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T A B L E  6--continued 

Kink section 

9 
(deg) 

~ H 

0 
--1 
--2 
--3 
--4 
- - 5  
--6 
--7 
- - 8  
--9 
--10 
~11 
--12 
--13 
--14 
--15 
--16 
--17 
--18 
--19 
--20 
--21 
--22 
--23 
--24 
--25 
--26 
--27 
--28 
--29 
--30 
--31 
--32 
--33 
--34 
--35 
--36 
--37 
--38 
--39 
--40 
--41 
--42 

0.456 
0.461 
0.466 
0-471 
0.477 
0.482 
0.487 
0.492 
0.497 
0.502 
0.508 
0-513 
0-518 
0-523 
0.528 
0.533 
0.538 
0.543 
0.548 
0.554 
0.559 
0-564 
0-569 
0"574 
0.579 
0.584 
0.589 
0.594 
0.599 
0.604 
0.609 
0"614 
0.619 
0"623 
0.628 
0.633 
0"638 
0-643 
0-648 
0"653 
0'658 
0.663 
0.668 

1.667 
1.673 
1.678 
1.684 
1.689 
1.695 
1-702 
1.708 
1.715 
1.722 
1.730 
1.737 
1.745 
1.753 
1-762 
1.771 
1.780 
1.789 
1-799 
1-809 
1.819 
1.830 
1.841 
1.852 
1.864 
1.876 
1.889 
1-902 
1.915 
1.929 
1.943 
1.957 
1.972 
1-988 
2.004 
2.020 
2.038 
2.055 
2.074 
2.092 
2-112 
2.132 
2-152 

1-667 
1-672 
1-677 
1.681 
1.685 
1.689 
1.692 
1.696 
1.699 
1.701 
1.703 
1.705 
1.707 
1.709 
1.710 
1.710 
1.711 
1-711 
1.711 
1.710 
1-710 
1-708 
1.707 
1.705 
1"703 
1.700 
1-698 
1-694 
1-691 
1"687 
1.682 
1.678 
1'673 
1.667 
1"661 
1"655 
1.648 
1.641 
1"634 
1-626 
1.618 
1.609 
1.600 

Kink section 

9 
(deg) 

2,, H 

--43 
--44 
--45 
--46 
--47 
--48 
--49 
--50 
--51 
--52 
--53 
--54 
--55 
--56 
--57 
--58 
--59 
--60 
--61 
--62 
--63 
--64 
--65 
--66 
--67 
--68 
--69 
--70 
--71 
--72 
--73 
--74 
--75 
--76 
--77 
--78 
--79 
--80 
--81 

• --82 
--83 

--90 

& 
0.672 2-174 
0.677 2-196 
0.682 2-219 
0.687 2.243 
0.692 2.268 
0.697 2.293 
0.702 2.319 
0.707 2.347 
0.711 2.375 
O. 716 2.405 
O. 721 2.435 
O. 726 2.467 
0.731 2.500 
0.736 2.534 
0.740 2.570 
0.745 2.607 
0.750 2.647 
0-755 2.687 
0-760 2.730 
0.765 2.775 
0.770 2-822 
0.775 2-871 
0.780 2-922 
0.785 2.977 
0.790 3.034 
0-795 3.094 
0.800 3.158 
0.805 3.226 
0.810 3.298 
0.815 3-375 
0.820 3-457 
0.826 3-546 
0.831 3.641 
0.837 3.746 
0.842 3.858 
0-848 3.981 
0-853 4.117 
0-859 4.266 
-0-865 4.434 
O. 871 4.623 
O. 878 4-844 

1 "000 

1.590 
1" 580 
1.569 
1.558 
1.546 
1.534 
1.522 
1-508 
1.495 
1- 480 
1" 466 
1" 450 
1" 434 
1 "417 
1 "400 
1" 382 
1 "363 
1" 344 
1" 324 
1- 303 
1. 281 
1" 259 
1.235 
1 .211  
1-186 
1-159 
1- 132 
1" 103 
1 '074 
1' 043 
1 "011 
O" 977 
O" 943 
0 '906 
0.868 
0.828 
0.786 
0-741 
0.694 
O- 643 
O. 590 

0 
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TABLE 7 

MaximumS~ervelocitiesintheKinkSectionand KinkArea ~Sw@t Wi~s, Pr~leQ 

Front of the kink section Rear of the kink section 
9 

(deg) 

0 .175  
0.184 
0"193 
0-201 
0-209 

0.216 
0-224 
0"231 
0.238 
0-245 
0"252 
0"258 
0.265 
0.271 
0.278 
0.284 
0.290 
0.296 
0.302 
0 .308 '  
0-314 
0.319 
0.325 
0.331 
0-336 
0-342 
0-347 
0-353 
0.358 
0.364 
0.369 
0.374 
0.379 
0.384 
0.390 
0.395 

Vaa ( o cos L 

1.826 
1-797 
1.772 
1"749 
1.728 

1.710 
1"693 
1"677 
1.663 
1.650 
1"638 
1.627 
1.617 
1"607 
1"598 
1"590 
1.583 
1.576 
1.570 
1.564 
1.559 
1.554 
1.549 
1"545 
1.541 
1.538 
1.535 
1.532 
1"530 
1.528 
1"526 
1.525 
1.524 
1.523 
1.522 
1-522 

0'317 
0.343 
0"368 
0"393 
0-418 

0-443 
0-467 
0.490 
0-514 
0.537 
0.560 
0.583 
0.606 
0.628 
0.650 
0.672 
0-694 
0.716 
0.737 
0.758 
0.779 
0.800 
0.821 
0-841 
0.862 
0.882 
0-902 
0.922 
0"942 
0.962 
0"981 
1.000 
1-020 
1.039 
1"057 
1.076 

--1 

--0-909 
--0-904 
--0-899 
--0.894 
--0.889 
--0.884 
--0.879 
--0"874 
--0.870 

0"598 
0'598 
0"598 
0"598 
0"598 
0"598 
O" 598 
O- 598 
O- 598 
O- 598 
O- 598 
0-598 
0-598 
0-598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0"598 
0.598 
0-598 
0.598 
0"598 
0.598 
0.598 
0.598 

. _ _  Va: 

z~ U cos 9)~x 

O0 

2.459 
2"318 
2.198 
2.093 
2.000 
1-917 
1.842 
1-774 
1-711 

front of the kink area 

1.722 
1.722 
1-722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1. 722 
1.722 
1.722 
1-722 
1.722 
1.722 
1-722 
1.722 

! 1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 

0.257 
0.283 
0.306 

0 .327  
0.347 
0.366 
0.383 
0.399 
0.414 

0.446 
0.475 
0.503 
0.532 
0.561 
0.589 
0-617 
0.645 
0.673 
0.700 
0.728 
0.755 
0.782 
0.808 
0.835 
0.861 
0.887 
0.912 
0.938 
0.963 
0-987 
1.012 
1.036 
1.060 
1.083 
1.107 
1.129 
1.152 
1.174 
1-196 
1.217 
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TABLE 7--continued 

Front of the kink section Front of the kink area 

9 
(deg) 

44 
43 
42 
41 
40 
39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
2O 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

0-400 
0.405 
0.410 
0.415 
0-420 

0.467 

0-513 

O. 556 

0.598 

V x  . V x o co & - -  Vx max 

1.522 
1.522 
1.522 
1.522 
1-524 
1.525 
1.526 
1.527 
1.529 
1.531 
1.533 
1.535 
1.538 
1.541 
1.543 
1.546 
1.549 
1.553 
1.557 
1.560 
1.564 
1.569 
1.573 
1"578 
1.582 
1.587 
1"593 
1.598 
1.604 
1.609 
1.615 
1.622 
1-628 
1.635 
1.641 
1-648 
1.656 
1.663 
1.671 
1.679 
1..687 
1.695 
1.703 
1.712 
1.722 

1.095 
1.113 
1-131 
1-149 
1"167 
1-185 
1-202 
1-220 
1-237 
1-254 
1.271 
1-288 
1-304 
1-321 
1.337 
1.352 
1-368 
1.384 
1.399 
1"414 
1.429 
1.444 
1.459 
1" 473 
1.487 
1.501 
! '515  
1.528 
1"541 
1.555 
1.567 
1 "580 
1"592 
1"605 
1.617 
1"628 
1.640 
1-651 
1.662 
1-672 
1.683 
1-693 
1.702 
1-712 
1.722 

0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0 .598  
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
O- 598 
O- 598 
O. 598 
0.598 
0-598 
0.598 
0-598 
0.598 
0.598 
0-598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 
0.598 

1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1-722 
1- 722 
1.722 
1- 722 
1-722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1-722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1.722 
1-722 
1.722 
1.722 
1-722 
1-722 
1.722 
1.722 
1-722 
1-722 
1.722 

1.238 
1.259 
1.279 
1.299 
1"319 
1-338 
1"357 
1"375 
1.393 
1"410 
1"427 
1.444 
1-460 
1"476 
1.491 
1.506 
1-520 
1 - 5 3 4  
1.547 
1.560 
1-573 
1.585 
1.596 
1 "607 
1.618 
1.628 
1'637 
1"646 
1.655 
1.663 
1.670 
1.677 
1.684 
1"690 
1"695 
1.700 
1.705 
1.709 
1.712 
1.715 
1.717 
1.719 
1.721 
1.722 
1.722 
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Front  of the kink section 

9 
(deg) 

--1 
- -2  
- -3  
- -4  
- -5  
- -6  
- -7  
- - 8  
- -9  
--10 
--11 
--12 
--13 
--14 
--15 
--16 
--17 
--18 
--19 
--20 
--21 
--22 
--23 
--24 
--25 
- -26 
--27 
--28 
--29 
--30 
--31 
--32 
--31 
--34 
--35 
--36 
--37 
--38 
--39 
--40 
--41 
--42 
--43 

TABLE 7--continued 

%9,U cos  9)m~x 

1-730 
1-741 
1" 750 
1 "760 
1" 771 
1.781 
1.792 
1"803 
1.815 
1-826 
1.838 
1.851 
1.863 
1.877 
1 "890 
1 "903 
1.917 
1"932 
1 "947 
1" 962 
1"977 
1.993 
2"009 
2- 026 
2.043 
2"061 
2' 079 
2" 098 
2"117 
2" 137 
2" 156 
2" 177 
2" 199 
2" 220 
2-243 
2- 266 
2" 290 
2" 315 
2" 340 
2" 365 
2" 392 
2"419 
2" 448 

V x 

1-730 
1.739 
1 "748 
1"756 
1" 764 
1 "771 
1.779 
1-786 
1.792 
1.799 
1" 805 
1 "811 
1 "816 
1-821 
1-825 
1.830 
1.834 
1.837 
1.841 
1.843 
1-846 
1-848 
1" 850 
1-851 
1.852 
1.852 
1.853 
1.852 
1-851 
1.850 
1.848 
1- 847 
1"844 
1-841 
1.837 
1.833 
1. 829 
1" 824 
1.818 
1.812 
1.805 
1- 798 
1.790 

Front  of the kink section 

9 
(deg) 

~m 

--44 
--45 
--46 
--47 
--48 
--49 
--50 
--51 
--52 
--53 
--54 
--55 
--56 
--57 
--58 
--59 
--60 
--61 
--62 
--63 
--64 
--65 
--66 
--67 
- -68 
--60 
- -70  
--71 
--72 
--73 
--74 
--75 
--76 
--77 
--78 
--79 
--80 
--81 
--82 
--83 
--84 

--90 

( - )  
%9'U cos  ~ m~ 

2 -478 
2.508 
2-540 
2" 572 
2" 605 
2.640 
2.675 
2.713 
2.752 
2.791 
2.832 
2.875 
2.918 
2.966 
3.015 
3.063 
3.117 
3.171 
3.228 
3.289 
3.351 
3-417 
3.488 
3" 559 
3" 639 
3" 720 
3"803 
3"900 
3" 996 
4-100 
4-215 
4.330 
4-466 
4.607 
4" 759 
4" 937 
5.115 
5" 343 
5.578 
5.866 
6.183 

09 

1" 782 
1.773 
1- 764 
1. 754 
1" 743 
1.732 
1" 720 
1" 707 
1.694 
1.679 
1.665 
1"649 
1.632 
1.616 
1-597 
1.578 
1.559 
1.537 
1.515 
1.493 
1.469 
1.444 
1-419 
1.391 
1- 363 
1.333 
1.301 
1.270 
1.235 
1-199 
1-162 
1-121 
1.080 
1.036 
O. 989 
O. 942 
O. 888 
0"836 
0.776 
0.715 
0-646 

0 
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T A B L E  8 

Maximum Supervetocities in the Kink Section and Kink Area of Swept-back Wings, Profile R 

9 
(deg) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4O 
41 
42 

Kink section 

1.000 1-911 
1.821 
1-773 
1-733 
1-699 
1-670 
1.643 
1.619 
1.597 
1.576 

0-826 1.557 
1.539 
1.522 
1.507 
1.492 
1.478 
1.465 
1.453 
1.442 
1.431 

0.695 1.420 
1.411 
1.402 
1-393 
1.385 
1.378 
1-371 
1.365 
1.359 
1.353 

0.566 1.348 
1.343 
1.339 
1-335 
1.332 
1.328 
1.326 
1.323 
1.322 
1.320 

0.433 1.319 
1.318 

' 1 . 3 1 8  

#Ucos  9 ~ 

1.911 
1.821 
1.771 
1.730 
1.695 
1.663 
1.634 
1.607 
1.581 
1.556 
1-533 
1-511 
1.489 
1.468 
1-448 
1.428 
1-408 
1.389 
1-371 
1.353 
1.335 
1.317 
1.300 
1.283 
1.266 
1.249 
1.232 
1.216 
1-200 
1.183 
1-167 
1.151 
1-136 
1.120 
1-104 
1.088 
1-073 
1.057 
1-041 
1.026 
1.010 
0.995 
0-979 

Kink 
~ t r e a  

(~-~- 1) 9 
(deg) 

H 

1-911 
1.910 
1-910 
1.908 
1-906 
1-903 
1-900 
1.897 
1-892 
1.887 
1.882 
1.876 
1.869 
1.862 
1.854 
1.846 
1-837 
1.827 
1.817 
1.807 
1.796 
1.784 
1.772 
1-759 
1.746 
1-732 
1 . 7 1 7  
1.702 
1.687 
1.671 
1.655 
1"638 
1.620 
1.602 
1.584 
1.565 
1.546 
1.526 
1.506 
1"485 
1.464 
1.442 
1.420 

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 6  
67 
68 
69 
7O 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

9O 

"~m 

0.293 

0.143 

--0.025 

--0.228 

- -1 .000 

Kink section 

H 

1" 318 0"964 
1.318 0.948 
1.319 0.933 
1"320 0" 917 
1"322 0"902 
1" 324 0" 886 
1"327 0"870 
1-330 0" 855 
1"333 0" 839 
1"337 0" 823 
1.341 0" 807 
1.346 0" 791 
1" 352 0. 775 
1.358 0"759 
1"364 0- 743 
1"371 0"727 
1"379 0" 710 
1"387 0'  694 
1"397 0" 677 
1.406 0 .660!  
1.417 0 . 6 4 3  
1-428 0.626 
1.441 0.609 
1-454 0"591 ! 
1- 468 0" 574 
1-483 1"556 
1"500 O" 538 
1.518 0"519 
1"538 0"501 
1.559 0.482 
1-581 0"462 
1.606 0"443 
1" 633 0" 423 
1.663 0"402 
1" 695 0"381 
1 "731 0-360 
1- 772 0"338 
1"816 0"315 
1- 867 0" 292 
1" 925 0" 268 

oo 0 

Kink 
o . r e 3 .  

1) 

H 

1 397 
1 374 
1 351 
1 327 
1 303 
1 279 
1 254 
1 228 
1 202 
1-176 
1.150 
1.123 
1.096 
1.068 
1.041 
1.013 
0.984 
0.955 
0.926 
0.897 
O. 867 
0"838 
0.8O8 
0-777 
0-747 
0-716 
0.685 
0-654 
0.622 
0"590 
0- 559 
0- 527 
0.495 
0- 462 
0" 430 
0.397 
0" 365 
0- 332 
0" 299 
0.266 

0 
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TABLE 9 

Lower Critical Mach Numbers for Untapered Swept Wings, Profile B, 
Based on Maximum Supervdocities in the Kink Section 

# = 0 . 0 5  # = 0 " 1 0  = 0 " 1 5  

(deg) 

O' 94 70-4 
0.93 64.4 
0.92 57-75 
0.91 50-3 
0.90 42-2 
O. 89 33.4 
O. 88 23.5 
0.87 9.3  
O- 8679 0 

M~z -4-~o 
(deg) 

0.90 71 "8 
0-89 68"3 
0.88 64.3 
O. 87 59.95 
0.86 55-1 
0-85 49-8 
O. 84 43.9 
O" 83 37-5 
O. 82 30.1 
0.81 20.9 
0~80 3"45 
0 ~ 7997 0 

Moz q- 9 
(deg) 

0.87 73.4 
0.86 70.8 
0.85  68.0 
0.84 64.8 
0-83 61.4 
0.82 57.6 
0-81 53.4 
0.80 48.8 
0.79 43- 7 
0.78 37.9 
0.77 31.3 
O. 76 22.9 
0.75 10.3 
O- 7475 0 

= 0.30 

Moz • 9 
(deg) 

0.81 77-2 
0.80 75.7 
O. 79 74.2 
O. 78 72.45 
O. 77 70.6 
O- 76 68.5 
O- 75 66.4 
O. 74 64.0 
0.73 61.3 
O. 72 58.5 
0.71 55.3 
0-70 51.8 
0.69 47-9 
O. 68 43.6 
O' 67 38-6 
O" 66 32.8 
0-65 25 "5 
0"64 14.6 
0"6331 0 

~9 = 0.25 

Mo~ • 9 
(deg) 

0.83 76.6 
0.82 75.0 
0.81 73.2 
O. 80 71.25 
O. 79 69.1 
O. 78 66-8 
O. 77 64-2 
0.76 61.4 
O. 75 58.4 
O" 74 55" 05 
0.73 51-35 
0.72 47-25 
0-71 42.6 
0 - 7 0  37.4 
0.69 31.1 
0"68 23.3 
O. 67 10.85 
O' 6673 0 

v a = 0"20 

Mc~ 4- 9 
(deg) 

0.85 75-6 
0.84 73-6 
0.83 71-4 
0.82 69.1 
0.81 66-5 
O. 80 63-6 
O. 79 60.5 
O- 78 57-1 
O. 77 53.3 
O" 76 49.05 
O. 75 44.5 
O. 74 39-3 
O. 73 33.2 
0-72 25.9 
0.71 15"6 
O. 7043 0 
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TABLE 10 

Lower Critical Mach Numbers Mi~ for Untapered Swept Wings, Profile C, 
Based on Maximum SuperveIocities in the Kink Section 

vq = 0.05 v ~ = 0-10 z~ = 0-15 

Mc z " (deg) 

0"94 
0"93 
0"92 
0"91 
0"90 
0"89 
0"88 
0"87 
0-86 
0"85 
0"8443 

66.6 
60"9 
54.9 
48.7 
42.55 
36.35 
30.1 
23.9 
18"3 
10.8' 
0 

-69;35 
- -64:7 
--59.3 
--53.3 
--46"3 
--38.2 
--27,9 

Mo t (deg) 

0"90 68"6 
0"89 65"2 
0"88 61.55 
0.87 57"75 
0-86 53.8 
0-85 49.7 
0"84 45"4 
0"83 41"0 
0"82 36.4 
0"81 31"55 
0.80 27.0 
0.79 22.5 
0.78 17.05 
0.77 9.0 
0.7661 0 

- -69.8  
- -66.8  

- - 6 3 . 3 5  
--59.5 
--55.2 
--50.25 
--44.5 
- -37.5  
--28.1 

M~ t q9 
(deg) 

0"86 
0"85 
0"84 
0"83 
0"82 
0"81 
0"80 
0"79 
0"78 
0"77 
0"76 
0-75 
0.74 
0.73 
0.72 
0.71 
0.7070 

67"9 
65"3 
62"45 
59"5 
56"4 
53"1 
49"75 
46"2 
42"4 
38"5 
34"3 
30"3 
26"4 
22"0 
16"3 
7"8 
0 

--67.3 
--64.5 
--61.4 
--58.0 
--54.0 
--49.5 
- -44.2  
--37.6 
--28.5 

v~ = O.30 

M, t (P 
(deg) 

0"77 
0"76 
0"75 
0"74 
0"73 
0"72 
0"71 
0"70 
0"69 
0"68 
0"67 
0"66 
0"65 
0"64 
0.63 
0.62 
0.61 
0-60 
0.59 
0.5836 
0.58 

68"3 
66"5 
64"5 
62"5 
60 -4 
58"1 
55 "7 
53 "2 
50" 55 
47-7 
44"7 
41 "5 
38.1 
34.75 
31.6 
28.05 
24.0 
18.9 
11.9 
0 

- -5 .2  

--71,95 
--70" 25 
--68" 4 
--66" 3 
--64"0 
--61"5 
--58"6 
--55"4 
--51"6 
--47"2 
--41"75 
--34-55 

--17.8 

= 0.25 

Mo z (deg) 

0"80 
0"79 
0"78 
0"77 
0"76 
0"75 
0"74 
0"73 
0'  72 
0"71 
0"70 
0"69 
0"68 
0"67 
0-66 
0.65 
0.64 
0.63 
0"62 
0"6186 

68.8 
66.8 
64.7 
62-5 
60-2 
57:8 
55:25 
52.55 
49.7 
46.7 
43.5 
40.1 
36.5 
33.1 
29.75 
25.9 
21.4 
15.65 
5-5 
0 

--71.6 
--69-7 
--67.7 
--65.4 
--62-9 
--60.1 
--57.0 
--53.4 
--49.2 
--44.2 
--37.9 
--28.8 

v q --  0.20 

9 
(deg) 

0"83 
0"82 
0'81 
0"80 
0"79 
0-78 
0"77 
0" 76 
0-75 
0 " ~  
0-73 
0"72 
0-71 
0"70 
0"69 
0"68 
0"67 
0"66 
0"6591 

68.75 
66-5 
64.2 
61 "75 
59-2 
56.4 
53"6 
50.6 
47"4 
44.05 
40"5 
36.7 
32.9 
29.5 
25 "6 
21-05 
15.2 
4"3 
0 

--70-3 
--68" 1 
--65-75 
--63" 1 
--60.2 
--56 "9 
--53.1 
--48" 7 
--43"45 
--36" 9 
--27.2 
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T A B L E  10a 

Lower Critical Mach Numbers Mo ~ for Untapered Swept-Back Wings, Profile C, 
Based on Maximum Supervelocities in the Kink Area 

v ~ = 0-05 v ~ = 0 .10 v ~ = 0 .15 

Me M.  z (aeg). : Me  t (aeg) 
9 

(deg) 

0 .87 23 .6  
0-86 16.5 
0 .85 7 .7  
O. 8443 0 

0 .80  26.4  
0 .79  20.7 
0 .78  14.0 
0 .77  5 .2  
0.7661 0 

0 .75  29.6  
0 .74 24.9 
0 .73  19.3 
0 .72  12.75 
0.71 3 . 8  
0-7070 0 

v ~ = 0 .30  

Me ~ 9 
(deg) 

0"64 34.3  
0 .63  30"35 
0"62 25.9  
0"61 20"8 
0"60 14.8 
0 .59 7 .0  
0.5836 0 

v q = 0 .25 

Mc ~ 
(deg) 

0"67 32"4 
0 .66 28.25 
0"65 23.5  
0,64 17"95 
0.63 11-0 
0 .62 1 .8  
0.6186 0 

v q = 0 .20 . 

i c  ~ 
(deg) 

0.71 32.7 
0 .70  28.3 
0 .69 23.4  
0 .68 17.8 
0 .67  10.95 
0-66 1.2 
0.6591 0 
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TABLE 11 

Lower Critical Mach Numbers Mr ~ for Untapered Swept Wings, Profile Q, 
Based on Maximum Supervelocities in the Front of the Kink Section 

Z~ = 0"05 V a = O'iO V ~ = 0"15 

9 (P 
M.,  (deg) Ma M~ (deg) (deg) 

0"94 
0.93 
0"92 
0.91 
0"90 
0.89 
0"88 
0"87 
0.86 
0"85 
0"8413 
0"84 

58"4 
52.3 
47"9 
40"6 
35.3 
30"05 
24.85 
19.6 
13.95 
7"5 
0 

--1"3 

--74-4 
- -70.8  
--66.7 
- -61.9  
--56.4 
- -49.8  
--41 "9 

- -31.0  

v ~ = 0.30 

M~ (deg) 

0.83 
0"82 
0"81 
0.80 
0"79 
0"78 
0"77 
0.76 
0"75 
0.74 
0.73 
0.72 
0"71 
0.70 
0.69 
0.68 
0.67 
0"66 
0.65 
0"64 
0"63 
0"62 
0"61 
0-60 
0.59 
0.58  
0-5773 
0.57 

72" 15 
70.5 
68" 85 
67" 1 
65"3 
63"45 
61 "5 
59"5 
57.5 
55" 35 
53" 15 
50"4 
48-6 
46" 1 
43"6 
40"8 
38.25 
35.4 
32.3 
29" 15 
25.7 
22.0 
18"0 
13.5 
8"3 
2-0 
0 

--6"7 

--80"6 
--79" 75 
--78"8 
--77-7 
--76-5 
--75 "35 
--74"0 
--72"5 
--70 "8 
--69"0 
--67-0 
--64 "7 
--62" 1 
--59.05 
--55.5 
--51-3 
--45.9 

--38.2 

0"91 
0"90 
0"89 
0-88 
0"87 
0"86 
0-85 
0"84 
0"83 
0"82 
0"81 
0"80 
0"79 
0"78 
0"77 
0"7618 
0 '76 

64"8 
61"1 
57"35 
53 "6 
49"8 
46 '0  
42-1 
38 "3 
34 "4 
30 "4 
26 "3 
22"1 
17 "45 
12"3 
6"3 
0 

--1 "65 

--76"9 
--74"85 
--72"55 
--70"0 
--67" 1 
--63" 9 
--60" 1 
--55" 7 
--50" 3 
--44" 3 

--35 "7 

v ~ = 0.25 

Mo z 9 (deg) 

0.84 
0-83 
0.82 
0.81 
0.80 
0.79 
0.78 
0.77 
0.76 
0-75 
0.74 
0"73 
0-72 
0"71 
0..70 
0.69 
0.68 
0.67 
0.66 
0.65 
0.64 
0.63 
0.62 
0.6126 
0.61 
0.60 

69.6 
68.0 
66.05 
64.0 
61.9 
59.8 
57" 55 
55.3 
53"1 
50.5 
48"0 
46" 45 
42.7 
39.95 
37.1 
34.1 
30.9 
27.5 

23.95 
20.0 
15-75 
10.9 
5.2 
0 

--2.15 
--15.1 

--80.6 
- -79.7  
--78.65 
--77-5 
--76.3 
--74.9 
--73.4 
--71 "8 
--69-0 
- -68.0  
- -65.7  
--63.15 
- -60.2  
- -56.8  
- -53.6  
- -48.9  

--41.15 
--28.8 

0.88  
0"87 
0.86 
0.85 
0.84 
0.83 
0.82 
0.81 
0-80 
0.79 
0.78 
0.77 
0.76 
0.75 
0.74 
0.73 
0.72 
0.71 
O. 7020 
0.70 

66- 25 
65.3 
60.7 
57-8 
55.1 
51-8 
48.75 
45.6 
42- 45 
39.2 
35.85 
32.4 
28.8 
25.0 
21 "0 
16.6 
11.65 
5.8 
0 

--1 '7 

--78.1 
--76.5 
- -74.9  
--73.1 
--71.0 
- -68.7  
- -66.2  
--65.25 
--59.9 
--56-1 
--52-35 
--46.35 

--38.4 

v q = 0.20 

Moz (deg) 

0.86 
0-85 
0 . ~  
0.83 
0.82 
0.81 
0 - ~  
0 . ~  
0 . 3  
0.77 
0 . ~  
0.75 
0.74 
0 . 3  
0 . ~  
0.71 
0 . ~  
0 . ~  
0 . ~  
0.67 
0.66 
0.6535 
0.65 

68.6 
66.45 
64.15 
61.8 
59-35 
56-9 
54.3 
51 "7 
49.0 
46.2 
43.4 
40.5 
37.45 
24.3 
31.0 
27.6 
23.9 
19.9 
15.5 
10.5 
4.7 

- -3 .0  

--79.2 
--78"05 
--76" 7 
--75"3 
--73" 75 
--72"0 
--70" 1 
--67"9 
--65.5 
- -62.75 
- -59.6  
--56-0 
- -52.7  
--43.65 

--39.0 

53 



TABLE l l a  

Lower Critical Mach Numbers Mc ~ for Untapered Swept-back Wings, Profile Q, 
Based on Maximum Supervelocities in the Kink Area 

#--=--0.05 # = 0 . 1 0  # = 0 " 1 5  

~o 
M°' (deg) 

O. 93 52.75 
O. 92 48.1 
0.91 43.6 
0.90 39.1 
0-89 34.7 
0.88 30.2 
O. 87 25.4 
O. 86 20.1 
0.85 13-45 
0.8413 0 

Mi~ 9 
(deg) 

0.89 57-9 
0-88 54-9 
0.87 51.9 
0-86 48.9 
0.85 45-85 
0.84 42.7 
0.83 39.5 
0.82 3 6 . 1 5  
0.81 33.5 
0"80 28"75 
0.79 24"5 
0.78 19"6 
0.77 12.4 
0.7618 0 

Qg. 

Mcz (deg l 

0-86 61 "1 
0.85 58.8 
0.84 56.5 
0.83 54-2 
0-82 51- 75 
0.81 49:3 
0.80 46-8 
o. 79 44.1 
0.78 41.3 
0.77 38.4 
0.76 35.4 
0.75 32.05 
O. 74 28.4 
0-73 24.3 
0-72 19-5 
0.71 12.9 
0.7020 0 

z~ = 0.30 

M~ (deg) 

O. 79 65.45 
0.78 64-2 
O. 77 62- 7 
0.76 61.1 
0.75 60.8 
O. 74 57.85 
0.73 56.0 
0.72 54.35 

0 .71  52.5 
0.70 50-6 
0.69 48-6 
0.68 46.5 
O" 67 44.2 
0.66 41.9 
0.65 . 39.3 
0.64 36"6 
0.63 33 "65 
0.62 30.4 
0-61 26-6 
0.60 22-3 
0.59 16-7 
0 '58  7"7 
O. 5773 0 

*) = 0.25 

9 
Moz (deg) 

0.81 64.4 
0.80 62.85 
0.79 61.1 
0.78 59.3 
O. 77 57.55 
0.76 55.8 
0.75 53.8 
0.74 51.8 
0.73 49.8 
0.72 47.65 
0-71 45-4 
O. 70 43.0 
O. 69 40- 5 
0.68 37.9 
0.67 35.0 
0.66 31.8 
0-65 28.3 
0-64 24-15 
0-63 19-4 
0.62 12.65 
0.6126 0 

v a = 0.20 

~o 
Mo~ (deg) 

0.83 62-4 
0.82 60-5 
0.81 58.5 
O" 80 56.5 
O- 79 54" 5 
0.78 52.3 
0.77 50.15 
0.76 46.75 
0-75 45.5 
O- 74 43.05 
O- 73 40-45 
O. 72 37- 7 
O. 71 34.7 
O. 70 31-45 
O. 69 27.85 
0.68 23-7 
0-67 18.6 
0.66 11:75 
O- 6535 0 

• 5 4  : 



TABLE l l b  
.Lower Critical Mach Number M~ for Untapered Swept-back Wings, Profile Q, 

Based on Maximum Supervelocities in the Tip Section 

# ' = 0 " 0 5  ~ = 0 " 1 0  # = 0 . 1 5  

Mo, 9 
(deg) 

0 .94  69 .6  
0 .93  62.75 
0 .92  54 .8  
0"91 45"1 
0 ' 9 0  33.2  

(deg) 

0.91 74-6 
0"90 70-8 
0"89 66"7 
0"88 6 t ' 9  
0"87 56 .4  
0 .86  49 .8  
0 .85  41 .9  

Mc ~ (deg) 

0 .88  75.1 
0- 87 72.5  
0- 86 69.45 
0 .85  66 .0  
0 -84 62.1 
0 .83  57-5 
0 .82  52.25 
0.81 45 .8  

,~ = o . 3 o  

Mo ~ 9 
(deg) 

0 .82  78-1 
0.81 76.5  
0 .80 74 .9  
0 .79  73 .0  
0 .78  71 .0  
0-77 68.7  
0 .76  66.2  
0 .75  63.25 
0-74 59.95 
0 .73  56.1 
0 .72  51.55 

v a = 0 .25  

Mo ~ 
(deg) 

0 .84  77" 7 
0 .83  76.0  
0 .82  74.1 
0-81 72 .0  
0-80 69 .6  
0-79 66-95 
0 .78  64 .0  
0 .77  60 .6  
0 .76  56 .6  
O. 75 52.0  
0 .74  46 .4  

v ~ = 0 .20  

(deg) 

0 .86  76 .9  
0 .85  74.85 
O. 84 72- 55 
0 .83  " 70 .0  
O. 82 67.1 
0"81 63"9 
0 .80  60.1 
0-79 55"7 
0-78 50-6 

TABLE 11c 
Lower Critical Mach Number Me ~ for Untaflered Swept-back Wings, Profile Q, 

Based on Maximum Supervelocities in the Rear of theKink Section 

z9 = 0 .05 

Me ~ 9 
(deg) 

0 .95  69 .3  
0 .94  60 .0  

v a = 0 .30 

19 = 0 .10  

M ~  
(deg) 

0 .92  72.4  
0.91 67.3 
0 .90  61.15 

v ~ = 0 .25 

M ~  ~ ' 
(deg) 

0- 86 76 .7  
0-85 74.4  
0 .84  71.85 
0 .83  68 .8  

55 

z9 = 0"15 

Mo ~ ~o 
(deg) 

0 .90  75-2 
0 .89  71-95 
O" 88 68 .2  
0"87 65 .2  

~9 = 0 .20  

Mo~ ~o 
(deg) 

0-88  76"3 
0"87 73.7  
0 .86  70 .7  
0"85 67" 1 

M e  Z ~9 , 
(deg) 

0-85 78 .4 '  
0 -84 76 .7  
0 .83  74 .6  
0 .82  72-3 
0-81 69"8 



T A B L E  12 
Lower Critical Mach Numbers Mc ~ for Untapered Swept-back Wings, Profile R, 

Based on Maximum Supervelocities in the Kink Section 

v ~ = 0.05 

M~ 9 
(deg) 

~ = 0 . 1 0  @ = 0 . 1 5  

0.95 65.1 
0-94 57.6 
0.93 50.2 
O. 92 42.9 
O. 91 36.1 
0-90 29-7 
0.89 23.8 
0.88 18.35 

0 . 8 7  13-25 
0.86 8"7 
0.85 4.5  
O. 84 1.45 
O. 8310 0 

z$ = 0-30 

Mo ~ 
(deg) 

Mo, ~o 
(deg) 

0-91 64"3 
0"90 59"9 
0.89 55" 2 
0.88 50.5 
0.87 45.8 
0.86 41.05 
0.85 36.4 
0-84 31.9 
0-83 27.6 
0-82 23.4 
0.81 18-8 
0"80 14"8 
0.79 10.9 
0-78 7.3 
0"77 4.4 
0-76 1 "7 
0-75 0"3 
O" 7474 0 

v ~ = 0"25 

Moz 9 
(deg) 

Mot 9 
(deg) 

O.88 65.6 
0.87 62.3 
O" 86 58.7 
0.85 55" 1 
0"84 51-4 
0"83 47.6 
0"82 43.8 
0.81 39.9 
0"80 36.05 
0-79 32-2 
0-78 28.4 
0"77 24.6 
O" 76 20.8 
0.75 17-1 
0.74 13"5 
O" 73 10.1 
0.72 6.9 
0.71 4.2  
0.70 1 "9 
0.69 0.5 
O. 6850 0 

0.84 
0.83 
0.82 
0-81 
0-80 
0.79 
0.78 
0.77 
0.76 
0.75 
0.74 
0.73 
0.72 
0.71 
0"70 
0"69 
0"68 
0"67 
0"66 
0"65 
0"64 
0"63 
0"62 
0"61 
0"60 
O" 59 
0"58 
0"57 
0"56 
O" 5565 

73"8 
72.0 
70-05 
68-0 
65"9 
63"6 
61 "3 
58"8 
56 '3  
53"7 
50.95 
48.15 
45.3 
42.3 
39.3 
36.3 
33-1 
30.0 
26.8 
23.5 
20-3 
17-1 
13-9 
10-9 
8.05 
5.5 
3.2 
1.5 
0-3 
0 

0.85 71.65 
0.84 69.45 
0.83 67.2 
0.82 64.8 
0.81 62.2 
O. 80 59.6 
0.79 56.9 
0.78 54.0 
0.77 51.1 
O- 76 48-1 
O. 75 45- 05 
0.74 42-0 
O. 73 38.7 
0.72 35.5 
0.71 32.2 
0.70 28.9 
0 "69 25-6 
0"68 22"2 
0"67 18-9 
0"66 15"6 
0"65 12"0 
0"64 9"4 
0"63 6"6 
0"62 4"15 
0"61 2.3 
0"60 1-1 
O. 5926 0 

v ~ = 0.20 

Mc z (deg) 

0"86 68.2 
0.85 65.5 
O. 84 62.7 
0.83 59.7 
0.82 56.7 
0.81 53.5 
O. 80 50- 25 
0.79 46-9 
O. 78 43- 55 
O. 77 40.15 
0.76 36.7 
0.75 33.2 
0-74 29-7 
0-73 26-2 
0.72 22.7 
0.71 18.2 
0.70 15.8 
0.69 12.4 
0.68 9.8  
0.67 6.4 
0-66 3.9  
0-65 1.8 
0-64 0.5  
O. 6348 0 
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TABLE 12a 

Lower Critical Mach Numbers Mc ~ for Untapered Swept-back Wings, Profile R, 
Based on Maximum Supervelocities in the Kink  Area 

~ = 0 " 0 5  ~ = 0 " 1 0  # = 0 " 1 5  

Mo, 
(deg) 

O. 95 65.05 
0-94 60.4 
0.93 55"8 
0-92 51" 35 
O" 91 47 -05 
0 "90 42 "8 
0"89 38"6 
0"88 34-4 
0"87 30"0 
0 '86 25-4 
0"85 20-2 
0"84 13-65 
0.8310 0 

.o a = O' 30 

M** 'P 
(deg) 

0.84 74-2 
0.83 73-0 
0.82 71-75 
0.81 70.5 
O, 80 69.3 
O. 79 67.95 
0.78 66.6 
O- 77 65.2 
0-76 63.8 
0-75 62.4 
0-74 60 .9  
O. 73 59- 35 
O. 72 57- 7 
0.71 56.05 
0.70 53.9 
0.69 52.5 
0.68 50.7 
0.67 48.6 
0.66 46-6 
0.65 44.4 
0.64 42.2 
O" 63 39.6 
O. 62 36.95 
0.61 34 '0  
0"60 30.8 
O. 59 27.1 
0"58 22.8 
0-57 17"35 
0"56 8 ' 9  
O. 5565 0 

M~ 9 
(deg) 

0.91 65.8 
O. 90 63.45 
0"89 60- 7 
0 "88 57 "9 
0.87 55.2 
O. 86 52- 35 
0.85 49-5 
0.84 46.6 
O, 83 43.65 
0.82 40.6 
0.81 37.4 
0.80 34.0 
0.79 30.4 
0.78 26.4 
O. 77 21.85 
0.76 16.2 
0 "75 7.4 
O- 7474 0 

v ~ = 0 '25  

(deg) 

0-85 72.5 
0-84 71" 1 
0-83 69-7 
0.82 68.3 
0.81 66.8 
0.80 65-3 
0.79 63-8 
0'  78 62-2 
0 '  77 60- 6 
0" 76 58"9 
O. 75 57.2 
O, 74 55.4 
O. 73 53.5 
0.72 51.6 
0.71 49.6 
O. 70 47.5 
O. 69 45.3 
0-68 43.0 
O. 67 40.5 
0.66 37.9 
0.65 35.0 
0-64 31.9 
0.63 28.4 
O. 62 24.35 
0.61 19.45 
0.60 12.7 
O. 5926 0 

Mcz, 
(deg) 

0"88 67-8 
0 '87 65-8 
O' 86 63.7 
O' 85 61"65 
0"84 59"5 
O" 83 57" 35 
0"82 55" 1 
0"81 52.9 
0.80 5 0 . 5  
0.79 48, 1 
0.78 45,6 
O- 77 43.05 
0-76 40.3 
0-75 37.4 
0-74 34.3 
0-73 31.0 
0.72 27.25 
0.71 23-0 
O.70 17.8 
0.69 10.0 
O. 6850 0 

~9 = 0.20 

M~ z cp 
(deg) 

0 '  86 69" 95 
O' 85 68"3 
O. 84 66.65 
O. 83 64.9 
O. 82 63 "2 
0-81 61.4 
0.80 59.6 
0.79 5 7 . 7  
O. 78 55.8 
O. 77 53.8 
0.76 51.7 
0-75 49.6 
0.74 47.4 
0-73 45.1 
0:72 42.2 
0-71 40.0 
0-70 37.3 : '  
0-69 34.3 
0.68 31- 1 
0.67 27.4 
0:66 23.2 
0.65 18-1 
0.64 10-6 
O. 6348 0 
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FIG. 15. Superve loc i ty  d i s t r ibu t ion .  U p s t r e a m  
t ip  area. Profile Q. 9 = 53 ° 8' .  

I 
I 
I 
I 

1,0 
I 
1 
I 
I 
I 

FIG. 16. Superveloci ty  d i s t r ibu t ion .  Down-  
s t r eam t ip  area. Profile Q. ~ = 53 ° 8' .  

o.~ 

I 

I 
I 

I 
I 

I 
I 

I 
] 

I 

o-3 -I 

I 
I 
I 

I . I J  
I 
I 
I 

I,O 4 
I 
I 

I 
I 

O.t~- 1 
I 

o.7-1 

0 .6~  

0 .54  

o.I  

FIG. 17. Supe rve loc i ty  d i s t r ibu t ion .  
Profile Q. 9 = 58 ° 8' .  

K i n k  area. 

\ 



G~ 
O1 

/ ~°'~ 

X 
• , Q ' ~ /  

\ \  

~.~ 

\ 

r~= 5?. 

T~E 150BkP, PkRA~.'TEP~ IS 
. '0- x 

/ 

/ 
/ 

/ 

~ =o,i 

f 

\ 
\ \  
, - , \  
\ \  

\ ,  

f ~  

/ \  
\ 

I 

J / J  

2/ 
J 

\ 
\ 

FIG. 18. Isobars on a sheared wing. ProNe Q. FIG. 19. Isobars on a swept-back wing. Profile Q. 

~.~ ~.~ q~ 

/ --~,o \\\I 

J 
FIG. 20. Supervelocity distributions in the kink 
section, compared to that at infinity, for different 

angles of sweep. Profile B. 



O3 
O~ 

0 '5  -o'.~ 

FIG. 21. Supervelocity distributions in the kink 
section, compared to that on an upswept wing, 
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FIG. 241 Supervelocity distributions in the kink 
section, compared to that at infinity, for different 

angles of sweep. Profile Q. 

FIG. 25. Supervelocity distributions in the kink 
section, compared to that on an unswept wing, 

for different angles of sweep. Profile Q. 
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FIG. 26. Supervelocity distributions in the kink 
section, compared to that at infinity, for different 
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