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Summary—In this paper, which is a continuation of two earlier ones (R. & M.’s 2713% & 2717%%), the subsonic flow
past untapered swept wings, at zero incidence, is further investigated using linear theory. Methods for calculating
“lower ’ and ‘ upper’ critical Mach numbers are given, the solution of the main problem being preceded by a short
analysis of critical Mach numbers for the simpler cases of infinite wings (straight, sheared and yawed).

The determination of critical Mach numbers depends on the knowledge of velocity distribution over the wing surface,
the problem dealt with in the previous reports mostly for the case of the simple biconvex parabolic profile. These
earlier results have been extended here to cover a wide class of profiles. Hence it has been possible to determine critical
Mach numbers for wings with four different profiles, showing the effect of thickness ratio and of angle of sweep-back
(or sweep-forward) in each case. The method applies strictly to wings of large aspect ratio, but no significant corrections
are necessary except for very low aspect ratios. '

The results and examples, illustrated by a number of tables and graphs, provide a basis for more general discussion.
Several conclusions concerning the practical use of swept-wing design are presented.

1. Introduction.—The delay in the onset of shock-waves, 4.c., the raising of the critical Mach
numbers, due to the use of swept wings, was apparently first mentioned by Busemann® in 1935.
During the years 1939-1945, the idea was further developed in Germany, notably by Gothert®’
and Ludwieg®?, and led not only to further experimental research, but also to practical attempts
at producing fast flying aircraft with highly swept-back wings. After the war, the conception
spread far and wide, considerable research work has been done and, at present, the swept-back
wing is almost a commonplace in high-speed design. And yet, the fundamental problem of
actually calculating critical Mach numbers has not hitherto been solved, and so the true advantage
to be gained through sweep-back in various conditions has been only vaguely known. The in-
adequacy of our knowledge in this respect was strongly emphasized at the Anglo-American
Aeronautical Conference of 1947°. It appeared that, while the designer had to pay heavy
penalties in several aspects of his work for sweeping the wings back, he could not estimate
precisely what he was getting in return. . ' '

The present report is a continuation of two previous papers (R. & M. 2713* and 2717*) and
aims at solving this problem theoretically in the case of untapered swept wings of large and
medium aspect ratios with arbitrary profiles. There are usually a number of additional factors
to increase the complexity of the problem, such as: more elaborate wing geometry (taper, twist,
spanwise profile changes, very small aspect ratio, etc.), varying incidence, and fuselage or nacelles.
All these have been ignored here, and even so the problem is much more complicated than it
seemed to be in the initial stage. - : :

* R.A.E. Report Aero. 2355, received 24th November, 1950.
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The original approach consisted in considering the simplest case of an infinite straight wing,
Yawed through an angle ¢ from its initial position at right-angles to the wind (Fig. 3, upper part).
‘Resolving the flow into components parallel and perpendicular to the wing edges, one sees that
the first component is without significance (apart from the effects of viscosity) and all that
matters is the wind component normal to the edges. The flow to be considered is two-dimensional,
and this problem may well be termed ‘ quasi two-dimensional’. The normal component flow
has the undisturbed velocity U cos ¢, and the ‘ effective * Mach number can be taken as M, cos ¢,
where M, is the Mach number of the undisturbed flow U. Therefore, if a certain value M . of M,
has been found ‘ critical ’ for the given wing at ¢ = 0, then, for a yawed wing, critical conditions
will only occur when M, cos ¢ = M,, or M,, = M, sec . This simple ‘secant law’ applies
rigorously only to an infinite yawed wing. It shows, e.g., that if ¢ = 60 deg, then the critical
Mach number is doubled.

Unfortunately, an infinite yawed wing is not a proper basis for aircraft design; the latter
requires a wing formed by joining two symmetrical finite semi-wings, with a kink in the middle.
Such a wing does not achieve the whole gain in critical Mach number predicted by the above
oversimplified ‘ theory ’. However, it achieves some part of the expected gain, and it is clearly
important to know what that part is. :

The main reasons of the large discrepancies between the ideal sec ¢ law and the true gain are
as follows. First of all, a simple yawing of the wing, although so easily performed in tunnel
experiments, is not usually the designer’s procedure. The latter will rather consider as funda-
mental the profile of a section parallel to the main symmetry plane of the aircraft, 7.c., parallel
to the usual flight direction. Both parts of the swept wing are not yawed but ‘ sheared ’, its
consecutive sections having been shifted backwards or forwards from their positions in an
unswept wing, the profile shape remaining unchanged. The profile in the section normal to the
wing edges has thus its thickness ratio increased in the ratio sec ¢ : 1 compared with that of
the fundamental section (see Fig. 3, lower part, or Fig. 29). The critical Mach number for a
profile in two dimensions depends effectively on thickness ratio, decreasing when the latter
increases. Therefore, the gain in M, for a sheared wing must be lower than for a yawed one,
although still quite considerable*. A still more important reduction of the gains in critical M
is due to the sharp kink, or geometrically more complicated junction, with which the two halves
of the swept wing are joined. There is a region round the junction, where the flow is far from
‘ quasi two-dimensional * but essentially three-dimensional, and here serious changes in the flow
take place, causing a significant reduction of M,, and requiring a more elaborate treatment.
Similar, though usually less important, complications occur near the wing #ips.

It is now recognised that the problem of critical Mach numbers for swept wings is a serious
scientific problem which cannot be solved by an empirical ‘ guess’ (such as, for instance, the
notorious but shortlived 4/(sec ¢) law). A rational solution reduces to the following four
stages:—

(2) Rigorous definition of the critical conditions of the flow, 7.e., of those conditions which

being reached and overpassed make supersonic phenomena (shock-waves) possible, at
least locally. ‘

(b) Determination of the velocity distribution over the surface of the wing, especially
maximum incremental velocities (supervelocities) and their location, first at low Mach
numbers, ¢.e., in incompressible flow.

(¢) Determination of modifications in the velocity distribution with increasing Mach numbers
(in high subsonic flow), especially the maximum supervelocities at high Mach numbers.

(d) Combination of the results of the three above investigations for calculating critical Mach
numbers for particular wings.

* Tt is important to differentiate between the two methods of producing oblique wings and in appreciating their
performance, and especially to guard against applying the experimental results obtained with a straight model at several
angles of yaw—to swept wings with similar angles of sweep but with a constant, profile parallel to the direction of wind.
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- There was, at first, some confusion with respect to the stage (a). It was known that critical
conditions occurred when the local velocity of the flow reached the local sonic value, but it was
not quite clear whether this applied to the total velocity or to some component of it. Treating
an infinite yawed or sheared wing on the lines of Busemann’s initial suggestion, it was natural
to coriclude that only the velocity component normal to the wing edges had to reach the sonic
value, and this point of view was advocated by Betz and Ludwieg®. Surprisingly enough,
Gothert” insisted on the total velocity being taken into account, and thus obtained much more,
pessimistic results even for infinite sheared or yawed wings. The question was studied, from a
more general point of view, by Ringleb®, Scherberg®” and Bickley'»*®, and gradually the way has
been paved for the general criterion of critical conditions which is: that the velocity component
in the direction of the pressure gradient (or normal to the isobars) becomes equal to the local
sonic value. The criterion was finally substantiated by Bickley (R. & M. 2330%*) on strictly
mathematical grounds. It is clear that, for thin sheared or yawed wings, ‘ normal to the isobars ’
means simply ‘ normal to wing edges ’, and hence Busemann’s original idea is a particular case
of a more general one. A yawed or sheared wing may be viewed as a device for making isobars
run at a required angle relative to the wind, so as to create in some cases the possibility of
“flying at supersonic speed, while pretending to fly subsonic’, .c., being subject to subsonic
aerodynamics. The general criterion also solves the problem for the troublesome regions near the
kinks or tips. It becomes clear that not only the maximum velocities but the entire velocity field
over the wings must be determined, and that only the velocity components normal to thé isobars
play the decisive part in defining critical conditions. Since the isobars cross the central kink
section at right-angles, the full velocities in this section must be taken into-account, and hence
the “local critical Mach number * will always be less than 1. It is seen that critical conditions
are not reached simultaneously on the entire wing surface, and therefore the present report
suggests introducing the notions of “lower ’ and ‘ upper ’ critical Mach numbers. The former
refers to critical conditions being reached at a single point of the ‘ first danger section ’ (often,
but not always, the central kink), the latter to the entire wing being embraced by critical or
supercritical conditions.  Thus, we have to deal with a critical range of Mach numbers, instead
of a single critical value*. ’ : :

~ The importance of stage (b) can now be seen. - The first (unsuccessful) attempt to determine
the velocity distribution over swept wings with a kink was made by Ludwieg® and, after several
more efforts by different authors® % %% the problem may be considered as theoretically solved
at least for untapered wings, of small thickness (linear approximation), whether of infinite or
finite aspect ratio. Owing to' mathematical difficulties, all previous papers dealt mostly with
the simplest profile (biconvex parabolic—see Fig. 5, profile B), and this was a serious handicap
from the practical point of view, especially as no experimental data for wings with such a profile
have been available. It has therefore been decided to try to generalize the earlier method so as
to obtain effective solutions for a wider class of profiles. These solutions, for all symmetrical
profiles expressible by polynomial equations of a degree not exceeding 5, are given in Appendix ITI.
Several examples have been worked out, namely for the profiles C and Q-(Fig: 5), and illustrated
by graphs of velocities and pictures of isobars (see Figs. 6 to 19). These examples make it clear,
when and why the maximum velocity may occur not in the kink section but in the regulas region
of the wing, and sometimes even at the tips. The analysis of the examples finally leads to the
conclusion that, for actually'.calculating critical Mach numbers, it suffices to work out the
maximum supervelocities in the kink section and in the regular region, and this can be done for
every profile. Tables 5 to 8 contain these maxima for 4 profiles B, C, Q, R, the latter having
a rounded nose. Figs. 20 to 28 illustrate the results for a wide range of angle of sweep.

* It should be mentioned that Griffith®® and McKinnon Wood? have interpreted Bickley’s criterion in such a way
that)on the wing surface the normal acceleration due to curvature must also be included. This interpretation would
lead 'to surprising and paradoxical results, entirely different from those generally accepted, even in two-dimensional
problems. The question is a very difficult one. In this paper, the normal acceleration has been left out, in -accordance

with the common practice (se¢ further remarks in the footnote under section-5). , :
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The stage (c) had its ground well prepared by the Glauert-Prandtl law®%* which, however,
was initially known in its two-dimensional form only, and was sometimes applied wrongly to
three-dimensional problems. The law is based on the linear perturbation theory for thin wings,
and is therefore only approximate. There were several attempts at improving the accuracy of
this law by introducing higher order corrections®® "%, None of these corrections has been
used in this report, as the velocity field in 1ncompre551b1e flow past swept wings can only be
predicted to the first order accuracy, and hence higher accuracy in a later stage would be illusory.
The correct generalization of the law for three dimensions was first produced by Géthert®. There
were some misinterpretations and controversies, especially as regards bodies of revolution*-*,
but the method does not now present any dlfﬁcu1t1es at least within the first order accuracy

A clear and rigorous exposition of the method, in the form particularly suitable for swept wings,
was given by Dickson®,

By combining the above results, it is possible to work out simple methods for calculating the
critical Mach numbers, and this has been done in this report, first for infinite straight wings |
(section 2), then for infinite yawed or sheared wings (section 3), and finally for finite swept-back
and swept-forward wings (section 4). Several examples have been worked out numerically,

involving four different profiles, as shown in Fig. 5. Final results are given in Tables 9 to 12
and illustrated by Figs. 30 to 33.

Section 5 contains a discussion of advantages to be gained by sweepmg the wings, and several
general conclusions for the designer’s use.

Acknowledgements are due to Mrs. J. Collingbourne for her help in working out numerical )
examples of velocity distribution, to R. P. Purkiss who has done most of the computational work,
and to A. R. Beauchamp who has prepared the illustrations.

2. Critical Mach Numbers for Infinite Straight Wings (two-dimensional).—Before dealing with -
more complex cases, it will be useful to summarize the results for the simple case of two-
dimensional flow past an arbitrary profile (Fig. 1), using the linear theory. Suppose that, in
incompressible flow, the maximum velocity occurs at a point 4,, of the profile, and is equal to
U(1 + ¢,). Then, in compressible sub-critical flow, at Mach number M,, the maximum velocity,
according to Glauert-Prandtl law"?, should occur at the same point A,, and be equal to:

szO+E§%@JH. L @y

Critical conditions will be reached when V,, is equal to the local speed of sound which differs

from that (a,) corresponding to conditions of undisturbed flow, and may be found from the ;
Bernoulli equation for compressible flow:

—1 —1
LU tar="m—1r4e, . . (29

where V' and a are local flow velocity, and local speed of sound. In this equation, we may put -
U = Ma,, where M, is the Mach number of undisturbed flow ; also, if conditions are to be critical,
V' and a must be equal and may be denoted either by V, or a,. The equation (2.2) then yields:

1 172 ,
%:%0—$:ﬂuww0,.. ey

which may also be written:

2 1— M02>1/2
| y+1 My ’

and it is seen that the critical value a, =V, is grea{er than U, and less than a,.
4

v.=u(1+

(2.4)



The critical conditions occur when V,, becomes equal to V, and, equating (2.1) and (2.4), and
denoting by M, the critical value of M, we obtain the fundamental equation :

m:(L—MﬁW[(L+Vi11i£LjW—J]. L (28)

This equation was first given, in almost identical form, by B. Gé&thert®. The equation is not
simply solved for M,, with given ;. However, it is easy to tabulate §; against M,, and interpolate
to find M, corresponding to any given §,, with any required accuracy. Tables 1 and la* give
the values of §; versus M,, or M, versus §;, respectively, the range being 1 > M, > 0-54,
or 0 < d; < 0-60. The relationship is also represented graphically in Fig. 2 (full line).

It should be noticed that equation (2.5) is a first order approximation, since the incompressible
profile characteristic 8, and the compressibility correction used in deriving the corresponding
critical Mach number are each calculated by linearized theory. This is the justification for
using the Glauert-Prandtl law or its three-dimensional equivalent throughout this report. To
use one of the several more refined formulae, proposed as alternatives to this law®**** would
only produce an illusion of greater accuracy so long as §; remains a first order approximation.
The first order method is the only one at present available for the theoretical determination of
the supervelocities for swept wings, and therefore it would not be reasonable to introduce any
refinements to Glauert-Prandtl law. The matter is not so simple when we have to deal with
experimental results, or with highly accurate theories of two-dimensional flow, and some relevant
remarks are given in Appendix I. In Fig. 2, an additional thin curve shows the correction which
would be introduced if von Kdrméan’s correction to the Glauert-Prandtl rule were used.

The formula (2.5) may be criticized from the opposite point of view, as being too complicated
(especially insoluble for M,). This question is also discussed in Appendix I, and it is found that
a simpler formula can hardly be derived to replace (2.5) without the risk of too great errors. Very
crude approximate formulae (1.36, 37), corresponding to a similar formula of Liepmann and
Puckett®, may only be recommended for rough estimates. A better approximation may be
obtained by using series (1.33, 35), but those are almost more complicated than (2.5).

Fig. 2 also contains a graph of the first derivative (— dM,/ds,), obtained by differentiating (2.5):

' 2 1—-Mp
@, M, [ E S s

ML—G—JHWW

1__Mcz)l,z—l . e .. (28

<1+y—{2—l M2

and it is seen that its value, while varying from o to 0, does not differ much from 1 in the interval
about 0-04 < 6; <0-19, or 0-9 > M, > 0-75. Most interesting practical cases lie within this
interval, and hence we may risk a very crude mnemotechnic rule: a reduction of 0-01U in the maxi-
mum supervelocity gives a gain of about 0-01 in the critical Mach number. The latter gain,
which is equivalent to about 7 miles per hour, is certainly not negligible. This shows that errors
in 4; should not exceed 0-01, or if possible should be kept below this value. The linear
perturbation method can generally ensure this for thin profiles; for thicker ones, the errors in
d; may become greater, but the values of the derivative (— dM,/ds,) decrease rapidly, so that
the accuracy of M, should be little affected. It is seen that the first-order theory may be
considered as sufficient for practical needs, but one must not expect greater accuracy than within
0-01 error in the critical Mach number.

* When calculating the tables, y was assumed to be 1-403, following R. & M. 189119, This applies to all following
tables and numerical data, unless stated otherwise. The value 1-4 is often used now. The difference is irrelevant for '
“our purposes, the order of accuracy of the theory being low.
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The formula (2.5), Tables 1 and la, and diagram in Fig. 2, apply to all profiles, One must
bear in mind, however, that while the parameter 8; (maximum supervelocity ratio in incom- °
pressible flow) is proportional to thickness ratio # = #/c for every thin profile, the proportionality
factor 6,/0 assumes different values for particular profiles. The matter has been illustrated by -
several examples in R. & M. 2713%, and it has been shown that, for instance:

(a) For an ellipse, the proportionality factor has the value 1 (this being the lowest known

value by linear theory), i.e., §; = #, hence our tables and diagram apply directly,
with §; meaning simply thickness ratio.

) For a- biconvex parabolic profile, the proportionality factor is g = 1-273, and ¢, = 1-2739,

thus the critical Mach number will be lower than for an ellipse of the same thickness -
ratio. , ‘

() For every other profile, the proportionality factor assumes a definite value characteristic
for the profile, and this may range from 1 to 2, and sometimes even higher. For
example, for the profile (I.19) of R. & M. 2713*, with maximum thickness at 1 /3-chord,
and with a trailing-edge cusp, we have 6, == 1-6679, and a similar value of the propor- :
tionality factor applies to the round-nosed profile (I.44) of R. & M. 2713* (although *
in this case the value is somewhat doubtful as the maximum velocity occurs so very
near the leading edge).  The critical Mach number will be much lower for such profiles.

How far these differences affect M,, will be shown by the following figures —

Critical Mach numbers for different profiles and thickness ratios

- Profile - 1 eliipse B (biconvex parabolic) C (cubic of Fig 5) .| poor profile
.o promes (8,19 =1) (6;: 9 = 1-273) - (819 =1-667) (6;:9 =2)
§=0-10" M, =082 0-800 0-766 0-741
$=0-20 - M, =0-741 - 0-704 ‘ 0-859 0-626

It is seen that, while the thickness ratio is of primary ‘importance, the effect of profile shape
may also be very large. - ' :

In Fig. 2, a few additional horizontal scales in ¢ are added, referring to a few particular profiles.
They enable one to read critical Mach numbers directly off the diagram for a given profile with
a given thickness ratio. o ‘ : :

3. Critical Mach Numbers for Infinite Yawed or Sheared Wings (quast two-dimensional).—The
two cases to be considered here are theoretically almost equivalent, as every ¢nfinite yawed. wing
can also be viewed as sheared, and vice versa. The only difference lies in the choice of the
fundamental profile of the infinite straight wing (¢ = 0) to be used as a basis of comparison.
If the wing in the oblique position is considered as yawed (Fig. 3, upper part), then the funda-
mental profile is the section normal to the leading and trailing edges ; for a sheared wing (Fig. 3,
lower part), it'is the section parallel to the velocity U of undisturbed flow. -

In both cases, the isobars run parallel to the edges, so that it is sufficient to consider only the
‘component flow at right-angles to them. This flow has the undisturbed velocity U cos ¢, and
the corresponding ‘ effective * Mach number is M, cos ¢, while M, = U/a, always denotes the
Mach number of the full undisturbed flow, equivalent to ‘flight Mach number’. The local:
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speed of sound in critical conditions will now be obtained from (2.3) by replacing M, by M, cos ¢:
: y 1 1/2 :
aoza(,(l— 1—M02C052¢)> . e .. .. .. (3.1)

which may also be written, as critical value of the normal component (cf. 2.4):

2 1 — Mg cos® \'?
y+1 MgZcos®y )

This cr1t1ca1 value of the speed of sound, or of the local normal velocity component, must now
be equated to the true maximum normal velocity for the given wing. This will take different
forms for a yawed or sheared wing, if the fundamental section is the same in both cases, with
thickness ratio # = #/c and maximum supervelocity ratio in two dimensions §;.

(3.2)

V.,.,= Ucos<p<1 +

(@) For a yawed wing (Fig. 3, upper part) the fundamental section is normal to the edges
hence the maximum normal Veloc1ty in incompressible flow is U cos ¢ . (1 + 4,). In com-
pressible flow, the incremental term 6; must be divided, according to Glauert-Prandtl law, by
4/ (1 — Mg cos® ¢), and hence:

é; ‘
Vows = UL+ r—grrcamgye) 50 - - - .. (33)

By equating (3.2) and (3.3), and denoting the critical value of 4/, » by M., we obtain the fundamental
Jormula for infinite yawed wings

1 — M2 cos® p\'/? -
(1_M2COS¢1/2[<1+y+1 M, 2 cos® ¢ —1]

It is seen that this equation may be obtained directly from (2.5) by replacing M, by M,, cos ¢.

(3-4)

() For a sheared wing (Fig. 3, lower part) the section normal to the edges has the same thickness
¢t as the fundamental one, but its chord is reduced from ¢ to ¢ cos ¢, hence the thickness ratio
is increased from ¢ to ¢ sec ¢. The maximum supervelocity ratio (incompressible) varies in
proportion to thickness ratio, thus it amounts now to §, sec ¢, and therefore the maximum
normal velocity in incompressible flow is U cos ¢ (1 + d; sec ) = U (cos ¢ + 6;). In com-
pressible flow, the incremental term ¢, sec ¢ must again be divided by 4/(1 — M,? cos® ¢), and
hence:

d; :
V e = U(COSQD—I— 0 = Mg cos® (p)m). .. .. .. .. (3.5)
By equating (3.2) and (3.5) and denoting the critical value of M, by M., we obtainthe fundamental
Jormula for infinite sheaved wings :

2 1 —M,2cos®ep
y + 1 Mcszcos<p

and it is seen that this equation may be obtained directly from (2.5) by replacing M, by M .5 COS @,
and -8, by 6, sec p.

The two fundamental formulae give the critical Mach numbers for infinite obhque (yawed or
sheared) wings, as functions of two parameters 6; and ¢ ; they are illustrated by two families of
curves in Fig. 4, and the relevant numerical values may be found in Tables 2, 8. The computation
of those tables has been greatly facilitated by the use of the previous Table 1.

- For given values of 6; and ¢, critical Mach numbers for yawed wings are higher than for sheared
ones. Fig. 4 shows that the differences are quite appreciable and rise quickly with both é; and ¢.
The important fact is that, with large angles ¢ and not too large 4,, critical Mach numbers well
above unity may be obtained. This is particularly easy for yawed wings, but also possible for
sheared ones. Were it possible to design finife wings with similar properties, we could achieve
supersonic flight with subsonic aerodynamic characteristics.

7
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© The diagrams of Fig. 4, as those of Fig. 2, apply to all profiles, provided the abscissa é, represents
the true supervelocity ratio for the given profile. As §; is proportional to thickness ratio #, it
again suffices to provide an additional uniform scale on the horizontal axis for the diagram to
apply directly to any given profile with varying thickness ratio. A few of such additional scales
- are added in Fig. 4, relating to several particular profiles.

4. Critical Mach Numbers for Untapered Swept Wings.—4.1. Definition of Lower and Upper
Critical Mach Numbers and their Analysis Based on Studying Velocity Distributions.—When
dealing with infinite oblique wings, there was a single critical Mach number for each wing, since
the flow in parallel sections of such wings was identical, and the critical conditions in all sections
were reached simultaneously. When we consider other wings, such as kinked swept ones (infinite
or finite), or simple sheared ones (semi-infinite or finite), the aspect of the flow is different in each
section, and the sonic (and supersonic) conditions are not reached simultaneously but gradually.
The problem becomes more complicated, and one of the chief difficulties is that, once a local
supersonic area with shock-waves has been created, the entire velocity field undergoes changes
which are difficult to predict. The local sonic conditions will be reached first at a certain single
point of one particular section (‘first danger section’), at some value of M, (Mach number of
undisturbed flow) which will be called ‘ lower critical’. When M, increases above this value,
the sonic conditions penetrate progressively further portions of the wing, and the shock-wave
area spreads. - -It seems natural to expect that, at a certain higher value of M, the sonic (or
supersonic) conditions will reach every section of the wing, and that value will be called * upper
critical Mach number >. We have now: (a) to find methods of determining both lower and upper
criticals for various wings, and (b) to interpret their meaning as regards the aerodynamic pro-
perties of the wings. ‘

. For the solution of the first problem, the velocity distribution over the surface of the wing
: must be determined. This can be done on the lines of Refs. 34 and 48 for the case of incompressible
flow. It is known that, when the Mach number of the flow increases, the velocity field changes
gradually due to compressibility. At any particular (subcritical) Mach number, the field may be
~ determined, to the first order approximation, by applying the three-dimensional similarity law
(generalized Glauert-Prandtl law), 7.e., by correlating the compressible flow past the given wing
with the incompressible flow past an ‘ equivalent * wing (see Fig. 29), the concept originally due
to Gothert® and later elaborated by Dickson®.

The methods of Refs. 34 and 48 have been effectively applied only to the simplest case of the
biconvex parabolic profile but they are suitable for any symmetrical profiles, expecially those
represented by polynomial equations. It was thought essential to study and compare critical
Mach numbers for wings with different profiles, and four profiles B, C, Q and R have been chosen
as examples, see Fig. 5. The equations of the profiles, and detailed calculations of the velocity
distributions, are given in Appendix ITI.

Once the wing proﬁle has been chosen, there are two independent geometrical parameters for
untapered swept wings, ¢.e., angle of sweep and aspect ratio. But if the latter is not very small,
say not below 2, its effect on velocity distribution and critical Mach numbers may be neglected,
with inappreciable error. For it has been shown in R. & M. 2717*® that, for wings of not very
small aspect ratio, considerable parts of both semi-wings are ‘ regular’ regions, with isobars
running almost parallel to the wing edges, and with velocity distributions almost the same as
for infinite sheared wings; also, that the velocity field in the kink region of a finite wing differs
only negligibly from that of an infinite swept wing. Similarly, the velocity field in the tip region
of a finite wing is almost the same as that in the corresponding region of a semi-infinite sheared
one. Similar remarks apply to finite sheared Wings whose velocity fields may be regarded as
consisting approximately of a central ‘ regular * region and two tip regions (" upstream tip ’ and
‘ downstream tip ’). The degree of accuracy of this approximate method is shown in Figs. 8 and 9,
where the isobars on finite wings of indeterminate aspect ratio (with profile B and ¢ =
53 deg 8 min) have been produced by using only velocity diagrams for tip and kink regions of mﬁmte
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wings (Figs. 6 and 7). Comparing Figs. 8 and 9 of this report with rigorous solutions as represented
in Figs. 19 and 23 of R. & M. 2717%, for aspect ratios 1 and 2 respectively, we see that the
discrepancies are very small. Also formulae (4.1.8, 10; 4.3.2, 3) and Fig. 24 of R. & M. 2717*
show clearly that the effect of finite aspect ratio on maximum supervelocities in kink or tip sections
is negligibly small for normal wings. The only important difference between wings of large and
small aspect ratio is that, on the former, the regular regions occupy major parts of the surface,

.

while on the latter the regular regions are merely small intermediate portions between the kinks
and the tips.

In view of the above reasons, it would not be justifiable to derive and use very complicated
rigorous formulae for velocity distribution on finite wings (as in R. & M. 2717*%).  Therefore,
only formulae referring to semi-infinite, sheared or infinite swept wings (as representatives of
tip and kink regions, respectively) are given in Appendix ITI. The general formulae (III.18)
and (I11.22) apply to a wide class of profiles represented by polynomials of the 5th degree at the
most (form.IT1.7). The profiles B, C and Q are examples of this class—of 2nd, 3rd and 4th degree
respectively. Figs. 10 to 14 represent velocity diagrams and isobar patterns for the profile C,
Figs. 15 to 19 for Q*. The round-nosed profile R is not one of the ¢ polynomial * class, and it
would be more difficult to work out similar diagrams.for this case. This work has not been
attempted till now, more so as the material represented in Figs. 6 to 19 seems to be quite sufficient
to give a general idea of the flow in various cases and of the effect of typical peculiarities of the

profile shape.

Returning to the problem of critical Mach numbers, let us examine first the simplest flow
pattern of Fig. 9 (for profile B) and consider three characteristic sections of the wing :(—

(a) Central kink section.—Here the isobars cut the section at right-angles, the normal to the
isobars coincides with the direction of the flow, and theréfore we must reckon with the total
velocity of the flow. The crucial point is A in Fig. 9, where the total velocity reaches its
maximum. Conditions for critical Mach number are reached when this velocity at A becomes
equal to the local velocity of sound. It is obvious that the relevant critical Mach number must
always be less than 1. It is the true lower critical because nowhere does the velocity of the flow
exceed that at A. ‘

(b) Section in the regular vegion, i.e., a section at a considerable distance from both the kink
and the tip. The flow here is almost identical with that on an infinite sheared wing of the same
profile and angle of sweep, and we assume that it is not appreciably affected by transonic changes
occurring in the kink area. Only the maximum velocity component normal to the isobars
(i.e., normal to wing edges) must be taken into account, and the critical conditions may be
defined exactly as in section 3 (formula 3.6); the relevant Mach number may be considered as
upper critical. When the Mach number of the flow increases gradually from its lower critical
value, critical conditions spread sideways from the kink section, to embrace ultimately almost
the entire wing when the upper critical value is reached. The upper critical may, of course,

exceed 1. :

(c) Tip section.—In the case represented in Fig. 9, the maximum supervelocity at the tip is
approximately half that at the kink section, and also appreciably lower than that in the regular
region ; the latter fact is due to the angle of sweepback not being very large. The isobars bend
sharply in the tip area to run nearly parallel to the flow. The critical conditions are reached
here much later than in the central kink, and apparently also later than in the regular region.
The tip area seems not to play a significant part in this case, and there is hardly any sense in
trying to define a * tip critical Mach number ’. It is true that there are points in the rear

portions of the tip area, where the isobars run locally at right-angles to the main flow, and

# It may be mentioned that, while in Fig. 8 the two tips present identical flow patterns (only inverted) owing to the
fore-and-aft symmetry of the profile, it is not so in Figs. 13 and 18, where the two tips exhibit quite different patterns.
Tt is essential to discriminate between ¢ upstream tips ’ and * downstream tips * in all cases when there is no fore-and-aft
symmetry. For details of calculation, se¢ Appendix IIL
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for each of such points a local critical Mach number could be determined, lying sometimes
between the previously defined lower and upper critical, sometimes above the latter. However,
it seems that there is little point in trying to analyse the complicated phenomena at the tips.
If some local shock waves appeared in these areas before the entire regular region became
shock-stalled, the effect on the performance of the whole wing would probably be insignificant.
In addition, the flow in the tip areas may be strongly affected by small changes in the
geometrical shaping, and the investigation of this flow would be not ‘only difficult but also of
little promise. '

- Theabove analysis of Fig. 9 leads to the simple conclusion that the lower critical Mach number
should be determined from the conditions prevalent at the central kink section, while the upper
critical may be taken as that corresponding to an infinite sheared wing of the same profile and
angle of sweep. This would mean that the upper critical could always be obtained by a simple
interpolation from our Table 3 while the calculation of the lower critical would require a complete
knowledge of the velocity distribution in the kink section for the given profile and for a wide
range of the angle p. This is comparatively easy, as we possess a general formula for this velocity
distribution (see R. & M. 2713%, form. 7.5):

U _, 14 sin ¢
e = (oo — 7 /) gL Jeosp. .. .. .. (4L1)

The formula has been used, as expounded in Appendix III, for calculating supervelocity
distribution in the kink section at varying ¢, for four profiles B, C, Q, R (formulae 1I1.34, 39, 45
and 53 respectively), and the results are represented in Figs. 20 to 27. There are two diagrams
for each profile, giving respectively the curves of

(“5U%£;>”d(“§%> L 412

against &, The first provides a comparison of the supervelocity distribution in the kink section
at any ¢ to that ‘at infinity * (meaning, really, in the  regular ’ region); the second gives the
same supervelocity distribution as compared to that on an unswept wing. The important
maximum values of the quantities (4.1.2) are tabulated in Tables 5, 8, 7 and 8, illustrated in
Fig. 28*.

The problem of critical Mach numbers for swept wings is not quite so simple as would appear
from the above reasoning, based mainly on analysing Fig. 9. The following circumstances must
be taken into consideration.

(i) The upper critical Mach numbers for swepi-back and swepi-forward wings, i.e., for positive
or negative ¢’s of the same numerical value, are identical, whatever the profile. This is generally
not true for the lower critical, unless the profile is symmetrical fore-and-aft (as, for instance,
profile B). Therefore, the lower critical must usually be calculated separately for positive and
negative ¢’s. '

(i) Even in the case of a profile with fore-and-aft symmetry, the tips may play a more important
part when ¢ is large enough. The maximum supervelocity at the tip may become greater than
that in the regular region; this will occur when the value of (— v,/0U cos ¢)... exceeds more
than twice the corresponding value for ¢ = 0. It will be seen from Table 5 that this will occur
for the profile B if ¢ exceeds ~78-5 deg. It might seem that such angles would not be used.
However, the angle of sweep which matters is not that of the true wing but that (appreciably
larger) of the Gothert’s equivalent wing (see Fig. 29), hence the case may occur in practice.

* It must be mentioned that, as shown in Figs. 26 and 27, it is impossible to determine, by applying the linear
perturbation method, the maximum supervelocities for negative ¢'s, i.c., for swept-forward wings, in the case of profile R.
This is due to the fact that the profile possesses a rounded leading edge, hence F'(x) becomes (— o) at that edge (see
form. 4.1.1). The true maxima must, of course, be finite, but undoubtedly very large. A similar behaviour is to be
expected generally for profiles with rounded nose and maximum thickness well forward., Such profiles are clearly most
inappropriate for swept-forward design.
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If it does, the isobars in the tip area of a swept-back wing must run more or less similarly to
those in the kink area of a swept-forward wing, cutting the tip section at right-angles. In such
a case a ‘ tip critical Mach-number ' may be defined. This will lie between the lower critical
and unity. Its physical meaning is such that, when }/, gradually increases, first the kink area
becomes shock-stalled, later shock waves appear at both tips, and only afterwards the three
shock wave areas coalesce. The importance of this ‘ intermediate ’ critical must not be over-
estimated. However, it is interesting that, in some cases, the critical conditions may, so to speak,
attack each semi-wing from both flanks. ‘ '

(iii) The problem of the lower critical Mach numbers becomes more complicated if the wing
‘profile is not symmetrical fore-and-aft. The reason is that, for such profiles, the point of maximum
ordinate and that of maximum velocity (in two-dimensional flow) do not coincide. In typical
‘cases, the maximum thickness will be in the front half of the chord (between 40 per cent and 25 per
cent chord, say), and the point of maximum supervelocity will usually be located even further
forward. For instance, the data for profiles C, Q and R are: ' \ '

~ Position of- Position of
Profile - maximum maximum supervelocity
thickness (in two dimensions)
(per cent) ' (per cent)
C 33-33 27-2
0] 30 20-1
R ] 30 ~Q%

*0 'per cent according to linear theory ; true position very near the leading edge.

Let us now consider the supervelocity distribution in the central kink section, for a family of
swept-back wings with-a certain constant profile and with gradually increasing ¢. At the point
of maximum thickness we have F’(x) = 0, and hence the ratio (— v,/#U cos ¢) will not change
with ¢ (see form. 4.1.1). Ahead of or behind this point, the ratio will decrease or increase,
respectively, as ¢ increases. Hence, the point of maximum supervelocity in the kink will gradually
move backwards (as usual), but the maximum of (— »,/8U cos ¢) will initially decrease. Only
‘when the point of maximum supervelocity moves to behind that of maximum thickness (see
Figs. 22, 24 and 26), will the maximum of (— #,/#U cos ¢) again increase, to reach eventually
very high values, Consequently, for small angles of sweep-back within a certain range, the
maximum supervelocity at the kink will be smaller than ‘ at infinity’, so that the picture of isobars
‘will differ greatly from that of Fig. 9, and will be similar-to that in Fig. 19 (for profile Q). It is
seen that some of the  higher ’isobars (e.g., those marked 0-9 and 1-0 in Fig. 19) bend sharply and
double back on themselves, without reaching the kink section. It does not seem legitimate in
this case to base the determination of the lower critical Mach number on the maximum super-
velocity in the kink section alone, while higher supervelocities occur in nearby sections of the
kink area; there being, in addition, points in the front parts of each section where the isobars
run in the y-direction, so that the full velocity U plus local supervelocity must be taken into
account when looking fof critical conditions. As all (or almost all) of these highest isobars present
such poiits in a comparatively narrow area near the kink, it seems reasonable simply to replace
the kink maximum by that at infinity. " In Fig. 28, the curve of (— v,/0U cOS @)m.x against @
possesses a considerable part lying below the point K corresponding to ¢ = 0. This part should
be replaced by a horizontal chord through K. This applies, of course, to profiles C and R as well,
but in the former case the difference is insignificant while in the latter it is quite important®.

K The reader. will notice that, in Tablés 6, 7 and 8, the columns marked ‘ kink area ’ correspond to the horizontal
chords in Fig. 28, as opposed to ‘ kink section ’. I
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It is interesting that, if the lower critical Mach number is based on the kink maximum super-
velocity, it may sometimes be greater than the upper critical ; but this will never happen if the
maximum supervelocity ‘ as at infinity ’ is used for calculating lower M.,.

(iv) When the angle of sweep-back is large enough then, even in the case of a profile with no
fore-and-aft symmetry, the maximum supervelocity at the kink will exceed that * at infinity ’;
hence the former should be used for calculating lower M,. However, it may happen for such
profiles that the maximum supervelocity at the tip is even greater than that at the kink. One
must keep in mind that, according to the linear theory, the maximum supervelocity at the tip
of a swept-back wing should be equal to half that at the kink of a corresponding swept-forward
wing. Now, examining carefully Fig. 28 (and corresponding Tables), we see that, for very large
¢’s, this tip maximum supervelocity may exceed that at the kink. In such cases, the tip section
becomes * first danger spot ’, and the #p critical Mach number becomes true lower cvitical. Here
we find the explanation why, contrary to the original assertion by Ludwieg®, shock-waves may

start first at the tips of a swept-back wing, instead of in the centre area (see Ref. 40, Clarkson’s

contribution).

The final conclusion is that the calculation of lower critical Mach numbers for swept-back
wings should be based either on the maximum super-velocity at the kink, or ‘ at infinity ’, or at
the tip, whichever is the highest. There will generally be no similar complications in the case
of swept-forward wings, for which the kink section will be the first danger spot, unless some quite
unusual profiles are used (with maximum thickness far behind 50 per cent chord)

4.2. Method of Calculating Critical Mach Numbers.—In Fig. 29, the sketch on the right
represents the true wing, past which the compressible flow is being considered (Mach number M,).
The wing on the left is the fictitious or ‘ analogous ’ (Goéthert’s) wing®?, defined in such a way
that all dimensions in x-direction are unaltered, while those in y and z-directions are both reduced
in the ratio 4/(1 — M,*). Hence the thickness, thickness ratio and angle of sweep of the analogous
wing will be ', 9, ¢, related to ¢, 9, ¢ of the true wing by means of the following relationships*:

£ == t(1 — M)'*; . .. . .. .. . oo (42.7)
9 =1 — MH*; .. .. (4.2.2)
, tan ¢ , 1— M2 N2 sin ¢
tan ¢’ = (T————I\W ; COs ' = cos ¢ (I—_M—ozcgsqu> ;8in ¢’ = (T = My cost )7 (4.2.3)
If the two-dimensional maximum supervelocity ratio (in incompressible flow) for the true wing

profile (in xz plane) is §;, the analogous parameter for the fictitious wing will, by linear theory,
be reduced in the same ratio as @, 7.e.:

) =o 1l —M&AM. .. .. .. .. .. .. .. (424

If the induced velocity components in x and y-directions, in incompressible flow past the fictitious
wing, are v,” and v,’, the corresponding components on the true wing (in compressible flow) will
be, respectively:

v, =v/[(1 — M%), .. .. .. .. .. .. (4.2.5)
v, = v, /(1 — MZ)'*. .. . .. . .. r .. (428
We shall now consider, in turn, upper and lower critical Mach numbers.

(@) Upper criticals.—Let us consider a section of the true wing in the ‘ regular ’ region (normal
section S in Fig. 29). The corresponding section of the fictitious wing will be S”. Resolving
the flow at S’ into components parallel and normal to the wing edges, we obtain :

V,=Using’, l
V, = Ufcos ¢’ 4 8,) .
* This definition corresponds exactly to Géthert’s original concept. Dickson2® gave a generalized scheme in which

lateral (y)-dimensions are reduced in the ratio (1 — M?)1/2: 1, while normal (2)-dimensions are reduced in the ratio
(1 ~— M2¥-Di2:1, where N is an arbitrary integer. Géthert’s method corresponds obviously to N = 2.
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Resolving in x and y-directions, we get:

—V,),=V,/sing' 4+ V, cosop’ = U(l 4 8, cos ¢’} ,

428
—V,),=V,sing" —V, cos ¢’ = Us, sin ¢’. ( )
For the true wing, using (4.2.5) and (4.2.6):
‘ 8;" cos ¢’
5 i of (4.2.9)
;/sing
—V=ta =
or, taking into account (4.2.3) and (4.2.4):
d; COs ¢
— Vx = U(l + (1 . MDZ COSZ (P)1/2>’
s s (4.2.10)
. Vy — U ; S1n @

(1 — M? cos® p)*/?*

Finally, resolving the velocity at S into components normal and parallel to the wing edges, we
obtain:

. d;
V,=—V,cosp —V,sin ¢ = U(cos p + (1= M cos® <p)1/2) . .. (4.2.11)

Vo=V,cosp —V,sing=Using. . . . .. . .o (4.2.12)

It is seen that Gothert’s method gives the same result as the simple method used in the section 3
of this report and illustrated in Fig. 3; formulae (3.5) and (4.2.11) are identical. That was to be
expected and, as regards the regular region, the new procedure may only be looked upon as a
useful check. Further, it is clear that the formula (3.6) gives the upper critical Mach number
for any given 4, and ¢, and our Table 3 and Fig. 4 may be used in this connection. For every
particular profile, we know the value of the ratio §,/#, and so we may find the upper critical M
for any given ¢ and ¢, by interpolating Table 8. Thus our Table 4 has been computed, and
illustrated by (upper) curves in Figs. 30 to 33.

(b) Lower criticals—Here, the method of ‘ analogous’ wing is essential. Let us assume first
that the maximum supervelocity occurs in the central kink section (as it always must if the profile
is symmetrical fore-and-aft, e.g., profile B). Suppose that we possess, for the given profile, the
numerical values of

H=(=2) . . (21

tabulated against ¢ (as in our Tables 5-8 for profiles B, C, Q, R). Let us denote by H' the value
corresponding to the angle of sweep ¢’ of the analogous wing (Fig. 29). Then the maximum
velocity in the kink section of the analogous wing, in incompressible flow, is:

Vi = U1 +¢'H'), .. ce e e e L (4219
and that in the kink of the true wing, in compressible flow, becomes (se¢ 4.2.5 and 4.2.2):

' H' SH' )

Vmax=U(1+T—_—m)=U(1+(T:W (4.2.15)
13



Tt will be seen that Ve may be made equal to the maximum -velocity V,, in two-dimensional
flow, as given by (2.1), provided that : '

H =2, . .. . L L (d2a8)

This simple formula really solves our problem. Suppose we want to determine lower critical
Mach numbers for a range of angles of sweep, given the profile (and the respective H vs. ¢ table)
and thickness ratio 4. An arbitrary value of M, = M, being assumed, we find ¢, from Table 1
and then H’ from (4.2.16). Then ¢’ is found by interpolating the H vs. ¢ table, and ¢ from
(4.2.8). Thus one pair of corresponding values of ¢ and M, is determined, and the procedure
is repeated for several values of }, until a required range of ¢ is éovered. ' Repeating this process
for several values of thickness ratio 4, we may obtain a comprehensive diagram similar to those
givenin Figs. 30 to 33. The computation is easy, once the H vs. ¢ table is available. - The method
applies to both swept-back and swept-forward wings. '

It has been explained in section 4.1 that the central kink is not always the first danger spot,
and that the calculation of the lower critical must often be based on the maximum supervelocity
“at infinity * or at the tip, whichever the highest. The method of calculation remains unaltered,
but correct values of 4 must be used. One must bear in mind particularly that, to determine

the tip criticals (for large positive ¢’s only), half the values of H for corresponding negative angles
must- be used. , S ,

- 4.3. Examples.—(a) Profile B: Formulae—see Appendix ITT (I11.31 to 36)
Maximum supervelocities—Table 5 .
Critical Mach nﬁmbers—Ta_bles 4and 9
Diagrams—Figs. 6, 7,8, 9, 20, 21 28, 30, 34.

This case is particularly simple, the lower and upper critical Mach numbers for swept-back
and swept-forward wings being the same, and the kink section being always decisive for the
lower critical. The final results are represented in Fig. 30. It is seen that critical Mach numbers
rise’ consistently with increasing angle of sweep and with decreasing thickness ratio. - The
differences between the upper and lower criticals are small for small ¢’s but rise to very high
values as ¢ increases. o - ‘ S

(6) Profile C: Formulae—see Appendix 11T (II1.37 to 41)
Maximum supervelocities—Table 6
Critical Mach numbers——’l‘ablesli, 10',’ 10a
Diagrams—TFigs. 10, 11, 12, 13, 14, 22, 23, 28, 31, 35..

The calculation must be done separately for positive and negative ¢, and the lower criticals are
higher for swept-back wings than for.swept-forward ones. In the interval 0 < ¢’ < 43 deg
the maximum supervelocity at infinity is greater than at the kink (see Fig. 28), and therefore;
in this range, the former values should be used. The lower criticals have. first been calculated
on the basis of the conditions in the kink section, for the whole range of positive ¢’s, and
tabulated in Table 10. The additional (lower) values, based on supervelocities ‘ in the kink area ’
are given in Table 10a, for the interval 0 < ¢’ < 43 deg. Fig. 31 contains the curves of upper
and lower M,. It is seen that the' alternative solutions for moderate positive g’s differ little in
this case, the error in M,, being.always less than 0-01.. This is obviously due to the fore-and-aft
asymmetry being not very pronounced in the neighbourhood of maximum ordinate. The tip
criticals are not shown, as they are always higher than the lower criticals in the range considered.
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(c) Profile Q: Formulae—see Appendix ITT (IT1.42 to 47)
Maximum supervelocities—Table 7
Critical Mach numbers—Tables 4, 11, 11a, 11b, 11c
Diagrams—Figs. 15, 16, 17, 18, 19, 24, 25, 28, 32, 36.

The profile has some peculiarities which make the calculation more intricate. The maximum
ordinate lies as far forward as 30 per cent chord, and the fore-and-aft asymmetry is very
pronounced in the region of maximum thickness. At the same time, the rear part of the profile
is rather thick, with an almost imperceptible inflexion. The result is that, at zero sweep, the
maximum supervelocity lies much ahead of the maximum thickness point, and the rear part
of the supervelocity curve (Fig. 24) shows an unusual inflexion. With positive sweep, we have
a vast region (0 < ¢’ < 75 deg) where the maximum supervelocities at infinity are greater than
those at the kink (Fig. 28). Therefore, we have again alternative curves of M, in Fig. 32, and
the differences between them are quite appreciable. Obviously, the lowest curves should be
considered as ‘ correct . An unusual occurrence is that, at high positive values of ¢, the super-
velocity curves in Figs. 24 and 25 exhibit two maxima, the additional rear one being the result
of the peculiar profile shape (see also Fig. 19 with the curious rear ‘ supervelocity peak’). If ¢ is
very large, the rear maximum becomes greater than the front one, which means a reduction of the
lower criticals. Figs. 24-and 28 also show that, for negative ¢’s, the maximum supervelocities rise
to very high values which eventually become more than double those for positive ¢’s. In this
region the tips become ° first danger spots ’, and the tip criticals should be taken as true lower
criticals (see Fig. 32). This could be prevented by a gradual change of profile in the tip areas
so that, at the very tips, the profile should be more or less similar to B.

(d) Profile R: Formulae—see Appendix ITT (II1.48 to 59)
Maximum supervelocities—Table 8
Critical Mach numbers—Tables 4, 12, 12a
Diagrams—~Figs. 26, 27, 28, 33, 37.

The profile possessing a rounded nose, the first-order theory is less reliable as regards the velocity
field near the leading edge and—in the given case—it fails for all negative ¢’s, i.e., for swept-
forward wing. . It is clear, however, that maximum supervelocities for swept-forward wings
with such a profile will be very large, and so this profile would be most inappropriate for swept-
forward design. We may also expect that tip criticals will become important for comparatively
low values of positive ¢, but they cannot be calculated by using the pure linear method. Fig. 33
therefore shows only two sets of curves for lower critical Mach numbers (those based on maximum
supervelocities in the kink section or ‘in the kink area’) and, again, the lower curves are the
“correct ” ones. The differences between the alternative curves are very considerable in this
case. Fig. 33 may only be considered as correct, if the tips are designed with different profiles,
so as to prevent the premature shock-stall at the tips.

5. General Discussion and Conclusions.—The lower and upper critical Mach numbers have been
defined in sub-section 4.1, the methods of calculating them given in 4.2, and several examples
worked out as described in 4.3. The question now arises as to the practical meaning of both
criticals and the basis they provide to a designer for predicting the characteristics and comparing
the merits of particular swept wings. A complete quantitative analysis would require a solution
of the formidable problem of transonic phenomena. However, we can try to clear the matter,
at least qualitatively, by the following simple reasoning :—

For an wnfinite straight wing (¢ = 0), there is only one critical Mach number M, (always less
than 1), the same for all sections. Below this there are no shock-waves, and no wave drag.
Above the critical, shock-waves' appear, initially in the region of maximum velocities, and
simultaneously in all sections. The flow becomes transonic (subsonic and supersonic mixed);
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and a wave drag results*, the coefficient C,, rising steeply up to about M, = 1 when it reaches
its maximum value. For Mach numbers above 1, the flow becomes essentially supersonic
(supposing the wing is thin, and there are no detached shock-waves), and C, decreases soon,
following approximately the Ackeret’s law, 7.e.:

(Cplpmo = KO?|(M3 — 1)*2, o .. . .. 6.1)
where K is a constant factor, depending only on the profile geometry.

If the thickness ratio were very small, M, would differ very little from 1; in such a case as M,
passes through the critical value, the wave-drag coefficient would jump from 0 to its maximum
value almost instantaneously, to fall afterwards according to (5.1). The transitory range of

Mach numbers (approximately between M, and 1) widens considerably as the thickness ratio
increases.

If the infinite wing is sheared through an-angle ¢, the fundamental behaviour remains very
similar but, as only the flow component at right-angles to the wing edges counts, the critical
Mach number assumes a new value M,,. This is always greater than M, ; it may exceed 1, if ¢ is
large and 9 not too large, but it can never exceed sec ¢. Inthe case of vanishingly small thickness,
the critical would be simply sec ¢ ; usually, there will be a transitory range between M., and
sec ¢, where Cp rises more or less steeply. When M, exceeds sec ¢, the drag coefficient will
fall again, the equation (5.1) being replaced by (see Refs. 30 and 37) :

Cp = K0*(My — sec? ¢)*2 . . B

Considering finally a #rue swept wing, with two symmetrical halves and a kink, we have to
deal with two critical Mach numbers. The lower one (M,,) corresponds to critical conditions
being reached at the first danger points, where the maximum total velocities (in flight direction)
coincide with the isobars running perpendicular to that direction. These points often lie in the
central kink, sometimes away from it (theoretically at infinity, practically somewhere in the
kink area), and in some extreme cases at the tips. The lower critical normally increases with the
angle of sweep, but always remains below 1. For the parts of the wing adjoining the first danger
points, it plays a similar role to that of M, for unswept wings. The upper critical M., is almost
the same as that (M,,) pertaining to infinite sheared wings with the same angle ¢. There will
be again a transitory range, from M, , to sec ¢. It must be borne in mind that there is a continuous
change-over from most endangered to least endangered sections, and hence there should be a
continuous sequence of critical Mach numbers, and even a continuous sequence of transitory
ranges. It would, of course, be futile to try to calculate ‘ local criticals ’.

* The noticeable rise of the drag will normally occur for Mach numbers somewhat exceeding A7, This is natural,
as the intensity of the shock-waves must be very small initially, and so we must always reckon with a certain.delay
of the balance-measurable effects. However, when discrepancies between the ‘ theoretical * and all sorts of ‘ practical ’
critical Mach numbers were first noticed, they led to a trend of pessimism as to the significance of the former. This
may be seen in some papers by Lee?® 33, and especially by Smelt3! who went so far as to assert that  this critical Mach
number bears no relation whatever to the Mach number at which the drag begins to rise . The opinion was at least
premature at a time, when so little was known about actually calculating critical Mach numbers.

An interesting method of accounting for the discrepancies between the calculated and observed criticals was suggested
by Griffith® and McKinnon Wood?2. They both interpreted the criterion for wave drag (velocity component along the
resultant acceleration = local velocity of sound) in such an ‘ extremist ’ way that, for particles travelling along the surface,
the acceleration should include the component normal to wing surface, due to the curvature. Some two-dimensional
calculations on these lines were done by Beavan and Lock? %2, without conclusive results. The method leads to some
paradoxical consequences; e.g., at the point of maximum velocity the relevant velocity component would be zero.
The matter is complicated and far from clear. It seems that the interpretation has never been really adopted either in
Britain or elsewhere. From the point of view of our linearized method, however, no such question arises. According
to this method, the resultant velocities (and pressures) do not depend on the normal co-ordinate z, and the isobaric
surfaces are all cylindrical. It is therefore sufficient to consider the velocity field in xy-plane, and the velocity components
normal to the plane isobars.
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It becomes clear that, as a result of the geometry of a swept wing, we have finally to deal
with a vastly extended  transitory ’ or transonic range of Mach numbers (from M,, through 1,
M,, up to sec ¢). When M, gradually increases through this range, the particular sections of
the wing gradually experience their transitory stages. The flow over some sections is already
essentially supersonic (with decreasing C,) while that over others is still in the transonic stage
(with sharply increasing Cp), and some may still be in the subsonic stage (with no wave drag).
- The entire process is intricate and may present many unexpected features. However, when
M, exceeds 1, the methods of supersonic, aerodynamics may help to explain the course of aero-
dynamic changes. Several authors® % #.% have given results of drag calculations for swept
wings in supersonic flow, mostly for the simplest case of double-wedge profile. The most en-
lightening are perhaps von Karman’s results”. In connection with Fig. 13 of his paper, he shows
how the wave-drag coefficient of an ‘ arrowhead * swept-back wing (of considerable aspect ratio)
varies with Mach number, on the basis of an approximate calculation. It appears that C) starts
with a very small value at M, = 1 and then rises, first slowly and then at a strongly increasing
rate, until it reaches a finite maximum at M, = sec ¢ ; finally, it decreases again, soon following
the formula (5.2). The approximate method, as used by von Karmdn, clearly does not take
into account the incremental velocities (v,) due to thickness, and therefore, in his picture,
the lower critical Mach number is 1 and the upper one sec ¢ (¢f. Fig. 9 of Ref. 37). Between
these values, the ‘regular’ region of the wing is in subsonic conditions (M, cos ¢ < 1), and
almost the entire wave drag originates in the kink area (see Fig. 11 of Ref. 37, where the drag
distribution on a finite sheared wing is shown). It is interesting that, according to von Karman,
the resultant wave drag of the downstream tip is zero, and this seems to confirm our suggestion
(section 4.1) that the seemingly critical conditions in the tip areas are of little importance®.

In reality, the variation of the wave-drag coefficient with Mach number should differ somewhat
from the simplified von Karman’s picture. Its first appearance should not occur at M, =1
but at M,, (or somewhat higher, if we look for clearly appreciable effects). Similarly, the maxi-
mum drag should take place not at M, = sec ¢ but rather at M., (or possibly at some value
between M,, and sec ¢). If we aim at utilizing the swept-wing design in order to avoid wave
drag completely, then the flight Mach number must clearly not exceed M,,, and then the only
important thing would be to raise this lower critical as high as possible. If, however, a small
wave drag can be tolerated, then the flight Mach number may exceed M,, to_a certain extent;
in such a case, we should aim at as low rate of increase of C, as possible, and also keep well
below M,,. From this point of view, the upper critical may be quite important, and it should
be as high as possible. The best formulation perhaps would be, that the difference (M., — M.,)
should be as large as possible. It must be stressed, however, that this reasoning applies fully
to wings of fairly large aspect ratio only, where the regular regions embrace a major part of the
wing surface, thus the wave drag caused by the small kink region is of comparatively little
significance. As the aspect ratio decreases, the regular regions gradually dwindle and almost
disappear, so that little but the kink and tip areas remain. Hence, at small aspect ratios, the
upper critical becomes less and less important. This is corroborated by Fig. 14 of Ref. 37 which
shows that in such cases, the values of C,at M, = 1 are very much larger than at large aspect
ratios, while the peaks (at M, = sec ¢) are considerably reduced. .

The wmost important question for a designer is to know how the critical Mach numbers depend
on the main design factors which are: thickness ratio, angle of sweep, and profilef. This is
what our Figs. 30 to 33 aim at showing, for four representative profiles. It is seen that, although
the four pictures are qualitatively similar, the numerical differences are considerable. Ludwieg®
expected that at least the gains in the (lower) critical Mach numbers due to sweep should be

* At least as long as the maximum supervelocities at the tip do not exceed those in the regular part. If they do,
we should expect wave drag at the tips, and therefore our * tip critical Mach numbers " in the case of large ¢ and profiles
strongly asymmetrical fore-and-aft (see section 4.1 (iii)) should have some practical significance. One must realise that
von K4rmdn’s graphs apply to the double-wedge profile only ; for other profiles the results may differ, but the calculation
would be laborious. : : : 7 ,

+ Tt is hoped to describe the effects of taper in a later report.
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practically the same for different profiles. To check this, we have replotted the values of M,,
at varying ¢ against M, for ¢ = 0, for all four profiles, in Tlgs 34 to 37. Itis seen that Ludwieg’s
prediction was not correct, the four diagrams differing very appreciably. The differences in the
effect of sweep-forward are particularly striking: for the profiles strongly asymmetrical fore-and-
aft, small or moderate sweep-forward may often be detrimental for M, ,, and only for very large
negatlve ¢’s there is some, rather disappointing, gain®*. It is obvious that, if swept-forward
wings are to be used, their proﬁles should be nearly symmetrical fore-and-aft, perhaps even with

maximum thickness slightly further back than 50 per cent chord—if compatlble with other
requirements.

As to the swept-back wings, the following point should be stressed, with reference to Figs. 38
and 39 containing comparatwe diagrams of M,, and M,, for different profiles and thickness
ratios 0-1and 0-2. At small ¢’s, the decisive factor for the lower criticals (as always for the upper - :
ones), is the maximum supervelomty ratio: the lower the value of ¢,, the higher that of M,,.
Hence, in this range, B seems the best, C and Q follow next, and R is the worst of the four profiles
considered. The position alters cons1derably for large ¢’s. At about 45 deg, there is little
difference in the performance of the proﬁles and above that, the order of precedence is partly
inverted. However, at quite large @’s, the wings with proﬁles Q and R will be severely
handicapped by their * tip criticals . To avoid this, the simple method is to change the profiles

.spanwise towards the tips, so as to have nearly fore-and-aft symmetry there.

Another interesting question may now be considered. It has been suggested® that a
considerable improvement in the (lower) critical Mach number could be obtained by such a change
in the geometry of the kink and possibly also by such fuselage interference effects, which would
result in artificial straightening of the isobars in the kink area. It might be said that it is hoped

to impart the properties of an infinite sheared wing to the (less fortunate) kink area. The idea
may seem promising, but the matter is not so simple.

Even if it is possible to straighten the isobars so that the supervelocities become constant
along the &-parallels almost down to the central kink section, it does not follow that the critical
conditions in the kink area will be the same as in the regular regions of the wing. The isobars
must cut the central kink plane at right-angles® **, and thus the lower critical will depend on the
total velocity U (not on U cos ¢) plus an appropriate supervelocity. Therefore the lower critical
will always be less than one, while the upper critical may exceed unity. The only possible gain
is an increase in the lower critical (to a value always less than one), due to a certain decrease in
the supervelocity, as in the case of profile B. But, in many cases, especially if the profile is strongly
asymmetrical fore-and-aft, and if the angle of sweep~back @ is not very large, the maximum
supervelocity in the original kink may be less than that in the regular region. In such cases,
the effect of straightening the isobars would be to increase the supervelocities in the kink area.

The magnitude of the maximum supervelocity in the kink section is of more importance for
the lower critical Mach number than the shape of the isobars. In addition, it is difficult to
obtain even approximately rectilinear isobars in the kink area—and even if this were achieved
at a certain Mach number, the shape of the isobars would alter with the Mach number.

* This is shown in Fig. 36 for the profile Q, but not in Fig. 37, because the lower criticals cannot be determined for
the profile R and negative ¢ by the first-order method. The effect should, of course, be even more pronounced for the
profile R.
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LIST OF SYMBOLS

Coefficient, see (I11.7)

Speed of sound

Speed of sound in undisturbed flow

Speed of sound in critical conditions (local Mach number = 1)
Coefficient, see (I11.7)

Half-chord of wing section

Coefficient, see (II1.31)

Coefficient, see (I1I1.7)

2 (P — j)o)
pV®

Pressure coefficient in critical conditions (local Mach number = 1)

Pressure coefficient

Pressure coefficient in incompressible flow
26 Chord of the wing section

FFunction determining the wing section or surface

1 —&—(r,—n)tang VI(ERF)

sin ¢ cos ¢ -+ % cos 2¢
sin ¢ cos ¢ + 1 cos 2¢

see table of auxiliary func-
tions, Ref. 48, p. 32

cos ¢ — 7 Sin ¢

sin ¢ cos ¢ — 7
Sin @ COS ¢ — 7

+ (14 ¢)
— (1 —¢§)
+ (1 4 &) cos ¢ — 5 sin ¢
— (11—
+ (14§
— (1 —¢)

14 . . . .
(— qu]> Maximum supervelocity ratio per unit thickness ratio

Coefficient, see (111.7, 8) and (IIL.31, 32)
Natural logarithm

V/a Local Mach number

Ula,
Critical Mach number (critical value of M,)

Mach number of undisturbed flow

Lower and upper critical Mach number for a swept wing
Critical Mach numbers for an infinite wing, sheared or yawed
Polynomials in £, see (1I1.19)

Polynomials in &, see (II1.11)

Auxiliary variable, see (II1.4)

Pressure

Pressure in undisturbed flow
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LIST OF SYMBOLS—continued
see (I11.5)
V(L + §)*cos® g — 2 (1 + &) sing cos ¢ + 77
V(L — &) cos®e + 2 (1 — &) sin g cos ¢ + 7°]
Auxiliary function of &, see (I11.28, 27)
Value of T for ¢ = ¢,
Thickness of wing section
Thickness of section of analogous (Géthert’s) wing (see Fig. 29)
Velocity of undisturbed flow
Local velocity of the flow
Local velocity in critical conditions
Maximum value of 7 in compressible two-dimensional flow

Local velocity component normal to the edges of a sheared or
yawed wing

Critical value of V,

x-component of the induced velocity, or supervelocity
Chordwise co-ordinate, positive forwards

Chordwise co-ordinate of the source filament
Spanwise co-ordinate, positive to starboard

Vertical co-ordinate |

Adiabatic constant

(—— 5 Maximum supervelocity ratio in two-dimensional flow
max X

Value of ¢ in incomipressible flow

Value of ¢, for analogous (Géthert’s) wing
¢/c  Thickness ratio of wing section

v/b Non-dimensional spanwise co-ordinate
1 — M. Auxiliary variable, see (1.25)
First approximate value of u, see (1.28)

(x + v tan ¢)/b Non-dimensional chordwise co-ordinate on a
sheared or swept wing

Value of & corresponding to maximum supervelocity

Value of & corresponding to z,,, of the profile

Air density

Air density in undisturbed flow

Angle of sweep (positive for sweep-back, negative for sweep-forward)

Angle of sweep of analogous (Géthert’s) wing, see Fig. 29
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APPENDIX I (to Section 2)

Derivation and Analysis of Formulae for Critical Mach Numbers wm Two-dimensional Flow

Let us consider a two-dimensional compressible flow past an arbitrary profile (Fig. 1a). The
" velocity of undisturbed flow is denoted by U, while p,, po, @, M, are the corresponding values of
pressure, density, speed of sound, and Mach number. At a certain point A of the profile, the
velocity will be :(—

V=U1+9), .. . .. . o . .. (I.1)

|
and p, p, a, M will denote the corresponding (local) values of the respective quantities. It will
suffice to consider only that point where ¥ (and hence ) has its maximum value, so that ¢ is
the maximum supervelocity ratio.

If ¥ (or 6) is known, we may determine all other physical variables at A, in particﬁlar —

from Bernoulli’s equation : a* = a,* — Y ; 1 (V- U», .. .. . (1.2)
. R - 2 2\ _v. .
from adiabatic relationship: % = (1 X 5 L V' = v > o . .. (1.3)
hence the pressure coefficient :— ' : :
2a,° [ y— 1V U? J_-il , . . . (1.4)
C,= =B [1 - (1 - EEYS |
and the local Mach number :—
VZ
M? = — C .. . . . . (L.5)
At — 3 (Vz . Uz)

The quantities @, V and C, may also be represented in terms of the local Mach number M,
as follows:—

L+ $y — )My
a* = a’ T =1 (1.6)
1 2
9 ,2‘2‘('}/—1)—}—1/M0
A (s s v 2
| Pt M= MYy
6=l - (=" T ) (18)
Suppose now that the local Mach number M becomes = 1, which means that 3, is critical

for the given profile, or alternatively: that V and C, assume critical values for the given M,.
Then (1.6, 7, 8) become :—

2 1 — My y — 1 ‘
Vi=ar =01+ — ) = a1 — L M2),.. (19
(cf. 2.8), and :— :
. 2 y — 1 {—:l
cj,cz_m[1~(1_y+1(1——zv[02))v1 o)
while the critical value of the supervelocity ratio ¢ becomes:—
2 1 — M2 :
5a‘=<1+y+1 -~ Y -1
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Suppose now that the Mach number M, is small, so that the flow may be considered as incom-
pressible (Fig. 1b). The formula (I.4) may then be expanded and yields:—

Coim — (VAU — 1) = — (26,463, .. .. .o . .. (L12

which is the known relationship between C,; and ¢, in incompressible flow. If §; is small, then,
to the first order:—

Cpi == — 26, . s 1)

It is now interesting to determine how far an approximate relationship analogous to (I.13) applies
in compressible flow. Let us expand (I.4) in powers of

Ve — 2

s = (20 -} )M ?;
ag E '
we obtain the following series :—
9 __
Cp=— 26 — (1 — M@)o + M1 — =5 M2y
' 12— 2—y)8—2
+ MOZ{Z - 2 Y ]‘402 Jf‘ ( V)fz 'V) M04}64 LR .t (]:14)
the inversion of which is* :—
. 1
5= —1C, — 31 — Mace — (1= M + Y ey
1
B A 7A XN (ST
It is seen that, again, to the first order:—
C,=—25, .. . .. .. . .. .. .. (L.1s)

and that the error due to the use of this approximate relationship, is rather smaller than in the
incompressible case, but still appreciable.

To calculate the ‘critical Mach number for a given profile, there is a choice between the
formulae (1.10) and (I.11), 4.e., between basing the calculation on the pressure ratio C, or on the
supervelocity ratio 8. Both formulae are exact}. In theoretical work, it seems greatly preferable
to use (I.11), not only because it is so much simpler, but also because all theories of potential
flow lead directly to supervelocity ratio, not to pressure ratio}. However, the theory of potential
incompressible flow gives only §; (and hence C,,), and one more relationship is needed to connect

" * Assuming y = 1-4, we may rewrite the expansions (I.14, 15) as follows :—
Co=—26— (1 — M+ (M2 — 0-2MH6* + (0-25M2 — 0-3M* 4 0-01Mf)o* . . .,
8= —0-5C, — (0-125 — 0-125M*)C,2 — (0-0625 — 0-0625M > + 0-05M ") C,?
— (0-0390625 — 0-046875M % + 0:0328125M * — 0-02375M S)C 2 . . . .
1 On the assumption of Bernoulli’s equation and adiabatic law.

I When analysing experimental results (pressure plottings), the values of C, are given, and then the formula (I.10}
is preferable, but a great care is needed, especially to avoid illusory claims as to the accuracy of deductions.
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6 with ¢, (or C, with C,;). Such a relationship is provided, to the first-orde

by the Glanert-Prandtl rule which is expressed by :—

5 =
or
C, =

3;/v/ (1 — M),
Coifv/(1 — M) .

r approximation,

(1.17)
(1.18)

It should be noticed that (I.17) and (I.18) are not strictly equivalent. They lead to slightly
different results, as shown by the following table (calculated with » — 1-4):—

Dift bet
M @) ®) @ (5) ©) e and )
Co: ] C C
M, g (from'1.12) |(fromT.17)| (fromL.4) | (fromT.1g) | @bsolute |  per cent
0-9 0-039230 | —0-079999 | 0-09 | —0-181044 | —0-183531 | 0-0025 14
0-8 0-12 —0-2544 020 | —0-409890 | —0-424000 | 0-0141 3.4
0-7 0-275091 | —0-580279 | 0-36 | —0-764819 | —0-812553 | 0-0477 62

In this table, ¢, has been chosen for every M, in such a way as to give a predetermined round
value of 8, near to the critical value from (I.11). Hence the differences (shown in the two last
columns) represent the maxima to be expected at the given Mach numbers. It is seen that, for
large values of M, the errors are negligible ; they increase, however, with falling M,, and become
appreciable for M, < 0-8. If the entire calculation is based on the linear perturbation method,
the formulae (I1.17) and (I.18) may be considered as interchangeable.

Some efforts have been made®*** % to improve on the Glauert-Prandtl rule so as to achieve
higher accuracy. The alternative formulae are all based on theoretical considerations, but the
final recommendation is usually based on a claim of better agreement with experimental data.

They therefore usually refer to C,, not to 6. The earliest and most known correction was suggested
by von Karméan® in the form:—

Cpi
(L — M) + $C,: [1 — (1 — M)

The formula involves second-order correction in C,; (as do all other alternative formulae), and
therefore its use in connection with linear theories is doubtful if not outright rejectable.

C, =

(I.19)

It may seem that von Karmén’s correction is most significant when [1 — V(1 — M@ is
large, i.e., when M, is nearly 1. However, the admissible sub-critical values of C,; are then so
small that the entire correction is negligible. The correction assumes appreciable values for
smaller Mach numbers, 4.e., for thicker profiles, as shown below.

A corrected formula for 4, equivalent (to the second order of accuracy) to (I.19), cannot be
simply obtained by introducing (I.13) and (I.16) into (I.19). To ensure the accuracy required,

we must rather replace C,; in (1.19) by (I.12), and then use the expansion (I.15)—with two
terms only. We thus obtain :—

é

P = A= M7 = o1 + My — (1 = 37

(1.20)

* This does not preclude, naturally, on von Kdrmdn’s formula (or any alternatives) being studied and applied in
connection with experimental data, or with theories of higher order of accuracy.
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The formulae (I.19) and (I1.20) are not exactly equivalent, but the differences between their
numerical results are negligible, as shown by the following table:—

(1) M, 0-9 0-8 0-7
2) 8, 0-036946 0-108696 0-225587
3) : C,; {from 1.12) —0-075256 —0-229206 —0-502064
{4) é (from 1.20) 0-09 0-20 0-36
(5) C, (from 1.4) —0-181044 —0-409890 —{(-764819
(6) C, (from 1.19) —0-181487 —0-413611 —0-781564
Difference Absolute 0-00044 0-00372 0-01674
between (5) and (6) Per cent 0-24 0-91 2-19
(7) C, (from L.18) —0-172649 —0-382010 —0-703030
Difference Absolute 0-00884 0-03160 0-07853
between (6) and (7) Per cent 4-9 76 10-0

In this table, 8, has again been chosen for every M, so as to give predetermined values of ¢
(same as in the previous table). The interchangeability of (I.19) and (I1.20) is clearly shown by
the negligible differences between (5) and (6), which are small of the third order. As to the
magnitude of von Kdrman’s correction itself, it is illustrated by the last two lines of the table,
and it is seen to be appreciable, although obviously of the second order.

It is now clear how the critical Mach numbers should be calculated for given profiles, 7.¢., for
given 6;. For first-order accuracy (expecially if 4, is only approximately known), we use (1.11)
and (1.17), and replace the symbol M, by M,, thus obtaining :—

21— M2\
5i:(1LM02)1/2[(1 + I ) - 1] N | 825
(cf. 2.5 and Fig. 2). If, however, the second-order accuracy is aimed at (which requires at least
such an accuracy in 4;), and we apply von Karmdn’s correction, then we must use (L.11) and
(1.20), and obtain:—

B (1 — Mo [(1+yilljwf¥°2)l’2_ 1]
S (=== e

The differences between (I.21) and (1.22) are not negligible, especially for smaller values of
M,, i.e., for thicker profiles, as shown in the following table.

5, (1.22)

8, from (I.21) 8 from (1.22) Difference
M, (simple Glauert- (with von Kérmdn’s

Prandtl rule) correction) absolute | per cent
1 0 0 0 0
0-95 0-0137 0-0133 0-0004 3-4
0-9 0-0407 0-0382 0-0024 6-0
0-85 0-0784 0-0720 0-0064 8-2
0-8 0-1210 0-1095 0-0115 9-5
0-75 0-1875 0-1663 0-0212 11-3
0-7 0-2615 0-2289 0-0325 12-4
0-65 03511 0-3045 0-0466 13-3
0-6 04597 0-3960 0-0637 13-9

In Fig. 2, the thick curve of M, corresponds to (I.21), the thin one to (I1.22).
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It would undoubtedly be preferable to obtain higher accuracy, which seems to be possible by
using von Karman’s correction (or any alternative one, whichever deemed most reliable). 1If,
however, the supervelocity ratio 4, itself is determined only with the first order accuracy, then
using any of the corrections would only give an illusory improvement, and serve no useful purpose.
In this report, the two-dimensional case is treated only as the introduction to the more complex
case of swept wings. And, as the only method available for predicting flow characteristics on.
such wings 1s the linear perturbation theory, the simpler formula (I.21) is used. This seems to
be in line with other similar efforts, e.g., those relating to critical Mach numbers for ellipsoids,
where the simple Glauert-Prandtl rule 1s applied”. Hence, the fundamental Table 1 is based on
that rule, and thus on the formula (1.21). '

It may be noted that the formula (I.21) would become simpler for one particular value of the
adiabatic constant, 7.e., for y = 1, in which case :—

(1 — M)(1 — M2 |
5, = i S € 210

An equivalent formula was given by von Karmén (Ref. 9, form. 68). The assumption y = 1
means that all changes of the speed of sound are neglected. This sort of simplification does not
seem quite legitimate. The error involved can be easily estimated by expanding (I.21) on
assumption of (y — 1) being small ; we then get:—

(I—Mg)(l——Mf)l/z(]_y-ll—{—Mc >
M, ry+1 2 "'/
and it is seen that the error on ¢, amounts to about 18 to 17 per cent. There is no reason for such

an unnecessary error, the more so as the formulae (I.21) and (1.23) are almost equally easy for
computation. The simpler formula is just as insoluble for M,, as the more accurate one.

o, =

%

(1.24)

This brings us to the problem of inverting the formula (1.21), 4.¢., solving it for M,. The equation
being of the fourth degree in M,? no simple explicit solution is likely to be found, and only a series
expansion may be tried. This should be done preferably in the neighbourhood of the singular
point (M, = 1, 6 = 0) of the curve in Fig. 2, where both § and 1 — M,? = may be considered
as small, but not of the same order. The singularity is easily recognised as a ¢ semi-cubic * cusp,
and the equation (I.21) can be rewritten thus:—

2 u 1/2
aizvﬂ[(1+mm B O
or |
| 2 2 o, 2 N
or expanded :— '
1 2 1
ai<y+1)=w2(1‘+§i;wﬂjﬁjﬁm. ) (1.27)
Lefusput:—
[6:(y + 1) = o . o . . . . .. (I.28)
then
1 2 1 2/3
MO:;(l—i—Ziiy%—%ﬁ...), N )
or

Zy +1 2 .
ILLOZILL—}—B,—(?;—_‘F_—I—)M’{— 9(‘)’+1)2 M .. . ‘. (130)




Inverting this series, we obtain :—
2y + 1 4" + 4y — 1 |

#:'MD_3(V—1'—1)M°2+IT(7,__*‘_1—)2M0--., . . .. (L31)
whence :— ,
, 5 I, 3*+2y—8 |
Mc:\/(l—ﬂ)zl—%ﬂo_l‘f#—:_l)ﬂo-"_%g(y—_f_‘lﬁﬂn ce e, .. .. (1.32)
or finally :—
5y +1 o 3y:+2 — 3 ‘
M= 1= 3oly + UV o iy + 0 - T P b (139)

By a similar procedure, M, may be expressed in terms of C,;. Using formulae (I1.10) and (I.18)
we obtain :—

2(1 — Mf)”z{ | y —1 %1]
CM:—~—EP——L—@—y+1a—Mﬁ} 2 £ Y
this relation corresponds to (I.21). The solution for A, in the form of an infinite series may be
obtained by following the lines of the previous transformation, and we obtain:—

y+1 0N Syt y+1 NP
9y2+8y'~25(_;»+1c :
R 2 e

The two series (I.33) and (I1.35) converge satisfactorily for moderate values of §, or C,;, but
they are not convenient for computation*.

(1.35)

Bearing in mind that the entire theory is only approximate, one is strongly tempted to keep
only two terms in each of the two series, thus:—

M, =1 — 6,0y + 1) e ase)
2
or ) ’
. 1 2/3 .
Moe1—¥ =150 . s

The formula (I1.37) was derived by Liepmann and Puckett®. However, both (I.36) and (1.37)
involve appreciable errors. A linear approximation is based on neglecting second and higher
powers of the quantity originally assumed as small, but in this approximation the 4/3rd power
of-6; or C,, is neglected. Liepmann and Puckett’s approximation leads to the lowest curve in
our Fig. 2, and it is seen that it considerably under-estimates the critical M ; it may therefore
be used only for very rough estimates. Using three terms of our series (1.83), we should obtain
the upper curve in Fig. 2; this curve follows the main one rather closely, but it slightly over-
estimates the critical M. The curve representing M, according to von Karmdan’s correction lies
below our main curve, and the results would be similar if Temple’s, Greene’s or Weber’s corrections
were used instead. It is seen that the series solutions in this case have some rather unfortunate
features, and should only be used with great care. -

* As mentioned in section 2, it was found more expedient to calculate &, for assumed values of M, (Table 1), and then
to interpolate to tabulate M, against J; (Table 2). |
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APPENDIX II (to Section 3)
Approximate Expressions for Critical Mach Numbers of Infinite Yawed and Sheared Wings

The approximate formula (I.83) for the critical Mach number of an infinite straight wing can
be modified so as to give similar expressions in the cases of infinite yawed, or infinite sheared
wings. In the former case, as shown in section 3, it is sufficient to replace M, by M,, cos ¢
in the relationship pertaining to the two-dimensional case. Hence, for wnfinite yawed wings :—

5y + 1 '
Moy = {1 = 4oy + DI + gt D3y + 11

3?2y — 3 \ )
T 48y + 1) [6:(v + 1)] ...iseC(p. .. .. .. - .. (IL1)

Similarly, in the latter case, M, must be replaced by M,, cos ¢ and, at the same time, §; by
d; sec p. Thus we obtain, for infinite sheared wings :— '

5 1
Mo = {1~ ol 4+ 1) sec o] 4 5352y + 1) sec g

3y 42y — 8
- %8‘—?;;—:1)2 .y + 1) se(:rp]Z...}squp. e . .o (I12)

Both formulae are subject to the same reservations as the original expansion «(I.33). With all
four terms of the series taken into account, they are accurate enough, but rather inconvenient.

With only three or two terms, they are not sufficiently accurate, and may only be used for rough
estimates.
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APPENDIX IIT (to Sub-Section 4.1)

Supervelocity Distributions over Swept and Sheaved Wings with Varvious Profiles

(A) General.—In this Appendix, we consider the distribution of the incremental velocity v, on
semi-infinite sheared and infinite swept wings with various profiles. The general theory was
given in previous reports (R. & M. 2713* and 2717*) and applied in the simplest case of the
biconvex parabolic profile. It will therefore suffice here to show how the method can be applied
to other profiles.

For a semi-infinite sheared wing with arbitrary section, defined by the equation:

z=Fx+ytang) (0 <y < + :
(—b<x+ytang < + b) Lo .. (TIL1)

the general formula for v, at an arbitrary point (», y) is, according to R. & M. 2717%,
form. (3.5.3) :

2nv, b F'(x) Vv sec
UCOS¢:_J—bx—£+yt&n¢< _i“[( ) 2]1/2>6Z99- .. .. (IIIZ)

Introducing non-dimensional co-ordinates:

t .
e U 13 £

the new non-dimensional variable of integration :

¥ —x—ytang

P = 5 , (I11.4)
and denoting for abbreviation :
7 = (P?cos® ¢ - 2Py sin ¢ cos ¢ + n¥)**, .. .. .. .. (IIL.5)
we may reduce (1.2) to the following form:
27y S [b 7
Teos =] (14 ")ap . Y 4 1)

Suppose now that F is a polynomial of any degree. The integral (II1.6) will be always calculable
by elementary methods, and the only functions required, apart from simple polynomials, will be
some of those given in the * Table of auxiliary functions ’ of Ref. 48 (page 25).

We shall limit ourselves to the polynomial of 5th degree, but higher degrees will involve only
additional algebra. Let us put:

2= F(b§) = kob(1 — £3(1 + A& + B& 4 C&%), .. .. .. (IIL7)

‘where ¢ is thickness ratio, and % a non-dimensional coefficient chosen in such a way that
Zmax = 90, 1.6.,

' 1
(1 - §1L2)(1 + AE% + Bfnz _l_ Csns) ’

¢, denoting the value of £ corresponding to

k=

(IIL.8)

Zmax'
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The first derivative of (IT1.8) becomes:
F'(be) = kI[A — 2(1 — B)E — 3(4 — C)&* — 4BE —5Cg7], .. .. (IIL9)

and hence:

F'lb(E + P)] = k¥ (ny — n P — n,P? — n,P* — n, P, e . .. (II1.10)
where : '
' g =4 — 2(1 — B)§ — 3(4 — C)&* — 4B& — 5C&*,

1y == 2(1 — B) 4 6(4 — C)& + 12B&* 4 20CE*

1y = 3(A4 — C) + 12B¢& + 30Ce? | : .. .. (ITL11)
1y = 4B - 20C¢
n, = 5C .

The formula (IT1.6) then becomes:

_ 73%‘97 _ J:: (11 4 m,P naP" 1 PP — %of 1;& v Z‘;WdP
ta] b mP PP E ()
The first two integrals in (II1.12) are easily determined as follows :—
J:I: (11 4 1P + 1o P? o m, P2)AP = 2my — 2m,& - Fma(1 + 38%) — 2my(& + &%), .. (IIL.13)
and (¢f. R. & M. 2717* form. 11.7 and table on p. 25):
[T e — w0 i

The third integral in (ITI.12) is somewhat more complicated. By applying the usual reduction
formulae, we obtain the following expression for the indefinite integral:

apr
[(%l -+ 1, P - 1, P% - mP‘"’)T =
o {[112 — Sy tan ¢ + (% tan® ¢ — 8)] 4 (ny — fngy tan @) P Ln,P?

dP
+ [, — nam tan ¢ 4+ ng®(tan® ¢ — &) - 2%(3 tan ¢ — tan® ¢)] J7 , .. .. (ITL.15)

which may be easily checked by differentiation. Introducing the limits, and taking into account
the formula (I1.6) of R. & M. 2717*

Jl £ dP _lnliJL

. (I11.18)
1—& ¥ COS ¢
we find the definite integral as follows :
e P r -t ,
j_l_s (%1 b 92, P - P - %4P3) — — cl—oéz— (.JB - 20CE — 25 Cy tan ‘P)
+ g (34 — 4C + 10B¢ + 5 C#) — (6B + 252 Ce)y tan p + 5Cr(3 tan® ¢ — )]
In F,
+- 508 ¢ [7, — ngy tan ¢ 4 nyy*(tan® ¢ — 4) 4 7,,°%(E tan ¢ — tan® ¢)] . .. .. (I11.17)
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- Introducing (ITI.13), (I11.14), and (II1.17) into (III.12), we finally obtain, for a semi-tnfinite
sheaved wing :

- 2nu, 7 '
T EUcosg Tt In F; 4 Zos ¢ [, — nan tan ¢ + ng*(tan® ¢ — §)
3 . — 7
+ 7’7/4773(% tan @ — tan® (P):I In F4 -+ 17_(220T2(}9L) [ml — gy tan ¢ - %47]2('131' tan? @ — %‘_)]
nlry -+ 7 \
+ (cz)s2 @ . (s — gy tan g) .- .. .. (IT1.18)

where : 7
B . .
mo = 4(1— 5 )+ 6(4 — 40)¢ + 8B&* + 10C&,
my = (34 — 5C) + 10BE + 42C¢%, r R ¢ 1 R )
. my =8B + 155C¢,
m:; — ZB —'}— —%QCE N

and 7, 71, %s, %5, 1, are given by (II1.11).

Two special cases deserve attention. Putting % = 0, we get, for the upstream tip section :

&1 +sing
&1l —sing/’

‘ . Y,
kU cos ¢

= Tm, -+ 31, In (i __}— (I111.20)

7=0

and, when n — oo, we obtain (taking into account the expansions T.19, 20, 24, 25 of R. & M. 2717%)
for a section far away from the tip : '

' v,

' 14 ¢
~ koUcosg = o + 7 In

n—>® 1'— £

(I11.21)

The formula (IT1.21) can be obtained directly by using the general method for two-dimensional
- aerofoils, described in Ref. 34 (form. I.14). The formula (II1.20) represents one half of (II1.21),

with the kink correction term In(1 4 sin ¢)/(1 — sin ¢) included. The two cases provide useful
checks of the general formula (ITI.18).

The next step is to work out the general formula for v,-distribution over an infinite swept-back
wing (with a central kink). As shown in R. & M. 2717* (section 4.1), the right procedure is to find
the contribution of the left half-wing, by replacing 5 by (— #), and & by (&§ — 24 tan ¢), in
(II1.18), and then to add together the contributions for both half-wings. This is a simple alge-
braical operation, but rather long in the given case. The final result for an ¢nfinite swept-back
wing is: '

Uy
— EW}%@ = [my — 2(m; — mué )y tan ¢ + 4(ny — n,.€)n* tan® ¢ — 8nm®tan® 9] + n,In F,

+ 1 tan @(n; — 2.y tan @ 4 4dugm® tan* ¢ — 8ngy® tan® ¢) In F,
n? sin @
cos? ¢

[y — 3ugy tan ¢ - %4572(7 tan®* ¢ — §)] In F,

7 sin @ nn*(vy + 7,) sin @
+ T oo g (215 — naE — Tgy tan @) (r, — 7)) + — 5 COS32<p
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There are again two important special cases. Putting n = 0, we obtain, for the central kink
section :

+ &1 +Fsingy
— &1 —sing/’

’ YV,

~ BT e e (I11.23)

1
=m0+%01n<1

n=0

which is exactly twice (II1.20), as it should be. Letting n — <o in (IIL.22), we get, after a long
transformation: :

Y,

" E9U cos ¢

1+ &
:mo’}_%olniég,

i.e., the same result as (II1.21), as it should be.

. (II1.24)

It must be intimated now that the formulae (III.18) and (II1.22) apply directly only if
¢ >0, 7.e., in the cases of a semi-infinite sheared wing with an wpstream tip, or of an infinite
swept-back wing, respectively. However, both formulae can also be used when ¢ <0, z.e., in
the cases of downstream tip, or a swept-forward wing, but then special pains must be taken to avoid
errors. Examining carefully the formulae, together with expressions T.1, 2,7, 8, 10, 11 of R. & M.
2717*, we come to the conclusion that following rules must be observed :—

(1) tan ¢ and sin ¢ should be replaced by (— tan ¢) and (— sin ¢) in (II1.18) and (IT1.22);

(2) values of 7,, 7, F, corresponding to the given &, #, ¢ should be replaced by those of
7y, 7y, I, corresponding to (— &), #, ¢;

(8) values of In F;, In F,, In F; corresponding to the given £, », ¢ should be replaced by those
of (—In F)), (— In F,). (— In Fy) corresponding to (— &), #, ¢.

The supervelocity distribution in the kink section, given by (II1.23), is of paramount interest,
and the maximum value of the supervelocity is particularly important. This maximum can be
determined by equating to zero the first derivative of (III1.23) with respect to & This leads to
the equation:

, 14+ &1+ sing 2m, ' |
mo—%lln(l_gl_sin(p)-l—l___§2=0, ... .. (1L2s)
where m," and (— #,) are first derivatives of the polynomials #, and #%, respectively. The
equation (II1.25) cannot generally be solved for &. However, it may be solved for ¢ when the
value of ¢ is assumed. We get from (I11.25) :

1+&1-+sing |
() =27, .. . . .. (L)
where : ’
My P
Tzz—%l—l—m) .. .. .. .. .. .. .. (IIL.27)

Hence, denoting by &,, the value of & corresponding to the maximum supervelocity in the central
kink, and by T, the corresponding value of T, we obtain:

(1 _ Em) e?lm — (1 _l— Em)
(1 - Em) eZTm + (1 + fm) ’ : .
or alternatively: .. .. .. .. .. (I11.28)

(1 — &,2) 2
COS ¢ = 'cosh T, — &, sinh 1,

sin p =
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The maximum value of the supervelocity may be found from (II1.23) and (I11.26):

Uy k '
l~ $U cos ¢ = (Mon + 200, T) .. . .. .. .. (II1.29)

max 7T

where o, o, denote the values of the polynomials p, #, for & = &,,.

The normal procedure will be to tabulate 7,,, ¢, (II1.29), and
_! ﬁU 7];3 (mom + 2%0me) Cos ¢ . . . . e (IIISO)

for a range of values of &,. If required, the table may be interpolated in order to produce a
table of ¢,,, (I11.29), and H, against ¢. Insucha way our Tables 5, 6, 7 and 8 have been prepared.

max

~ (B) Particular cases.—The above general results are now applied to four particular cases, for
the profiles B, C, Q and R.

Profile B (biconvex parabolic), Figs. 5, 6 to 9, 20 to 21.
Coefﬁcients:A =B=C=0, =0, k=1.
Profile equation (II1.7):

=0b(1— &) . .. .. .. .. .. .. .. .. (1Lsy
Velocity distribution over semi-infinite sheared wing (II1.18):
2nv, — 4 25

T 9Ucos ¢ Ccos ¢

lnF4—2§InF5,.. O 4 § )

and over infinite swept-back wing (III 22):

7Y,
m 4—2511’1F + 2y tangln F,. .. .. .. e (I11.33)
Velocity distribution in the kink section (I11.23) :
U, 2 + &1+ sing }
re=cfeeem(PEEFEED) L L L L ey
Auxiliary quantity 7, (¢f. I11.27):
&
T,=—q1_g3 E (ITI1.35)
Maximum supervelocity in the kink section (II1.29):

l v, 4 1

T 08 g T £ HI1:36)

All these results have been given in Refs. 34 and 48, and are repeated here orﬂy for the sake of
check and comparison.

Profile C (cubic with cusped tail), Figs. 5, 10 to 14, 22 to 23.

Maximum thickness at 33% per cent.

Coefficients: A =1, B=C =0, &, — 1 k= 27 _ 0.84375.
| 3 32
Profile equation (IIL.7): z = &85(1 — £)(1 + &)*. .. . .. .. .. (II1.37)
35
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Velocity distribution over semi-infinite sheared wing (II1.18):

27‘57),4 : 77
T k9U cos g (4 4 6£) + (1 4 &)(1 —38) In Fs + . (2 + 65 — 3y tan ¢) In F,
3n(r, — 7
‘}“_‘__]7((:082991), O 11 )

and over infinite swept-back wing (II11.22):

TV,

~ BT cosp — 4+ 66 — 6y tan ) + (1 + &)(1 — 3¢) In F,

+ g tan ¢ (2 4 86 — 6y tan ¢) In F, + 3’20;1;"’ InF,... ..(IIL38a)
Velocity distribution in the kink section (I11.23):
v, 27 1+§1—l—sin<p:l
_m_—%[(4+6§)+(1+§)(1_3§)1n<1——51—5in(p . .. (I11.39)
Auxiliary quantity 7, (¢f. 111.27):
2 — 3¢,
T’”:(1—|—3§m)(1—5m) , e . o ce . .. (1I1.40)

£, being confined to the range — § < &,, < 1, and being~0-4555 for ¢ = 0.
Maximum supervelocity in the kink section (III1.29):
U, 27 1 ‘
l—m v da (1 = E)(1 F 36, .. .. .. .. .. .. (I11.41)

Profile Q (quartic with max. thickness at 30 per cent), Figs. 5, 15 to 19, 24 to 25.
Coefficients: 4 = 0-712, B =079, C =0, {, = 0-4, £ = 0-8435914.

Profile equation (II1.7): z = k9b(1 — &)(1 4 0-712& + 0-79&%) . S .. (II1.42)
Velocity distribution over semi-infinite sheared wing (II1.18):
2mv,

T R9Ucosg — (2-9466 + 4-272¢ + 6-32¢%) - (0-712 — 0-42¢ — 2-136¢* — 8-16¢) In F,

+ cos o L1042+ 4-272¢ + 9-488% — (2186 + 948} tan ¢ + 3- 167°(tan® p — )] In F,
— 1-58 |
. "%52%9 [(2-136 4 7-9¢) — 4747 tan ] —C’g@j—m Lo .. (1149

and over infinite swept-back wing (I11.22):

7,

~ WU cosg = [(2-9466 + 4-272f + 6-32£%) — (4-272 + 10-64£)y tan ¢ 4 12-64x® tan %p]
+ (0-712 — 0-42& — 2-136&% — 3-16£%) In F,
-+ 5 tan ¢[(0-42 + 4-272¢ |- 9-488%) — (4-272 - 18-96¢&)y tan ¢

7® sin @
cos® ¢

+ 12-644? tan® ¢] In F, + [(2136 + 9-48&) — 9-48y tan ¢] In F,

3-165% sin ¢(ry — #4)
+ coS® R 0§ -V
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Velocity distribution in the kink section (IIL.28):

U, . |
“ iU cosg — 0-2685235 [(2-9466 + 4-272¢ + 6-32£7)
+ &1+ sin g }
(0712 — 0-425 — 2-136¢* — 3-162") tn (1 oo w) . (TT1.45)
Auxiliary quantity 7, (¢f. I11.27):
‘ 2-848 + 5-9¢,, — 4-272£,F — 9-48¢,°
Ty = — (1 —&,5(0-42 4 4-272¢,, + 9-48¢,%) (111.46)
Maximum supervelocity in the kink section (I11.29):
Uy
I T T cos 9l = 0-2685235[(2-9466 . . . 4~ 4-272¢, -+ 6-32¢,7)
+ 2(0-712 — 0-42¢,, — 2-136¢,* — 3-16£,%71,] . .. L. (111.47)

Profile R (simplest profile with rounded nose, max. thickness at 30 per cent chord), Figs. 5, 26, 27.

This profile is not a special case of (II1.7), and its equation is:

= F(b&) = kOb(1 — &)Y (1 4 &)(1 + b)), .. .. .. .. (I11.48)
where % is a non-dimensional coefficient chosen so that F,,., = 9b, 1.e. :
1
— . IT1.
P T T g T B (H149)
The first derivative of (I11.48) becomies:
Fope) = pp =28 = B MR Q2 (111.50)
and hence: "
3, — 1
b, = T — (I11.51)

In the glven case:

| ¢, = 0-4, b, = 0-125; k:—‘ﬁ_owszms
The velocity distribution over the entire sheared or swept-back wing with this profile has not
been worked out, this requiring a formidable array of elliptic integrals. However, a formula for
velocity distribution in the kink section may be easily derived by using methods of R. & M.2713%*
(App. 1, form. 1.8, example VII, also form. 7.5), and the result is:

2nv,
T EiUcosg — V28 +3 bl+561§)

56,82 + (8 — b)) — (1 + 28,) V24 (=8 . 14sing
+ 1— 5)1/2 <11’1 V2= (1—¢g)n In [ —sing/ (IT1.52)
In the given case (6, = 0-125):
U, 5%
“§Ucose 16 [2\/2(1" + £)
(5—04@+ v2+ SULNFRET T

5%
o =0 0873589)
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The maximum supervelocity is, again, the most important. Equating to zero the first derivative
of (II1.52), we obtain, after a rather long transformation:

V2 + (1 — &)
VZ— (= &)™

2[2(1 — &)12 (1 + 12b) — (8 — by, — 15b,%, s
T+ &, (B 4b) 216, — 88, — 16,8, -~ - (LS4

1+ sing

e

=2W =1In

and
sin p = tanh W . .. . .. . . .. .. (IIL.55)

Substituting from (II1.54) into (II1.53), we obtain:

©ow,N  16ky/2 (8 4 b, + 4b,%) + (70, + b2)é,,
A= (- U)m

T 8(1+&,) (5—4b) + (21b, — 3)E, — 1566, cosg. .. (II1.56)

The formulae (II1.54, 55, 56) enable us to tabulate ¢ and H against £,, and then, by applying
interpolation, to re-tabulate £, and H against ¢.

In the given case (b, = 0-125):

e 1/2 . 1/2 — . 2
o — i Y2 (L B 2021 — )P0 20— 286, — 156

,\/2 - (1 m)l/Z 1 + Em 36 — 35,” — 1551’12 s . . (III.57) ;
68 -+ 19¢,, | |
H = 0-263561 T ém)(12+— 55_ 5,7 Cos ¢ . .. .. .. - (IT1.58)

In particular, for ¢ = 0 (unswept wing), we have ¢, =1, and then:

4kr/2(3 + 5b
H, =2V %n%‘ U 1.9108, hence s, — 191089 . .. .. .. .. (IIL.59)

It should be mentioned that the formula for H is valid only for positive ¢ and &, < 1, i.e., for
swept-back wings. If ¢ is negative, then the expression (II1.53) becomes (4 ) at & = 1 (see
Figs. 26 and 27), and the true maximum cannot be determined by the 1st order method. There
is some doubt about the validity of the general formula at ¢ = 0 and £, = 1. In this case the
maximum certainly occurs near the leading edge, but not at the edge itself, and we may only
hope that the value obtained in this case differs little from the true maximum.
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TABLES 1 and 1a

Critical Mach numbers M, tn Two-dimensional Flow, for
according to

Varying Supervelocity

Table 1. ¢, against M,
Ma’ 6i
1-00 0-0000
0-99 0-0012
0-98 0-0034
0-97 0-0063
0-96 0-0097
0-95 0-0137
0-94 0-0182
0-93 0-0232
0-92- | 0-0286
0-91 0-0344
0-90 0-0407
0-89 0-0473
0-88 0-0545
0-87 | 0-0620
0-86 0-0700
0-85 0-0784
0-84 0-0872
0-83 0-0965
0-82 0-1062
0-81 0-1164
0-80 0-1270
0-79 0-1381
0-78 0-1497
0-77 0-1618
0-76 0-1744
0-75 0-1875
0-74 0-2012
0-73 0-2154
0-72 0-2301
0-71 0-2455
0-70 | 0-2615
0-69 0-2780
0-68 0-2953
0-67 0-3132
0-66 0-3318
0-65 0-3511
0-64 0-3712
0-63 0-3921
0-62 0-4138
0-61 0-4363
0-60 0-4597
0-59 0-4841
0-58 0-5094
0-57 0-5358
0-56 0-5632
0-55 0-5917
0-54 0-6215

Ratio 8, (incompressible),
Formula (2.5)

Table la. M, égainst 8

65 Mc ai . Mc
0 1-0000 0-30 0-6773
0-01 0-9593 0-31 0-6718
0-02 0-9363 0-32 0-6663
0-08 0-9175 0-33 0-6609
0-04 0-9010 0-34 0-6557
0-05 0-8862 0-35 0-6506
0-06 0-8726 0-36 0-6455
0-07 0-8600 0-37 0-6406
0-08 0-8481 0-38 0-6357
0-09 0-8369 0-39 0-6310
0-10 0-8263 0-40 0-6263
0-11 0-8162 0-41 0-6217
0-12 | 0-8066 0-42 0-6172
0-13 0-7973 0-43 0-6128
0-14 0-7883 0-44 0-6084
0-15 0-7797 0-45 0-6041
0-16 0-7715 0-46 0-5999
0-17 0-7635 0-47 0-5958
0-18 0-7557 0-48 0-5917
0-19 0-7482 0-49 0-5877
0-20 0-7408 0-50 0-5837
0-21 0-7337 0-51 0-5798
0-22 0-7268 0-52 0-5760
0:23 0-7201 0-53 0-5722
0-24 0-7135 0-54 0-5685
0-25 0-7071 0-55 0-5648
0-26 0-7009 0-56 0-5612
0-27 0-6948 0-57 0-5576
0-28 0-6888 0-58 0-5541
0-29 0-6830 0-59 0-5508
0-30 0-6773 0-60 0-5472
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TABLE 2

Critical Mach Numbers for Yawed Infinite Wings M., for
Varying Angle ¢ and Varying Supervelocity Ratio 4, :
according to Formula (3.4)

@ (degrees)
&,
10 20 30 40 50 60
0 1:0154 1:0642 1-1547 13054 1-5557 2-0000
0-01 0-9741 1-0209 1-1077 1-2523 1-4924 1-9186
0-02 0-9507 0:9964 1-0811 1-2223 1-4566 1-8726
0-03 0-9817 0-9764 1-0594 1-1977 1:4274 1-8350
0:04 0-9149 0-9588 1-0404 1-1762 1-4017 1-8020
0-05 0-8999 0-9431 1-0233 1-1569 1-3787 1-7724
0-06 0-8861 0-9286 1:0076 1-1391 1-3575 1-7452
0-07 0-8733 0-9152 0-9930 1-1227 1-3379 1-7200
0-08 0-8612 0-9025 0-9793 1-1071 1-3194 1-6962
0-09 0-8498 08906 0-9664 1:0925 1-3020 1-6738
010 0-8390 0-8793 0-9541 1-0787 1-2855 1-6526
0-11 0-8288 0-8686 0-9425 1-0655 1-2698 1-6324
0-12 0-8190 0-8584 0-9314 1-0529 1-2548 1-6132
0-13 0-8096 (0-8485 0-9206 1-0408 1-2404 1-5946
0-14 0-8005 0-8389 0-9108 - 1-0291 1-2264 1-5766
0-15 0-7917 0-8297 0-9003 1-0178 1:2130 1-5594
0-16 0-7834 08210 0-8909 1-0071 1-2002 1-5430
0-17 0-7753 0-8125 (0-8816 0-9967 1-1878 1:5270
- 0-18 0-7674 0-8042 0-8726 0-9865 1-1757 1-5114
0-19 07597 0-7962 0-8639 0-9767 1-1640 1-4964
0-20 0-7522 0-7883 0-8554 0-9670 1-1525 1-4816
0-21 0-7450 0-7808 0-8472 0-9578 1-1414 14674
0-22 0-7380 0-7734 0-8392 0-9488 1-1307 14536
0-23 0-7312 0-7663 (0-8315 0-9400 1-1203 1-4402
0-24 0-7245 0-7593 0-8239 0-9314 1-1100 1-4270
0-25 0-7180 0-7525 0-8165 0-9231 11001 1-4142
0-26 0-7117 07459 0-8093 0-9150 1-0904 1-4018
0-27 0-7055 07394 0-8023 0-9070 1-0809 1-3896
0-28 0-6994 07330 0-7954 0-8992 1:07186 1-3776
0-29 0-6935 0-7268 0-7887 08916 1-0626 1-3660
0-30 0-6877 0-7208 0-7821 | 0-8842 1-0537 1-3546
0-31 06822 0-7149 0-7757 0:8770 1-0451 1-8436
0-32 0-6766 0-7091 0-7694 0-8698 1-0366 1-3326
0-33 0-6711 0-7033 0-7631 0-8627 1-0282 1-3218
0-34 0-6658 0-6978 0-7571 0-8560 1-0201 1:3114
0-35 0-6606 0-6924 0-7512 0-8493 1-0122 1-3012
0-36 0-6555 0-6869 0-7454 | 0-8426 1-0042 1-2910
0-37 0-8505 0-6817 0-7397 0-8362 0-9966 1-2812
0-38 0-6455 0-68765 0-7340 0-8298 0-9890 1-2714
0-39 0-86407 0-6715 0-7286 0-8237 0-9817 1-2620
0-40 0-6360 06665 0-7232 0-8176 0-9743 1-2526
0-41 0-6313 0-6616 0-7179 0-8116 0-9672 1-2434
0-42 0-6267 0-6568 0-7127 0-8057 0-9602 1-2344
0-43 0:6223 0-6521 0-7076 0-8000 0-9533 1-2256
0-44 0-6178 0-6474 0-7025 0-7962 0-9465 1-2168
0-45 0-6134 0-6429 0-69768 07886 0-9398 1-2082
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TABLE 3

Critical Mach Numbers for Sheared Infinite Wings M., for
Varymg Angle ¢ and Varying Supervelocity Ratio 6,
according to Formula (3.6)

@ (degrees)
%;
10 20 30 40 50 60

0 1-0154 1-0642 1-1547 1-3054 1-5557 2-0000
0-01 0-9737 1-0191 1-1031 1-2423 1-4714 1-8726
0-02 0-9502 0-9937 1-0740 1-2068 14244 1-8021
0-03 0-9308 0-9729 1-0503 1-1780 1-3862 1-7453
0-04 0-9139 0-9547 10297 1-1529 1-3530 1-6963
0-05 0-8989 0-9383 1-0111 1-1303 1-3234 1-6527
0-06 0-8849 0-9234 0-9940 1-1097 1-2965 1-6132
0-07 0-8719 0-5095 0-9783 1-0907 1-2716 1-5768
0-08 0-8598 0-8964 0-9636 1-0728 1-2483 1-5430
0-09 0-8484 0-8841 0-9496 1-0560 1-2265 1-5117
0-10 0-8375 0-8724 0-9363 1-0402 1-2059 1-4817
0-11 0-8272 0-8613 0-9238 1-0251 1-1866 1-4537
0-12 0-8173 0-8507 0-9118 1-0107 1-1678 1-4272
0-13 0-8078 0-8405 0-9003 0-9971 1-1501 1-4018
0-14 0-7986 0-8307 | 0-8893 0-9839 1-1331 1-3777
0-15 0-7898 0-8213 0-8789 0-9711 1-1169 1-3547
0-16 0-7813 0-8124 0-8685 0-9589 1-1012 1-3327
0-17 0-7733 0-8036 0-8586 0-9472 1-0862 1-3115
0-18 0-7653 0-7950 0-8490 0-9358 1-0717 1-2914
0-19 0-7575 0-7867 0-8398 0-9248 1-0576 1-2719
0-20 0-7500 0-7787 0-8308 0-9141 1-0441 1-2527
0-21 0-7428 0-7710 0-8221 0-9038 1-0310 1-2345
0-22 0-7357 0-7634 0-8137 0-8938 1-0184 1-2169
0-23 0-7289 0-7561 0-8054 0-8841 1-0062 1-1998
0-24 0-7221 0-7490 0-7974 0-8746 0-9944 1-1834
0-25 0-7156 0-7420 0-7896 0-8654 0-9825 1-1675
0-26 0-7092 0-7352 0-7820 0-8564 0-9712 |.1-1520
0-27 0-7030 0-7286 0-7746 0-8477 0-9602 1-1369
0-28 0-6969 0-7220 07674 0-8394 0-9495 1-1223
0-29 0-6910 0-7157 0-7603 0-8311 0-9391 1-1082
0-30 0-6852 0-7095 0-7534 0-8227 0-9290 1-0944
0-31 0-6795 0-7034 0-7467 0-8148 0-9190 1-0810
0-32 0-6739 0-6978 0-7402 0-8071 0-9094 1-0680
0-33 0-6685 0-6917 0-7337 0-7995 0-9000 1-0553
0-34 0-6631 0-6862 0-7272 0-7921 0-8908 1-0429
0-35 0-6579 0-6807 0-7210 0-7848 0-8818 1-0309
0-36 0-6529 | 0-6751 0-7149 0-7778 0-8730 1-0191
0-37 0-6479 0-6696. 0-7090 0-7708 0-8644 1-0077
0-38 0-6428 0-6644 0-7032 0-7640 0-8560 0-9964
0-39 0-6379 0-8592 0-6975 0-7573 0-8478 0-9855
0-40 0-6331 0-6542 0-6918 0-7508 0-8397 0-9748
0-41 0-6284 0-6492 0-6863 | 0-7444 0-8319 0-9644
0-42 0-6238 0-6443 0-6809 0-7381 0-8241 0-9542
0-43 0:6193 0-6395 0-6756 0-7319 0-8166 0-9442
0-44 0-6149 0-6348 0-6703 0-7259 0-8091 0-9344
0-45 0-6105 0-6301 0-6653 0-7199" | 0-8019 0-9249
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TABLE 4

Upper Critical Mach Numbers for Untapered Swept Wings with Four Different Profiles,
Jor Varying Angle ¢ and Thickness Ratio & (obtained by interpolation from Table 3)

(1) Profile B 4, :gﬁ == 1-2732¢9; ¥ = 0-78544;

9
(deg) | .05 ‘ 010 | 015 | 0-20 | 02 | 0-30

0 0-868 0-800 0-748 0-704 0-667 0-635
10 0-880 0-810 0-757 0-713 0-675 0-642
20 0-918 0-843 0-786 0-739 0-699 0-663
30 0-988 0-903 0-839 0-786 0-741 0-702
40 1-103 1-001 0-924 0-861 0-808 0-763
50 1-287 1-155 1-056 0-977 0-911 0-854
60 1-600 1-409 1-270 1-160 1-070 0-994

(2) Profile C 6, = 1-66749; 9 = 0-59975,
9
(deg) | 0.05 | 0-10 | 0-15 | 0-20 | 025 | 030

0 0-844 0-766 0-707 0-659 0-619 0-584
10 0-856 | 0-778 0-716 0-667 0-625 0-590
20 0-892 0-807 0-742 0-690 | 0-646 0-608
30 0-959 0-862 0-790 0-731 0-683 0-641
40 |- 1-067 0-951 0-865 0-797 0-740 0-692
50 1-241 1-091 0-982 0-897 0-827 0-767
60 1-532 1-318 1-167 1-051 0-957 0-876

(3) Profile Q 8, = 1-72140;  # = 0-58098,
3

eg) | 0.05 | 0-10 | 015 | 020 | 025 | 0-30

0 0-841 0-762 0-702 0-654 0-613 0-577
10 0-853 0-772 0-710 0-661 0-619 0-583
20 0-889 0-802 0-736 0-684 0-639 0-601
30 0-955 0-856 0-783 0-725 0-675 0-633
40 1-063 0-945 0-858 0-789 0-732 0-683
50 1-235 1-083 0-973 0-887 0-816 0-757
60 1-524 1-307 1-155 1-038 0-944 —

(4) Profile R 8,= 1-91080; 9 — 0-52335,
9
(deg) | ¢.05 | 010 | 015 | 020 | 025 | 0-30

0 0-831 0-747 0-685 0-635 0-593 0-557
10 0-842 0-757 0-693 0-642 0-599 0-562
20 0-878 0-786 0-718 0-663 0-618 0-579
30 0-942 0-839 0-763 0-702 0-652 0-609
40 1-047 0-924 0-834 0-763 0-704 0-655
50 1-215 1-056 0-943 0-854 | 0-782 0-722
60 1-495 1-269 1-113 0-994 — —
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Maximum Supervelocities in the Kink Section of & Swept Wing, Profile B

TABLE 5

+ ¢ Uz Uy Vs
(deg) | T & ( 9U cos tp) e " _< ﬁU)m (deg) | T n ( 9T cos ¢> s H
0 | 0-000 1-273 1-278 43 | 0-376 1-483 1-084
1 | 0-009 1-273 1-273 44 | 0-385 1-494 1-074
2 | 0-018 1-274 1-273 45 | 0-393 1-506 1-065
3 | 0-026 1-274 1-272 46 | 0-402 1-519 1-055
4 | 0-035 1-275 1-272 47 | 0-411 1-532 1-045
5 | 0-044 1-276 1-271 48 | 0-420 1-546 1-034
6 | 0-052 1-277 1-270 49 | 0-429 1-560 1-024
7 | 0-061 1278 1-269 50 | 0-438 1-575 1-012
8 | 0-070 1-279 1-267 51 | 0-447 1-590 1-001
9 | 0-079 1-281 1-265 52 | 0-455 1-606 0-989
10 | 0-087 1-283 1-264 53 | 0-464 1-623 0-977
11 | 0098 1-985 1-262 54 | 0-473 1-641 0-964
12 | 0-105 1-287 1-259 55 | 0-482 1-659 0-952
13 | 0-113 1-290 1-257 56 | 0-491 1-678 0-938
14 | 0-122 1-293 1-254 57 | 0-500 1-698 0-925
15 | 0-131 1-295 1-251 58 | 0-509 1-719 0-911
16 |. 0-140 1-299 1-248 59 | 0-518 1-741 0-897
17 | 0-148 1-302 1-245 .60 | 0-527 1-764 0-882
18 | 0-157 1-305 1-242 61 | 0-537 1-788 0-867
19 | 0-166 1-309 1-238. 62 | 0-546 1-813 0-851
20 | 0-175 1-313 1-234 63 | 0-555 1-839 0-835
21 | 0-183 1-318 1-230 64 | 0-564 1-867 0-819
22 | 0-192 1-322 1-926 65 | 0-573 1-897 0-802
23 | 0-201 1-327 1-221 66 | 0-583 1-928 0-784
24 | 0-210 1-332 1-217 67 | 0-592 1-960 0-766
25 | 0-218 1-387 1-212 68 | 0-602 1-995 0-747
26 | 0-227 1-342 1-207 69 | 0-611 2-032 0-728
27 | 0-236 1-348 1-201 70 | 0-621 2071 0-708
28 | 0-244 1-354 1-196 71 | 0-630 2-113 0-688
29 | 0-253 1-360 1-190 72 | 0-640 2-157 0-667
30 | 0-262 1-367 1-184 73 | 0-650 2-205 0-645
31 | 0-271 1-374 1-178 74 | 0-660 2-956 0-622
32 | 0-279 1-381 1-171 75 | 0-670 2-311 0-598
33 | 0-288 1-388 1-165 76 | 0-681 2371 0-574
34 | 0-297 1-396 1-158 77 | 0-691 2437 0-548
35 | 0-306 1-404 1-150 78 | 0-702 2508 0-522
36 | 0-314 1-413 1-143 79 | 0-713 2587 0-494
37 | 0-323 1-422 1135 80 | 0-724 2675 0-464
38 | 0-332 1-431 1-128 81 | 0-735 2-773 0-434
39 | 0-341 1-440 1-119 82 | 0-747 2-885 0-401
40 | 0-350 1-450 1-111 83 | 0:760 3-013 0367
41 | 0-358 1-461 1-102 — — — —
42 | 0-367 1-471 1-093 90 | 1:000 w 0
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TABLE 6

Maxvnmm Supervelocities in the Kink Section and Kink Area of Swept Wings, Profile C

Kink section Kink section ( 5113;0%1:58‘6)
@ @
(deg) o, ° (deg) o, o u
é:m ( ’l9’U COS fp) max ‘Em ( ﬁ'U Cos (p> max

90 [{—0-333 ® 0 43 0-215 1-664 1-217 1-220
— — — — 42 0-221 1-659 1-233 1-239
84 ([—0-090 2-704 0-283 41 0-227 1-654 1-248 1-258
83 |—0-079 2-609 0-318 40 0-233 1-649 1-263 1-277
82 |—0-068 2-527 0-352 39 0-238 1-645 1-278 1-296
81 |—0-058 2-457 0-384 38 0-244 1-641 1-293 1-314
80 |—0-048 2-395 0-416 37 0-250 1-637 1-307 1-332
79 |—0-039 2-339 0-446 36 0-256 1-633 1-321 1-349
78 |—0:029 2-288 0-476 35 0-262 1-630, 1-335 1-366
77 |—0:020 2-243 0-505 34 0-268 1-627 1-349 1-382
76 |—0-012 2202 0-533 33 0-274 1-625 1-362 1-398
75 |—0-004 2-164 0-560 32 0279 1-622 1-376 1-414
74 0-005 2-129 0-587 31 0-285 1-620 1-389 1-429
73 0-013 2-096 0-613 30 0-291 1-618 1-401 1-444
72 0-021 2-066 0-638 29 0-297 1-616 1-414 1-458
71 0-028 2-038 0-664 28 0302 1-615 1-426 1-472
70 0-036 2-012 0-688 27 0-308 1-614 1-438 1-486
69 0-044 1-987 0-712 26 0-314 1:-613 1-450 1-499
68 0-051 1-964 0-736 25 0-319 1-612 1-461 1-511
67 0-058 1-943 0-759 24 0-325 1-612 1-472 1-523
66 0-065 1-922 0-782 23 0-331 1-612 1-483 1-535
65 0-072 1-903 0-804 29 0-336 1-612 1-494 1-546
64 0-079 1-885 0-826 21 0-342 1-612 1-505 1-557
63 0-086 1-868 0-848 20 0-347 1-812 1-515 1-567
62 0-093 1-852 0-869 19 0-353 1-618 1:525 1-577
61 0-100 1-836 0-890 18 0-358 1-614 1-535 1-586
60 0-107 1-822 0-911 17 0-364 1-615 1-544 1-595
59 0-113 1-808 0-931 16 0-369 1-616 1-554 1-603
58 0-120 1-795 0-951 15 0-375 1-618 1-563 1-611
57 0-127 1-783 0-971 14 0-380 1-620 1-571 1-618
56 0-133 1-771 0-990 13 0-386 1-622 1-580 1-625
55 0-140 1-760 1-009 12 0-391 1-624 1-588 1-631
54 0-146 1-750 1-028 11 0-397 1-626 1-596 1-637
53 0-153 1-739 1:047 10 0-402 1-629 1-604 1:642
52 0-159 1-730 1-065 9 0-408 1-632 1-612 1-647
51 0-165 1-721 1-083 8 0-413 1-635 1-619 1-651
50 0-172 1-712 1-101 7 0-418 1-638 1-626 1-655
49 0-178 1-704 1-118 6 0-424 1-642 1-633 1-658
48 0-184 1-697 1-135 5 0-429 1645 1-639 1-661
47 0-190 1-689 1-152 4 0-434 1-649 1-645 1-663
46 0-196 1-683 1-169 2 0-440 1-654 1-651 1-665
45 0202 1-676 1-185 2 0-445 1-658 1-657 1-666
44 0-209 1-870 1-201 1 0-450 1-663 1-662 1-667

: 0 0-456 1-667 1-667 1-667
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TABLE 6—continued

Kink section

(deg) v, . R
5 ( HU cos <p>mx

0 0-456 1-667 1-667
—1 0-461 1-673 1-672
—2 0-466 1-678 1-677
—3 0-471 1-684 1-681
—4 0-477 1-689 1-685
-5 0-482 1-695 1-689
—8 0-487 1-702 1-692
—7 0-492 1-708 1-696
—8 0-497 1-715 1-699
—9 0-502 1-722 1-701
—10 0-508 1-730 1-703
—11 0-513 1-737 1-705
—12 0-518 1-745 1-707
—13 0-523 1-753 1-709
—14 0-528 1-762 1710
—15 0-533 1-771 1-710
—16 0-538 1-780 1-711
—17 0:543 1-789 1-711
—18 0-548 1-799 1-711
—19 0-554 1-809 1-710
—20 0-559 1-819 1-710
—21 0-564 1-830 1-708
—22 (0-569 1-841 1-707
—23 0-574 1-852 1-705
—24 0-579 1-864 1-703
—25 0-584 1-876 1-700
—26 0-589 1-889 1-698
—27 0-594 1-902 1-694
—28 0-599 1-915 1-691
—29 0-604 1-929 1-687
—30 0-809 1-943 1-682
—31 0-614 1-957 1-678
—32 0-619 1-972 1-673
—33 0-623 1-988 1-667
—34 0-628 2-004 1661
—35 0-633 2-020 1-655
—36 0-638 2-038 1-648
—37 0-643 2-055 1-641
—38 0-648 2:074 1-634
—39 0-653 2-092 1-626
—40 0-658 2-112 1-618
—41 0-663 2-182 1-6809
—42 0-668 2-152 1-600

- Kink section

@
(deg) o -
o | (- i)

—43 0-672 2-174 1-590
—44 0-677 2-196 1-580
—45 0-682 2-219 1-569
—46 0-687 2-243 1-558
—47 0-692 2-268 1-546
—48 0-697 2-293 1-534
—49 0-702 2-319 1-522
—50 0-707 2-347 1-508
—51 0-711 2-375 1-495
—52 0-716 2-405 1-480
—53 0-721 2-435 1-466
—54 0-726 2-467 1-450
—55 0-7381 2-500 1-434
—36 0736 2-534 1-417
—57 0-740 2-570 1-400
—58 0-745 2-607 1-382
—59 0-750 2647 1-363
—60 0-755 2-687 1-344
—61 0-760 2-730 1-324
—62 0-765 2-775 - 1-303
—63 0-770 2-822 1-281
—64 0-775 2-871 1-259
—65 0-780 2-922 1-235
—66 0-785 2-977 1-211
—67 0-790 3-034 1-186
—68 0-795 3-094 1-159
—69 0-800 3:158 1-132
—70 0-805 3-226 1-103
—71 0-810 3-298 1-074
—72 0-815 3-375 1:043
—73 0-820 3-457 1-011
—74 0-826 3-546 0-977
—75 0-831 3-641 0-943
—76 0-837 3-746 0-9086
—77 0-842 3-858 0-868
—78 0-848 3-9081 0-828
—79 0-853 4-117 0-786
—80 0-859 4-266 0-741
—81 0-865 4-434 0-694
—82 0-871 4-623 0-643
—83 0-878 4-844 0-590
—90 1-000 0 0




'TABLE 7
Maximum Supervelocities in the Kink Section and Kink Avea of Swept Wings, Profile Q

Front of the kink section ' Rear of the kink section
P
(deg) : v, - U, P Uy ) e Uy >
” < DU cos w)mx - ﬁU) nax " ( QU cos ¢/ pax ( DU J s
90 —1 © 0
84 —0-909 2-459 0-257
83 ‘ —0-904 2-318 0-283
82 —0-899 2198 0-306
81 —0-894 2-093 .0-327
80 0-175 1-826 0-317 —0-889 2-000 0-347
79 0-184 1-797 0-343 —0-884 1-917 0-366
78 0-193 1-772 0-368 —0-879 1-842 0-383
77 0-201 1-749 0-393 —0-874 1-774 0-399
76 0-209 1-728 0-418 —0-870 1-711 0-414
front of the kink area
75 0-218 1-710 , 0-443 0-598 1-722 0-446
74 0-224 1-693 0-467 0598 1-722 0-475
73 0-231 1-677 0-490 0-598 1-722 0-503
72 0-238 1-663 0-514 0-598 1-722 0-532 '
71 0-245 1-650 0-537 0-598 1-722 0-561
70 0-252 1-638 0-560 0-598 1-722 0-589
69 0-258 1-627 0-583 0-598 1:722 0-617
68 0-265 1:-617 0-606 0-598 1-722 0-645
67 0-271 1-607 0-628 0-598 1-722 0-673
66 0-278 1-598 0-650 0-598 1-722 0-700
65 0:284 1-590 0-672 0-598 1-722 0-728
64 0-290 1-583 0-694 0-598 1722 0-755
63 0-296 1-576 0-716 0-598 1-722 0-782
62 0:302 1-570 0-737 0-598 1-722 0-808
61 0-308 - 1-564 0-758 0-598 1.722 0-835
60 0-314 1-559 0-779 0-598 1-722 0-861
59 0-319 1-554 - 0-800 0-598 1-722 0-887
58 0-325 1-549 0-821 0-598 1-722 0-912
57 0-331 1-545 0-841 0-598 1-722 0-938
56 0-336 1-541 0-862 0-598 1-722 0-963
55 0-342 1-538 0-882 0-598 1-722 0-987
54 0-347 1-535 0-902 0-598 1-722 1-012
53 0-353 1-532 - 0-922 0-598 1-722 1-036
52 0-358 1-530 0-942 0-598 1-722 1-060
51 0-364 1528 0-962 0-598 1-722 1-083
50 0-369 1-526 0-981 0-598 1722 1-107
49 0-374 1-525 1-000 0-598 1-722 1-129
48 0-379 1-524 1-020 0-598 1-722 1-152
47 0-384 1-523 1-039 0-598 1-722 1-174
46 0-390 1-522 1-057 0-598 1-722 1-196
45 0-395 1-522 1-076 0-598 1-722 1-217

46



TABLE 7—continued

Front of the kink section

Front of the kink area

¢
(aee) £ ( O ) H O £ e ) H=(— =
" DU 08 @/ mas | —< ﬁU>m " ( DU COS @/ max _( ﬁU>m
44 | 0-400 1-522 1-095 0-598 1-722 1-238
43 | 0-405 1-522 1-113 0-598 1-722 1-259
42 | 0-410 1-522 1-131 0-598 1-722 1-279
41 | 0-415 1-522 1-149 0-598 1-722 1-299
40 | 0-420 1-524 1-167 0-598 1-722 1-319
39 1-525 1-185 0-598 1-792 1-338
38 1-526 1-202 0598 1-722 1-357
37 1-527 1-220 0-598 1-722 1-375
36 1-529 1-237 0-598 1-722 1-393
35 1-531 1-254 0-598 1-722 1-410
34 1-533 1-271 0-598 1-792 1-497
33 1-535 1-288 0-598 1-722 1-444
32 1-538 1-304 0-598 1-722 1-460
31 1-541 1-321 0-598 1-722 1-476
30 | 0-467 1-543 1-337 0-598 1-722 1-491
29 1-546 1-352 0-598 1-722 1-506
28 1-549 1-368 0-598 1-7922 1-520
27 1-553 1-384 0-598 1-722 1-534 -
2 1-557 1-399 0-598 1-722 1-547
25 1-560 1-414 0-598 1-722 1-560
24 1-564 1-429 0-598 1-722 1-573
23 1-569 1-444 0-598 1-722 1-585
22 1-573 1-459 0-598 1-722 1-596
21 1-578 1-473 0-598 1-722 1-607
20 | 0-513 1-582 1-487 0-598 1-722 1-618
19 1-587 1-501 0-598 1-722 1-628
18 1-593 1-515 0-598 1-722 1-637
17 1-598 1-528 0-598 1-722 1-646
16 - 1-604 1-541 0-598 1-722 1-655
15 1-609 1-555 0-598 1-722 1-663
14 1-615 1-567 0-598 1-722 1-670
13 1-622 1-580 0-598 1-722 1-677
12 1-628 1-592 0-598 1-722 1-684
11 1-635 1-605 0-598 1-792 1-690
10 | 0-556 1-641 1-617 0-598 1-722 1-695
9 1-648 1-628 0-598 1-722 1-700
8 1-656 1-640 0-598 1-722 1-705
7 1-663 1-851 0-598 1-722 1-709
6 1-671 1-662 0-598 1-722 1-712
5 1-679 1-672 0-598 1-722 1-715
4 1-687 1-683 0-598 1-722 1-717
3 1-695 1-693 0-598 1-722 1-719
2 1-703 1-702 0-598 1-7922 1-721
1 1-712 1-712 0-598 1-722 1-722
0 | 0-598 1-722 1-7922 0-598 1-722 1-722
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TABLE 7—continued

Front of the kink section
P
(deg) e ( v, ) = U,
" TTCOS e | ( ﬁU>m

—1 1-730 1-730
—2 1-741 1-739
—3 1-750 1-748
—4 1-760 1-756
—5 1-771 1764
—8 1-781 1-771
—7 1-792 1-779
—8 1-803 1-786
—9 1-815 1-792
—10 | 0-638 1-826 1-799
—11 1-838 1-805
—12 1-851 1-811
—13 1-863 1-816
—14 1-877 1-821
—15 1-890 1-825
—16 1-903 1-830
—17 1-917 1-834
—18 1-932 1-837
—19 1-947 1-841
—20 | 0-677 1-962 1-843
—21 1-977 1-846
—292 1-993 1-848
—23 2-009 1-850
—24 2-026 1-851
-—25 - 2043 1-852
—26 2-061 1-852
—27 2-079 1-853
—28 2-098 1-852
—29 2-117 1-851
—30 | 0:715 2-137 1-850
—31 2-156 1-848
—32 2-177 1-847
—31 2-199 1-844
—34 2-220 1-841
—35 2-243 1-837
—36 2-266 1-833
—37 2-290 1-829
—38 2-315 1-824
—39 2-340 1-818
—40 | 0-752 2-365 1-812
—41 2-392 1-805
—42 2-419 1-798
—43 2448 1-790

48

Front of the kink section

4
(deg) e v, I v, >
” ( ?U cos (nD)ma,x —< U max

—44 2-478 1-782
—45 2-508 1-773
—46 2-540 1-764
—47 2-572 1-754
—48 2-605 - 1-743
—49 2-640 1-732
—50 | 0-788 2:675 1-720
—51 2-713 1-707
—52 2-752 1-694
—53 2-791 1-679
—54 2-832 1-665
—55 2-875 1-649
—56 2-918 1-632
—57 2966 1-616
—58 3-015 1-597
—59 3-063 1-578
—60 | 0-824 3-117 1-559
—61 3-171 1-537
—62 3-228 1-515
—63 3-289 1-493
—64 3-351 1-469
—65 3-417 1-444
—866 1 3-488 1-419
—67 3-559 1-391
—G68 3-639 1-363
—60 3-720 1-333
—70 | 0-860 3-803 1-301
—71 3-900 1-270
—72 3-996 1-235
—73 4-100 1-199
—74 4-215 1-162
—75 4-330 1-121
—76 4-466 1-080
—77 4-607 1-036
—78 4-759 0-989
—79 4-937 0-942
—80 | 0-900 5-115 0-888
—81 5-343 0-836
—82 5-578 0-776
—83 5-866 - 0-715
—84 | 0-918 6-183 0-646
—90 | 1-000 o 0




TABLE 8

Maximum Supemdociﬁes in the Kink Section and Kink Area of Swept-back Wings, Profile R

Kink
Kink section area
[+/] (Em == 1)
(deg)
vz
£ ( U cos ¢ ) max H H
0 1-000 1-911 1-911 | 1-911
1 1-821 1-821 | 1-910
2 1-773 1-771 | 1-910
3 1-733 1-730 | 1-908
4 1-699 1-695 | 1-906
5 1-670 1-663 | 1-903
6 1-643 1634 | 1-900
7 1-619 1:607 | 1-897
8 1597 1-581 | 1-892
9 1-576 1-556 | 1-887 .
10 0-826 1-557 1-533 | 1-882
11 1539 1-511 | 1-876
12 1-522 1-489 | 1-869
13 1507, 1-468 | 1-862
14 1-492 1-448 | 1-854
15 1-478 1-428 | 1-846
16 1-465 1-408 | 1-837
17 1-453 1-389 | 1-827
18 1-442 1-371 | 1-817
19 1-431 1-353 | 1-807
20 0-695 1-420 1-3835 | 1-796
21 1-411 1-317 | 1-784
22 1-402 1-300 | 1-772
23 1-393 1-283 | 1-759
24 1-385 1-266 | 1-746
25 1-378 1-249 | 1-732
26 1-871 1-232 | 1-717
27 1-365 1-216 | 1-702
28 1.859 1-200 | 1-887
29 1-353 1-183 | 1-671
30 0566 1-348 1-167 | 1-855
31 1-343 1-151 | 1-638
32 1-339 1-186 | 1-620
33 1-335 1-120 | 1-602
34 1:332 1-104 | 1-584
35 1-328 1-088 | 1-565
36 1-826 1-073 | 1-546
37 1-823 1-057 | 1-526
38 1-322 1-041 | 1-506
39 1-320 1-:026 | 1-485
40 0-433 1-319 1-010 | 1-464
41 " 1-318 . 0-995 | 1-442
42 ' 1-318 0-979 | 1-420

Kink
Kink section area
@ (En=x=1)
(deg)
£ Y
o ( DU cos <p>1m,,x H H
43 1-318 0-964 | 1-397
44 1-818 0-948 | 1-374
45 1-819 0-933 | 1-351
46 1-820 0-917 | 1-327
47 1-322 0-902 | 1-303
48 1-324 0-886 | 1279
49 1-327 0-870 | 1-254
50 0-293 '1-330 0-855 | 1-228
51 1-333 0-839 | 1-202
52 1-337 0-823 | 1-176
53 1-341 0-807 | 1-150
54 1-346 0-791 | 1-123
55 1-352 0-775 | 1-096
56 1-358 0-759 | 1-068
57 1-364 0-743 | 1-041
58 1-371 0-727 | 1-013
59 1-379 0-710 | 0-984
60 0-143 1-387 0:-694 | 0-955
61 1-397 0-677 | 0-926
62 1-406 0:660 | 0-897
63 o 1-417 0-643 | 0-867
64 1-428 0-626 | 0-838
65 1-441 0-609 | 0-808
68 . 1-454 0-591 | 0-777
67 1-468 0-574 | 0-747
68 1-483 1-556 | 0-716
69 1-500 0-538 | 0-685
70 |(—0-025 1-518 0-519 | 0-654
71 1-538 0-501 | 0-622
72 1-559 0-482 { 0-590
73 1-581 0-462 | 0-559
74 1-6086 0-443 | 0-527
75 1-633 0-423 | 0-495
76 1-663 0-402 | 0-462
77 1:695 0-381 | 0-430
78 1-731 0-360 | 0-397
79 1-772 0-338 | 0-365
80 |—0-228 1-816 0-315 | 0-332
81 1-867 0-292 | 0-299
82 1-925 0-268 | 0-266
90 {—1-000 © 0 0
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TABLE 9

- Lower Critical Mach Numbers for Untapered Swept Wings, Profile B,
Based on Maximum Supervelocities in the Kink Section

# =005 $ =010 j 9 =015
+ o + @ +o
M.y (deg) M., (deg) Mo, (deg)
0-94 70-4 0-90 718 0-87 73-4
0-93 64-4 0-89 683 0-86 70-8
. 0-92 57-75 0-88 64-3 0-85 680
0-91 50-3 0-87 59-95 0-84 64-8
0-90 4992 0-86 55-1 0-83 61-4
0-89 33-4 0-85 49-8 0-82 57-6
0-88 235 0-84 43-9 0-81 534
0-87 9:3 0-83 37-5 0-80 48-8
0-8679 0 0-82 30-1 0-79 43-7
0-81 20-9 0-78 37-9
0:80 3-45 0-77 31-3
07997 0 076 22.9
0-75 10-3
0-7475 0
$ =0-30
9 =025 ;
M., (deg) w + o
ot (deg)
+ o
0-81 77-9 M.y (deg)
0-80 75-7 0-83 76-6
0-79 749, 0-82 75-0
0-78 72-45 0-81 73-2 0-85 75-6
77 70-6 0-80 71-25 0-84 73-6
-76 685 0-79 69-1 0-83 71-4
75 664 0-78 66-8 0-82 69-1
74 640 077 64-2 0-81 66-5
73 61-3 0-76 61-4 0-80 63-6
-79 585 0-75 584 0-79 60-5
71 553 0-74 55-05 0-78 57-1
-70 51-8 0-73 51-35 077 53-3
69 47-9 0-72 47-925 0-76 49-05
-68 43-6 0-71 42.-6 075 445
67 38-6 0-70" 37-4 0-74 39-3
-66 32-8 0-69 31-1 0-73 332
0-65 255 0-68 233 0-72 25-9
0-64 14-6 0-67 10-85 0-71 156
0-6331 0 06673 0 0-7043 0
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TABLE 10

Lower Critical Mach Numbers M ;, for Untapered Swept Wings, Profile C,
Based on Maximum Swupervelocities in the Kink Section

P =0-05 $=0-10 $=0-15
P 14 ['4
" (deg) Mo (deg) M (deg)
0-94 66-6 0-90 68:6 0-86 67-9
0:93 60-9 0-89 65-2 0-85 65-3
0-92 54-9 ' . 0-83 B81-55 0-84 62-45
0-91 487 —69:35 0-87 57-75 0-83 59-5
0-90 42-55 —64-7 0-86 53-8 0-82 56-4
0-89 36:35 -—59-3 0-85 49.7 —69:8 0-81 53-1
0-88 30-1 —53-3 0-84 i45-4 —66-8 0-80 49-75
0-87 23-9 —46-3 0-83 41-0 "—63:35 0-79 46-2 —67-3
0-86 18-3 —38-2 0-82 36-4 —59-5 0-78 42-4 —64+5
0-85 10-8 —27:9 0-:81 31-55 —55-2 0-77 38-5 —61-4
0-8443 0 — 0-80 27-0 —50-25 0-76 34-3 —58:0
079 225 —44-5 0-75 30-3 —54-0
0-78 17-05 —37-5 0-74 26-4 —49-5
0-77 9.0 —28-1 0-73 22-0 —44-2
0-7661 0 — 0-72 16-3 —37-6
0-71 78 —28-5
0-7070 0 —
$=10-380
$ =025
) $ =020
@
Mo (deg) u ?
* (deg) M ¢
o2 (deg)
0-77 68-3
0-76 66-5 0-80 68:8 : .
0:-75 64-5 0-79 668 0-83 68-75
0:74 62-5 0-78 64-7 0-82 66-5
0:73 60-4 0-77 62-5 0-81 64-2
0-72 581 0-76 60-2 0-80 61-75
0-71 55-7 i 0-75 57-8 0:79 592
0-70 53:2 —71:95 0-74 55.25 0-78 56-4
0-69 50-55 —70-25 0-73 52-55 —71-6 0-77 53-6
0-68 47-7 —B68:4 0-72 49.7 —69-7 0-76 50-6 —70-3
0-67 447 —86-3 071 4G6-7 —67-7 0-75 47-4 —B68-1
0:66 41-5 —64-0 0-70 435 —85-4 0-74 44.-05 —B65-75
0-65 381 —81:5 0-89 40-1 —62-9 0-73 40-5 —63-1
0-64 34-75 —58-6 0-68 36-5 —860-1 072 36-7 | —60-2
0-63 31-6 —55-4 0-67 33-1 —57-0 0-71 32-9 —56-9
0-62 28-05 —51-6 0-66 29-75 —53-4 0-70 29-5 --53-1
0-61 24-0 —47-2 0-65 25-9 —49-2 0-69 25-6 —48-7
0-80 18-9 —41-75 0-64 214 —44-92 0-68 21-05 —43-45
0:59 11-9 —34-55 0-63 15-65 —37-9 0-67 15-2 —36-9
0-5836 0 — 0-62 5-5 —28-8 0-66 4-3 —27-2
0-58 —5-2 —17-8 0:6186 0 — 06591 0 —_
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TABLE 10a

Lower Critical Mach Numbers M,, for Untapered Swept-Back Wings, Profile C,
Based on Maximum Supervelocities in the Kink Avea

9 =0-05 : $ =0-10 $=0-15

P P 9
Moo (deg) Ma | (deg) Mo | (deg) :
0-87 23-6 0-80 264 0-75 29-6
0-86 165 0-79 20-7 0-74 24-9
0-85 7.7 0-78 14-0 0-73 19-3
0843 0 077 | 52 0-72 1275
0-7661 | 0 0-71 3-8 .,
0-7070 | 0 ;
$ = 0-30 $ =025 $=10-20 .
@ ' @
M| (deg) M1 (deg) Mo | (deg)
0-64 34-3 0-67 324 0-71 327
0-63 30-35 0-66 28-95 0-70 28-3
0-62 959 0-65 23-5 0-69 23-4
0-61 20-8 0-64 17-95 0-68 17-8
0-60 14-8 0-63 11-0 0-67 10-95
059 7-0 0-62 1-8 0-66 1.2
0-5836 | 0 0-618 | 0 06591 | 0
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TABLE 11

Lower Critical Mach Numbers M, for Untapered Swept Wings, Profile Q,
Based on Maximum Supervelocities in the Front of the Kink Section

9 =005 : & =0-10 T $=0-15
@ P @
Mo (deg) Mo (deg) M. (deg)
0-94 584 0-91 64-8 0-88 66-25
0-93 52-3 0-90 61-1 .0-87 65-3
0-92 479 0-89 57-35 0-86 60-7
0-91 40-6 —74+4 0-88 536 0-85 57-8
0-90 353 ~70-8 0-87 49-8 0-84 55-1
0-89 30-05 | —66-7 0-86 46-0 —76-9 0-83 51-8
0-88 24-85 | —61-9 0-85 42-1 —74-85 0-82 48-75 | —78-1
0-87 19-6 —56-4 0-84 383 —792-55 0-81 456 —76-5
0-86 13-95 | —49-8 0-83 344 —70-0 0-80 42-45 | —74-9
0-85 7-5 —41-9 0-82 30-4 —67-1 0-79 39-2 —73'1
0-84 0 — 0-81 26-3 —63-9 0-78 35-85 | —71-0
0-84 —1-3 —31-0 0-80 221 —60-1 0-77 324 —68-7
0-79 . 17-45 | —55-7 0-76 28-8 —66-2
0-78 12-3 —50-3 0-75 250 —65-25
0-77 6-3 —44-3 0-74 21-0 —59-9
0-7618 | - © —_ 0-73 16-6 —56-1
0-76 —1-65 —35-7 0-72 11-65 | —52-35
0-71 5-8 —46-35
9 =0-30 0-7020 0 —
0-70 —1-7 —38-4
v §=0-25
M, (deg)
@ . —0-
Mnl (deg) ﬁ 0 20
0-83 72-15
0-82 70-5 e @
0-81 68-85 0-84 696 o2 (deg)
0-80 671 0-83 680
0-79 653 0-82 66-05
0-78 63-45 0-81 64-0 0-86 686
0-77 615 0-80 61-9 0-85 66-45
0-76 595 0-79 59-8 0-84 6415
0-75 575 0-78 5755 0-83 61-8
0-74 55-35 | —80-6 0-77 553 —80-6 0-82 59-35
0-73 53:15 | —79-75 0-76 53-1 —79-7 0-81 56-9
0-72 50-4 —78-8 0-75 50-5 —78-65 0-80 54-3
0-71 48-8 —77-7 0-74 48-0 —77'5 0-79 517 —79-2
0-70 46-1 —76-5 0-73 46-45 | —76-3 0-78 490 —78-05
0-69 43-6 —75-35 0-72 427 —74-9 0-77 46-2 —76-7
0-68 40-8 —74-0 0-71 39-95 | —73-4 0-76 434 —75-3
0-67 38-25 | —72-5 0-70 37-1 —71-8 0-75 40-5 —73-75
0-66 35-4 —70-8 0-69 34-1 —69-0 0-74 3745 | —72:0
0-65 323 —69:0 0-68 309 —68-0 0-73 24-3 —70-1
0-64 29-15 | —67-0 0-67 275 —65-7 0-72 310 —67-9
0-63 25-7 —64-7 0-66 23.95 —63-15 0-71 27-6 —65-5
0-62 220 —62-1 0-65 20-0 —60-2 0-70 23-9 —62-75
0-61 18-0 —59.05 0-64 1575 | —56-8 0-69 | 199 —59-6
0-60 13-5 —555 0-63 10-9 —53-6 0-68 | - 155 —56-0
0-59 8-3 —51-3 0-62 52 —48-9 0-67 10-5 —52-7
0-58 2-0 —45-9 0-6126 | © — 0-66 4.7 —43-65
0-5773 0 — 0-61 ~2-15 | —41-15 0-6535 0 —
0-57 —8-7 —38-2 0-60 —15-1 | —28-8 0-65 —3-0 —39-0
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Lower Critical Mach Numbers M,; for Untapered Swept-back Wings, Profile Q,

TABLE 1la

Based on Maximum Supervelocities in the Kink Avea

9 =005
12
M., (deg)
0-93 5275
0-92 481
0-91 43-6
0-90 39-1
0-89 34-7
0-88 30-2
0-87 254
0-86 20-1
0-85 13-45
0-8413 0
9 =0-30
@
M. (deg)
0-79 65-45
. 078 64-2
0-77 62-7
0-76 61-1
0-75 608
0:74 57-85
0:73 56-0
0:72 54-35
0-71 52-5
0-70 50-6
0-69 . 48-6
0-68 46-5
0-67 442,
0-66 419
0:65 . 39:38
0-64 36-6
0:63 33-65
0-62 30-4
0-61 26-6
0-60 22-3
0-59 16-7
0-58 77
0:5773 0

$=10-10 $=0-15
N \4 @
M., (deg) M., (deg)
0-89 57-9 0-86 61-1
0-88 54-9 0-85 58-8
0-87 51-9 0-84 56-5
0-86 48-9 0-83 54-2
0-85 45-85 0-82 51-75
0-84 427 0-81 49-3
0-83 39-5 0-80 46-8
0-82 -86-15 0-79 44-1
0-81 335 0-78 41-3
0-80 28:75 0-77 384
0-79 245 0-76 354
0-78 19-6 0-75 - 82-05
0-77 12-4 0-74 28-4
0-7618 0 0-73 24-3
0-72 19-5
0-71 12-9
0-7020 0
9 =025
$ =0-20
'
Mo (deg)
@
Mo (deg)
0-81 64-4
0-80 62-85
0-79 61-1 0-83 62-4
0-78 59.3 0-82 60-5
077 57:55 0-81 58-5
0:-76 558 0-80 58-5
0-75 53-8 0-79 54-5
0-74 518 0-78 52-3
0-73 49-8 0:-77 50:15
0-72 47-65 0:76 46-75
0-71 45-4 0-75 45-5
0:70 43-0 0-74 43:05
0-69 40-5 0-73 40-45
0-68 379 0-72 37-7
0-67 35:0 0-71 34-7
0-66 318 0-70 31-45
0-65 28-3 0:69 2785
0-64 24-15 0-68 23-7
(0-63 19-4 0-67 18-6
0-62 12-65- 0-66 . 11-75
0:6126 | 0 0-6535 (02
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TABLE 11b

Lower Critical Mach Number M,, for Untapered Swept-back Wings, Profile Q,
Based on Maximum Swupervelocities in the Tip Section

= 0-05 9 =010 §=0-15
M, 9 M, ¢ M, 9

' (deg) ' (deg) ' (deg)
0-94 69-6 0-91 74-8 0-88 75-1
0-93 6275 0-90 70-8 0-87 72-5
0:92 54-8 0-89 66-7 0-86 6945
0-91 45-1 0-88 61-9 0-85 66-0
0:90 33-2 0-87 56-4 0-84 62-1

0-86 49-8 0-83 57-5
0-85 41-9 0-82 52-25
0-81 45-8
$=10-30 H =025 9§ =020
M, ? M, P M, @

' (deg) ‘ (deg) ' (deg)
0-82 78-1 0-84 777 0-86 76-9
0-81 76-5 0-83 76-0 0-85 74.85
0-80 74-9 0-82 741 0-84 L=
0-79 73:0 0-81 72-0 0:83 - 70-0
0-78 71-0 0-80 69-6 0-82 &1
0-77 68-7 0-79 66-95 0-81 63-9
0-76 66-2 0-78 64-0 0-80 60-1
0-75 6325 0-77 60-6 0-79 557
0-74 59-95 0-76 56-6 0-78 0.6
0-73 56-1 0-75 52-0
0-72 51-55 - 0-74 46-4

TABLE 11c

Lower Critical Mach Number M, , for Untapered Swept—back Wings, Profile Q,
Based on Maximum Supervelocities in the Reay of the Kink Section

9 =0-05 , 9 =0-10 9 =015
M, P M, @ M, 2
! (deg) ' (deg) ¥ (deg)
0-95 69-3
0-92 724 0-90 75-2
0-94 l 60-0 0-91 67-3 0-89 71-95
0-90 61-15 0-88 68-2
— 0-87 65-2
H =0-30 :
§=0-25 9 =0-20
M, ? . ]
: (deg) M P .M 9
) o (deg) . (deg).
0-85 78-4 ‘
0-84 76-7 0-86 767 0-88 76-3
0-83 74-6 0-85 744 0-87 73.7
0-82 72-3 0-84 71-85 0-86 70-7
0-81 69-8 0-83 68-8 0-85 - | 67-1
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TABLE 122

Lower 'Cw}tical Mach Numbers M, for Untapered Swept-back Wings, Profile R,
Based on Maximum Supervelocities wn the Kink Area

$ =0-05 H=10-10 ¥=0-15
P P . @
Ma 1 (aeg) Ma "1 (deg) Mo (acg)
0-95 65-05 0-91 65-8 0-88 67-8
0-94 60-4 0-90 63-45 0-87 65-8
0-93 55-8 0-89 60-7 0-86 63-7
0-92 51-35 0-88 57-9 085 | 61-65
0-91 47-05 0-87 55-2 0-84 59-5
0-90 42-8 0-86 52-35 083 57-35
- 0-89 38-6 085 49-5 0-82 55-1
0-88 34-4 0-84 46-6 0-81 52-9
0-87 30-0 0-83 43-65 0-80 505
0-86 25-4 0-82 40-6 0-79 481
0-85 20-2 0-81 37-4 0-78 456
0-84 13-65 0-80 34-0 0-77 4305
0-8310 0 0-79 30-4 0-76 40-3
0-78 264 - 0-75 37-4
0-77 21-85 0-74 | 343
0-76 16-2 0-73 31-0
0-75 74 0-72 27-25
0-7474 0 0-71 23-0
H=0-30 0-70 17-8
069 10-0
. 0-6850 0
M. (df;g) 9 =025
0-84 74-2 M, ? L 9 =020
0-83 73-0 (deg) .. ?
0-82 71-75 T ’
0-81 70-5 0-85 725 _ M., (deg)
0-80 69-3 0-84 711 :
0-79 67-95 0-83 69-7 - '
0-78 66-6 0-82 68-3 . 0-86 69-95
0-77 652 0-81 66-8 0-85 68-3
0-76 63-8 0-80 65-3 C 084 66-65
0-75 62-4 0-79 63-8 : 0-83 | 649
0-74 609 078 62-2° 0-82 63-2
0-73 59-35 0-77 606 0-81 61-4
0-72 57-7 076 58-9 0-80 59-6
0-71 56-05 075 57-2 0-79 57-7
070 53-9 074 55-4 0-78 558
069 52-5 073 53-5 0-77 53-8
0-68 50-7 - 0-72 516 0-76 517
0-67 48-6 0-71 49-6 0-75 496
0-66 46-6 0-70 |- 475 0-74 474
0-65 44-4 - . 0-69 453 0-73 45-1
0-64 '42.9 0-68 43-0 0-72 42-2
0-63 '39-6 0-67 40-5 0-71 40-0
0-62 36-95 : 0-66 379 . 0-70 37-3 -
0-61 34-0 0-65 35-0 0-69 34-3
0-60 30-8 0-64 31-9 0-68 31-1
0-59 27-1 0-63 98-4 0-67 27-4
0-58 22-8 0-62 24-35 0:66 23-2
0-57 17-35 0-61 19-45 0-65 18-1
0-56 89 0-60 12-7 0-64 10-6
0-5565 0 0-5926 0 0-6348 0
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F1c. 2. Critical Mach numbers for a straight infinite wing
(two-dimensional flow) against maximum supervelocity ratio
d; and against thickness ratio & for several profiles.

Fics. 1la and 1b. Two-dimensional flow past a straight infinite wing.
Compressible and incompressible.
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Fic. 3. Velocity components on infinite sheared or yawed wing, relevant for determining critical
Mach number.
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F1c. 4. Critical Mach numbers for infinite sheared and yawed
wings of varying angle ¢, against maximum supervelocity ratio §; and
against thickness ratio & for several profiles.
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F16. 5. Four wing profiles.
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53° 8.

Fic. 11. Supervelocity distribution. Down-
stream tip area. Profile C. ¢
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Fic. 10. Supervelocity distribution. Upstream
. tip area. Profile C. ¢

F1c. 9. Isobars on a swept-back wing.
Profile B.
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F1G. 172. Supervelocity distribution. Kink area.

Isobars on a sheared wing. Profile C. Fic. 14,
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Fic. 17. Supervelocity distribution. Kink area
Profile Q. ¢
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Fic. 168. Supervelocity distribution. Down-
stream tip area. Profile Q. ¢
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F1c. 15. Supervelocity distribution. Upstream
tip area. Profile Q. ¢
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Fic. 20. Supervelocity distributions in the kink
section, compared to that at infinity, for different
angles of sweep. Profile B.
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Fic. 21.  Supervelocity distributions in the kink
section, compared to that on an upswept wing,
for different angles of sweep. Profile B. Fic. 22. Supervelocity distributions in the kink
section, compared to that at infinity, for different
angles of sweep. Profile C.

F1G, 23. Supervelocity distributions in the kink
section, compared to that on an unswept wing,
for different angles of sweep. Profile C.
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Fi1c. 24. Supervelocity distributions in the kink F1c. 25. Supervelocity distributions in the kink
section, compared to that at infinity, for different section, compared to that on an unswept wing,
angles of sweep. Profile Q. for different angles of sweep. Profile Q.
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Fic. 26. Supervelocity distributions in the kink
section, compared to that at infinity, for different
angles of sweepback. Profile R.
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Fic. 27. Supervelocity distribution in the kink
section, compared to that on an unswept wing,
for different angles of sweep-back. Profile R.
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Upper and lower critical Mach numbers for swept wings.

Fic. 30.

Profile B.
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d lower critical Mach numbers

for swept wings. Profile Q.

Tic. 32. Upper an

swept wings. Profile C.
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Fi1c. 31. Upper and lower critical Mach numbers
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Fi1c. 33. Upper and lower critical Mach numbers for swept-back wings.
Profile R.
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F1c. 35. Improvement of the lower critical Mach number with

increasing angle of sweepback or sweep forward. Profile C.
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Fi1G. 36. Improvement of the lower critical Mach number with
increasing angle of sweepback or sweep forward. Profile Q.
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F1c. 39. Upper and lower critical Mach numbers at varying angle of sweep, for four different profiles.
Thickness ratio 20 per cent.
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