
MINISTRY OF SUPPLY 

A E R O N A U T I C A L  

REPORTS AND 

Diffusion of 

RESEARCH COUNCIL  

R. & M. No,  2822  
(9662) 

A.R.C. Techn ica l  ReImr~ 

into, and Bending under, Transverse 
Loads ,of Parallel Stiffened Panels 

MEMO RANDA . . . . . . . . . . . . . . . .  
• . ~'- ~ g N ; ! l I T r  

Antisymmetrical Loads,~,~ 

j .  H. A R G Y R I S ,  D.E., 

of the University of London, Imperial College of Science and Technology 

'55 

Y i 

H E R  MAJESTY'S STATIONERY OFFICE 

I954 

PRier i3s 6d NET 

LONDON : 

Grown Gapyrigl~t Reserved 

/" 

'ii 



Diffusion of Andsymmetrical 
under, Transverse Loads of 

By 
j. H. ARGrRIS, D.E., 

of the University of London, 
Imperial College of Science and Technology 

Loads into, and Bending 
Parallel Stiffened Panels 

Reports and Memoranda No. 2822 

May, I946 
L c!aR  Rr i 

Summary.--(a) Purpose a~d Range of Investigation.--To present the general theory of diffusion of antisymmetrical 
concentrated end loads and edge loads* into parallel stiffened panels, including the theory of bending of a parallel 
stiffened panel under arbitrary transverse loads. By combining the results of this paper with the results on diffusion 
of symmetrical loads given in R. & M. 19695 and R. & M. 20386 or in Appendix I to this paper it is possible to analyse 
the diffusion in a parallel panel under any arbitrary load or edge stress distribution. 

The methods developed ill this paper permit a simplification and slight generalisation of the results obtained in 
R. & M. 1969 ~ and 20386 for the symmetrical diffusion case in a parallel panel. The relevant formulae are given in 
Appendix I to this report. 

An alternative approach to the diffusion problem in parallel panels with given boom areas is presented in Appendix II. 

(b) Condusions.--In general diffusion in parallel panels is determined by three parameters : the diffusion constant #l 
as defined by Cox (R. & M. 18601), the ratio ~ of total area of edge members to total area of stringers plus effective 
sheet,  and the ratio /3 of total area of stringers plus effective sheet to the product of length of panel and sheet thickness• 
In the particular case of a parallel panel with a give~ distribution of edge stress the direct stresses in the panel depend 
only on the parameter #l, and the shear stresses on #l and g. 

I t  is shown that the effect of transverse loads on the direct stresses in a parallel panel is equivalent to that of 
antisymmetrical edge loads producing the same bending moment at each section. The shear stress distributions differ 
by a constant value across each section.. This difference is the shear stress produced by the shear force of the transverse 
load system assumed uniformly distributed over each cross-section. 

In all loading cases as # increases the stress distribution in the panel approaches that  indicated by the ordinary 
engineer's theory. 

PART I 
Introduction 

1. Nature of Problem.--In R. & M. 19695 and 20386 the stress distribution in a stiffened panel 
was investigated : both the dimensions of the panel, including its t aper  if any, and the system of 
stresses or loads applied along its edges were assumed to be symmetrical about an axis parallel 
to the length of the panel. Such symmetrical loading might be realised in the top or bottom 

* The term edge loads is used to describe loads which are applied to the edge members of the parallel panel and 
which act parallel to its axis of symmetry. 
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panel of a tapered o rpa ra lM box of rectangular cross-section bent about an axis parallel to the 
two panels. Thus in a wing this loading condition is approached in the box formed by the two 
spars and the wing cover, when the wing is bent by lifting forces about its chord. 

Similarly the case of antisymmetrical edge-stress distribution which is the subject of the present 
report may be exemplified in the top or bottom panels of a parallel box under transverse (drag) 
loads parallel to these panels or under torsion. In the latter case if the end of the box is prevented 
from warping, direct stresses are induced in the panels, and the loading system applied to each 
panel can be represented by a combination of transverse loads in the plane of the panel and 
antisymmetrical edge loads. The effect of antisymmetrical edge loads is investigated in Part  II  
of this report. 

By combining the results of symmetrical and antisymmetrical edge loads and edge-stress 
distributions it is possible to analyse the general diffusion case in a parallel panel with any 
arbitrary edge load and edge-stress distribution. 

I t  may be remarked that  the effect of taper could easily be included by the method used for 
symmetrical edge-stress distributions in R. & M. 19695; but it appeared preferable to restrict 
the present investigation to parallel panels since by so doing the main theme could be more 
fully expanded. 

2. Basic Assumptio~s.--The problems of diffusion and bending analysed in this paper are based 
on the following assumptions (Cox, R. & lVI. 18601) 

(a) that  the panel has a finite number of stringers, 

(b) that  the effective sheet area is concentrated at the lines of at tachment of the stringers, 

(c) that  the stringers are 1~eld apart by a closely spaced system of members, which are rigid 
against compression or extension but which offer no resistance to bending in the plane 
of the panel. 

The method of analysis based on the above assumption is called the ' finite-stringer' method. 
Applications of this method to symmetrical loading cases can be found in Cox, R. & M. 18601, 
Williams and others, R. & M. 20982, R. & N. 19695 and R. & M. 2038 ~. 

Because of assumptions (b) and (c) the shear stress at any cross-section is constant between 
two consecutive stringers. Furthermore assumption (c) implies that  the deflection v of the panel 
is uniform across the width of each cross-section. Thus the shear stress is then given by, 

qr : C{(~,~_l -- ~r)/b + d~/ax} . . . . . . . . . .  (1) 

where G is the effective shear modulus, u,, is the displacement of the ~'th stringer in the direction 
of the x-axis and at the section considered and b is the stringer spacing (see F~gs. 1 and 2). 

The method of analysis used in this paper is a generalisation and simplification of the method 
used in R. & M. 20386 and yields simple formulae for the direct stress and the shear stress for 
any number n of stringers at any point of the panel. The particular method of analysis when 

---, oo is called the ' stringer-sheet ' method. In this the resistance of the panel to direct load is 
spread uniformly across the width of the panel. In the case of concentrated end loads the 
stringer-sheet method yields the anomalous result that  the shear stress in the sheet adiacent to 
the edge member is infinite, whereas the finite-stringer method gives always a finite shear stress 
because b is finite. This anomaly of the stringer-sheet method can, however, be eliminated by 
calculating the ~t~ displacements by the stringer-sheet method and applying formula (1) for the 
computation of the shear stress. In all other applications the finite-stringer and stringer-sheet 
method may be assumed as being for all practical purposes identical, provided the number of 
stringers exceeds five. The agreement between the two methods is particularly good when the 
edge stress of the free end is zero. 
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A further question which arises is the influence of lateral strains. As stated above in both the 
finite-stringer and stringer-sheet method it is assumed that  the stringers and edge members are 
held apart by a closely spaced system of ribs (cross-members) which are rigid against compression 
or extension but which offer no resistance to bending in the plane of the sheet. Actually these 
transverse members are at a finite distance and are not rigid. Approximately to represent their 
actual properties it is possible to extend the conception of the stringer-sheet method also to 
the lateral direction. The panel is then represented by an orthotropic plate. The general theory 
of diffusion in orthotropic plates will be necessarily very complicated. Only some very simple 
symmetrical diffusion problems have been investigated by this method. I t  has been shown that  
in the case of zero edge stress at the free end of the panel both the direct stresses and shear 
stresses calculated by the orthotropic plate and the finite-stringer or stringer-sheet method agree 
very closely. In the case of constant edge stress the agreement for the direct stresses is still 
very good. For the shear stresses the analysis shows that  for a reasonably great number of 
stringers (say > 10) the maximum shear stresses calculated by the orthotropic plate t reatment 
agree quite closely with those calculated by the finite-stringer method of this paper. For 
antisymmetrical diffusion problems comparison is possible with some results of the theory of 
bending by transverse loads of isotropic plates (Fine, R. & M. 2648~-). Again there is excellent 
agreement in both the direct stresses and shear stresses With the corresponding results of the 
stringer-sheet method. 

I t  is evident, however, that  even the treatment by the orthotropic plate method cannot be 
termed exact. A full analysis ought to include the effect of the finite spacing of both stringers 
and cross-members; the effect of buckling of the sheet and the ' g i v e '  of the joints; and the 
effect of the bending stiffness of stringers and cross-members when deflected in the plane of the 
sheet. Even if such an extensive analysis were feasible, it would be very complicated and its 
applicability limited. Therefore, taking into account the excellent agreement between the 
finite-stringer method of this paper and the available results of the orthotropic plate method, it 
can be assumed that  from the practical point of view the results of the present investigation are 
sufficiently accurate. 

3. Details of Present I~vestigation.--In Part  II  a general analysis of a parallel stiffened panel 
with antisymmetrical edge-stress distribution is given. It  is there assumed that  the panel is 
under the action of concentrated end loads and/or edge loads only. Thus there is no resultant 
shear force at any cross-section; both constant and arbitrary antisymmetrical edge-stress 
distributions are investigated. As an application of the latter the parallel panel with constant 
area edge members is analysed. For this case the effect of both antisymmetrical concentrated 
end loads and arbitrary antisymmetrical edge loads is considered. 

In Part  I I I  the effect of arbitrary transverse loads is investigated. I t  is shown that  the analysis 
can be reduced to that  of antisymmetrical edge loads treated in Part  II. 

In Appendix I a slight generalisation and simplification of the results of R. & M. 1969 ~ and 
20386 with respect to symmetrical edge-stress distributions in parallel panels is given. No 
derivation is included as the method is exactly the same as that  of Part  II  of this report. 

A new analysis for diffusion and shear lag in parallel panels with given boom areas is presented 
in Appendix II  where it is preceded by a special introduction to which the reader is referred. 

A number of diagrams at the end of the report show the variation of the moment carried by 
the panel and the shear stress at the edge for various numbers of stringers and values of the 
diffusion parameter ~d. Two different edge conditions referring to the cases of constant edge 
stress and constant area edge members respectively are shown. In the latter case the stress 
distribution depends also on the ratio ~ of total area of edge members to total  area of stringers 
plus effective sheet. 
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4. NOTATION OF MAIN REPORT and APPENDIX I 

Co-ordinate measured from free end of panel (see Figs. 1 and 2) 

Co-ordinate measured from axis of symmetry of panel (see Figs. 1 and 2) 

Length of panel 

Stringer spacing 

Number of stringers 

(~ + 1)b: width of panel 

Thickness of sheet 

Area of one stringer plus effective sheet 

Stringer sheet thickness 

Area of each edge member 

2Bfi~A : ratio of total  area of edge members to total  area of stringers plus effective 
sheet 

Moment of inertia of edge members about x-axis 

Moment of inertia of stringers plus effective sheet about x-axis 

Edge stress at section x 

Fourier coefficients of arbitrary edge stress distribution 

Concentrated end load applied to edge member 

P/B: edge stress at free end of panel 

Displacements of edge members parallel to x-axis 

Deflection of panel at section x 

Stress in sth stNnger at section x 
Notation of stringers is in the 

Displacement of sth stringer parallel to x-axis s-system of reference (see 
Shear stress in sheet between sth and below). In the r th system of 

reference substitute r for s. (s + 1)th stringers at section x 

Average stringer stress at section x 

Shear stress in the sheet adjacent to edge member at section x 

Moment carried by the panel at section x 

Index, referring to moments, stresses and displacements given by ordinary 
engineer's theory 

Direct stress in stringer-sheet at section x and ordinate y 

Shear stress in stringer-sheet 

Shear force of transverse load system 

Fourier coefficient of shear force diagram 

Moment of external forces at section x 

Loads applied to edge members and acting parallel to  x-axis 
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N O T A T I O N  OF MAIN R E P O R T  AND A P P E N D I X  I~continued 

Fourier  coefficient of edge-load distr ibution 

Magnitude of shear stress system 

~ ( ~ -  1) bAf~ = ~ ~t~f~ 
6 

Positive integer varying from 1 to n 

Ordinal of stringers, y = sb being the  distance of the stringers from the x-axis 
(see Figs. 1 and 2) 

s = 0, ± 1, ± 2 . . .  q- (n --  1)/2, when n is odd 
s = , + . ~ , : k ~ . . . 4 - 1  (n --  1)/2, when n is even 

Ordinal of stringers and posit ive integer varying from 1 to n 

Posit ive integer varying from 1 to n 

Odd integer varying from 1 to oo 

Young's  modulus 

Effective (secant) shear modulus of sheet 

(2/w)V(Gbt/EA) 
Diffusion parameter  of Cox, R. & M. 18601 

l*(n + 1) sin 2(n + 1) 

Coefficients 

Set of characterist ic values 

sinh {2s$~} 
sinh {(n + 1)~} 

1 [cosh {(2s + 1)~} _ 
n sinh }~ [_ sinh {(n q- 1)$~} 

1 
(N~')'=("-~I/= --  n [coth {(n + 1)~} coth ~ --  1] 

1 1 
n(n + 1) sinh 2 ~10 

cosh {2s¢10} 
cosh {(n + 1)~} 

1 sinh {(2s - /  1)6~} 
n sinh }~ cosh {(n + 1)~} 

1 Ftanh {(n + 1)$k} 1] 
T~ = (Rk,) ,=( , , - l l /2  - -  ~ k -t-~-t{ ~/ - -  

{k~ 1 } 
$10 = sin h-1 2 f i n +  1 

7 
(n + 1) sinh '~k] 

D , E  

stress functions of the 
a n t i - s y m m e t r i c a l  
diffusion case. 

Stress functions of the 
symmetr ica l  diffu- 
sion case. 

In the l imiting case if n - +  oc (stringer-sheet) the stress functions are denoted by  
barred letters, e.g., G~,, Hi,,, etc. (see also formulae (62) and (146.)) 

Constants 
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PART II 

Diffusion of Antisymmetrical Concentrated End and Edge Loads into Stiffened Parallel Panels. 
Zero Transverse Load 

1. General Considerations.--Consider a paralM panel stiffened by n stringers at uniform spacing 
b. The length of the panel is l and the width w = (n + 1)b (see Fig. 1). It is assumed that  
there is a closely spaced system of cross-members infinitely stiff against compression or tension 
but offering no resistance to bending in the plane of the sheet. The edge of the panel at x ---- 1 
is held straight but the edge at x = 0 is entirely free to warp in its own plane. The displacements 
u in the direction of the x-axis are functions of both x and y, but the deflections v depend only 
on x. The edge stress at y ---- + w/2 is --f(x) (compression) and at v = -- w/2 is + f(x) (tension). 
This antisymmetrical edge-stress distribution may be produced by an antisymmetrical system of 
concentrated end loads and edge loads on the edge members (see Figs. 1 and 2), and it is assumed 
for the present that  there are no transverse loads acting on the panel. The influence of transverse 
loads will be investigated in Part I I I  of this report. It is assumed that  the effective sheet is 
concentrated along the lines of at tachment of the stringers, so that  the shear stress is constant 
over that  part of any particular cross-section which lies between two adjacent stringers. A is 
the area of stringer cross-section plus effective sheet. G is the effective secant shear modulus 
of the sheet and E the Young modulus of stringers and edge members. There is some difficulty 
in the evaluation of both A and G. The sheet next to the one edge member is under compression 
and shear, whereas the sheet next to the other edge member is under tension and shear. Thus 
in the latter case both the values of the effective sheet and secant shear modulus are higher 
than in the first. Furthermore, these values vary also with x. To make the analysis feasible 
it is necessary to assume uniform values of A and G over the whole panel .  In the case of a constant 
antisymmetrical edge stress it is reasonable to make the following assumptions : 

(a) An average value of G may be found on the assmnption that  the shear stress q in the 
sheet adjacent to the edge member is constant along the length of the panel and 
that  at x = 1 (built-in end) the engineering theory of bending applies. Let the moment  
in the panel at x = I be M. It follows that  

q = M/lwt 
(b) An average value of A may be found by calculating the effective sheet on the assumption 

that  the edge stress in each buckled plate (sheet) is --,[/2. 

For other edge-stress distributions the values of A and G may be estimated in a similar manner. 

2. The Differential Equations.--On the basis of section 1 the analysis of antisymmetrical 
diffusion may be developed as follows. With the notation of Figs. 1 and 2 the shear stress q~ in 
the sheet between the rth and (r -- 1)th stringers can be written" 

q ._G{U,,_~--u~ dv} 
b + )-~ . . . . . . . . . . . .  (1) 

The direct Stress f~ in the rth stringer is, 

d u  r 
L = E d x  . . . . . . . . . . . . . . . .  (2) 

and the condition of equilibrium of the rth stringers is, 

dL 
A = q . . l t  - . . . . . . . . . . . . . . .  ( a )  
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Subst i tu t ing formuIa (1) it follows tha t  

d x  - -  A b  - -  u,._~ + 2u/" - -  u/'+~ 

and by  differentiation, 

d x  ~ - E A b  - - f ' - '  + 2I/" - - f / ' + ,  . . . .  

for r = 1 to r = n with the  boundary  condi t ionsfo = --f,,+~ = - - f ( x ) .  

(4) 

F rom the  condit ion of zero shear load at any cross-section it follows that ,  

~ ,  ~ , = 0  . . . . . . . . . . . . .  (s) 
t ' = 1  

By subst i tut ion of formula (1) one finds, 

dy) ~ + 1  - -  ~0  ~ n + l  - -  ~o  . . . . . . . . . . . .  (sa)  
d x - -  ( n +  1) b - -  w 

where u0 and u,,+~ are the  displacements in the  two edge members  at the corresponding cross- 
section. 

By  differentiation of equat ion (5a) 

d2v 2 f  
d x  ~ - -  E w  . . . . . . . . . . . . . . . . .  (5b) 

It  is wor th  noticing tha t  the  last formula is the same as tha t  in the  engineering theory  of bending, 
when the  edge-stress distr ibution is given and the  transverse loads are zero. This result is a 
consequence of the  assumption about  the  cross-members. I t  should, however, be borne in mind  
tha t  for given edge loads, edge-stress distr ibution and structure of the panel the  areas of the  
edge members  when calculated by  the  engineering theory  of bending differ from those calculated 
by the  more  accurate theory  of this paper. For the  influence of t ransverse loads see Part  I I I .  

Writing, ,~ = ( 2 / w ) % / ( G b t / E A )  it  follows tha t  

Gt _ , ~ ( , ~  + i f  
E A b  2 . . . . . . .  

Hence the  differential equations (4) become, 

The boundary  conditions for f ,  and u, in the  x-direction are, 

a t x = 0 ,  f = 0 a n d d u , / d x  = 0 f o r r =  1 t o n  

a t x = l ,  d f , / d x = 0 a n d u , = 0 f o r r =  l t o n .  

Fur thermore  there is u0 = u,~+~ = 0 at x = l. 
reconsidered, of course, when # -+  oo. 

I t  follows from (5a) tha t  at x = I 

. . . . . .  (~) 

. . . . . .  (7) 

The condit ion df~/dx  = 0 at x = l needs to be 

q, = 6 .  d . / a ~  = o . . . . . . . . . . . . . . .  (s)  

Thus in the  absence of transverse loads the  shear stress at the built- in end (x ---- l) is zero in the 
ant isymmetr ica l  loading case as it is also in the  symmetr ica l  loading case. The effect of 
t ransverse loads in modifying this conciusion is discussed in Par t  III .  
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3. Constant Antisymmetrical Edge Stress.--Consider now a parallel  panel  the edge members  
of which are so tapered t ha t  the  edge stresses are cons tant  ( - - f  in the upper  edge member  and 
+ f in the  lower edge member,  see also Fig. 1). 

As in R. & M. 19695 and 2038 ° mul t ip ly ing  the r th  equat ion b y  ~ and summing wi th  respect 
t o  r 

( ~ .  (-- Z,_, + 2 a , -  *,+,)f, + f ( a , -  ~ )  . . .  (9) 
¢=1 

F o r t =  l t o n w i t h a 0 = & + , = 0 .  

Choosing the  X's and o~'s so t ha t  

~,_~ + ( ~ -  2)~ + z~+~ = 0 . . . . . . . . . .  (10) 

and proceeding as in R. & 3/I. 19695, there  are n characterist ic  values (~o~) 2 and n corresponding 
sets of solution 2 / w h i c h  sat isfy equat ion (9). 

T h e y  are, 

and 

(~o ~) ~ = 4 s i n  ~ 2(n + 1) or o)~ = 2 s in2(n  + 1) 

~ir 
;t/ = s i n -  n + l  

where i takes all integral  values 1 to n. 
will be needed in subsequent  analysis, 

and 

Fur thermore ,  

and 

. . . . . . . .  (11) 

The following relations of R. & M. 19695 section 11.2 

Xff : --  ~t,~+~_/and &{ --  Z , / - -  2 sin n + ~  

: Z {a nd21  ~ - 2 , ~  { - = 0  ~ r i n- t - l - - r  

if i is even 

if i is odd. 

where 

~ - - - -~ (n  + 1) sin 2(n + 1) . . . . . .  

and L and M are constants.  Adjus t ing  to the  boundary  conditions 

~ .  Z,~f, : 0 at  x = 0 and ~ ~ ,  ;tff- = 0 a t  x = ~ ,  
;4=1 7=1 

8 
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4. Solution of Differential Equations (9) . - -For  each value of i equat ion (9) can now be wri t ten,  

Z ~ 7 ,  = ~ 2 ~'~ ~ '  ~ %  + f(~;'  - <')  . . . .  (9a) 
r = l  ~'=1 

The general  solution of (9a) is found in the  form 

r = l  0)4 2 d 

,=1 t /  = cot 2(n + 1) if i is odd. 

~ ' .  t,.~ = 0 if i is even 



the solution of (9a) becomes, 

for i even ~.,=, Z~f, = --  f cot 2(n 7- 1) 1 --  

for i odd ~ .  ,L~f, = 0 .  
~'=1 

cosh - x) t 
cosh ,- ~l j 

(13) 

Mult iplying now each of the  equat ions of order i by  ~ ]  ~,,/~ (which as shown above is zero 

for i even and cot ~i/2(n + 1) for i odd) and summing the  result ing n equations we get an equat ion 
wi th  the  r igh t -hand side zero. 

On the  lef t -hand side we have, 

i = l  ~ = 1  r = l  r = l  ~ n = l  / = 1  

as in R. & M. 19695 we have, 

Z Z o 
i = 1  i = 1  

~ '  ( , t . / )  ~ = ~ ' .  sin 2 -  ~=~ i=1 m + 1 
n + l  

i f m  # r  

if m = v  

. . . . . .  (14) 

Thus the lef t -hand side is 2 ~ "  f~ and the equat ion is finally 
r = l  

Zf =0. 
1 '=1 

This is, of course, an obvious result, in view of the  an t i symmetr ica l  loading. 

To find now the  stress in the  r th  str inger each of the  equations of sys tem (13) is mult ipl ied by  
a,~ - - s i n  ~ir/n + 1. B y  summat ion  of the  result ing n equations we get an equation with  the  
lef t -hand s i d e f d n  + 1)/2. This follows immedia te ly  from the relations (14). On the r ight -hand 
side we have  

~i =it { cosh f f~ ( / - -x )}  
- - f ~ ,  c ° t 2 ( n  + 1) s i n n T  i 1 --  i ovo~  cosh f f i l  " 

Thus  the  stress in the  r th  str inger is 

2. =i =ir { 
fr/ f  = --  n + 1, ~'ovo. cot 2 ( n ~ -  1) sin ~ 1 --  

cosh --  x) l 
cosh #~l J " 

I t  can be shown tha t ,  

2 ai ~ir 
n -+- 1 ~ '  cot 2(n + 1) sin . . . .  n + l  

n + 1 --  2r for n odd or even. 
n + l  

Hence, 

fr / f  = n + 1 -- 2r 2 
--  n + 1 + n +---~, ~ovon cot 

~i .~ir cosh ffi(l - -  x) 
2(n + 1) sin n + 1 cosh ffil 

9 
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The first te rm on the  r ight -hand side corresponds to the  stress dis t r ibut ion in the  panel  according 
to the  engineering theory  of bending. I t  is preferable for reasons of presenta t ion  to replace 
the  ordinal r b y  the  ordinal s where 

n + l - - 2 r  
s - 2 . . . . . . . . . . . .  ( l O )  

and  to renumber  the  stringers posit ively and negat ively  from the centre-line of the  panel. 

Note  tha t  2s/(n + 1) = 2y/w and 

n - - 1  
s = 0 ,  : J : l ,  ± 2  . . . .  , :L ~ f o r ~ ¢ o d d  

n - - 1  
S_=_ ~ 1  3 

~ - ' ±  ' +- 2 
7~- j  . . , - - f o r  n even 

@ - -  

Continuing, 

2 indicates the  outer stringers adjacent  to the  edge members.  

(17) 

Subs t i tu t ing  f ,  = E .  dus/dx, in tegrat ing and adiust ing to the  bounda ry  condit ions us = 0 at. 
x = 1, one finds, 

Eu,  2sf(l --  x) 2fl  1)~+~/~ ~i .~is sinh ~(1 --  x) 
-- ~z-¢- 1 ~¢+ I ~ Z  ( -  c o t 2 ( n +  1) s i n n _ / ~ l , * * j c o s h u ~ l  . .  (19) 

The engineering theory  of bending indicates displacements Use 

2 s f ( z -  x)  
Eu ,~ - -  n +  1 . . . . . . . . . . . .  (20) 

Hence, 

l ~i ~is sinh ~ ~(1 --  x) 
U,u~ -- 1 --  s(1 --  x) ~ ~o~ ( -  1)~+'/2 cot 2(n -~ 1) sin )~ _}_ 1 #~l cosh ,u~l . . . .  (21) 

The symbols for the  displacements u of the  edge members  in the  s-system are u+(,~+w2 and 
u_(,,+~)/~. For b rev i ty  t hey  will be denoted from now on by  u~ and ub respectively. They  are 
given by, 

E u ~  = f ( l  - -  x)  and E u ~  = - - f ( Z  - -  x)  . . . . . . . .  (22) 

The shear stress q, in the  sheet between the sth and the (s -}- 1)th str inger is (see equat ion (4)) 

q = G { U ~ + l - - u s  dv}  (23) 
b +-d-x . . . . . . . . . .  

dV q~b - - q ~  
where dx --  (~ + 1)b" 

i0  

xir  I ~ 1 { ~ + 1  } ]  ~i xis  sin n + 1 --  sin 2 s ---- --  cos ~ sin ~¢ +----~ 

---- (-- 1) 1+~/~ sin n ---@--1 for i even. 

2s 
• Wri t ing  fsc ---- - -  f n + 1 ' where f ,  is the  stress in the  sth str inger given b y  the engineering theory  

of bending, we have, 
~i ~is cosh ff~(1 --  x) 

f , / f ,  = 1 1 ~ ]  ( _  1),+,/2 cot 2(~ + 1) sin - -  (18) --  s ~ .... ~¢ + 1 cosh ~ l  . . . .  

W i t h  increasing values of ~ (diffusion constant) f ,  approaches f , ,  . 



Subst i tu t ing  equations (19) and (22) one finds, 

2 ~i ~i(2s + 1) sinh ,u~(l --  x) (24) 
(q , / f )~c / (Ebt /GA)- -n  + 1 ,.~'~v~n ( -  1)'/3 cot 2(n + 1) cos 2(n + 1) cosh #,l  "" 

The m a x i m u m  shear stresses occur at  x = 0 (free end) and the rat io of the  hyperbol ic  funct ions 
in (24) becomes tanh~,~l. I t  is usual ly  permissible to put  t a n h # i l  = 1. This yields a simple 
approximate  formula for the  shear stresses at  x = 0. 

2 ~ z i  z i(2s + 1) 
(q,/ f)~/(Ebt/GA) (--  1)~/~ c o t  c o s  (25) + 1 + 1) + 1) . . . . . .  

The shear stress dis t r ibut ion across any  cross-section is symmetr ica l  about  the  x-axis and has 
its m a x i m u m  value in the  plates adjacent  to  the  edge members.  

Subs t i tu t ing  s = (n --  1)/2 in (24) one finds for the shear stress q in the sheet connected to the  
edge members,  

2 ~i  ~i  s inh ~(1 --  x) 
(q/ f)~/(Ebt/GA) --  n + 1 ~ ~evon cot 2(n + 1) cos 2(n + 1) cosh #,l  . . . .  (26) 

This formula should be compared with  formula (34) of R. & M. 19695 which gives the  shear  stress 
at  the  edges for the  symmetr ica l  cons tant  edge stress. In  the  la t te r  case the  sum has to be t aken  
over i odd, the  formula being otherwise identical.  

If  n is odd s = 0 defines the  sheet adjacent  to the  middle str inger and the shear stress q0 in this  
sheet becomes, 

2 ~i  ~i  sinh ~i(1 --  x) (27) 
( q ° / f ) v / ( E b t / G A ) -  n + 1 i ~'ovon ( -  1)~/~ cot 2(n + 1)cos 2(n + 1) cosh/~,l "" 

I t  follows immedia te ly  t ha t  [q0 ] < q, because all the  separate  factors in the  sum (26) are positive. 
For  n = 9 and ,,l = 2 Fig. 3 shows a typica l  dis t r ibut ion of shear stress across the  sections at  
x/l  = 0 and 0.1.  

In  Figs. 4, 5 and 6, (q/ f)~/(Ebt/GA) is plot ted against  x/l  for n = 5, 10 and 30 and various 
values of/~l. These diagrams should be compared wi th  Figs. 5, 6 and 7 in R. & M. 19695 corre- 
sponding to the  symmetr ica l  cons tant  edge stress. I t  can be seen t ha t  the  values of the  m a x i m u m  
shear stresses in the  an t i symmetr icaI  case are approx imate ly  half  those found in the  symmetr ica l  
case for the  same absolute value of the  edge stress. 

An a l ternat ive  form of the  lef t -hand side of equat ion (24), etc., is 

2n 1 
(q/ f)@(Ebt/GA) = {(q/f)/(nA/tl)} n + 1 , l  . . . . . . .  (28) 

Using this  relat ion it is found tha t  the  m a x i m u m  shear  stress at  x --~0 does not  va ry  rapid ly  
wi th  the  number  of stringers, provided tha t  the  to ta l  area of section of stringers plus effective 
sheet is main ta ined  cons tant  and n is in the  practical  range (say 10 to 20). 

A fur ther  point  of interest  is t h e  moment  M which the  panel  carries a t  any  par t icular  cross- 
section x. 

B y  definition, 
s = + (~  - 1)/2 

M = --  ~ .  sbAf, . . . . . . . . . . . . . .  (29) 
s = - -  ( n  - -  1)/2 

11 



Subst i tut ing formula (18) and taking into account that ,  

+ (,~ - 1)/2 1 " 
~,  s~= ~ ( ~ -  1)(n + 1) 

and that ,  

+ (.-  1)/'~ ~is 1)1+~/2 n + 1 ~i 
~' ,  s sin - -  --  (_2 cot 

- ( . -  ,)/2 n + 1 2 2(n + 1) for all values of n, one finds that ,  

M = ~ ( n -  1)b/A - b f A  Z cot ~ 
i e v e n  

~i cosh ,.,(l --  x) 
2(n -~- 1) cosh ,.~l (30) 

The first t e rm in equat ion (30) corresponds to the  m o m e n t  M~ indicated by  the engineering theory  
of bending. 

Hence formula (30) can be writ ten,  

where 

6 ~i cosh ~,(Z - x) 

~ , ( ~ -  1) 
Mo-- 6 bfA 

(31) 

Equat ion  (31) satisfies the  boundary  conditions M = 0 at x = 0 and dM/dx  = 0 at x = l 

(note tha t  ~'ew~ cot~ 2(n + 1) --  { n(n --  1)). Wi th  increasing values of #, M approaches M~. In  

Fig. 7, M/M~ is p lot ted against x/1 for n = 10 and various values of td*. The ratio M/M~ 
varies only slightly with n when n > 7. 

To find the  areas B(x) of constant-stress edge members  under  a given system of end loads 
and/or  edge loads consider the  equil ibrium condit ion of moments  at the  section x. Let the  m o m e n t  
of the  external  loads be M, which may  vary  with x, then  

B(~) = ( ~ r _  M)/wf . . . . . . . . . . .  (32) 

The deflection v of the panel can be found from equations (5a) and (22), and the resulting formula 

E ~  = 19 - x ) ~ / w  . . . . . . . . . .  (33) 
shows tha t  the  deflection is unaffected by  diffusion except in so far as the  edge stress f itself is 
affected. 

4.1. Special Case • Stringer-sheet when number of stringers is i n f i n i t e . lASsuming  the  conver- 
gence of the  infinite series when n - +  oo, we have" 

S 
lim --  y /w  ~ + ® n  + 1 

lim ~, ---- lim ¢(n + 1) sin 2(n + 1) = ~ i # / 2  . . . . .  (34) 
n - >  co n +  co 

6 a i  
1 "  

c o t  ~ ~ n  n(n - 1) 2(n + 1) m 

* V a l u e s  of  t h e  d i f f u s i o n  c o n s t a n t  /~l fo r  t y p i c a l  a i r c r a f t  s t r u c t u r e s  a r e  b e t w e e n  1 a n d  4. 
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Formula  (18) becomes, 

f y / f _  2y + 4 ~ .  ( _  1)~+~/~ l s inaiY cosh {~ i l~ ( l -  x)/2} 
- - - ~  2,~o~o~ 7 ~- c o s h  { ~ i ~ l / 2 ) }  . . . .  ( 35 )  

o r  

c o  

2 w ~ ,  ( _  1)~+~/~ 1 sin a iy  cosh {:~itt(1 --  x)/2} 

where f~, = - - f (2y/w)  is the  direct stress indicated by  the engineering theory  of bending. 

Formula  (24) becomes, 
4 ~ (q/f)~/(EtV/ts) = ; , Z  ( -  1),/~ 

and the shear stress q at  the  edge, 

4 ~o 1 sinh {~u(l  - -  x)/2} 
(q/f)'v/(Et/Ct') = ;  ,~'~o~ ; cosh {ai,1/2} 

Note t h a t  in this case the  vaIue of q - +  oo as x--+ 0. 

The moment  M carried by  the panel  is given by, 

1 ~iy sinh {~it~(1 --  x)/2} 
= C O S  - -  

w c o s h  { = i ~ l / 2 }  (36) 

. . . . . . . . . .  (37) 

This anomaly  results from making  b - +  0. 

1 cosh {~i-(z- x)/2} 
24 ~ ~ cosh ~+,l/2} M / M ,  = 1 --  ~ . . . . . .  

i even  

where M,  = w"t,f/6 is the  moment  carried by  the ordinary  engineer 's theory.  

. . . .  ( 3 s )  

and 

I t  is interest ing to note t ha t  for 1--> oo the series in formulae (35) and (36) can be summed.  

One finds 

f y / f = - - ~ 2 t a n - 1  t an  tan  ~ x  .. 

(q / f )v / (Et /Gt , )  1 --  in 4 cos ~ P-~Y -4- slnh ~ , x  -4- a/~x 
722 ' " 

The shear stress q at  the  edge becomes, 

2 _ I n  2 s i n h  ~ x  + ~ x  (z/f).v/ ( Et/Gts) = 

and q--~oo as x--> 0. 

. . . . . .  (35b) 

. . . . . .  (36a) 

. . . . . .  (37a) 

The shear stress q0 along the x-axis, 

(qo/f)~/(Et/Gt~) ~2 _ In 2 cosh ~ ~x + ~ t~x . 

The  r igh t -hand side of equat ion (39) reduces to --  2 in 2 when x 
9~ 

= 0 .  

( 39 )  

Formula  (35b) has been found very  useful for quickly  es t imat ing the  stress dis t r ibut ion in long 
panels (l > 3w say). 

5. Presentation of the Results of Section 4 in  Fourier Ser ies . - -For  subsequent  analysis in Section 6 
and other applications it is necessary to expand formulae (15) or (!8) and (24) in Fourier  series. 
One method  is to. expand first the  hyperbolic functions 

1 cosh #~(1 --  x) "~ sinh f,~(! - -  x) 
a n d  

cosh # ~l ) cosh t*~l in Fourier  series. 
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The formulae for the  direct  stresses and shear stresses are t hen  t rans formed  into double series, 
one finite over i and one Four ier  infinite. I t  is now possible to sum in each case over i. This 
m e t h o d  has been applied in R. & M. 1969 ~ bu t  the  der ivat ion of the  corresponding formulae  by  the  
same means  in the  present  problem would be ra ther  l eng thy  and cumbersome.  For  this reason 
a more  direct  me thod  is applied, which,  moreover ,  has the  advan tage  tha t  the  Z-coefficients are 
avoided.  

A cons tan t  edge stress f can be represented  by  the  Fourier  series, 

4 ~ 1 k~x 
f = ~ f ~ .  ~s in  0 < x ~ < l  . . . . . .  (40) 

l~oda 21 ' " " " 

This Four ier  series does not  converge to the  value f at x = 0, bu t  this is of no impor tance  to the  
developments  of this section. 

Throughou t  the  subsequent  analysis it is only necessary to consider a typica l  t e rm 

1 k~x f ~  s i n - ~ - a n d  the  summat ion  of the  result ing expressions over k m a y  be deferred unt i l  the  

final stage ; a short  discussion of the  convergence of the  series will t hen  be given. 

Consider now the  general  relations (7) which in the  present  case can be wr i t t en :  

d2.f~_ tt~( n + 1)  ~ dx ~ 2 - { -  f ' - I  + 2 f , -  fi+,} for r = 1 to n . . . . .  (7) 

1 k=x 
and the  b o u n d a r y  condit ions f = O  at x = O ,  ( d f j d x ) = 0  at x = l  and f o = - - f ~ s i n  21 

1 k~x 
and  f,~+~ = + f  ~s in  21 " 

The  form of these differential equat ions  and  b o u n d a r y  condit ions suggests the  following 
solution, 

f~ = G , f l  k~x . . . .  (41) sin 2 l  " . . . . . . . . .  

where  G~' is a funct ion of r solely. Subs t i tu t ing  the  solution (41) into (7) 

G / =  2 { -  6,,_1' + 2 G / -  G +I } . . . . . .  (42) 

with  the b o u n d a r y  condit ions G o ' =  --  1 and G,~+I' = + 1. Subst i tu t ing  

k~ 1 * . . . . .  (43) 
s i n h C k - - 2 ~ d n +  1 . . . . . . . . .  

into (42) one obtains after  some e lementa ry  t ransformat ions  the  finite difference equat ions 

--  G,_~' + 2 cosh 2¢k G / - -  G,+~' = 0 . . . . . . . .  (44) 

for r = 1 to n and the  same b o u n d a r y  conditions. The general  solution of (44) can be wr i t t en  
in the  form, 

G,.' = D sinh c~r + E cosh ~r . . . . . . . . . . . .  (45) 

where  D and  E are constants  and c~ is a character is t ic  value. The subst i tu t ion of ei ther  of the 
two par t icular  solutions of (45) into (44) condit ions the  unknown  character is t ic  value c~ by, 

cosh z. = cosh 2¢~ . . . . . . . . . . . . . . . . .  (46) 

* This subs t i tu t ion  was also used in R. & ~ .  20386. 
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The only real solution of this equat ion is, 

c~ = 2¢~ . . . . . . . . . . . . . . . . .  (47) 

Hence (45) becomes, 
Gr' = D sinh 2 ¢ j  -t- E cosh 2¢kr . . . . . . . . . . .  (45a) 

Adjus t ing  to the  bounda ry  condit ions Go' .=  --  1 and G,~+I' = + 1 one obtains,  

s inh {(n + 1 --  2r)¢~} (48) 
Gr' = --  sinh {(n + 1 ) ¢ k }  . . . . . . . . . .  

The  an t i symmetr ica l  character  of G / a p p e a r s  more clearly by  referring the  stringers again to the  
axis of s y m m e t r y  of the  panel, so t ha t  

sinh {2s¢~} 
G s ' - -  sinh {(n + 1)¢k} = --  G~,~ . . . . . . . . . .  (49) 

n + l  
where s = -  2 r 

and 
n - -  1 )  

s - -  0, + 1, -t- 2, . . . ,  -+- 2 when n is odd 

s =  ± 1  ( n - - l )  ~, ~_ ~, • • • , _2_ 2 when n is even. 

The index k in the  funct ion G~, denotes the dependence on the corresponding Fourier  te rm k. 

Hence the stress in the  sth stringer, when the an t i symmetr ica l  edge-stress dis t r ibut ion is 

1 k~x  
± f ~ sin - ~ - ,  becomes 

k~x f ,  f s inh {2s¢k} k~x  f G~,, sin - -  
= - - k s i n h { ( n +  1)¢~}sin 2Z --  k 21 (50) 

and 
sinh {2sq~k} kzrx d~f~ f ~  ~ .  k sin 

dx  2 - -  l 2 ~ oaa sinh {(n + 1)~b~} 21 
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The reasoning leading to equat ion (51) is purely  formal. A verification of the solution is there- 
fore necessary. This will not  be given in full, the  only difficult step being the proof t ha t  series (51) 
can be twice differentiated for - -  (n --  1)/2 < s < + (n --  1)/2. Note par t icular ly  tha t  these 
differentiations are not  implied and necessary for the  case s = ± (n + 1)/2 when indeed t h e y  
are not  possible. In  outline one m a y  proceed as follows" 

differentiat ing formal ly  

df~ 2_f ~ .  sinh {2sCk} k~x  
dx  - -  1 ~odd sinh {(n + 1)¢~} cos 2l 

In  the  case of a cons tant  edge-stress dis t r ibut ion (40), f ,  becomes by  summat ion  of the  k-series, 
co ]?~X 

1 sinh {2sCk} sin (51) 
4 f Z  k s i n h  {(n + 1)¢k} 2l . . . . . . . .  f "  - -  -  odd 

With  increasing/ ,d 
sinh {2s¢~} 2s 2y 

sinh {(n + 1)q~}--->n + 1 --  w 

and formula (51) reduces to the  stress dis t r ibut ion indicated by  the  engineering theory  of bending.  



Now ¢ ~ = s i n h  -~ l n +  1 and hence for large values of k, e*~-+ffl n Jr- 1" 

t ha t  for large k, i.e., large ¢~0, the  typica l  terms in the above series tend  to 

k 

I t  follows 

sinh {2s¢;} .-->- {2Is (n " (k~ 1 ){2,',-<"+'1} 
sinh {(n + )¢,0} ± exp 1-- q- 1))¢k--~ i ~ n + 1 

sinh {(,~ + 1)~}--" £ k exp l-- + ~ + 1  

The least  convergent  case is when Is[ = ( n -  1)/2 in which case the power is --  2. Thus the  
convergence of the  series can be made to depend on t ha t  of 

1 k~x 1 .  k~x 
s m  

k odd. /~ odd 

which are known to be convergent.  I t  is easy to see by  a similar procedure t ha t  (51) is uni formly 
convergent  over the  complete range. 

To find the  shear stresses it is necessary to calculate the  displacements Us. 

B y  integrat ion of (51) 

81 ® 1 sinh {2s¢~,} k~x (52) 
EUs = ~ f ~"o,~ -~ sinh {(n + 1)¢~} cos 2l . . . . . . . .  

This expression satisfies the  b o u n d a r y  conditions Edus/dx = f ,  = 0 at x = 0 and u, = 0 at  
x = 0. For  s = ± (n q- 1)/2, i.e., for the  edge members,  the  above formula reduces to  

8l ~ 1 k~rx 
Eu,~ = - -  E'ub = ~ f , Z  ~ cos 2l --  f ( l  - -  x) . . . . . . . .  (53) 

which follows also direct ly from (40). 

Subs t i tu t ing  expressions (53) and (52) into (23) one finds 

- 1 [cosh {(2~ + 1)4,~} 1 ] k~x 
(qdf)/(nA/tl)  = ~o~'odd n sinh Ck L s ~ ,  {(n + 1)¢~} - -  (n + 1) sinh 47° cos 2l " (54) 

For  some appl ica t ions  it m a y  be preferable to separate again the te rm (ub - -  u~)/(n q- 1). 
Formula  (54) then  becomes, 

(qdf)l(nAltZ) = (~ + I)(ffl)' (I -- x/l) + Z 1 cosh {2s + I)G} k~x (54a) 
- -  2n ~oad n sinh ¢, sinh {(n + 1)4~} cos 21 " "" 

For  the  fur ther  developments  it is useful to introduce the funct ion N~, defined by, 

1 [cosh {(2s + 1)¢k} 1 ] 
N,~, - -  ~ s inh ¢,, L ~ {(~ + 1)¢~} - -  (~, + 1) s inh ¢i0 . . . . . . . . .  (55) 

Hence 

(q,/f)/(nA/tl) = Nk, cos 2/ 
/~ odd 

. .  (54b) 

Of par t icular  interest  are t h e  shear stresses in the  plates adjacent  to the  edge members  and 
along the x-axis. The former can be found by  subs t i tu t ing  s = (n --  1)/2 into equation (54). 
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The particular function Nk, for s = (n -- 1)/2 is important  and for brevity this function will 
be denoted by C~ where 

1 1 ( 5 6 )  
C~ = n [coth {(n q- 1)¢k} coth ¢k -- 1] -- n(n + 1) sin h24~ . . . . . . .  

Then the shear stress q at the edge given by, 

k~x 
(q/f)/(nA/tl) = C~ cos 2l . . . .  

odd 

o r  

1 k~x 
= ~ ,  ; [coth {(n + 1)¢~} coth ¢~ -- ll. cos 2l (q/f)/(nA/tl) ,0oda 

When n is even, s 

+ ( 1  - 
2~¢ 

= -- 1/2 represents the sheet in the middle of the panel. 

(57) 

(57a) 

I t  can readily be seen that ,  

' E ' ' ] }  = k odd ~¢ sinh ¢~ sinh {(n + 1)¢~} -- (n + 1) sinh ¢~ cos 2I 

The moment M which the panel carries at a cross-section x is by  definition, 

+(~-I1/2 

M = b A  ~ . s f ,  . . . . . . .  

-(,~-I)/2 

. (58)  

. .  ( 2 9 )  

Substituting equation (51) into (29) and taking into account that  

+I~-~)/2 sinh {2s¢~} n(n -[- 1) 
Z s -- C~ (59) 

-/,,-1)/2 sinh {(n q- 1)4~} 2 . . . . . . . .  

where C~ is defined by (56), one finds, 

1 k~x (60) M = 2 n ( n +  1) b A f ~ ,  ~C~sin 21 "" 
k odd 

12 n + 1 + 1 k~x 
M/M~ - -  g - n - -  1~-~ ~ C ~ s i n  21 . . . . . . . . . . .  (6Oa)  o r  I 

k odd 

where M~ = {n(n -- 1)/6}bAf is the moment carried by  the panel according to the engineering 
theory of bending. With increasing values of if, M approaches M,. This follows directly from 
equation (60a) because 

l n - - 1  
lira C ~ = ~ n +  1 

/,l-->-oo 

4 ~ 1 k~x 
and g ~ s i n  2l -- 1. 

I t  is worth noticing tha t  the shear stress in tile sheet adjacent to the edge members can also 
be found from the relation, 

1 d M  . . . . . . . .  (61) 
q - -  wt dx . . . . . . . . .  

The deflections v can best be calculated from the equation (33). 
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5.1. Special case • stringer-sheet, when number of stringers is inf ini te . lThe limiting values of 
the functions G1~,, Nk,, and Ck for n - +  co are" 

sinh {2s ¢10} sinh {(2y/w)(k~/2zl)} 
lim Gk, = lim = = Gky 
,,+~ ~_>~ sinh {(n - /  1)¢k} sinh {k~/2~d} 

lim Nk~ = lim { 1 ~cosh {(2s + 1)¢k} 1 1} 
,~+~ ;,+~ n sinh ¢~ L s ~  {-~ +- 1)¢k} -- in -t- 1) sinh ¢1, 

~. o . [cosh s l] 

lim Ck coth = C~ 

Hence one finds for; the direct stress fy, 

4 ~ 1 sinh {(2y/w)(ka/2~l)} k~x 
fY/f = -- ~ ~,oad k sinh {k:~/2,ul} sin 2l 

I 

4 ~ 1 kzx 
= -- ~ - ~  ~ 5~y sin 21 

the shear stress q.~, 

/ ~ X  
(qy/f)/(wtdtl) = ~ ,  -Nky cos 

' ,~ odd 21 

1 cosh {(2y/w)(k=/2~d)} kz3_x .. .. 
or -- 2/,jl= k ~'oad k sinh {k=/2td} cos 21 

1 2 - -  ~ - ( ¢ l )  ( 1  - -  x/l) 

The particular formulae for the shear stress at the edges and along the middle axis of the panel 
are straightforward. 

The moment M is given by 

1 k~x 
M/Me 1_2 ~ ,  k Ok sin (65) 

-- = k o~la 2l . . . . . . . . . . . . . .  

where M~ -- W=tsf/6 is the 
bending. For #l-+oo, M 

(62) 

(63) 

(64) 

moment carried by the panel according to the engineering theory of 
--> Me because lim Ck -- ! - -  3 .  

~l-->-co 
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6. Arbitrary Edge-Stress 
± f may be represented by 

1 k~x 
4 F k s in  . . . . . .  (6Sal f = fb @ ~ k o d d  2 1  . . . . . .  

, o r  

1 k~x 
4 ,~o~.~, 1 k~x 4 ~ 7~ (fb +Fk) sin 21 .. . (66b) f = ~  : ~ F k s i n  2l - - ~  "" " 

where fb is the edge stress at the free end of the edge member. When no end loads are applied 
to tile edge member, fb = 0. 

Owing to the fact tha t  the Fourier expansion of a constant (in this case the expansion of f,o) 
canno t  be differentiated term by term, the representation (66b) will be inappropriate whenever 
df/dx occurs and fb @ 0. In such cases form (66a) has to be used (the series in this expression 
will be assumed to be differentiable). The application of this remark will appear in section 7. 

Distribution.--An arbitrary antisymmetrical edge-stress distribution 



To find the stress distribution in the panel the method of section 5 can be_applied immediately. 
One has bnly to substitute the Fourier coefficient (1/k)(fi +F~) = (1/k)(Fk) into derivation of 
section 5 for the Fourier coefficient (1/k)(fi). 

One obtains for, the stress fs in the sth stringer, 

4 ~ 1 . .  (67) f" ~ ~oaa -k (fi + F,o)Gk, sin k~x 
-~- - -  - 2 1  . . . . . . . .  

the shear stress qs in the sheet between the (s + 1)th and sth stringers, 

. .  (6s) q,/(nA/tl) = ~ ,  (fi + F~)Nk, cos "2l . . . . . . . . . .  
k odd 

the shear stress q in the sheet adjacent to the edge member, 

kax . .  (69) 
q/(nA/tl) = Z (fi + Fk)C~ cos 21 . . . . . . . .  

k odd 

the moment M carried by the panel, 

o~ 1 (70) M = 2n(n + 1)bA ~ ,  ~ (fi + F~)C~ sin k~x 
k odd 21 . . . . . . . .  

where Gi~, N~ and C~ are defined by equations (49), (55) and (56). 

The deflections v are given by 

Ev a2l  (fb ( - -  1) - -  s i n -  
- ~T63W £odd 

% 

w ~ ~ ~ F~ ((--1)/~-1)/~ --  sin 

. ,  (71) 

The areas B(x) of the edge members for a given edge-stress distribution - b f  may  be found 
from equation (32) noting that  the condition (M -- M)/ f  >~ 0 must be satisfied throughout. 

6.1. Special case • Stringer-sheet, when number of stringers is infinite.--In the limiting case of 
stringer-sheet one has only to substitute Gky, N~y and C~ into formulae (67) ti~ (71) for Gk,, N~,, 
and C~. Tile functions G~y, N~y and C~ are defined by equations (62). 

7. Parallel Panel with Constant-Area Edge Members under Concentrated Antisymmetrical End 
Loads.--Consider a parallel panel stiffened with n stringers. Each edge member has a constant 
area B and the area of one stringer plus effective sheet is A. Two antisymmetrical concentrated 
end loads P are applied to the edge members at the free end of the panel (see Fig. 2). 

The unknown antisymmetrical edge-stress distribution - t - f  can be represented by formulae 
(66a) and (66b) of section 6. 

4 ~,  1 k~x 
- ~ F~ sin 21 f = + 

4 ~ ,  1 k~x 
or f = ~ ~ odd k P~ sin 2l  

where Fk = fi  + F~ and f~ = P/B. 

O I 

Z 

(66a) 

(665) 
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The equil ibrium condit ion can be wri t ten  in two al ternat ive  forms, namely  

df  
B-d) + qt = 0 . . . . . . . . . . . .  (72a) 

M -1- B w f  = Bwfb --- Pw  . . . . . . . . .  (72b) 

The first equat ion refers to the  equil ibrium condit ion of an element dx of the  edge member.  
The second equat ion indicates the  equil ibrium condit ion of the  moments  a t  a cross-section x. 
The equivalence of the two forms appears from the  fact t ha t  (a) can be obtained by  differentiat ing 
(b). Remember ing  the remark  in section 6 one sees t ha t  while both  (6@) and (66b) can be 
subs t i tu ted  into (72b) only (66a) is appropria te  for (72a). 

Subs t i tu t ing  equat ion (69) into (72a) one obtains 

2 ~ k~x 
By~o~g ~ F~ cos -~ -  + 

v 

This equation can onIy be satisfied if 

F ~ = - - f ~  C,, _ ..  
~ +  C~ "" 

where 

]~7c$C 

: ~  (f~ + F~)c~ cos N = 0. 
k odd 

. .  (73) 

2B t o t a l  a r e a  o f  e d g e  m e m b e r s  

0~ - -  ~ m  - -  t o t a l  a r e a  o f  s t r i n g e r s  p l u s  e f f e c t i v e  s h e e t  . . . . . . . .  (74) 

and C~ is defined by  equat ion (56). Formula  (72b), of course, leads to the  same result. A similar  
formula was derived in R. & M. 19695 for the  symmetr ica l  loading case of a parallel  panel  wi th  
constant-area  edge members.  

The subs t i tu t ion  of formula (73) into the  appropr ia te  formulae of section 6 yields for : the  edge 
stress f ,  

4 o0 1 Ck k~x 
f 1 - -  ,~o~dd --sin-- .~ = ~ ~ k c~ + CI~ 21 . . . . . .  

the  stress fs in the  sth stringer, 

fs 4 ~ .  1 GIo~ k~x 
_ c~ k ~ -¢- C~ sin 

f b  ~ ~odd 21 . . . . . .  

the  shear stress q~ in the  sheet between the  s th  and (s + 1)th stringers, 

q~/f~ ~ .  Nk, k~x 
nA /tl - ~z c o s -  k o,~d ~z + C~ 2/ . . . . . .  

the  shear stress q in the  sheet adjacent  to the edge member,  
oo q/f~ = ~ ~ .  Ct~ k~x 

nA/ t l  1~ odd O~ -~-  C i C O S  2/ . . . . . .  

the  moment  M in the  panel, 

M / M '  1 2 n +  1 ~ 1 C~C~ osink~x 
--  ~ n - -  1 ~l~oddk~.+ 21 . . . .  

where M '  n(n --  1) BArb 
- -  6 

the  deflections v, 

E v - -  
32P_ 1 1 ( . kxx~ 
7 %  ] ~  k ~'oad k ~ ~ + ~  ( -  1) +-1>/~ - s m  ~ - 2 .  

. . . . . .  (75) 

. . . . . .  (76) 

. . . . . .  ( 7 7 )  

. . . . . .  (7s )  

. . . . . .  (79) 

. . . . . .  (8o) 
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Formtflae (75) and (79) are quickly convergent, but  formulae (76), (77) and (78) are less satis- 
factory in this respect. For computational reasons it is therefore preferable to separate once 
again the contribution of the constant edge stress f i  as given by the equations of section 4. 

One obtains for" the stress fi, 

f~ 2s 2 1)~+~/~ =i =is cosh ~( l  -- x) 
f i  -- n q- 1 + n +----~ ,- ~'ov~ ( -  cot 2(n + 1) sin n +----~ cosh ~ l  

+ 4 ~ .  1 C~Gk, k~x 
- C sin . . . . . . . .  (81) ~ k o d a k ~ +  ~_ 2l . . . . . . . .  

the shear stress q, 

~i(2s + 1) 
qs/fi ~ l  ~ ( _  1),/2 cos 2( ,  + 1) 

nA /tl n ~o~e~ 

C~ k~x 
~o'~A c~ + C~ N~, cos 21 

cot 
~i sinh ~ ( l  -- x) 

2(n + 1) cosh ~ i  

(82)  

the shear stress q at the edge, 

q/fi _ ~l ~ .  cot 2(n + 1) cos 2(n + 1) nA /tl n ~ .... 

co C ~ k~x 
~/o~ c~ + Ck cos 21 

the moment M carried by the panel, 

M 6 ~i 
M ' - -  1 - - n ( n -  1), ~'~w. c°t~ 2(n-¢- 1) 

1 2 n +  1 ~  1 C~ 2 k~x 
n - -  1 J ' k c ~ + c ~ s i n  k odd 21 

sinh ~( l  -- x) 
cosh ~ ~l 

c o s h  - -  x)  
cosh ~ l  

( s3 )  

(84) 

and the deflections v, 

( I - - x )  2 3212 ~ ~ 1 Ck ( ~ )  
• = f i  w ~ ]~ ~ k 3 ~ + C~ (-- 1) (k-1)/2 -- sin . . . . . . .  (85) Ev 

The infinite series in (81) to (83) converge rapidly, quicker than 1/k 2. Series (84) is very rapidly 
convergent, quicker than 1/k ~. 

For a constant total  stringer plus effective sheet area and constant values of /J1 and c~ the 
maximum shear stress at x = 0 increases with the number of stringers. This increase is small 
in the practical range of n (say 10 to 20). The evaluation of (83) is not too laborious since the 
finite series has already been evaluated for n -- 5, 10 and 30 and various values off~l (Figs. 4, 5 
and 6, see also section 7). 

For a constant values of ~l, ~ and 2s/(~ + 1) = 2y/w the value of f,/fi varies only slightly 
with n provided tha t  n > 7. The same applies also to the ratio M / M ' .  

7.1. Alternative formulae.--For certain applications it is preferable to use the ratio f i / f ,  instead 

One finds readily tha t  
2s 

f ,e  = - f b  + _ + 1)} n + 1 " 
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Hence 

f ,  {'~ + {(n - -  1)/3(n - -  1)}In  + l  f,  
f , ~ - - - - /  ~ / 2s fi 

where fJfb is given by equation (76). 

(s6) 

The engineering theory of bending indicates a moment M, in the panel given by 

M. = c~ n(n --  1) bAf~ 
-[- { (n  - -  1 ) / 3 ( n  + 1)} 6 " 

Hence 
M ~c¢ + {(n --  1)/3(n + 1)}/ M 

where M / M '  is given by equation (79). 

(87) 

For ~,--+ o~, C,--~ (n --  1)/3(n + 1) and Gk,--+ 2s/(n + 1) and therefore f~-+f~, and M--+ M~. 

The physical interpretation of the stress and moment equations of this section is facilffated 
by noting that  

~B(n + 1)~b ~ I s 
+ {(~ - ~)/a(~ + ~)} = { ) B ( ~  + ~)~b ~} + { I ~ A ~ ( ~  - -  ~)(~ + 1)b ~} - -  ~ + ~ ' (SS) 

where I s is moment of inertia of edge members (flanges) about the x-axis. 

and I ,  is moment of inertia of panel about x-axis. 

Furthermore it follows that  

lim a _ c¢ I s 
~ +  ~ ~ + c~ ~ + {(~ - 1)/3(~ + 1)} - Is  + I~ . . . . . . .  (s9) 

For graphical representations of q it is usually preferable to apply formula (28), 

(q/fb)~/(Ebt/GA)_ q/it 2n 1 
nA/tl n + 1 ~l . . . . . . . .  . . . . .  (28) 

In Figs. 8, 9 and 10 (q/f~)~/(Ebt/GA) is plotted against x/l for n = 5, 10 and 30 and various 
values of/, l  and ~. These diagrams should be compared with Figs. 8, 9 and 10 of R. & M. 2038 G 
corresponding to the symmetrical loading case. 

Fig. l l shows the variation of 

M/Bwf~= [ ( n -  1)/{3(n + 1)~}](M/M') . . . . . . . .  (79) 

with x/l for various values o f / , / and  ~ and n : 10. At x = l the ratio M/Bwf~ varies only slightly 
with ~l if ~l > 1. I t  follows tha t  at tile built-in end the moment carried by tile panel is nearly 
equal to tha t  indicated by the engineering theory of bending. 

7.2. Special case • stringer-sheet, when number of stringers is infinite.--In the limiting case of 
stringer-sheet one has only to substitute Gky, N~y, and C~ into formulae (75) to (80) for G~, Nks, 
and CI0. The functions G~y, N~y and C~ are defined by equations (62). I t  is aga ineasy  to separate 
the contribution off~ by taking into account tile formulae section 4.1. 

8. Parallel Panel with Constant-Area Edge Members under Arbitrary Antisymmetrical Edge 
Loads.--Consider a parallel panel stiffened with n stringers and with constant-area edge members. 
Arbitrary antisymmetricM edge loads ~ S are applied to the edge members (see Fig. 2). Taking 
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into account t ha t  the  edge stress at  the  free end must  be zero the  unknown ant i symmetr ica l  
edge-stress distr ibution -+-f can be represented by  the  Fourier  sine series 

4 1 (90) f = ~ I~ od~l k F~ sin 2/ . . . . . . . . . . .  

The given edge-load distr ibution ~= S(x) can be expanded  in a Fourier  cosine series (see also 
R.  & M. 20386) 

k~x 
S = ~Tt S~ cos (91) 

1~ oad 21 . . . . . . . . . . . .  

where ~ is a parameter  expressing the  magni tude  of the  edge-load system. 

/ 

The equil ibrium condit ion can be wri t ten  in two al ternat ive forms, namely  

df B ~-~ + q t = S  . . . . . . . . . . . .  

F M + Bwf  = w S dx . . . . . . . . . . .  
0 

. .  (92a) 

. .  (92b) 

f 
By subst i tut ion of formula (90) for f, (91) for S and the  appropriate  part  of (70) for M into 

(92b) one obtains 

1) b A k~o~C° k~oA ~ FkC~ sin -fie + ~- (n + 1)bB ~ Fk sin 2l --  ~- ~(n + 1)btl k oda ~ Sk sin 2l 

Hence 
nA S~ 
7 V  = + 

where c~ is given by  equat ion (74). 

(93) 

Subst i tu t ing equat ion (93) into the  appropriate  parts of (90) and (67) to (70) it follows t h a t "  
the  edge stress :~ f, 

f nA 4 ~ ,  1 S~ k~x 
5 tl --~-~oad k ~ + c ~ s i n - ~  . . . . . . . . . .  (94) 

the  stress f .  in the sth stringer, 

f ,  nA 4 ~ .  1 Sk kz~x 
tl -- - -  ~- ~o~a k o: + ck Gk" sin 2l 

the  shear stress q.. 
q ,  ~ Sk k~x 

-- ;%c/t c~ + C~ Nks cos 21 "" 

the  shear stress q at the  edge, 

q _  ~ .  $1~ k~x 
-- ,~odd ~ + Ck Ck cos 21 "" 

the  m o m e n t  M in the panel, 

M 2 ~ .  1 S~ k~x 
M" -- ~- ~. od~ k cz + C10 C~ sin 21 

where M" = (n + 1)btl~ 
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Equa t ion  (95) fulfills the  boundary  conditions df,/dx = 0 at  x = l. For  ff --+ co the stress 
d is t r ibut ion across the  panel  approaches the stress dis t r ibut ion given by  the engineering theory  
of bending.  The proof is exact ly  the  same as in section 7.1. If edge loads are applied to the  
edge members  up  to the  buil t- in end then  (df/dx),_z # O. If, however,  the edge loads are 
discont inued before the  built-in end, (df/dx)x=t = 0. Wi th  decreasing c~, q approaches ~7- 

The deflections v are given by  

Ev(nA/tZ) 32l~ 1 
- -  ~ w  ~ ~ k ~ 

1 ¢  o d d  

Sl~ 1) (~-1) 12 ]~;z~; ~ 
c~ + G0 ( ( -  --  sin -2y 2 .  (99) 

8.1. Example.--The physical  background of the equations of the  last  section appears more 
clearly when dealing with  a par t icular  example. As such the case of a constant  an t i symmetr ica l  
edge load ± S is chosen. I t  can easily be shown tha t  

and 

4 
Ss0 = ~:~ (-- 1) (~-1)/', k odd Ss0 = ~:~ (-- 1)(~-1)/', k odd 

f . , , 

s = ~ J 
(lOO) 

The engineering theory  of bending indicates a moment  M~ in the panel. 

S x b ( n -  1)/3 
M~(~)  = ~ + {(,~ _ ~)/3( ,~ + 1)} . . . . .  . .  ( l O l )  

When  ~ - ,  0 formula (101) converges to tile obvious result Me = Sxb(n + 1). 

The direct stress f,,(x) in the sth str inger according to the  engineering theory  is 

-- 2Sx/nA 2s 
f , (x )  = ~ q_ {'(n --  1)/3(n q- 1)}n q- 1 . . . . . . .  ( lO2) 

Subst i tu t ing  equat ions (100) and (102) into (95) it can readi ly be found tha t  

fs(x)/fse(l) n + 1 8 ~ 1 (-- 1) ('~-x}/2 kxX 2S [~ + {(,a -- 17/3(n + 1)}] ~ ~ .  k~ G~ sin - - -  (108) 
- -  ' = ~ o~k~ ~ q -  C~ 2 /  . . . .  

and 

L(x)/f,(x) = {f~G~(1) } l (104) , ~  " " . • . , o , . . ° • ° ° • ° ° . , ° 

where .£~.(1) is the stress in the  sth stringer at the built-in end as indicated by  the engineering 
theory  of bending. 

The moment  3~r(x) in the  panel  is 

. 8 ¢o 1 ( - - -  1 )  ( / ~ -  1 ) / 2  

M(x)/M~(l) = 3 ( n n _ l  + 1) [c~ + {(n --  1)/3(n + 1)}q_, ~,~oaa, le a cz + C~ Ck sin - -  

and 

M ( . ) / M , ( I )  = {M( . ) /Me(1 )}  Z , , , . . . . .  . . , , . . 

kTrm 
2l . .  ( lO5)  

. .  ( lO6)  
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8.2. Special case : stringer-sheet, when number of stringers is infinite.--One obtains easily tha t  

1 S~ k~x f Wts 4_ ~ .  k C~ sin 
tl -- ~ ~oad ~ +  2I 

. .  (107) 

f~ wts 4 ~.. 1 S~ kxx 
~ oad k c~ + Ck ~y sin 2l (108) 

q ' - -~ ,  & N'k, coskUX 
q- - -  ~ o~  ~ + G 21 

.. (109) 

M 2 oo 1 S~ k~x 
M " - - - ~  - -  . .  (110) k ~ +  C~ C~sin 21 . . . . . .  

where M" ---- wtl~. 

The direct stresses computed by  either the stringer-sheet or finite-stringer method agree very 
closely. There is also good agreement in the values of the shear stresses a t  the edge for a reason- 
ably large number of stringers (say > 10). I t  may  be preferable to use the stringer-sheet method 
in all cases where edge loads only are applied to the edge members as the corresponding formulae 
for fs and q, are somewhat simpler. 

PART I I I  

Analysis of Parallel Panels under Arbitrary Transverse Loads 

1. General Considerations.--Consider a parallel panel under any arbitrary transverse load 
system (see Fig. 12). The physical assumptions underlying the analysis of this part  are the same 
as in Part  II. The basic equations (1), (2) and (3) of Part  II,  section 2, are, therefore, still valid. 
Hence the same applies to the differential equations (4) or (7) of the direct-stress distribution. 
Furthermore the boulidary conditions for f~ are also identical to those in Part  II,  namely, fs = 0 
at x----0 and (df,/dx) = 0 at x = 1. I t  follows tha t  for a given antisymmetrical edge-stress 
distribution and any transverse loads the direct stresses in the panel must be the same as those 
calculated in Part  I I  for zero transverse load. But  if the direct stresses are the same, then so 
also are the shear stresses except for an added term, which is constant across the width oi the 
panel. This may be demonstrated in detail as follows. 

The shear stresses are defined by equation (1) of Part  II  

q = G { U ~ + l - - u s  dv} 
b + ~  . . . . . . . . . . .  (1) 

The only difference between the analysis of this part and that  given in Part  I I  arises from the 
consideration of the equilibrium of the shear stresses at a cross-section x of the panel. 

Instead of e~luation (5) one obtains 
+ ~(n - 1) { } 

~ .  q, bt = Gt (u~-- u d + (n + 1)bdV 

Where Q(X) is the resultant shear force of the transverse loads at the section x. 
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Hence 

and 

dv _ Q(x) _¢_ ub -- u~ . . . . . .  (112) 
dx Gwt w . . . . .  

n + l  wt  . . . .  

It  can immediately be seen that  the term in brackets of equation (113) is exactly the same as that  
indicated by equations (1) and (5a) of section 2, Part II, for a panel without transverse load. The 
additional term -- Q(x)/wt is the shear stress due to the transverse loads and is constant over 
each cross-section and may vary only with x. It follows that  in case of a given antisymmetrical 
edge-stress distribution the shear stresses in the panel can be found by adding the shear 
- -  Q(x)/wt to the appropriate formulae of Part II. 

At x = l, the displacements u must be zero. 

d v  - Q ( ; )  

and (q')~=; -- wt " "" 

It follows that  

. .  ( 114)  

. .  ( l l S )  

This expression is independent of s. Hence the shear stresses at the built-in end of a panel 
under transverse loads are constant over the cross-section. This result is entailed by the assump- 
tion of a closely spaced system of transverse members infinitely stiff against compression or 
tension. 

Integrating equation (112) one obtains for the deflection v(x) 

v x, ÷ [ ; } / . . . . . . . . .  
where Vo(X) is the deflection of the panel for the given edge-stress distribution disregarding the 
transverse loads and is found by the methods of Part II ;  the term 

represents the ' deflection due to shear '  

Let 7kt be the moment  of the transverse loads at a section X and M the moment  carried by 
the panel at x for an antisymmetrical edge stress ± f. The latter moment,  of course, is the 
one found in Part II. The areas B(x) of the edge members are then given by 

B(x)  = ( T F I -  M ) / w f  . . . . . . . . . . . . .  (117) 

Formula (117) is identical with (72b). I t  follows that  the areas of the edge members for a given 
panel with a given ant~isymmetrical edge. stress depend only on the value of the external moment  
M irrespectively whether it be produced by transverse, edge loads or a combination of the two. 

It  is now obvious from equations (72b) or (117) and the preceding arguments that  exactly the 
same results can be deduced if the areas of the edge members are given and the edge-stress 
distribution is initially unknown. 

An arbitrary shear force diagram Q can be represented by the Fourier series 

~ .  k~x  (118) Q(x) = #tw Q~ cos 2l . . . . . . . . . .  
k odd 
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where ~ is _a parameter expressing the magnitude of the transverse-load system. The corresponding 
moment M(x) follows by integration, 

2 5~tlw ~ ,  1 kzx = - ~ Q~ sin  r(x) 2 l  • " "  
. .  (119) 

An arbitrary edge=load distribution was represented in section 8, Part  II  

~ .  ]~xx 
S = ~t S~ cos (91) 

o d e  21 . . . . . . . . . . . .  

and the moment which these edge loads apply to the panel is (see also equation (92b)) 

ff ~ .  1 kzcx 
2~¢ -~ w S dx 2_ ~tlw }, S/o sin 

o = ~ k o d a  2 l  " 
. .  ( 1 2 o )  

The load systems (118) and (91), apart from the additional term -- Q(x)/wt in the shear-stress 
distribution of the former case, are identical in their effect upon the stress distribution in the 
panel and edge members if S~ = Qk. Thus a single transverse load P = qtw corresponds to a 
uniform edge load S ---- ~t and a uniformly distributed transverse load p = (~tw/l corresponds 
to a linearly increasing edge load of a magnitude S, ---- (T.tx/1, etc. 

2. Parallel Panel with Constant-Aiea Edge Members under Arbitrary Transverse Loads . -  
Consider a parallel panel stiffened with n stringers and with constant-area edge members. 
Arbitrary transverse loads are applied to the panel. The corresponding shear force diagram 
Q(x) can be represented by  the Fourier cosine series (118). 

To find the stress distribution in the panel, in accordance with the developments of section 1, 
one has only to substitute the Fourier coefficients @0 for S~0 into the appropriate formulae of 
section 8, Part  II, and to take into account the additional terms for the shear-stress distribution 
and deflection as indicated by equations (113) and (116). 

One obtains for: the edge stress -t-f, 

Q~ c~ sin kz~x c¢ + 2l 
f n A  4 ~  1 
q tl -- + ~ o d d k -  

the stress f,  in the sth stringer, 

f ,  nA 4 ~ .  1 
tl -- ~ k oda k 

Ok /~=Z 

c~ + C~ Gk~ sin 2l 

the shear stress q,, 

~ k=x 0 q' - Q~ Nk, cos 

Oh k~x 
- 1 > ,  ( N k ,  - -  - -  c o s  2 l  
- -  k oda  c~ +- C1o 

o~ Ok k ~ x  
-- - -  - -  ( X / .  COS 

~od~ c~ + Ck 2l 

+ C~ C~ sin - ~  

q 
q 

the shear stress q at the edge, 

the moment M carried by the panel, 

M 2 ~ 1  
M" ~ k oda k 

where M" = wtl~ 

. . . . . .  (121) 

. . . . . .  (122) 

. . . . . .  (123) 

. . . . . .  (124) 

. . . . . .  ( 1 2 5 )  
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the deflections v(x), 

nA _ 32/~ 67 ~ .  h~ (-- 1) (~-~//2 -- sin - -  Ev tl ~ w  I~ oda ~ + CI~ 

2 E n A  
~-~G tZ /~odd ~Q'¢ ( -  I) 

k x} 
I~o-~)/~ _ s i n  ~ . 

It  is now interest ing to follow in detail  the  l imiting case of # --+ oo. 

. .  (126) 

We have 
l im C~, = { ( n -  1)/3(n q- 1)}. 

Hence the  limit of the  edge stress 

f nA 4 1 
lim ~ }7 - -  ~ q - { ( n - -  1) /3(nq-  1)} 

and 

1 k~x 
~ Q~0 sin 2l 

2 1 
- qtZw ~ + {(,~ - 1)/3(n + 1)3 ~r(x) 

1 1 
lim f -- nAw oc + {(n --  1)/3(n + 1)3 ]~r(x) 

(~ + 1)b/2 
= {B(n -t- 1)2b2/2} + {n(n -- 1)(n + 1)b~A/12} 1VI(x) 

z~/2 
- -  I y  + Ip 2kr(x) = f .  

where f,  is the  edge stress given by  the  engineering theory  of bending. 

(56a) 

Similarly 

Fur thermore ,  

2s  
l im f, = f~ -- f,, .+oo n + l  • " 

l im M = 2Cr Ip 
,÷~o Ij-+- I , '  

which is the  result predicted by the  engineering theory  of bending. 
! imiting case we note  tha t  

l im (N10,- C~) = --  ; (n q- 1) - - n ( n  + 1) 2 --  s 
/z/÷ co 

Hence 

2 ( n q _ l )  n ( n q - l )  l 2 - - s  Nk~ --  C k -  x n --  
lira 

}{(-- 
- - 1  

+ {(~ - 1)/3(~ + 1)3 

For shear stresses in the  

n - 1~ 1 
2 / + ( s + l )  f" 

Multiplying numera tor  and denominator  by  ~nAb2(n q- 1) ~ one obtains for the  limit 

N,o,--C,~--o: 2 { 2 2 ) + ( s +  1)} q-Bb 2 
l im = -- w 

. ,+~  ~ + c,0 L + G 

I t  can readily be seen tha t  the  numera tor  of the  ratio is the  static momen t  g, about  the  x axis 
of the  edge member  and the  stringers (s q- 1), (s q- 2) . . .  {(n --  1)/2}. 
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I t  follows that  

lim q~ = -- (~w S" l~oA k~x 
,+oo I I + Ip Qk cos 21 

Q(x) gs 
- ( L  + 5 ) t -  

where q,, is the shear stress predicted by the engineering theory of bending. 

2.1. Special case: stringer-sheet, when number of stringers is infinite.--In the limiting case of 
stringer-sheet one has to substitute the limiting values G~,, 3710y and C~ defined by (62) into 
formulae (121) to (126). 

Provided that  n > 7 it is usually preferable to use for transverse loading cases the stringer- 
sheet method. The application of the formulae given in this section is straightforward and no 
particular example need be given. 

APPENDIX I 

Parallel Stiffened Panel with Symmetrical Edge-Stress Distribution 

In this section a collection of formulae will be given for the stress distribution in parallel 
stiffened panels with symmetrical edge-stress distribution. The equations marked with an 
asterisk have already been derived in R. & M. 19695 and 20388, the others are new. The 
derivations of the latter formulae are not given, as they can readily be obtained by the methods 
indicated in this paper. By combining the results of this section with those given in Parts I I  
and I I I  the stress distribution in a panel with any asymmetric edge-stress can easily be found. 

1. Constant Symmetrical Edge-Stress - - f . - - S t r e s s / ,  in the r th stringer, 

fi 2 ai air ( cosh~( l  -- x))  (127)* 
f -- n + 1 ~ ~'oda cot 2(n + 1) sin n - - ~  1 -- cosh #~l . . . . . .  

for r = 1 to n (see Fig. 1 for r-system of notation for the stringers). 

I t  can be shown that  

Hence 

2 ~i xir 
n + 1 ~ '  cot sin 1 

~odd 2 ( n  q -  1) n q -  1 - -  " 

f" 1 + 2 ~i z ir  cosh ~(1 -- x) (128) 
f -- -- n +---~ ~ ~'oda cot 2(n + 1) sin)T + 1 cosh ¢~l . . . . . .  

The corresponding formula in the s-system of notation is 

f" 1 + 2 ~i ~is cosh ,~( l - -  x) 
f -  -- n +------1 ~ '  ( -  1)("-1)/2 cot 2(n + 1) cos (129) ioaa n + 1 cosh ,ui l  . . . .  

for - (n - 1)/2 < s < + ( n -  1)/2. 

Average stringer stress .f~ : 

f~ 1 + 2 a i  cosh,u~(1-- x) 
f -- -- n(n + 1) ~ ~'oda c°t~ 2(n + 1) cosh ~ l  . . . . . . . .  (130)* 
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Shear stress q~ in the  sheet between the (s +° 1)th and sth stringers : 

2 ~i ~i(2s + 1) sinh ~ ( l  --  x) 
(q,/f)v/(Ebt/GA) --  n + 1 ~ ( -  1)l'-~//~ cot 2(n ~- 1) sin 2(n + 1) cosh t*,l 

Shear stress q in the  sheet adjacent  to the  edge members  : 

2 ~i  ~i  sinh ~ ( l  --  x) 
( Iq l / f )V(Ebt /GA)  - - n  + 1, ~'oaa cot 2(n + 1) cos 2(n + 1) c o s h , , /  "" 

The shear-stress dis t r ibut ion at  a cross-section is an t i symmetr ic  about  the  x-axis. 

(131) 

(132)* 

1.1. Stringer-sheet when number of stringers is inf ini te.--When n-~oo,  formulae (129) to (132) 
become, 

f '  - 1 + 4_ ~ ( _  1)(,_~)/~ =1 cos ~ iy  cosh { ~ i , ( Z -  ~)/2} . . .  (133)* 
f ~ ,odd * w cosh {:~itd/2} " 

8 ~ 1 cosh {~it~(1- x)/2} (134)* 
f~ 1 + ~ ,o~dd i-~ cosh {~itd/2} . . . . . .  
f _ _  - -  . ° • • • 

4 * 1 sin ~iy sinh {:~i~(l -- x)/2} . .  (135) 
(q,/f('v/(Ebt/GA) =/~o~d (--1)( '-~)/~ z-~ cosh {~i~l/2} . . . . . .  

4 ~ 1 sinh {:~i~(1- x)/2} . . .  (136)* 
(Iqi/f) 'v/(Ebt/GA) = ~ ,oa~ ; cosh {~i~l/2} . . . . . . . . .  

For  1--->oo series (133) and (135) can be summed. One obta ins  

f ,  2 
/ --  z t an  -~ [sinh {z#x/2}/cos {~y/w}] ..  

(qy/f)%/(Et/Gt,) 
_ [ cosh (zt~x/2} + sin {~y/w} 
1 in k ~ {~x/2} sin {:~ylw}J 

_ 2 In [coth {~/~x/4}] . .  . .  
g g  

. .  (137) 

. .  (138) 

. .  (139) (Iq!/f)v'(Et/Gts) . . . . . . . . .  

] q ! - +  oo as x--+ 0. Formula  (137) has been found very  useful for the  quick computa t ion  of the  
direct-stress dis t r ibut ion in long panels (l > 3w say). 

2. Arbitrary Edge-Stress Distribution.--An arb i t ra ry  symmetr ica l  edge-stress dis t r ibut ion - - f  
m a y  be represented by  

4 oo 1 k~x 4 ~ 1 k~x (140) 
f = ~ ko~aa ~ F~ sin 2/ --  ~kodd k (f~ + Fk) sin 2l . . . . . .  

where - - fb  is the  edge stress at the  free end. 

For the  stress dis t r ibut ion in the  panel  one obtains 

4#1 
fs = ----~ kodd --k (fb + F~)H~, sin kaX2l 

4 # 1  
f~ - - - - - - -~  oaa k (fi + F~) T~ sin krcx21 

kz~ x 
q" -- ~ .  (fi + F~)R~, cos 21 nA /tl ~ odd 

knX 
= ~ .  (fo + F~)T,o cos 2Z nA /tl ~ odd 
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. .  (142)* 
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The functions H~,, T~ and R~, are defined by" 

cosh {2¢~s} 
H~, = cosh  {(n + 1¢~}' R]~s  u 

1 sinh {(2s + 1)¢k} 
n sinh .6~ cosh {(n + 1)¢k} 

1 [- tanh {(n + 1)¢~} ] 
Tk = {R~,}~=<,,-~//~ --  n L ta-fftl-¢k --  1 

{ k ~  1 } 
and ¢ ~ = s i n h - t  2 u l n +  1 

. .  (145) 

I f  the edge stress is constant,  F~ -- 0 and the  resulting equations represent the Fourier  series 
expansion of formulae (120) to (132). 

2.1. Stringer-sheet, when number of stringers is infinite.-- When n--+oo one has only to subst i tute  

the limiting values H-ky, Rky, and T£ into equations (141) to (144), where 

~ ,  cosh {(2ylw)(~12~l)} 
= cosh {k.12~t} 

- 2f l  sinh {(2ylw)(k~12~l)} 
R~, = ~ cosh {k~ 12,. l} 

- 2td 
Tk --  ~-£~ tanh  { 2~/} 

. . . . . .  ( 1 4 6 )  

3. Parallel Panel with Constant-Area Edge Members under Concentrated Symmetrical End 
Loads.--For a parallel panel  with constant-area  members  under  concentrated symmetr ica l  end 
loads P one obtains 

4 ~o 1 Tk sink~X 
f - - - -  l + ~ k  + T~ 21 . .  (147)* 

f ,  4 ~ 1 Hk, . kzx 
- -  o: ~._~ k ~ 2l f i  ~ kodcl T Tk sin . . . . . . . . . . . .  (148) 

f~ 4 ~ .  1 Tk . k~x 
_ o¢/_~ kc¢ 21 T sm . . . . . . . . . .  (149)* 

j C  o ~7~ k o d d  " " 

co 

nA/tl k o~d c~ +----Tk cos 2l . . . . . . . . . . . . . .  (150) 

l~l/f~ ~ T~ k,~x 
n A / t l -  o~ ~ ,  - -  c o s -  oda ~z + Tk 2l . .  (151)* 

where - - f i  = - - P / B  is the edge stress at  the free end and Hks, Rk,, and T~ are defined by  
equations (148). 
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For  computa t iona l  reasons it  is preferable to separate the influence of a constant  edge=stress 
- - f~ by  tak ing  into account  formulae (129) to (132). One obtains 

f" 1 + 2 ~i ~is cosh if((1 --  x) 
f b -  --  (n + 1 ) ~  ( -  1)('-1)/~ cot 2(n + 1) cos (n + 1--) cosh ff,l 

+ 4 ~ ,  1 T1~ knx 
k odd k ~ -~- T1, H10, sin 2l .. (152) 

fo 2 ~i cosh ff~(l --  x) 
fb --  1 + n(n + 1) ~ ~'odd coU 2(n + 1) cosh ,uil 

T# k=___x 
+ ~-4 ,~@a I + T~ sin 21 . .  (153)* 

nA/tl  n (-- 1) "-~)/~ cot =i sin=i(2s + 1) sinh ff~(1 --  x) 
2(n + 1) 2(n + 1) cosh ff,l 

T1, k~x 
, c~ + T/, RIo, cos 2l . .  (154) 

lql/f  #l ~ ,  cot ~i 
n A / t l -  n ~odd 2(n + 1) 

COS 
~i sinh f f / l  --  x) 

2(n + 1) cosh ffil 

T1 TI0 cos 
/,odd 0 ~ +  2l  " "" . .  (155)* 

For  the l imiting case of a stringer-sheet, formulae (146) have to be substi tuted.  

4. Parallel Panel with Constant-Area Edge Members under Arbitrary Symmetrical Edge L o a d s . -  
An arb i t ra ry  symmetr ica l  edge-load dis tr ibut ion S(x) may  be represented by  

S =  c~t/>, S~ cos (91)* 
1, odd 21 . . . . . . . . . . . . . . . .  

The corresponding stresses in edge members and panel are 

f nA 4 ~ 1 S~ k~x 
t l  - -  ~ 7o odd k ~ + ~ 1 ,  sin 2I "" • . (156)* 

fi nA _ 4 .~, 
tl = k odd 

1 &0 H1~, sin k~x 
k c~ + T1~ 2l . .  (157) 

f~ nA 4 ~ 1 Sk k~x 
tl --  ~ 1o odd k c~ + Tlo Tlo sin 21 g Q (158)* 

-~ --  ~ odd C~ + Tlo R1,, cos 2l . .  (159) 

Iql_ #. 
~ i, odd ~ + T~ T,0 cos 21 . .  (16o)* 
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APPENDIX II  

An Alternative Approach to Diffusio~ a~d Shear Lag in Parallel Panels 

Introduction.--The series of reports R. & M. 19695 and 20386 and the present paper give a 
fairly complete analysis of diffusion and shear lag in flat parallel panels under very general 
loading conditions. I t  is hence not inappropriate to at tempt to consider now, critically, the 
methods used in the solution of the problems. 

The first interesting conclusion one would probably draw is that  the formulae for diffusion in 
panels under constant or linearly varying edge stress are diametrically opposed to those for 
panels with constant boom areas. Thus, whilst in the first case the cross-sectional distribution of 
stresses is described by trigonometrical functions and the longitudinal variation by hyperbolic 
functions, exactly the opposite applies to the second type of problem. A further revealing 
difference is tha t  in the formulae corresponding to the first group it is always possible, and in 
fact appears as a natural  step, to separate from the series for the direct stresses a constant stress 
(for symmetrical cases) or a linearly varying stress (for antisymmetrical cases) but  tha t  this is 
not so readily achieved in the second group. 

These observations should be sufficient to show that  the analysis for panels with a given edge 
stress is more logical and attractive than for the panels with constant boom areas. I t  is, after 
all, a well-known characteristic property of a diffusion phenomenon in a semi-infinite region or 
strip that  the dying-out process is expressed by exponental functions of the type e - "  which 
indicates that  the longitudinal variation of the stresses in a uniform pane1 should be expressed 
by hyperbolic functions. Also the splitting-up of the formulae in a so-called engineers' theory 
term and an additional series expansion will appeM to the physicaa instinct of most structural 
analysts. 

The above arguments convinced the author tha t  an alternative analysis of parallel panels with 
given boom areas should be sought. The resuIts of this a t tempt  are given in this Appendix. 
The method consists in all loading cases of finding first the simple engineers' theory stress system 
which, at every station; is in equilibrium w!th the applied external load. Then the difference 
between the true stresses and these engineers theory stresses must be obviously self-equilibrating 
or self-balancing and the main task of the analysis is to find the expression for this stress-system. 
Note that  the raison d'dtre of these self-equilibrating stress systems is not only to satisfy the 
boundary conditions but also to contribute, in general, to the elastic compatibility of the total  
stresses. The latter may be necessary if the engineers' theory stresses are not by themselves 
elastically compatible. In the author's opinion the new analysis is preferable to the old one 
and the series expansions are very quickly convergent. One drawback, but probably the only one, 
of the new method is that  it involves the solution of transcendental equations. A great advantage 
of thepresent  approach is that  it allows one to derive, without undue complications, the differential 
equations when the thicknesses and boom areas vary similarly lengthwise. Note that  the direct 
and shear-stress-carrying thicknesses may vary independently lengthwise but  the variation of 
the boom areas must be the same as tha t  of the direct-stress-carrying thickness. The 
investigation has been restricted here to stringer-sheet panels but  the extension to a finite 
stringer-paneI would present no difficulties. 

I t  is believed that  the new analysis has considerable potentialities for the solution of diffusion 
and shear-lag problems in tubular cylindrical or conical structures. I t  should be pointed out 
tha t  the mathematics of this Appendix could have been made more rigorous and concise by the 
use of the Sturm-Liouville Theorem for eigen-values and eigen-functions. But it was thought  
preferable to give here a discussion mainly in physical terms and to avoid mathematical  com- 
plications and terminologies. 

The notation and signs of this Appendix are in some respects different from those of the main 
report. Figs. 13 and 14 should be sufficient in explaining the differences. For simplicity of printing 
the symbol sn co is used to denote 

sn ~o = sin ~/~o 
There should be no danger of confusing it with a Jacobian sine. The suffixes + and -- are 
used to denote values of a function at the two edges y = + w/2 and y = -- w/2 respectively. 
The numbering of the equations starts at (1) again. 
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1. Basic Equat ions . - -Cons ider  a flat stringer-sheet combinat ion symmetr ica l  about  the  Ox axis 
wi th  effective thicknesses t,', t' in direct and shear stress respectively, t, '  and t' may vary both  
wi th  x and y. If one denotes  the  direct and shear flows* by N,  and N,y the  following equil ibrium 
conditions in the  x direction ma y  immedia te ly  be wri t ten  down from a perusal of Fig. 13a. 

~N~ a N . _ 0  . . . . . . . . .  (1) 
~x ~- 22 "" " 

where, 
N ,  = f t / ,  N , ,  = qt' . . . . . . . . .  (2) 

Let  the  panel  be bounded  by  booms (flange) of area B(.)' parallel to the  x -axis at  y = q- w/2. 
Then the  equil ibrium of an e lement  dx of the  boom at y = + w/2 yields 

dP+ 
dx - ( N . ) , = ~ / ~ -  S = 0 . . . . . . . . . . . .  (3) 

where P+ is the  boom load at y = w/2 and S the  edge load per uni t  length (see Fig. 13 for positive 
signs, etc.). A similar equat ion may  be found for the  boom at y = --  w/2. 

The usual stress-strain relations are 
Ou 

f = E ~ x ,  
{ ~u dv } 

q = G O-y +-d-~ (4) 

El iminat ing  u from equat ions (4) and using equat ions (2) one obtains the  compat ibi l i ty  equat ion  

E ay U G ax = - ~-~ . . . . . . . .  (s) 
or  

E~y~ ~ GaxOy  - = 0  . . . . . . . . . . . .  (5a) 

I t  will now be assumed tha t  ts' and t' vary  only in the  x-direction. Thus 

t '  = t¢ . . . . . . . . . . . .  (6) 

where t, and t are constant  and ¢, and ¢ are non-dimensional  functions of x. For a panel  with 
booms of cross-section B(~/' it  will also be assumed tha t  

B ' =  BC,. . . . . . . . . . .  (Sa) 

Laws (6) and (6a) will be taken  to apply th roughout  this Appendix.  For convenience t~ and t are 
t aken  as the  actual  thicknesses at x = 0. Thus, the  boundary  condit ions for C s and ¢ are 

G(0) = ¢ (0) = 1 . . . . . . . . . . .  (6b) 

Using equat ions (1) and (6) in equat ion (5a) one derives the  u l t imate  form of the  compat ibi l i ty  
relation as it will be used here, 

E ¢ ¢ ,  ~y~ + ~? ~ ¢ a7 / = 0 . . . . . . . . . . . .  (7) 

which is a part ial  differential equat ion in the  sole unknown N~. Note tha t  it is valid in the  region 

I >~ x >~ 0 and w/2 > y > - -  w/2 . . . . . . . . .  (8) 

* The direct flows N~ are ignored in this presentation. 
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If  the panel is unloaded at x = 0 
N~ = 0 . . . . . . . . . . . .  (9) 

and if the panel is built-in at x = l one finds from (1) using (2), (4) and (6) 

0N~'] 
( - ~ 2 / , , : ~  = o . . . . . . . . . . .  (9a) 

At the edges y = -P- w12 the strains in panel and booms must obviously be equal. Thus, if 
the boom and the direct-stress-carrying material of the panel are of the same material one obtains 

P + -  BN,~ (10) 
- -  - -  t s  o . .  . ,  . ,  . +  . +  

Having derived N+ from (7) and the appropriate boundary conditions, N+v is found from (see 
equation (1)) 

= - - ~ - d y  + N+0 . . . . . .  (11) 

where N+0 is the shear flow at y = 0 and can be determined from the equilibrium in they-direction 

f 
+w/2 

-+]+, N +  ~y = 0 . . . . . . . . . . . .  (12) 

(see Fig. 13 for signs). 

The shear stress (and shear flow) at a built-in end, say x ---- l, must be constant over the width. 

( ~ u )  = 0 .  Thus, This follows immediately from (4) and @ ~=~ 

(~x= l 
(mr)+=, = w  . . . . . . . . . .  (12a) 

Finally the deflection u may be found from 

d2V f+l -- f--I 1 d ( ~ )  
dx ~ - -  E w  + -Gt . . . . . . .  . . . .  (13) o 

2. Engineers '  Theory  Stress S y s t e m s . - - T h e  end and edge loads on a parallel panel may always be 
analysed in a symmetrical system and an antisymmetrical system (see Figs. 13b and 13c). 

Assume first that  the loading consists solely of end loads P0 and that  the panel is very long 
(l/w >~ 1). I t  is obvious that  for symmetrical end loads, P0 the stress distribution for large x, 
must  approach a constant value both with respect to x and y. Similarly for an antisymmetrical 
couple ± P0 the stress distribution at a cross-section approaches asymptotically the linearly 
varying stress of the simple engineers' theory of bending (Euler-Bernouilli assumption). Thus; 
the asymptotic flow distributions and boom loads are • 

(a) Symmetrical case 
2P. 

N ~  - -  Wts' + 2 B '  t~' = 

N + ~  = 0 

(b) Antisymmetrical case 

6Po 2y 6Po 2y 
w w(1 + 3~) w ' 

N+~ = 0 

2Po 2Po 
; - -  B ' =  w ( ! + ~ )  P~ wt+' + 2 B '  

3Po~ 
P~± = ~ 1  + 3 ~  

P0~ " t 1 + ~  . .  

- t 

(14) 

(15) 

where c+-- 2B'/wt+'  --= 2 B / w t  . . . . . . . . . . . . . . . . .  (16) 
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The suffix E will be used throughout this Appendix to indicate the usual simple engineers' theory 
stress systems, either in direct load or bending. Note tha t  the distributions (14) and (15) do 
satisfy the compatibility condition (7). 

As next let the panel be submitted also to edge loads S (see Figs. 14b and 14c). Then it is still 
possible to equilibrate the applied loads with the direct stress flows and boom loads of (14) or 
(15) if one substitutes P for Po, where 

f~ S dx. . (17) P = P o +  o . . . . . . . . . . . . . . .  

But  these stress-systems will, in general, violate the compatibility condition (7) since the variation 
of t5 with x will entail also shear flows. Thus one finds from equations (11) and (12), with (2 = 0, 
for the 

(i) Symmetrical case 

N,yE = --  wts' + 2B '  ts') . . . . .  1 -l- o : ~ ,  . . . . . . . . . .  (IS) 

(ii) Antisymmetrical case 

S (2__y ~ . . . . . .  (19) N , y ~ - - 2 ( l + 3 ~ ) I  1 - 3  w /  } (parabolic!) .  .. 

When the panel is subjected to transverse loads z~(z) (see Figs. 13d and 13e), it is again possible to 
equilibrate the applied moment 2ff with N ~  and P~ of (15) if one replaces Pow by M(x).  

In fact, 
6~r  ts' 2y _ 

N'E--wts'+6B'w w 
32r M 

t '  w%' B'w ~ " y = Z ' t ' ' y  
12 + 2 

(20) 

which is the standard engineers' theory result. 
(11), ( 1 2 ) a n d  (20), 

(2 t, 

the well-known formula for the shear flow in the web of an / -beam.  

For the shear flow distribution one obtains from 

. . . . . .  (21} 

3. Condition of Compatibility of the Engineers' Theory Stress Systems of Section 2.--To obviate 
continual reference in full to ' engineers' theory stress systems ', and to ' self-equilibrating stress 
systems ', the  abbreviations E.T.S.S. and S.E.S.S. will be used. 

The elementary E.T.S.S. of section 2 satisfy the compatibility condition of equation (7) 0nly 
in some simple cases. Thus, as already mentioned, this is obviously the case with the distributions 
(14) and (15) corresponding to end loads P0. 

When edge loads S are applied to the panel substitution of (14) and (15) with (17) in (7) yields 
the following condition for compatibility" 

d-~ ~ = 0 . . . . . . . . . . . .  (22) 

o r  
S oc ¢ . . . . . . . . . . . . . . .  (22a) 
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For example, in a uniform panel the stress distributions (14) or (15) and (!8) or (19) corresponding 
to constant  S are elastically compatible. In fact, in an infinitely long panel these solutions will 
satisfy also the boundary conditions and thus be the true stresses. They are in the anti- 
symmetrical case 

• 3Sxc~ . . . .  (23) 6Sx 2y P~ :~ = :J: 1 + 3o: 
" N,~ ---- w(1 + 3c~) w ' "" 

and N,y~ given by equation (19). 

For a panel under transverse loads the E.T.S.S. are, but for a constant in the shear flow, the 
same as for a panel under antisymmetrical end andedge  loads subject to the following relation 
between the two  loading systems, 

_~r = Pw or (~ = Sw . . . . . . . . . . .  (24) 

Hence, the condition of compatibility or the E.T.S.S. in a beam under transverse loads is 

0 ~c ¢ . . . . . . . . . . . . .  (22b) 

Thus, in a uniform cantilever under a constant shear force, which corresponds to the case of 
constant antisymmetrical edge loads -t- S, the simple theory does satisfy equation (7).. But it 
will not represent the true solution if the end x = I is fully built-in. I t  is easy to give many  
more examples where the E.T.S.S., although internally elastically compatible, is not true due to 
the boundary conditions. 

However, in all cases it is possible to represent the stress distribution as a combination of - -  
(a) an E.T.S.S. which is in equilibrium with the applied loads, and 
(b) a self-equilibrating stress system conditioned by the requirement that  the total stresses 

satisfy the compatibility a n d  boundary conditions. 

Consider, for example, an infinite panel under  end loads P0. The E.T.S.S. is given by (14) 
or (15) which satisfies (7). But in order to achieve the correct boundary condition at x ---- 0 one 
must superimpose on the E.T.S.S., an S.E.S.S. at x = 0 which is equal to the difference between 
the Po system and the E.T.S.S. This is shown in Fig. 14 both for symmetrical and 
antisymmetrical loadings. The next step is now obviously the study of self-equilibrating stress 
systems. 

4. Self-equilibrating Stress Sys tems . - - I t  is natural to inquire into the possibility of S.E.S.S. 
which take the form 

N ,  = h (y ) .  g(x) . . . . . . . . . . . .  (25) 

with shear flows N,y in accordance with formulae (12) and (12a) for (~ = 0. 

Since the direct flows are self-equilibrating they must satisfy the conditions of zero total  end 
load and moment, i.e., 

~+ ,~I~ B 
+ ( h +  = 0 . . . . . . . . . . .  ( 2 6 )  

-,~/~ hy dy + ~ ~-(h+ -- h_) = 0 . . . . . . . . . .  (27) 

where h+ and h_ denote the values of h and y = + w/2 and -- w/2 respectively. 

Substitution of (25) in (7) yields an equation which may be written as follows • 

d (1  d g )  l d~h 
E d-x C dx ~ d y ---~ 
G 1 h 

7 
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By definition the first ratio can only be a function of x, or a constant, and the second a function 
of y or a constant. Thus, the common value of these ratios must be a constant, say ~.  Equation 
(28) can now be split into two ordinary differential equations, 

1 d~h 2 h 
ts d y  ~ + '~ t = 0 . . . . . . . . . .  (29) 

d 1 dg  G ~ = . .  . .  
o . . . . . .  i ol 

I t  is interesting to pause at this stage and to see what solutions correspond to a s = 0. 

They are 

and 
= c1 + G ,  . . . . . . . . . .  (31) 

d (1 dg)  
= 0  

or ~ oc ¢ . . . . . . . . . . .  (32) 

" T  

But equation (31) does obviously not represent a S.E.S.S. and in fact is the most general form 
of a E.T.S.S. Equation (32) is identical in substance with (22a) and indicates the condition 
under which the E.T.S.S. do satisfy the internal elastic compatibility. Thus the solutions for 
28 = 0 merely restate the results of sections 2 and 3 and are hence of no interest any more. 

The general solution of (29) for 28 # 0 is 

h = C1 cos i y  + Ca sin iy  . . . . . . . . . .  (33) 

where ~ = 2~/( ts / t )  . . . . . . . . . . . . .  ; (34) 

The terms C1 cos ~y and C2 sin Xy correspond to symmetrical and antisymmetrical N.-distr ibutions 
respectively and are best considered separately. Since the C-constants can be absorbed in the 
g-functions they will be taken here as unity.  

(a) T h e  S y m m e t r i c a l  h - f u n c t i o n s . - - T h e  solution 

h = cos . . . . . . . . . . . . . . . .  (35) 

does automatically satisfy the zeromoment  condition (27). 

Substitution of (35) into the zero direct-load condition (26) yields the transcendental equation for 

tan (~w/2) + c~(iw/2) ----- 0 .  . . . . . . . . . . .  (36) 
where c~ is given by  (16). 

I t  appears now that  ~ cannot take an arbitrary value but must be one o£ the infinite roots 

~1, G, G . . .  ~, . . . . . . . . . . . . . . .  (37) 

of (36). Thus the 2~'s are the eigen-values and h / s  the eigen-functions of equation (29). To 
each of the roots there corresponds a different and independent S.E.S.S.* As the order i increases 
the roots approach asymptotically the values 

7~w/2--+ (2i :--- 1)u/2 . . . . . . . . . . . .  (38) 

andi~the hcfunctions approach the form cos (2i -- 1) ~ . Thus, it folIows that  for large i 's  

the boom loads tend to zero and seffequilibrium is achieved practically by  the N~-distribution'in 
the stringer-sheet alone. 

* Note that a different gcfunction corresponds to each value 2,. 
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Of interest  are also the  extreme values of ;~ for c¢-+0 and ~--+oo, i.e., B - +  0 and B - + o o .  

In  the  first case 

L,w/2->. iz l . . . . . . . .  (39) 
and  in the  second i~wl2---~ (2i - -  1) ~12 . " "" 

The stress dis t r ibut ion in the  panel  for each value of i ,  m a y  be determined from 
B sin (i~w/2) 

N ,  = cos i~y.  g i ,  P = ~ cos (i~w12). g~ = --  i~ g~ 

N,y sin i ,y  dg~ (40) 
= - -  i~ dx . . . . . . . . . . .  

In  the  derivat ion of the  second f o r m  of the  boom-load equat ion (36) was used. 

(b) The Antisymmetrical h-functions.--The solution 

h = sin i v  . . . . . . . . . . . . . . . .  (41) 

does sat isfy  au tomat ica l ly  the  zero and load condit ion (26). 

Subs t i tu t ion  of (41) into the  zero moment  condit ion (27) yields the  t ranscendenta l  equat ion 

(~w/2) 
t a n  (2w/2) - -  1 ~2 ~ (~ /2 )2  = 0 . . . . . .  (42) 

the  infinite set of roots of which give the  appropr ia te  Xcvalues for the  an t i symmetr ica l  case. 
A similar discussion to tha t  of the  symmetr ica l  case applies here too. Thus, for large i ' s  the  
roots approach asympto t ica l ly  the  values 

~,w12 ~ i~ . . . . . . . . . . .  (48) 

The stress dis t r ibut ion in the  panel  for each value of ~ m a y  be determined from, 
B 

N~ = sin i~y.  g i ,  P± = q- ~ sin (iiw12). g~ 

N,y cos i , y  -- sn (1,w/2) 4gi (44) 
= i i  d-x- . . . . . . . . .  

The S.E.S.S. (43) and  (44) ~ l l  be denoted collectively as the  eigenloads of the  structure.  

An impor tan t  relation, which corresponds to the  usual  or thogonal i ty  conditions of Fourier  
series, holds for the  h-functions of ei ther kind. Thus  one can easily prove t ha t  

f 
+wl2  

-~s2 t'hihi dy + B[hi+ h + + hi_ 1%] --  0 when i # j . . . .  (45) 

the  following relations app ly :  

(i) Symmetr ica l  case, h~ = cos i~y 

r [, + )-~,i, t,h," dy + 2B(h,+): = -~- 
. . . .  (46) 

snG )] 
(ii) Ant i symmetr ica l  case, hi = sin i~y 

f 
+w/2 

- 2  1 +  
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sn (,~w) --  2 s n  ~ (i,w/2) ] 

(47) 
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The next step is to investigate the lengthwise variation of the self-equilibrating stress systems. 
For this it will be necessary to find the general solution of equation (30). 

g,(x) = D,~V,~(x) -F D,#F,~(x) . . . . . . . . . .  (48) 

where W~I a n d  W~2 are the complementary functions and the D's are constants depending on the 
end conditions. 

At a free end N.  = 0 and hence 
g~ = 0 . . . . . . . . . . . . . . .  (49) 

At a built-in end N,y = 0 and hence 
d~,/~x = 0 . . . . . . . . . . . . . . .  (50) 

In the case of a uniform panel (~ = ,~ = 1) 
g~ = D~I cosh#~x + D~2 s i n h ~ x  . . . . . . . .  (51) 

where 
~ , - :  A , v ' ( G / E  ) . . . . . . . . . . . . .  (52) 

From equations (51) and (50) one can derive the following expression for the gcfunction in a 
panel built-in at x = I. 

c o s h  - x) (53) 
g~ = D~ cosh,u~l . . . . . . . . . .  

Equation (53) shows that  the larger i and hence the greater the quicker the self-equilibrating 
system dies out. 

I t  is often useful to have an expression for the warping, i.e., the out-of-plane displacements 
in a cross-section. In the estimation of the warping, which will be denoted by u*, it is immaterial 
if any translational or rotational rigid body movements are superimposed. The following formula 
for u* can be obtained from the shear-shear strain relation (4) using equation (29) 

1 h, dg~ . . . . . .  (54) 
u~* = --  Gt~ ~ dx . . . . . .  

(Buil~-in condition dg~/dx = 0!) .  Note tha t  the warping is proportional to the direct stress. 
This is a characteristic property of the self-equilibrating stress systems described in equations 
(35) and (41). 

Assume now that  an arbitrary S.E.S.S. is applied at the free end x = 0 of a panel built-in at 
x = 1. The stress distribution is obtained if one succeedsin expressing the given S.E.S.S. in 
terms of the eigen-loads (43) and (44). Again symmetrical and antisymmetrical loading groups 
will be considered separately. 

(1) Symmetr ica l  Arb i t rary  S . E . S . S . - - L e t ,  at x = 0, the direct stress flow in the stringer-sheet 
be N= (which may vary with y) and the boom loads P, .  I t  is required to express this system 
in the form of an infinite series in the h~'s. 

/ = I  
. . . . . . . . . .  (55) 

_ B (g,)0h  + 
t s  4=i 

where h~ = cos %~y and (g~)0 is found from equation (53) for a uniform panel. For panels with 
lengthwise variation of thickness one must obtain the appropriate solution (48) and adjust it to 
the boundary condition (50). In all cases it is possible to write equations (55) in the form 

i = l  

p ,  B ~ .  D~hi+ . . . . . . . . .  (55a) 
- -  t s  i =  1 . . . .  
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Thus, the problem consists in the determination of the constants Di. Multiplying now the first 
of (55a) by hj = cos i iy  and integrating between 0 and w/2 and adding to the second multiplied 
by cos (Liw/2) one obtains, using equations (45) and (46), an explicit expression for each constant D i. 

Dj(w/4) [1 sn (ijw)] [.12 -- = N~, cos i iy  dy + P, cos (ij.w/2) . . . . .  (56) 
dO 

It  is hence possible to derive for any self-equilibrating stress system a unique expansion of the 
type (55a). 

(2) Antisymmetrical Arbilrar7 S.E.S.S.--Let  at x = 0 the direct stress flow be N,o and the 
boom loads __ p~. An expansion similar to equation (55a) is sought w i t h  the on ly  difference 
that  now hi = sin ,bY. Proceeding as in the previous case one obtains 

D/w/4) [1 + sn (;b.w) 2 sn ~ (~jw/2]] = (~/~ - -  . N,~ sin ~y dy + P~+ sin (~iw/2) . .  (57) 
d 0  

which solves the antisymmetrical problem uniquely. 

Having the D 3. coefficients for a symmetrical or antisymmetrical loading one determines the 
stress distribution in the stringer-sheet and the booms of a uniform panel from the following 
formulae: 

cosh ,. i(1 - x) 
N~ = Z Di cosh#il hi 

i = l  

p+ B ~ Di cosh i t , ( 1 -  x) 
-- t, i-1 cosh u# hi+ 

# ( G t )  ~° sinh t,i(l -- x) 
N , , =  E-7, ~ . D ,  sin i ,y  ~ . . . .  ymmetdcaI  . . . .  

= ~ cosh u il 

i=t cosh # ~l 

The series are so quickly convergent that,  
good approximation. 

for all 
( C O S  i i y  - -  a n  (iiw/2))antisymmeetrical 

(5s) 

in general, only a few terms are required to obtain a 

5. The Panel Under End Loads Po.--The results of the previous section will be applied to the 
problem of a panel under symmetrical or antisymmetrical end loads P0 • 

(a) Symmetrical End Loads.--The symmetrical loads P0 on the booms at x = 0 can be regarded 
as the super position of the uniform loading indicated by N,u and P~ of equations (14) and a 
S.E.S.S. N,, and Ps defined by 

p ,  = p o _  p~ . . . . . . . . . . . . . . . . . .  (59) 

(see Fig. 14a). 

Substituting equations (59) on the fight-hand side of equation (56) and remembering tha t  the 
contribution of the uniform E-system must be zero, one obtains 

Di 4Po cos (tgw/2) 
= w 1 - s n  ( % w )  = K f o  . . . . . . . . . . . . . .  (60) 

where 
K j  4 cos  (;tsw/2) . . . . . . .  (60a) 

- -  w 1 - -  s n  ( Z ; w )  . . . . . . . . . .  
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Thus, the total stress distribution is given by 

N,__w2Po l q - ~ l  t- 2 Z~.=I 1 --  sn (i~w) cosht~jl c o s i y  

{ Vcos,.(~jw/2) cosh &(l --  x) j  } (61) 
1 + 2 Z [_ ~ ~ ~ ~ )  cosh ~¢I "" P = Po~ 1 +~---~ j=l 

Gt 4Po ~ .  I --  sn (~y) cosh ~ l  sin ~y  

(b) Antisymmetrical End Loads 4- P0.--The method is similar to tha t  under (a). Thus, if one 
notes tha t  the linearly distributed E-system of equation (15) cannot contribute to the fight-hand 
side of (57) one obtains 

Ds 4P0 sin (~jw/2) 
= w  1 + sn (~.w) --  2 sn = (~w/2) = KsP° . . . . . . . . . .  (62) 

where 
• 4 sin (~j.w/2) 

Ki --  w 1 q- sn (~sw) --  2 sn = (7.jw/2) . . . . . .  

6 2y 

3~ w ~ Ks sin (2~w/2) P~ = 4-Poo~ 1 + 3~ + 2 j=, co-Th-j7 

~ ( G t )  ~ sinh~j(l --  x) 
(cos ~#  --  sn (~sw/2))] . 

. . . .  (62a) 

.... (63) 

6. Panel Under Arbitrary Edge Loads &--The  next loading cases to be considered are those 
of a panel under arbi trary edge loads S;  as in the previous sections symmetrical and anti- 
symmetrical loads will be investigated separately. 

Whatever the nature" of the edge loads S it is always possible to equilibrate them with stress 
systems of the type (14), (18) or (15), (19) subject to the substitution P for P0. The analytical 
character of the additional self-equilibrating stress systems, however, will in general be different 
from those discussed in section 4, since the present E.T.S.S.'s may  violate the compatibility 
condition (7). Thus the purpose of the S.E.S.S. will not only be to satisfy the boundary conditions 
but also in combination with the E.T.S.S. the compatibility equation (7). This will obviously 
only affect the g~-function which in the present case will be denoted by g~. 

Following this preamble one can express the direct-stress distribution in the panel and booms 
as follows • 

c o  

~=1 . . . . . . . . . .  (64) 
B ~ g~h~ 

P~ - - P ~ ±  + 7 ,  ,=1 

Substituting the first of these equations into (7) and noting that  

a=N,~ 
, ,  ay= = 0 

for all E.T.S.S. one obtains 

1 0  
-- Gt ax 

co{ 1 d% a, d (ldg, } 
. . . . . .  (6s) 
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or, using equation (29), 

ax ~ ~ / = +  h, ~ ~ u x /  4, • . . . . . . . .  
a;=l  

A corresponding equation for the booms can easily be derived from the second of (64) using (3) 
and (30). Thus, for the boom at y = + w/2, 

d l d P  d l d P ~ + ) _ B  d~,,'~ ~g~l (67) ±,,,+I ¢,j . . . . . .  

where P is given by equation (17). Equation (67) can also t~e obtained by a simple physical 
argument. The right-hand side of (66) represents essentially the expansion in an hcseries of a 
self-equilibrating stress system with a direct-flow distribution in the stringer sheet equal to 

~--x- / .  

The corresponding boom load of this S.E.S.S. is at y = + w/2, 

and can obviously be expressed by the right-hand side series of (67), (see also the discussion of 
sections 4 and 5). 

The subsequent analysis is very similar to tha t  given in section 5 for end loads P0. Thus, 
multiplying (66) by h~ and integrating between O and w/2 and adding (67) after multiplying it 
by h~+ one obtains, using (17), (45), (46) or (47) the required differential equation in g~, 

d-~ ~ dx / • ¢,, ~ . . . . . . . . . . . . . .  (68) 
Where K~ is for symmetrical loads given by (60a) and for antisymmetrical loads by (62a). 

If S ~c ¢ the right-hand side of (68) is zero and ~ ----- g~. This confirms also condition (22a) 
for elastic compatibility of the E.T.S.S. 

As next one must define the boundary conditions. At a free end N,  ---- N,~ = 0 and hence 

g¢ = 0 . . . . . . . . . . . . . .  (69)  

At a built-in end u = 0 or aN~/ax = 0 and hence, by a method similar to tha t  applied for the 
derivation of (68), one finds 

d~/dx  = K , S  . . . . . . . . . . . .  . (70) 

Examples 
(1) Uniform panel, free at x = 0, built-in at x = l; loading: 

symmetrical and anti-symmetrical S = constant. 

The differential equation for ~ reduces to that  of ~ which in the present case is 

dx ~ --  ~ g ~  = 0 . . . . . . . . . . .  

The solution of (71) adjusted to the boundary conditions (69) and (70) is 

K~S 
g~ --  ff~ cosh ,u~l sinh ff~x . . . . .  
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Thus, the stress distribution in the panel is as follows" 

(a) Symmetrical case 

2Sx I K '  sinh ~'x 1 
N~ --  w(1 + ~) + S ~',=, ~ cosh ~:~l cos i , y  

Sloc ~ .  [K,w sinh ff,x 1 Sxo: + -2- L ~ c ~  ~ l  cos (i.,w/2) P - - l + c ~  ~=1 

~ [K~coshff~x ] 
s 2y s Z ~ cosh~<,l sin (~,y) 

(73) 

(b) Anti-symmetrical case 

~ [K~sinhff~x 1 6Sx 2y + S ~ ,  -ff~ cosh ff ~l sir~ i~y N~ --  w(1 + 3c~) w ,=, 

3Sxc~ Slo: ~ [ K , w  sinh ff,x ] 
P± = + w(1 ~ 3-c~) -q- -2- ,=~ L ff,l cosh ff~I sin (i,w/2) 

S {  } K~coshff ,X (cos i ,y  - s~ (&~/2)) 1 

(74) 

(2) Uniform panel, free at x = 0, built-in at x = 1 ; Loading" symmetrical and antisymmetrical 
linearly increasing edge-loads S = So(x/l). 

The differential equation (68) reduces in the present case to 

d~, So (75) 
dx ~ - -  f f ~  = K~ T ' " . . . . . . . . . . .  

the solution of which adjusted to the boundary conditions (69) and (70) is 

K~So I coshff~(1 --  x) -+- ff ~l sinh ff ix 11 
~' - ~ ? ~  t cosh ~,,l - -  I " "" 

(76) 

The final formulae for the stresses will not be given here, but they may be found very simply 
from equations (64) and (76). 

In all cases only a few terms of the series need be taken to obtain a very good accuracy in the 
stresses. 

7. The Panel Under Transverse Loads . - - I t  was stated repeatedly in the main report and also 
in this appendix that  the stress distribution in a panel under transverse loads is, but for a constant 
Q/w in the shear flow, the same as in the panel under antisymmetrical loads as long as the following 
reciprocal relation holds between the two loadings, 

21~ = Pw or () = Sw . . . . . . . . . . . . . . .  (24) 

Hence, the differential equation (68) for the ~cfunction takes the following form in a panel, under 
transverse loads : 

dx ) --  f f ~ G  w dx ) . . . . . . . . .  (77) 
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Similarly, the boundary condition (70) may be written as 

d~, _ K,  (~ (78) 
d - ~ - -  ~ . . . . . . . . . . . . .  

Tile two examples investigated in the previous section find an immediate interesting application 
here. Thus, the case of a uniform antisymmetrical edge load S corresponds to that  of a constant 
shear force (~ and equations (74) give the stress distribution subject to the substitution (74) and 
the superposition of a constant shear flow (2/w. Furthermore, the results of example (2) may  
similarly be used for a panel under uniform transverse load. 
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