llibrary
 Asymptotic Solution
 of a Boundary Problem

By
E. J. Watson, B.A.
of the Aerodynamics Division, N.P.L.
Reports and Memoranda No. 2298
July, 1946

Summary.-The theory of the boundary layer on a flat plate in a uniform stream with a velocity of suction proportional to $x^{-1 / 2}$ (x being the distance from the leading edge of the plate), has been developed by Thwaites ${ }^{1}$ in a report which contains numerical solutions of the problem obtained on the differential analyser. The behaviour of the solution when the rate of suction is large is investigated here, and it is found that the velocity distribution in the boundary layer approximates to the Griffith-Meredith ${ }^{2}$ or asymptotic suction profile. The solution is developed in the form of a series of descending powers of the suction velocity and the coefficients of this series are obtained successively by the solution of linear differential equations. The first four coefficients are obtained explicitly and numerical values are given in Table 1. Series are also obtained for the displacement and momentum thicknesses and for the skin friction and form parameter H. Comparisons are made with Thwaites's solutions, and good agreement is found when the rate of suction is large.

1. Introduction.-One of the cases in which the boundary layer equations can be reduced to the solution of an ordinary differential equation is Blasius' problem of uniform flow over a flat plate. This can be generalised to solve the problem of flow over a porous plate at which there is a velocity normal to the surface proportional to $x^{-1 / 2}$, where x denotes the distance from the leading edge of the plate. This represents suction or expulsion of fluid according to the sign of this velocity. The method is based on the following considerations.

For constant stream velocity the equation of motion is

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=\nu \frac{\partial^{2} u}{\partial y^{2}} . \quad . \quad . \quad . . \quad . . \quad . \quad . \tag{1}
\end{equation*}
$$

The equation of continuity

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad . \tag{2}
\end{equation*}
$$

enables a stream function ψ to be defined such that

$$
\left.\begin{array}{l}
u=\frac{\partial \psi}{\partial y} \tag{3}\\
v=-\frac{\partial \psi}{\partial x}
\end{array}\right\} . \ldots, \quad \ldots \quad \ldots \quad . \quad \ldots \quad .
$$

The substitution

$$
\left.\begin{array}{l}
\eta=\frac{1}{2}\left(\frac{U}{v x}\right)^{1 / 2} y, \tag{4}\\
\psi=(\nu U x)^{1 / 2} f(\eta),
\end{array}\right\} \quad \begin{array}{llll}
\therefore & \ldots & \ldots & \ldots
\end{array}
$$

reduces (1) to the ordinary differential equation

$$
\begin{equation*}
f^{\prime \prime \prime}+f f^{\prime \prime}=0, \quad . \tag{5}
\end{equation*}
$$

and the velocity components are then given by

$$
\left.\begin{array}{rl}
u & =\frac{1}{2} U f^{\prime} \tag{6}\\
v & =\frac{1}{2}\left(\frac{U v}{x}\right)^{1 / 2}\left(\eta f^{\prime}-f\right)
\end{array}\right\}
$$

The boundary conditions for u then give

$$
\left.\begin{array}{r}
f^{\prime}(0)=0 \tag{7}\\
f^{\prime}(\infty)=2
\end{array}\right\}
$$

If we take

$$
\begin{equation*}
f(0)=K \tag{8}
\end{equation*}
$$

the normal velocity at the boundary is

$$
\begin{equation*}
v_{0}=-\frac{1}{2} K\left(\frac{U v}{x}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

and is therefore proportional to $x^{-1 / 2}$.
The problem is thus equivalent to the solution of the equation (5) with boundary conditions (7) and (8). Taking $K=0$ gives the ordinary Blasius' problem of flow over an impermeable plate.

This argument was given by Schlichting and Bussmann ${ }^{3}$, and also by Preston ${ }^{4}$ and Thwaites ${ }^{1}$. Schlichting and Bussmann considered both suction and blowing, and gave numerical solutions for $K=5,3, \frac{3}{2}, 1, \frac{1}{2}, 0,-\frac{1}{2},-\frac{3}{4},-1$. Thwaites's report contains solutions obtained on the differential analyser for $K=1,2,5,10$ and 20. The graphs given by Thwaites indicate that when K is large δ^{*} and θ tend to 0 and H tends to 2 . In fact the velocity profile becomes the asymptotic suction profile, as will be seen below.
2. Transformation of the Equation.-When η is small, and K is large but fixed,

$$
\begin{equation*}
f(\eta)=K+O\left(\eta^{2}\right), \ldots \tag{10}
\end{equation*}
$$

and so equation (5) is approximated by
whence

$$
\begin{equation*}
f^{\prime \prime \prime}+K f^{\prime \prime}=0, \quad . \quad \text {.. } \tag{11}
\end{equation*}
$$

路

$$
\begin{equation*}
f^{\prime \prime}=A \mathrm{e}^{-K \eta} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}=B-\frac{A}{\bar{K}} \mathrm{e}^{-K \eta} \tag{13}
\end{equation*}
$$

where A and B are constants. Since $f^{\prime}(0)=0, B=A / K$ and

$$
\begin{equation*}
f^{\prime}=\frac{A}{K}\left(1-\mathrm{e}^{-K \eta}\right) \tag{14}
\end{equation*}
$$

This argument is based on the assumption that η is small, and so it cannot immediately be deduced from the boundary condition at $\eta=\infty$ that $A / K=2$. It does, however, suggest forcibly that the important variable is not η but $K \eta$. Hence the following transformation is made.

Let

$$
\begin{array}{llllll}
K \eta & =\zeta=\frac{-v_{0} y}{v}, \ldots & . . & . . & . . & . \\
f(\eta) & =K+\frac{1}{K} \phi(\zeta) . & \ldots & \ldots & . . & . \tag{16}
\end{array}
$$

The actual form of this transformation is chosen to make the boundary conditions for ϕ independent of K. Since

$$
\begin{aligned}
& f^{\prime}(\eta)=\phi^{\prime}(\\
& f^{\prime \prime}(\eta)=K \phi^{\prime} \\
& f^{\prime \prime \prime}(\eta)=K^{2} \phi \\
& \text { becomes }
\end{aligned}
$$

or

$$
\begin{equation*}
\phi^{\prime \prime \prime}+\phi^{\prime \prime}+\frac{1}{K^{2}} \phi \phi^{\prime \prime}=0, \quad . \quad . . \quad . . \quad . . \quad . . \tag{18}
\end{equation*}
$$

and the boundary conditions for ϕ are

$$
\left.\begin{array}{rl}
\phi(0)=\phi^{\prime}(0) & =0 \tag{19}\\
\phi^{\prime}(\infty) & =2
\end{array}\right\} .
$$

When K is large, the dominant terms of equation (18) are
whence we have

$$
\begin{equation*}
\phi^{\prime \prime \prime}+\phi^{\prime \prime}=0 \tag{20}
\end{equation*}
$$

and therefore

$$
\begin{aligned}
\phi^{\prime \prime} & =A \mathrm{e}^{-5} \\
\phi^{\prime} & =B-A \mathrm{e}^{-5} .
\end{aligned}
$$

The boundary conditions (19) then give $B=2, A=2$ and so
$\begin{array}{llllllll} & \phi^{\prime}=2\left(1-\mathrm{e}^{-5}\right) & \ldots & . . & . . & . . & . & . \\ \text { therefore } & \bar{u}=1\end{array}$
which is the equation of the asymptotic suction profile.
3. Asymptotic Expansion for ϕ.-The analysis is easily extended to obtain an asymptotic series for ϕ. Equation (18) involves K only as K^{2} and therefore the appropriate form for the series is

$$
\begin{equation*}
\phi=\phi_{0}+\frac{\phi_{1}}{K^{2}}+\frac{\phi_{2}}{K^{4}}+\ldots \quad . . \quad . . \tag{23}
\end{equation*}
$$

We may also regard this method as being one of successive approximation for ϕ, assuming K to be large.

Substitution in (18) gives

$$
\begin{align*}
\left(\phi_{0}^{\prime \prime \prime}\right. & \left.+\frac{\phi_{1}^{\prime \prime \prime}}{K^{2}}+\frac{\phi_{2}^{\prime \prime \prime}}{K^{4}}+\ldots\right)+\left(\phi_{0}^{\prime \prime}+\frac{\phi_{1}^{\prime \prime}}{K^{2}}+\frac{\phi_{2}^{\prime \prime}}{K^{4}}+\ldots\right) \\
& +\frac{1}{K^{2}}\left(\phi_{0}+\frac{\phi_{1}}{K^{2}}+\frac{\phi_{2}}{K^{4}}+\ldots\right)\left(\phi_{0}^{\prime \prime}+\frac{\phi_{1}^{\prime \prime}}{K^{2}}+\frac{\phi_{2}^{\prime \prime}}{K^{4}}+\ldots\right)=0 . \tag{24}
\end{align*}
$$

By considering the various powers of K in (24) we obtain a set of differential equations for the functions ϕ_{r}. These equations are

$$
\begin{array}{rlllllll}
\phi_{0}^{\prime \prime \prime}+\phi_{0}^{\prime \prime}=0, & . . & . & . & . . & . . & . . & . \\
\phi_{1}^{\prime \prime \prime}+\phi_{1}^{\prime \prime}+\phi_{0} \phi_{0}^{\prime \prime}=0, & . . & . & . & . & . . & . & . \\
\phi_{2}^{\prime \prime \prime}+\phi_{2}^{\prime \prime}+\phi_{0} \phi_{1}^{\prime \prime}+\phi_{1} \phi_{0}^{\prime \prime}=0, & . . & . . & . . & . . & . . & . . & . \tag{27}
\end{array}
$$

and, generally,

$$
\begin{array}{r}
\phi_{r}^{\prime \prime \prime}+\phi_{r}^{\prime \prime}+\sum_{n=0}^{r-1} \phi_{n} \phi_{r-n-1}^{\prime \prime}=0 . . \tag{28}\\
\text { conditions are } \\
\left.\begin{array}{r}
\phi_{0}(0)=\phi_{0}^{\prime}(0)=0 \\
\phi_{0}^{\prime}(\infty)=2
\end{array}\right\}
\end{array}
$$

The boundary conditions are
and

$$
\begin{equation*}
\phi_{r}^{\prime}(0)=\phi_{r}^{\prime}(0)=\phi_{r}^{\prime}(\infty)=0(r>0) . \tag{30}
\end{equation*}
$$

As in section 2 we find from (25)

$$
\left.\begin{array}{rl}
\phi_{0}^{\prime \prime} & =2 \mathrm{e}^{-\xi} \\
\phi_{0}^{\prime} & =2\left(1-\mathrm{e}^{-\zeta}\right) \tag{32}
\end{array}\right\}, \cdots
$$

and, since $\phi_{0}(0)=0$,

Now equation (26) becomes, on substituting for ϕ_{0} and $\phi_{0}^{\prime \prime}$ the values already obtained,

$$
\phi_{1}^{\prime \prime \prime}+\phi_{1}^{\prime \prime}+2\left(\zeta-1+\mathrm{e}^{-5}\right) \cdot 2 \mathrm{e}^{-5}=0 .
$$

This equation integrates on multiplying by e^{5} to give
so that

$$
\mathrm{e}^{\zeta} \phi_{1}^{\prime \prime}+4\left(\frac{1}{2} \zeta^{2}-\zeta-\mathrm{e}^{-\zeta}\right)=A_{1},
$$

and

$$
\phi_{1}^{\prime \prime}=-\left(2 \zeta^{2}-4 \zeta-A_{1}\right) \mathrm{e}^{-\zeta}+4 \mathrm{e}^{-2 \zeta}
$$

$$
\phi_{1}^{\prime}=B_{1}+\left(2 \zeta^{2}-A_{1}\right) \mathrm{e}^{-\zeta}-2 \mathrm{e}^{-25}
$$

The boundary conditions give $B_{1}=0, A_{1}=-2$,
therefore

$$
\begin{align*}
& \phi^{\prime}=2\left(\zeta^{2}+1\right) \mathrm{e}^{-\xi}-2 \mathrm{e}^{-2 \zeta}, \quad . \tag{33}\\
& \phi_{1}=C_{1}-2\left(\zeta^{2}+2 \zeta+3\right) \mathrm{e}^{-5}+\mathrm{e}^{-2 \zeta}
\end{align*}
$$

and, since $\phi_{1}(0)=0, C_{1}=5$ therefore

$$
\begin{equation*}
\phi_{1}=5-2\left(\zeta^{2}+2 \zeta+3\right) \mathrm{e}^{-\zeta}+\mathrm{e}^{-2 \zeta} \tag{34}
\end{equation*}
$$

Using the known values of ϕ_{0} and ϕ_{1} equation (27) is solved similarly to (26), and it is found that

$$
\left.\begin{array}{rl}
\phi_{2}^{\prime \prime} & =\left(\zeta^{4}-4 \zeta^{3}+6 \zeta^{2}-14 \zeta+20 \frac{1}{3}\right) \mathrm{e}^{-\zeta}-8\left(\zeta^{2}+\zeta+4\right) \mathrm{e}^{-2 \zeta}+5 \mathrm{e}^{-3 \zeta}, \\
\phi_{2}^{\prime} & =-\left(\zeta^{4}+6 \zeta^{2}-2 \zeta+18 \frac{1}{3}\right) \mathrm{e}^{-\zeta}+4\left(\zeta^{2}+2 \zeta+5\right) \mathrm{e}^{-2 \zeta}-\frac{5}{3} \mathrm{e}^{-3 \zeta} \tag{35}\\
\phi_{2} & =-39 \frac{8}{8}+\left(\zeta^{4}+4 \zeta^{3}+18 \zeta^{2}+34 \zeta+52 \frac{1}{3}\right) \mathrm{e}^{-\zeta}-\left(2 \zeta^{2}+6 \zeta+13\right) \mathrm{e}^{-2 \zeta}+\frac{5}{9} \mathrm{e}^{-3 \zeta} .
\end{array}\right\}
$$

We can now calculate ϕ_{3} and find

$$
\begin{align*}
\phi_{3}^{\prime \prime}= & -\left[\frac{1}{3} \zeta^{6}-2 \zeta^{5}+5 \zeta^{4}-16 \frac{2}{3} \zeta^{3}+44 \frac{1}{3} \zeta^{2}-130 \frac{4}{9} \zeta+275 \frac{7}{2}\right] \mathrm{e}^{-5} \\
& +\left[8 \zeta^{4}+16 \zeta^{3}+96 \zeta^{2}+168 \zeta+409 \frac{1}{3}\right] \mathrm{e}^{-2 \zeta}-\left[15 \zeta^{2}+30 \zeta+78\right] \mathrm{e}^{-3 \zeta} \\
& +5 \frac{1}{27} \mathrm{e}^{-4 \zeta}, \\
\phi_{3}^{\prime}= & {\left[\frac{1}{3} \zeta^{6}+5 \zeta^{4}+3 \frac{1}{3} \zeta^{3}+54 \frac{1}{3} \zeta^{2}-21 \frac{7}{9} \zeta+253 \frac{1}{2} \frac{3}{7}\right] \mathrm{e}^{-5} } \\
& -\left[4 \zeta^{4}+16 \zeta^{3}+72 \zeta^{2}+156 \zeta+282 \frac{2}{3}\right] \mathrm{e}^{-25} \tag{36}\\
& +\left[5 \zeta^{2}+13 \frac{1}{3} \zeta+30 \frac{4}{3}\right] \mathrm{e}^{-3 \zeta}-1 \frac{7}{2} \frac{\mathrm{e}}{} \mathrm{e}^{-4 \zeta}, \\
\phi_{3}= & 524 \frac{13}{1} \frac{1}{8}-\left[\frac{1}{3} \zeta^{6}+2 \zeta^{5}+15 \zeta^{4}+63 \frac{1}{3} \zeta^{3}+244 \frac{1}{3} \zeta^{2}+466 \frac{8}{9} \zeta+720 \frac{1}{2} \frac{0}{7}\right] \mathrm{e}^{-\zeta} \\
& +\left[2 \zeta^{4}+12 \zeta^{3}+54 \zeta^{2}+132 \zeta+207 \frac{1}{3}\right] \mathrm{e}^{-2 \zeta} \\
& -\left[\frac{5}{3} \zeta^{2}+5 \frac{5}{3} \zeta+12\right] \mathrm{e}^{-3 \zeta}+\frac{17}{5} \frac{\mathrm{e}}{} \mathrm{e}^{-4 \zeta} .
\end{align*}
$$

The functions. $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$ and their first derivatives are tabulated in Table 1 for various values of ζ (chosen to facilitate comparison with Thwaites's results) between $\zeta=0$ and $\zeta=4$. Clearly ϕ_{r} and its derivatives are polynomials in ζ and $\mathrm{e}^{-\xi}$, of degree $2 r$ in ζ and $(r+1)$ in $\mathrm{e}^{-\zeta}$.
4. The Characteristics of the Boundary Layer.-.From the expansion of $\phi(\zeta)$ now obtained it is a simple matter to deduce the corresponding expressions for $\delta^{*}, \theta, \tau_{0}$ and H,

The skin friction is given by

$$
\begin{align*}
\frac{\tau_{0}}{\rho U^{2}}\left(\frac{U x}{v}\right)^{1 / 2} & =\frac{1}{4} f^{\prime \prime}(0) \tag{37}\\
& =\frac{1}{4} K \phi^{\prime \prime}(0) \\
& =\frac{1}{4} K\left[2+\frac{2}{K^{2}}-\frac{6 \frac{2}{3}}{K^{4}}+\frac{61 \frac{1}{9}}{K^{5}}+O\left(K^{-8}\right)\right] \\
& =\frac{1}{2} K+\frac{1}{2 K}-\frac{5}{3 K^{3}}+\frac{275}{18 K^{5}}+O\left(K^{-7}\right) . \tag{38}
\end{align*} \quad . . \quad . \quad . .
$$

The displacement thickness is

$$
\begin{align*}
& \delta^{*}=\int_{0}^{\infty}\left(1-\frac{u}{U}\right) d y, \quad . \quad . . \quad . \quad . \quad . . \quad . \tag{39}\\
& =\left(\frac{v x}{U}\right)^{1 / 2} \int_{0}^{\infty}\left[2-f^{\prime}(\eta)\right] d \eta . \quad . \quad . \quad . . \quad . . \tag{40}
\end{align*}
$$

Thus we have

$$
\begin{align*}
\left(\frac{U}{v x}\right)^{1 / 2} \delta^{*} & =\frac{1}{\bar{K}} \int_{0}^{\infty}\left[2-\phi^{\prime}(\zeta)\right] d \zeta \\
& =\frac{1}{\bar{K}} \lim _{\zeta \rightarrow \infty}[2 \zeta-\phi(\zeta)] . \\
& =\frac{2}{K}-\frac{\phi_{1}(\infty)}{K^{3}}-\frac{\phi_{2}(\infty)}{K^{5}}-\frac{\phi_{3}(\infty)}{K^{7}}-\ldots . \quad . . \quad \ldots \tag{41}
\end{align*}
$$

Substituting the numerical values from section 3,

$$
\begin{equation*}
\left(\frac{U}{v x}\right)^{1 / 2} \delta^{*}=\frac{2}{K}-\frac{5}{K^{3}}+\frac{39 \frac{8}{9}}{K^{5}}-\frac{524 \frac{1}{1} \frac{3}{8}}{K^{7}}+O\left(K^{-9}\right) \tag{42}
\end{equation*}
$$

Similarly we have for the momentum thickness θ,

$$
\begin{align*}
&\left(\frac{U}{v x}\right)^{1 / 2} \theta=\int_{0}^{\infty} f^{\prime}\left(1-\frac{1}{2} f^{\prime}\right) d \eta \tag{43}\\
& \ldots \tag{44}\\
& . . \\
& \frac{1}{2 K} \int_{0}^{\infty} \phi^{\prime}\left(2-\phi^{\prime}\right) d \zeta . \ldots \\
& . \ldots \\
& . . \ldots \\
& .
\end{align*}
$$

By substituting the series expression for ϕ^{\prime}, multiplying out and then integrating we get the expansion of θ in descending powers of K.

The result obtained is

$$
\begin{equation*}
\left(\frac{U}{v x}\right)^{1 / 2} \theta=\frac{1}{K}-\frac{3 \frac{1}{3}}{K^{3}}+\frac{30 \frac{5}{9}}{K^{5}}-\frac{433 \frac{33}{45}}{K^{7}}+O\left(K^{-9}\right) \tag{45}
\end{equation*}
$$

From (42) and (45) by division we have

$$
\begin{equation*}
H=\frac{\delta^{*}}{\theta}=2+\frac{1 \frac{2}{3}}{K^{2}}-\frac{15 \frac{2}{3}}{K^{4}}+\frac{239 \frac{137}{\frac{3}{7}}}{K^{6}}+O\left(K^{-8}\right) \tag{46}
\end{equation*}
$$

The momentum equation for the flat plate is

$$
\begin{equation*}
\frac{d \theta}{d x}=\frac{v_{0}}{U}+\frac{\tau_{0}}{\rho U^{2}}, \quad . \tag{47}
\end{equation*}
$$

which gives in the present circumstances

$$
\begin{equation*}
\theta=\left(-K+\frac{1}{2} f^{\prime \prime}(0)\right)\left(\frac{\nu X}{U}\right)^{1 / 2}, \quad . \quad . . \quad . . \quad . . \quad . \tag{48}
\end{equation*}
$$

and in this form may readily be verified.
5. Conclusion.-From the formulae given in section 3 for $\phi_{r}(\zeta)$ and $\phi_{\prime}^{\prime}(\zeta)$ the tables of Table 1 were constructed. These enable the velocity distribution for large values of K to be calculated readily. Such calculations were made for $K=5,10$ and 20 for comparison with Thwaites's results, the values of ζ employed in Table 1 being chosen for this purpose. This comparison is shown in Table 2. For $K=10$ and $K=20$ the asymptotic series is certainly superior to the differential analyser result, and for $K=5$ the accuracy is about equal. The series is probably of no use for $K<3$, and its accuracy becomes progressively better as K increases.

The method has been extended and applied to many other boundary layer suction problems including the effect of suction in preventing separation.

REFERENCES

No.
Author
Title, etc.
1 B. Thwaites An Exact Solution of the Boundary-Layer Equations Under Particular Conditions of Porous Surface Suction. R. \& M. 2241. May, 1946.
2 S. Goldstein (Editor) Modern Developments in Fluid Dynamics. Clarendon Press, Oxford. 1938. p. 534.

3 H. Schlichting und K. Bussmann
Exakte Lösungen für die laminare Grenzschicht mit Absaugung und Ausblasen. Schriften der Deutschen Akademie der Luftfahrtforschung. Band 7B. (1943). 25-69.
4 J. H. Preston The Boundary-layer Flow over a Permeable Surface, through which Suction is Applied. R. \& M. 2244. February, 1946.

TABLE 1

The Coefficients ϕ_{r} and $\phi_{r}{ }^{\prime}$ of the Asymptotic Series for ϕ and ϕ^{\prime}

ζ	ϕ_{0}	ϕ_{1}	ϕ_{2}	ϕ_{3}	$\phi_{9}{ }^{\prime}$	$\phi_{1}{ }^{\prime}$	$\phi_{2}{ }^{\prime}$	$\phi_{3}{ }^{\prime}$
0	0	0	0	0	0	0	0	0
$0 \cdot 125$	0.01499	$0 \cdot 01499$	-0.04998	$0 \cdot 458$	$0 \cdot 23501$	0.23497	-0.78342	$7 \cdot 181$
$0 \cdot 250$	0.05760	$0 \cdot 05758$	-0. 19206	$1 \cdot 760$	$0 \cdot 44240$	$0 \cdot 44189$	-1.47568	$13 \cdot 521$
$0 \cdot 375$	$0 \cdot 12458$	0. 12440	- 0.41562	$3 \cdot 808$	$0 \cdot 62542$	$0 \cdot 62315$	-2.08928	$19 \cdot 123$
$0 \cdot 5$	0.21306	0.21237	- 0.71158	$6 \cdot 514$	0.78694	0.78057	$-2 \cdot 63580$	$24 \cdot 082$
$0 \cdot 75$	$0 \cdot 44473$	$0 \cdot 44042$	- 1.49098	13.614	$1 \cdot 05527$	1.02989	-3.56744	32.391
1	$0 \cdot 73576$	$0 \cdot 72078$	- $2 \cdot 48179$	$22 \cdot 569$	1.26424	$1 \cdot 20085$	-4.33610	$39 \cdot 003$
$1 \cdot 25$	$1 \cdot 07301$	$1 \cdot 03520$	- 3.64914	$33 \cdot 010$	$1 \cdot 42699$	1-30417	-4.98540	$44 \cdot 347$
$1 \cdot 5$	1.44626	$1 \cdot 36814$	- 4.96666	$44 \cdot 664$	$1 \cdot 55374$	$1 \cdot 35077$	$-5 \cdot 54043$	$48 \cdot 750$
2	$2 \cdot 27067$	$2 \cdot 04094$	-7.96634	$70 \cdot 851$	1.72933	$1 \cdot 31672$	-6.40494	$55 \cdot 654$
$2 \cdot 5$	3-16417	$2 \cdot 66731$	-11.31714	$100 \cdot 054$	1.83583	1-17676	-6.94206	$60 \cdot 951$
3	$4 \cdot 09957$	$3 \cdot 21014$	-14.85120	$131 \cdot 618$	$1 \cdot 90043$	$0 \cdot 99078$	$-7 \cdot 13720$	$65 \cdot 129$
4	$6 \cdot 03663$	$4 \cdot 01129$	$-21 \cdot 81012$	199.598	1.96337	$0 \cdot 62206$	-6.59744	$69 \cdot 951$

TABLE 2
Comparison of Results from the Asymptotic Formulae with Thwaites's Results

Note.-(A) and (T) denote respectively values obtained from the asymptotic series and values given by Thwaites.
S-B denotes values given by Schlichting and Bussmann.

Publications of the Aeronautical Research Committee

TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

1934-35 Vol. I. Aerodynamics. 4os. (40s. 8d.)
Vol. II. Seaplanes, Structures, Engines, Materials, etc. 4ϕ. (40s. 8d.)

1935-36 Vol. I. Aerodynamics. 3os. (30s. 7d.)
Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (305. 7d.)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. rod.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9 d .)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 6os. (6is.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews, 50s. (51s.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 3os. (30s. 9d.)
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

$$
\begin{aligned}
& \text { 1933-34 Is. 6d. (Is. 8d.) } \\
& \text { 1934-35 Is. 6d. (is. 8d.) } \\
& \text { April I, } 1935 \text { to December 3i, } 936 \text {. 4s. (} 4 \text { s. 4d.) } \\
& 1937 \text { 2s. (2s. 2d.) } \\
& 1938 \text { Is. } 6 \text { d. (Is. } 8 d \text {.) }
\end{aligned}
$$

INDEXES TO THE TECHNICAL REPORTS OF THE ADVISORY COMMITTEE ON AERONAUTICS-
December I, 1936-June 30, 1939. R. \& M. No. 1850. Is. 3 d. (is. 5 d.)
July I, 1939 - June 30, 1945°
R. \& M. No. 1950.

July I, 1945 - June 30, 1946.
R. $\& x$ M. No. 2050.

Is. (Is. 2d.)
July I, 1946-December 31, 1946.
R. $\& \mathrm{M}$. No. 2 I 50.

Is. (Is. Id.)
January I, 1947 - June 30, 1947.
R. \& M. No. 2250 .

1s. 3d. (ts .4 d.)
Prices in brackets include postage.
Obtainable from

His Majesty's Stationery Office

London W.C. 2 : York House, Kingsway
[Post Orders-P.O. Box No. 569, London, S.E.I.]
Edinburgh 2 g 13 A Castle Stree:
Birmingham 3: 2 Edmund Street Bristol I : Towér Lane

Manchester 2: 39 King Street Cardiff: I St. Andrew's Crescent Belfast : 80 Chichester Streê or through any bookseller.

