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Summary.--The determination of the stick-free flutter characteristics of a control system when the inertia of the 
stick is allowed for is considered. A method of solution is proposed which corresponds to impedance matching between 
circuit and control surface in the flutter condition. The method is applied, by  way of illustration, to two typical 
cases, an elevator system and a servo-tab system, and the effect of var ia t ions in stick inertia and circuit stiffness 

J-r demonst_ated, Conclusions drawn from these two cases are listed separately, but  it is concluded generally that  stick- 
free flutter can occur in the absence of stick-fixed flutter, and that  the stickqree flutter characteristics may  be quite 
different from those for the circuit-cut condition. 

! 
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1. introduct ion.--In  considering the phenomenon of control-surface flutter a distinction is 
generally drawn in respect of the type of motion, whether it is consistent with normal operation 
of the control or not. In cases where the motion is consistent with normal operation (anti- 
symmetric aileron, antisymmetric rudder, symmetric elevator) the control column, being 
connected through the control circuit to the control surface, will tend to take part  in the flutter 
motion unless it is prevented by the pilot or other external agent. Where the motion is 
inconsistent with normal operation (symmetric aileron, symmetric rudder, antisymmetric 
elevator) the control column is, by hypothesis, s ta t ionary;  the effect of the control-column 
motion on the flutter does not then arise. 

Confining at tention therefore to cases where the motion is consistent with normal operation, 
the control-column motion will depend upon the type and degree of external restraint. The 
restraint which may be applied by the pilot is difficult~ to predict and to represent mathematically 
in terms convenient for analysis. I t  has therefore been the practice to simplify matters by 
considering two extreme conditions, one in which the control column is fixed relative to the 
aircraft, and one in which the control column is entirely free of any external restraint. These 
two conditions have been termed the ' s t ick  (or pedal)-fixed' condition and the ' s t ick  (or 
pedal)-free ' condition. I t  is important  to emphasise that  in the latter condition the control 
column is free only from external restraint ; it is of course attached to the control circuit and 
is in that  respect still constrained. Alternatively, one may regard the control column as 
constraining, by its inertia, the control circuit and hence the control surface. 

For convenience, the term ' s t i c k '  is used throughout the remainder of this report to refer 
generally to the control column appropriate to aileron, elevator, or rudder. 

Most investigations in the past have simplified the stick-free condition by ignoring the stick 
and circuit inertia, which means that  the operating lever at the control surface is then assumed 
to be completely unconstrained. The same condition would be given by assuming the circuit 
disconnected from the operating lever. For the sake of preciseness, this condition is here termed 
the ' circuit-cut ' condition. Although the circuit-cut condition may considerably misrepresent 
the stick motion which occurs in the authentic stick-free condition the important  question is 
to what extent are the flutter characteristics of the system as a whole affected. So far as is 
known this question has not in a general way been answered, although there have been particular 

* R.A.E. Report Structures 69, received 13th September, 1950. 
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invest igat ions in which the stick iner t ia  was allowed for*. I t  is the purpose of the present  
repor t  to consider this quest ion general ly ; to establish clearly how the stick affects the flutter  
characterist ics in the stick-free condit ion and. how its effects m a y  be taken  into account  ; and 
to show in typica l  cases how the  f lut ter  characteris t ics  in the stick-free condit ion compare  with  
those in the stick-fixed condit ion and in the  circuit-cut  condition. 

F r o m  dynamica l  considerat ions it  can be shown tha t ,  ignoring any  damping  or friction in 
the  circuit, the  combined effect of the  free stick and circuit in the  critical f lutter  condition, 
when the sys tem is oscillating in simple harmonic  motion,  is to apply  an elastic res t ra int  to the 
control  surface which varies wi th  the  frequency.  This elastic res t ra int  is also a funct ion of the 
iner t ia  of st ick and circuit  and  of the  circuit stiffness. A general me thod  of solution is given in 
which  two curves are drawn,  the  ' f l u t t e r '  curve represent ing critical f lut ter  condit ions for the  
control  surface, and a ' c i r c u i t '  curve represent ing the dynamic  condit ions for the circuit  and 
stick. Intersect ions of the  f lut ter  and circuit curves then  represent  critical f lut ter  condit ions 
for the complete  sys tem in the  stick-free condition. The process in fact corresponds to impedance  
match ing  be tween  circuit  and  control  surface. (The principle of impedance -o r  its reciprocal,  
a d m i t t a n c e - m a t c h i n g  as applied to mechanical  v ibra t ion problems was first used by  Carter 5 in 
connect ion wi th  engine-airscrew systems, and  is now well established.) An advan tage  of the 
me thod  is t ha t  the effect of var iat ions in stick inert ia  or circuit stiffness can be quickly  assessed, 
as these affect only the circuit  curve. The me thod  is equal ly applicable to cases of control- 
sur face- tab  flutter.  

Applicat ion of the  me thod  is i l lustrated in two numerica l  examples,  one a hypothe t ica l  e levator  
case, the other  a specific case of an aileron wi th  ae rodynamic  servo-tab. The effect of var ia t ions  
in stick iner t ia  and circuit stiffness is demonst ra ted ,  as is also the effect of fit t ing an addi t ional  
spring to the  stick. General  conclusions reached are t ha t  stick-free flutter  can occur in the  
absence of stick-fixed flutter, and  tha t  the  stick-free f lut ter  characteris t ics  m a y  be quite different 
f rom those for the  circui t-cut  condition. More detai led conclusions derived from the numerical  
examples  are g i v e n  in section 6. 

2. Dynamics of the Corttrol System.--In any general  mot ion of the  system, ae rodynamic  
loads are excluded from the  balance of forces act ing direct ly on the stick, ignor ing  damping  
or friction in the  control  system, the  only forces which act on the  stick are then  s t ruc tura l  elastic 
and  inert ia  forces. The response of the control  sys tem to an imposed sinusoidal mot ion  from 
the  control  surface, such as occurs in the critical f lutter  condition, is then  de te rmined  by  pure ly  
dynamica l  considerations.  For  simplicity,  inert ia  of the  circuit  be tween stick and control  
surface is in the  first place ignored, bu t  its effect is considered separate ly  later. 

If 0 is the angular  st ick m o v e m e n t  and fi the  angular  m o v e m e n t  of the operat ing lever at  the  
control  surface, p being measured  in the  direct ion it would have  if the control  circuit were rigid, 
then  the  circuit  s t re tch is (0 --  fi/¢) in terms of stick movement ,  where ¢ is the circuit gearing 
8/0 wi th  rigid circuit. The equat ion  of mot ion for the stick is then  

_ToO + K0(0 --  8/¢) = 0 . . . . . . . . . . . . . . . .  (1) 

where Io is the stick inert ia  about  its hinge, and  Ko is the  circuit  stiffness as given by  the  m o m e n t  
applied to the  stick to produce uni t  stick m o v e m e n t  0 wi th  the opera t ing lever held fixed. 

If the sys tem is oscillating in simple harmonic  motion,  as in the critical f lut ter  condit ion,  
/~ and  0 m a y  be wr i t ten  

p = ~ sin cot, 0 = 0 sin ~t  . . . .  , . . . . . . . . .  (2) 

co being the  circular f requency of the  oscillation. 

* Some general consideration was given by Frazer and Duncan to the problem of stick-free flutter 51 the case of the 
P~,~ss Moth rudder 'j, where the effect of varying stick inertia was investigated in the authentic stick-free condRion. 

Since writing this report the author has become aware of a paper by K. Leiss (Germany, 1942) which considers 
the problem in a general and quite comprehensive manner. An English translation of Leiss's paper is given in A.R.C. 
11,583, ' Effect of the Control Circuit on Flutter,' June, 1948. 
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Substituting (2) in equation (1) then gives the ratio between stick and operating lever move- 
ments as 

~ / '  0102 
0 / 8  = ; , 0 ' -  . . . . . . . . . . . . . . . .  ( a )  

where 0)o [ = v'(Ko/Io)] is the natural  frequency of the stick with the operating lever held fixed. 

If K e represents the circuit stiffness as given by the moment applied to the operating lever 
to produce unit movement/~ with the stick held fixed, then the restoring moment applied to the 
operating lever by  the circuit is Ka(/3 -- ~0). The effect of the stick and circuit in the oscillating 
condition is thus to apply an effective elastic restraint to the operating lever given by 

& = - -  = K e ( 1  - -  . . . . . . . . . . . . .  ( 4 )  

Substituting for 0//3 from (3) in equation (4), the effective restraint is finally obtained as 

0) 2 
R e  = K ~  0)~ __ O~)o2 . . . . . . . . . . . . . . . . .  ( s )  

The effective restraint R e is thus a function of the circuit stiffness, the frequency w, and the 
stick and circuit inertias. Plott ing R e against 0) gives what may be called the ' circuit ' curve, 
representing the dynamic conditions of the circuit and stick as the variation of effective elastic 
restraint with frequency. 

A typical circuit curve is illustrated in Fig. 1 (full curve). The curve consists of two branches, 
an upper frequency branch involving positive values of the effective restraint Re, and a lower 
frequency branch involving negative values of R e. As the value of 0) approaches tha t  of 
0)o the value of R e approaches infinity, negative on the lower frequency branch, positive on the 
upper frequency branch. At zero frequency the value of K e is zero (on the lower frequency 
branch) : at very high frequencies (on the upper frequency branch) the value of R e approaches 
tha t  of K e. 

From (3) it is seen that  0//~ is positive if 0) < 0)o and negative if co > 0)o. The lower frequency 
branch of the circuit curve is thus characterised by an in-phase motion of the stick and operating 
lever, and the upper frequency branch by  an out-of-phase motion of the stick and operating 
lever. The two branches may thus be referred to as the ' in-phase ' and ' out-of-phase ' branches 
respectively. 

The circuit curve is merely a particular-representation of the familar forced oscillation 
phenomenon. For a given sinusoidal motion of the operating lever the stick responds in a 
manner prescribed by the elastic-inertia characteristics of the system, resulting in the application 
of an effective elastic restraint to the operating lever. The motion of the operating lever would 
then be unaffected if the control system were replaced by  a simple spring earthed at one end to 
the main aircraft structure, the stiffness of the spring being equal to the effective elastic restraint 
R e. This representation applies equally to cases in which the operating lever is fixed or is not 
fixed to the main control surface, and is thus applicable to spring and servo-tab systems as 
well as to direct-control systems. 

I n  the case of spring and particularly servo-tab systems it is sometimes found desirable to 
fit a spring to the stick (the spring being earthed to the aircraft structure), in order to provide 
additional ' feel ' or to modify the stick-force characteristics from a control point of view. The 
effect of such a spring on the circuit curve is now briefly examined. 

If ho represents the spring stiffness as given by the moment applied to the stick to produce 
unit  s t ick  movement 0 against the action of the spring alone, then the effect of the spring is to 
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add a term hoO to the left-hand side of equation (1). Following through the same process as 
before, it can then be shown that equation (5) for the circuit curve becomes 

(-0 2 _ _  0 ) 0 0 2  

& = 0 9 -  . . . . . . . . . . . . . . . .  (6) 

where oo0 =~_J(K°-+-i0 ho)_ = naturalspringfrequenCypresent.Of stick with operating lever fixed and 

moo = = value of ~o0 with Ko zero. 

The effect of the stick spring is thus to produce some rather marked changes in the circuit 
curve, as illustrated by the dotted curve in Fig. 1. The value of a)0 is increased, and hence the 
value Of the fre_quency at which/7  e becomes infinite. At zero frequency (on the in-phase branch) 
the value of K e is now positive and equal to K e. o)002/co0" = Ke/(1 + Ko/ho). The in-phase 
branch now gives positive values of R e in the frequency range 

0 < (o < co00. 
The effect on the out-of-phase branch is less, and in particular the asymptotic value of R e (as 
~o --~ oo t is still K e. 

The effect of the circuit inertia may be considered at this stage. It is assumed that  there 
are no concentrated masses in the circuit large enough to introduce additional degrees of freedom 
of appreciable amplitude ; so that the motion of the circuit remains effectively a combination 
of two types of motion, one as given by a load at the stick with the operating lever held fixed, 
and the other as given by a load at the operating lever with the stick held fixed. To represent 
the effect of the circuit inertia, it is necessary to define two additional gear ratios. 

Gearing gl is the linear movement of a point in the circuit corresponding to unit movement 
with the stick held fixed. Gearing g~ is the linear movement of a point in the circuit corresponding 
to unit movement  0 with the operating lever held fixed. The total linear movement of a point 
in the circuit is then (gd3 + &O). Gearings g~ and g2 have each the dimensions of length and are 
expressed in this form for convenience. 

It is shown in Appendix III  that, for a direct-control system in the critical flutter condition, 
the effect of the circuit inertia is to add contributions to the direct inertias of the stick and control 
surface and to provide an inertia coupling between stick and control-surface movements. This 
is in addition to the elastic coupling already present between stick and control-surface movements. 
The net result, for the case without a stick spring, is to add the contribution to the direct inertia 
of the control surface and to provide an effective elastic restraint applied to the operating lever 
given by 

= ,1 + 2 ~  + . . . . . . . . . .  (7) 

where now o0[ = ~/(Ko/lo')] is again the natural frequency of the stick with operating lever 
fixed, but including circuit inertia effects, 

and I~ == ~ E, m&& . . . . . . . . . . . . . . . .  (8) 

Io' -- Io + 2 r a g 2 2  . . . . . . . . . . . . . .  (9) 
c 

m being an element of mass, and the symbol c denoting summation throughout the circuit. 

The effect of circuit inertia on the circuit curve is thus given by a comparison of (5) and (7). 
Normally I~ will be small compared with Io', and the last t e rm in the square brackets in (7) will 
be small except at high frequencies. Since the gearings g,, g2 are essentially the same sign at 
any point, it follows from (8) that I, must be positive. Io' is also essentially positive. At the 
same time the contribution of the circuit inertia to Io' reduces the value of o~0. The effect on 
the circuit curve is thus to reduce the value of co which separates the in-phase and out-of-phase 

4 



branches, and to increase numerically the negative values o f / ~  on the in-phase branch. The 
effect on the out-of-phase branch will be less at moderate frequencies, although as co approaches 
infinity /C~ also approaches infinity instead of the finite value K~. In the practical range of 
frequencies the quantitative changes will normally be fairly small, and the essential character 
of the circuit curve is not basically affected by inclusion of the circuit inertia. 

Equations (5), (6) and (7) for the circuit curve are applicable to aileron, elevator, or rudder 
circuits. The only distinction to be drawn is in the definition of the circuit stiffness. In the 
case of Ko there is no difficulty : it represents the stiffness in respect of stick movement  with 
either say the elevator lever fixed or both aileron levers fixed. In the case of an elevator Ka 
similarly represents the stiffness in respect of elevator lever movement with the stick fixed, 
and in this case Ko = ¢2K~, ¢ being the circuit gearing. In the case of an aileron or twin-rudder 
system, however, K¢ as defined represents the stiffness in respect of the lever movement of one 
of the surfaces when the stick is fixed and both surfaces are appropriately loaded. To be more 
specific, if each aileron lever is loaded with a moment Ms, nose-up in one case and nose-down in 
the other, and with the stick fixed each aileron moves through an angle ~ due to the elasticity 
of the circuit, then the stiffness is K~ = M~/~. In this case, Ko = 2¢2KB. It  is, however, only 
in this relationship between Ko and K~ that  any difference arises between the different types of 
circuit. Equations (5), (6) and (7) for the circuit curves are not affected, provided of course 
that  K~ and K~ are defined in the same way. 

3. Limit ing Forms of the Stick-free Condit ion.--As mentioned in section 1, the two conditions 
most commonly considered in connection with control-surface flutter are the stick-fixed condition 
and the circuit-cut condition. In terms of the analy_sis of section 2, these two conditions are 
defined respectively by /Ca = Ka (stick-fixed) and Ka = 0 (circuit-cut). It is interesting to 
examine under what circumstances the stick-free condition of section 2 approximates to these 
limiting conditions. 

Considering equation (7) for the standard case without a stick spring, and assuming I,/Io' 
small, it is seen that/Ca -~- K~ if co is large (though not infinite), or if co0 is small (though not zero) 
by Ko being small. For a given Ka the latter condition could arise only with a small ¢. Also 
/ ~  --~ K¢ when coo --> 0 by Io' --> co. 

2 

The stick-free condition therefore approximates to the stick-fixed condition if the frequency 
of the flutter is very high, the stick inertia is very large, or the circuit gearing is very low. 

Considering equation (7) again, it is seen that/C¢ --~ 0 when co --~ 0 (as already mentioned in 
section 2), or when coo --~ co by Ko ~ co. For a finite K~ the latter condition could arise only 
by ¢ --~ co. If coo --~ co by Io'--> 0, then/Ca approaches a finite value which tends to zero if I, 
--~ 0. Finally, if Ka --~ 0 and therefore Ko ----> 0 (unless ¢ --~ co), then/C~ approaches a finite value 
which again tends to zero if Ic --~ 0. 

The stick-free condition therefore approximates to the circuit-cut condition if the frequency 
of the flutter is very low, the circuit gearing is very high ; or, providing the circuit inertia is 
small, if the stick inertia or circuit stiffness is small. As a special case, it should also be noted 
from equation (6) that the circuit-cut condition is exactly reproduced where a stick spring is 
fitted if co = coo o, assuming the circuit inertia negligible. 

From equation (5) it can further be seen that  if co is small compared with coo, and ignoring 
circuit inertia, then 

co2 /~o 
/C~ -"- - -  K~ co02-- ¢~ co~ 

for the elevator case say, where I4o ---- ¢~Ka 
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At low frequencies, therefore, or when the circuit stiffness is large or the stick inertia small, 
the effect of the circuit in the stick-free condition is simply to transmit the inertia of the stick 
as if the stick were rigidly connected to the operating lever. This approximation has been 
used in some investigations as a closer representation of the stick-free condition than that  given 
b y t h e  circuit-cut condition. 

4. Flutter of  the Complete S y s t e m . - - I n  the critical flutter condition the complete system is 
oscillating in simple harmonic motion. As shown in section 2, the effect of the stick and circuit 
in the stick-free condition is then to supply to the operating lever of the control surface an elastic 
restraint whose value is a function of the frequency of the flutter. From a theoretical point of 
view the unknowns are the air speed V and the frequency ~ ; and the problem is how, with a 
given system, to solve the flutter equations for these unknowns. 

4.1. The Flutter Equatior~s.--I f  the analysis is made, as is usual, in terms of a semi-rigid 
representation, the equations of motion representing the critical flutter condition will be equal 
in number to the number of degrees of freedom chosen. Each equation then represents the 
balance of forces in respect of the co-ordinate appropriate to a particular degree of freedom. 

Taking a typical ternary case involving say wing flexure, wing torsion, and aileron rotation, 
the equations of motion can be expressed in the following non-dimensional form. 

(dll + elly)ql + 6~q~ + 6,~q, = 0 

6~1ql + (G~ + e28y)q,, q- G3qa = 0 

Glql + G~q~,, + (&,,3 + e3~y)q3 = 0 

. .  0 o )  

where ~,, -~ - -  a,s ~,8 q- ib~.,v q- c , , , .  . . . . . . . . . . . . . .  (10a) 

q,,. qs, q3 are the co-ordinates appropriate to the degrees of freedom representing wing flexure, 
wing torsion, and aileron rotation respectively. The G, are the structural-plus-aerodynamic 
inertia coefficients, the b~, the aerodynamic damping coefficients, and the c~, the aerodynamic 
stiffness coefficients, v is the frequency parameter mc/V,  o:, being the circular frequency and 
c the wing chord at a particular station. The e,,y are the structural stiffness coefficients, y 
being the speed parameter 1/VL The case illustrated by equations (10) involves no structural 
cross-stiffnesses, i.e., G, = 0 for r --/= s. 

If equations (10) in the order given are appropriate to the co-ordinates ql, qs, q~ respectively, 
then el~ and e88 (representing the wing structural stiffnesses) are known, and e33 (representing 
the aileron constraint) is of the form GK,, where k~ is known and / ~  is the elastic restraint 
applied to the operating lever from the circuit. 

Eliminating ql, qs, q3 from equations (10) gives the single determinantal equation 

= 0  . . . . . . . .  (11)  

dll q- elly, 612, 613 

621, G2 + e82y, 638 

G~, 638, G~ q- k~K~y 

where e33 has now been written in the form I~3Ka. 

Since from (10a) the 6~, coefficients are complex, equation (11) when expanded will also be 
complex. Equating tile real and imaginary parts separately to zero then gives two real equations, 
which in theory are sufficient for the solution of the two unknowns V and o~. 
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The functional form of the equations is however so complicated that  a direct solution for V 
and co is out of the question. The b~s and c~, coefficients are functions of tile frequency parameter 
v, and for the stick-free condition R e is a function of the frequency co as given by equations 
(5), (6), or (7) of section 2. There is also the additional complication tha t  in some cases structural 
cross-stiffness coefficients e~y (r =/= s) may exist. 

4.2. Suggested Method of Solutio~¢.--An indirect method of solution is possible which has 
the advantage of simplicity a n d  a certain physical clarity. The flutter equation (11) can be 
solved in terms of V, co, and K e as variables, ignoring the dependance of R e upon ~o as determined 
by  the circuit conditions of section 2. The technique of such flutter solutions is fairly standard, 
but  they are discussed in Appendix I to this report. The important  aspect of the flutter 
solutions is that  they should cover a range of positive arid mgative values of K e. 

The flutter solutions are presented as curves, termed the ' f l u t t e r '  curves, of co ~-~ Ke and 
V N Ke. A given value of K e, together with the associated values of ~o and V as given by the 
flutter curves, then represents a particular solution of the flutter equation (11). Superimposing 
the circuit curve co ~-, R e as given by equations (5), (6) or (7) on the flutter curve co ~ Ka, 
intersections of the two curves then represent critical flutter solutions for the complete system 
in the stick-free condition. Values of the frequency co and speed V appropriate to these 
solutions are read directly from the flutter curves. 

A particular advantage of the method is that  the effect of changes in circuit stiffness or stick 
inertia can be quickly assessed, as these affect only the circuit curve. I t  will be appreciated 
also that  the method is equally applicable to spring or servo-tab systems. 

The system considered may be regarded as a special case of a system possessing a real circuit 
impedance. Defining circuit impedance as the moment M applied from the circuit to the 
operating lever per unit lever movement 8, the impedance may in general be complex, involving 
real and imaginary parts either or both of which may be a function of frequency. Comple x 
impedances are possessed by circuits in which there is damping of either the velocity or hysteresis 
type. Powered control circuits will in general possess complex impedances of a rather comp- 
licated nature 1'2. The essential characteristic of a circuit with a complex impedance is tha t  
the restoring moment applied to the operating lever is at any instant  made up of two components 
which are respectively in phase and 90 deg out of phase with the operating lever. 

In the present case the Circuff impedance contains only a real component (in phase with the 
operating lever) whose value is M / ~  = K e. In terms of circuit impedance, therefore, the method 
of solution suggested involves the matching of the actual circuit  impedance (as given by the 
circuit curve) with the impedance required to satisfy the flutter condition (as given by the 
flutter curves). 

I t  should be noted that  the method relies on the fact that  the effect of the free stick is to 
change, from a constant to a variable with frequency, only the value of/~e. This is true only 
if there are no masses in the circuit or attached to the stick which introduce appreciable cross 
coupling terms with any structural mode present in the calculations. In the case of an elevator 
system, for instance, in which the degrees of freedom might be elevator rotation and fuselage 
vertical bending (in addition of course to stick movement), any mass attached directly to the 
top of the stick moves sensibly in a direction perpendicular to the vertical fuselage movement 
at that  point, and no coupling is therefore involved. A bob-weight attached to the stick on a 
horizontal arm (as is sometimes fitted for g-restriction purposes) will however introduce an 
inertia coupling with the fuselage mode, and (as shown in Appendix II) the effect of this inertia 
coupling on the flutter equations is not confined to Ke. In such a case the method given here 
cannot be used and the analysis would have to be based directly on the flutter equations for the 
system as a whole. 
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5. Numer ica l  E x a m p l e s . - - T h e  application of the method given in section 4 is well illustrated 
by the two following examples, one of a hypothetical elevator system, the other of a specific 
aileron servo-tab system. At the same time the examples serve to demonstrate the effect of 
stiffness and inertia changes in the control system on the stick-free flutter characteristics, as well 
as the relation which the stick-free condition bears to the stick-fixed and circuit-cut conditions. 
Circuit inertia effects have been ignored in both examples. 

5.1. Hypothetical Elevator S y s t e m . - - A n  idealised elevator system representative of a fairly 
large aircraft was considered in which the degrees of freedom (apart from stick movement) 
were rotation of the elevator about its hinge-line and normal translation of the tailplane, the 
latter representing fuselage vertical bending. Tailplane and elevator were taken as torsionally 
rigid. Basic data assumed was as follows : -  

Mean chord of tailplane and elevator, 10 ft 

Elevator chord 30 per cent of total chord 

Moment of inertia of elevator about hinge-line, 13.85 slugs ft ~ 

C.G. of elevator at 0" 1 elevator chord behind hinge-line 

No aerodynamic balance on elevator 

Natural frequency of tailpiane (with no elevator rotation), 10 c.p.s. 

Features which might at first sight appear rather unrepresentative are the backward position 
of the elevator c.g. and the absence of aerodynamic balance on an elevator of this size with direct 
control. No aerodynamic balance was taken for convenience, and the elevator c.g. was then 
located so as to give flutter characteristics reasonably well suited to the present purpose of 
demonstration. 

Flutter solutions for the binary tailplane-elevator system are presentedappropr ia te ly  as 
flutter curves in Fig. 2 (full curves), co/2~ ~-~ Ka in the upper diagram, V ~-~ K s in the lower 
diagram. The curves extend over both positive and negative regions of the Ka axis. 

That part of the V ~-, K s curve (lower diagram) over the positive region of the K s axis is typical, 
and may be familiar from a s t u d y  of other similar investigations that have been made in the 
past. At a given value of K s there are a lower critical speed and an upper critical speed, the 
region between the two representing instability. Above a certain critical value of K s (5.5 
× 104 lb It per radn) there is however no critical flutter condition at any speed and the system 
is stable at all speeds. This critical value of Kp corresponds to a natural frequency of the 
elevator, rotating about its hinge against the stiffness _Ks, of 10.0 c.p.s., i.e., 1.0 times the tail- 
plane natural frequency. At a slightly lower value of K s the lower critical speed is a minimum, 
at a natural elevator frequency of 9.06 c.p.s, or roughly 0.91 times the tailplane natural  
frequency. 

Points A, B, C, D denote roughly corresponding points on the two flutter curves, A on the 
upper curve corresponding to A on the lower curve, and so on. It is thus seen that the frequency 
appropriate to flutter with positive values of R s varies little (between 9.8 and 10.9 c.p.s.), 
whereas with negative values of ~ there is a considerably greater frequency variation. 

For the stick and circuit, four cases were considered, in each of which the circuit gearing 
was kept the same and there is no stick spring. 

Case 1A K s = 4 × 104 lb ft per radn, giving an elevator natural frequency (stick-fixed) of 
53.7 radn per sec (c@. 

~o~ = co a = 53.7 radn per sec. 

Case 1B K s = 4 × 104 lb It per radn COo -- 2co~ = 107.4 radn per sec. This corresponds 
to the stick inertia of Case 1A being divided by 4. 



Case2A K s = 8  × 104 lb ft per  r a d n ' g i v i n g  ~o~= 76.0 radn  per sec. m0 = ~ =  76"0 
radn per sec. This corresponds to the  circuit stiffness of Case 1A being doubled.  

Case 2s K~ = 8 × 10 ~ lb ft per radn  ~o0 = 2c% = 152 radn per see. This corresponds to 
the  circuit  stiffness of Case 1B being doubled,  or to the stick inert ia  of Case 2A being 
divided by  4. 

In  these four cases, going from 1 to 2 represents  the effect of doubling the circuit  stiffness, 
going from A to B represents  the effect of reducing the stick inert ia  by  75 per cent. The 
appropr ia te  circuit  curves from equat ion  (5) are shown dot ted  in Fig. 2, super imposed on the  
f lut ter  curve in the upper  diagram. Intersect ions  wi th  the flutter  curve are m a r k e d  wi th  the 
values of the  f lut ter  speed as obta ined from the  V ~ R~ curve in the lower diagram. 

5.2. Aileron Servo-Tab System.--Flutter calculations on an exper imenta l  servo-tab sys tem 
fi t ted to t he  aileron of a med ium sized aircraft  had  been made  in connect ion wi th  ano ther  
invest igat ion.  The results were found to be convenient  for the  present  purpose and are p lo t ted  
as f lutter  curves co/2~ ~-~ R e and V ~-~/C~ in the upper  and lower diagrams of Fig. 3. The sys tem 
has a follow-up ratio of N = 1, and R e again, represents the  elastic res t ra int  applied by  the  
circuit  to the opera t ing lever, which in this case is not  of course direct ly connected  to the aileron. 
The sys tem invest igated involved four degrees of f reedom : the wing fundamen ta l  mode,  aileron 
rotat ion,  tab  rotat ion,  and aircraft  roll. 

The flutter curves of Fig. 3 possess cer ta in  interest ing features.  There  is a closed loop be tween  
B and  C (points A, B, C, D again denote  roughly  corresponding points on the  two curves) ;  
and at  B on the  lower diagram, for instance,  two critical f lutter condi t ions co-exist at  the s ame  

• speed but  at  slightly different frequencies. In  the lower frequency_ range the  curves lie whol ly  
in the  region of positive Ka, and for very  small positive values of K~ they  give a critical f lut ter  
condit ion at low speed and  frequency,  In  the calculations no account  was t aken  of any  s t ruc tura l  
damping  in the wing, but  it is ve ry  probable tha t  the effect of such damping  would be to cont rac t  
the  uns table  regions of the f lut ter  curves in such a way  as to isolate the closed loop and remove 
the  low-speed f lut ter  condit ions at  low positive R e. The flutter  curves might  then  be as p ic tured  
in Fig. 4. 

For  the  stick and circuit, three  cases were considered, in each of which the  circuit  gearing 
was again kept  the same. 

Case 1 K~ = 150 lb ft per radn  

O~o/2~ = 2 c.p.s. ~o0 o = 0. 

Case 2 Ke = 75 lb ft per  radn  

~o0/2~ = 2 c.p.s. CO0o = 0. 

This represents  Case 1 wi th  the  circuit stiffness and  stick iner t ia  bo th  halved.  

Case 3 K s = 150 lb It per radn  

= c.p.s .   0o/2  

This represents  Case 1 wi th  

---- x/2 c.p.s. 

the  addi t ion of a stick spring. 

The appropr ia te  circuit  curves from equat ion  (6) are shown do t ted  in Fig. 3, super imposed 
on the  flutter curve in the upper  diagram. In tersec t ions  wi th  the flutter  curve are again m a r k e d  
w i t h  the values of the flutter  speed as obta ined  from the  V ~-~ R e curve in the lower diagram. 
For  the intersect ion of the in-phase (lower frequency) b ranch  of the  case 3 circuit  curve wi th  
the  f lut ter  curve, the  value of the speed cannot  be obta ined  very  accura te ly  f rom the  V --~ ~Ta 
curve direct ly  because of the  vert ical  run  of the la t ter  curve at  this point.  The speed can 
however  be ob ta ined  f rom a subsidiary plot o~ ~-~ V of the  f lut ter  solutions, for the  value of the  
f requency  appropr ia te  to the  intersection.  
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5.3. Discussion of the Results.--Taking the elevator system first (Fig. 2) the solutions for the 
stick-fixed and circuit-cut conditions may first be noted. The stick-fixed condition is given by 
the intersection of the flutter curve in the upper diagram of Fig. 2 with the vertical line 
Ka =_Ka. In the present case, in which circuit inertia effects have been ignored, the vertical 
line Ka = Ka is also the vertical asymptote to the out-of-phase branch of the circuit curve for 
the stick-free condition with circuit stiffness Ka. The  circuit-cut condition is similarly given 
by the intersection of the flutter curve with the vertical exis Ra = 0. 

Values of the critical speed V and frequency ~o for the stick-fixed and circuit-cut conditions, and 
for the various stick-free conditions considered, are given in the following table. 

TABLE 1 

Solutiom for the Hypothetical Elevator System 

Type of 
Condition V ~o/2z~ stick-free 

ft/sec c.p.s, flutter 

Stick-fixed Case 1A, 1B 140 10" 1 
Case 2A, 2B - -  __ 

Circuit-cut 430 9 .8  

Stick-free Case 1A 1070 7.7 in-phase 
Case 1B 530 9 .6  in-phase 
Case 2A 840 8" 9 in-phase 
Case 2B 520 9.65 in-phase 

No stick-fixed flutter occurs in Cases 2A, 2B because for these cases the vertical line Ra = Ka 
misses the flutter curve completely. At the same time, the out-of-phase branches of the stick- 
free circuit curves for these cases (which do not appear on Fig. 2) also miss the flutter curve 
because they lie to the right of the asymptote R e = K~. With circuit inertia effects included 
(see section 2), the out-of-phase branches of the stick-free circuit curves miss the flutter curve 
by a still greater margin. It  is evident, therefore, that  with the flutter curve of Fig. 2 there 
can be no out-of-phase stick-free flutter if there is no stick-fixed flutter. 

Cases 1A and 1B, for which stick-fixed flutter does occur, still involve no out-of-phase stick- 
free flutter. In case 1B the out-of-phase branch of the circuit curve lies above a horizontal 
asymptote at o~ = me = 107.4 radn per sec (17.1 c.p.s.) and is therefore well clear of the flutter 
curve. In case 1A the out-of-phase branch of the circuit curve (which appears in Fig. 2), though 
nearer to the flutter curve than in any of the other cases, is still clear of it. Even when stick- 
fixed flutter does occur, therefore, there may still be no out-of-phase stick-free flutter. 

In-phase stick-free flutter does however occur in all four cases. From a comparison of the 
speeds and frequencies for the four cases, it appears that  increasing the circuit stiffness reduces 
the flutter speed and increases the frequency, moving nearer to the circuit cut condition : the 
effect is much less however with the small stick inertia. Reducing the stick inertia has a similar 
effect, again less with the higher circuit stiffness. The stick-free flutter speeds are in all cases 
higher (and the frequencies lower) than for the circuit-cut condition, whict{ in turn has a higher 
flutter speed and lower frequency than any stick-fixed condition for which flutter occurs. It 
is to be noted that  if co0 is very large and K s not too large (i.e., high circuit gearing or low stick 
inertia) the in-phase stick-free condition approaches the circuit-cut condition. 

From the general form of the flutter and circuit curves of Fig. 2, it is evident that  the effects 
noted above operate only so long as the circuit curve cuts the flutter curve in the region above 
the point C. If the intersection occurs below the point C, as will happen with low values of 
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~)0 (low circuit stiffness or high stick inertia), the effects on flutter speed will be reversed. In 
particular, it is to be noted tha t  very low values of o)0 may give in-phase flutter speeds lower 
than the flutter speed for the circuit-cut condition : it is very unlikely however that  co0 would 
in practice ever be as low as this. 

The servo-tab system (Fig. 3) shows some interesting differences compared with the elevator 
system. Stick-fixed flutter again occurs for the case with the lowest circuit stiffness (Case 2), 
but  for this system the stick fixed flutter speed remains fairly constant as the circuit stiffness 
is reduced. As the circuit stiffness approaches zero, however, the stick-fixed flutter speed 
rapidly decreases, and for the circuit-cut condition the flutter speed is actually zero. For the 
more realistic system of Fig. 4 (wing structural damping included) the position would however 
be somewhat different. The stick-fixed condition would then be flutter free in the range between 
the two branches of the flutter curve, and the flutter speed for the circuit-cut condition would 
be roughly the same as for any stick-fixed condition in which flutter occurred. 

Returning to Fig. 3, it is seen that  the conclusions derived for the elevator system relevant 
to out-of-phase stick-free flutter apply also to the servo-tab system. For Cases 1 and 3 there 
is no stick-fixed flutter and (inevitably) no out-of-phase stick-free flutter. Case 2 however 
illustrates a case for which there is stick-fixed flutter a~d out-of-phase stick-free f lut ter:  the 
speeds and frequencies are almost identical for the two conditions. In-phase stick-free flutter 
occurs in all three cases, in Cases 1 and 2 at zero speed, and in Case 3 (addition of a stick spring) 
at a higher though still comparatively low speed. With the flutter curve of Fig. 3 it is evident 
tha t  in-phase flutter could only be prevented with a stiff stick spring and a large value of ~o0, 
so that  the in-phase branch of the circuit curve cleared the flutter curve to the right.of point C. 
Even then flutter might still occur by intersection with the flutter curve in the region beyond 
point A, though the flutter speed would then be comparatively high. 

I t  is however worth noting the possibilities of in-phase stick-free flutter with the more realistic 
flutter curve of Fig, 4 (wing structural damping included). Although in-phase flutter might 
still occur in all three circuit cases, the flutter speeds would be generally higher and it is likely 
tha t  Case 3 with the stick spring would still have the highest flutter speed. I t  would be unwise 
to draw any detailed conclusions based on the form of the flutter curves of Fig. 4, which are 
largely hypothetical,  but  certain possibilities can be envisaged. If the flutter curve co ~-~/£a 
crosses the axis of Ks, then in-phase flutter can be prevented only by a fairly stiff spring and a 
large value of COo. If on the other hand the flutter curve does not cross the axis of ~8, 
in-phase flutter could be prevented without a stick spring by keeping the value of ~o0 low 
enough (low circuit stiffness or high stick inertia). Addition of a stick spring could in tha t  
case produce in-phase flutter. 

I t  is interesting to note, incidentally, that  the addition of a stick spring to the elevator system 
of Fig, 2 would reduce the in-phase flutter speed, assuming the intersections to occur in the 
practical range of the flutter curve above point C. The case is of little practical interest, of 
course, as a stick spring is rarely used with a direct-control system. 

From these two examples it is evident that  the stick-free flutter characteristics are acutely 
dependent upon the form of the flutter curves, and this point should be emphasised. The 
examples considered, though typical, are not all-embracing, and the conclusions drawn from 
them cannot be taken as universally applicable. Tile examples do however demonstrate the 
usefulness of the method suggested ; and they serve to illustrate the importance of considering 
the stick-free flutter characteristics, as distinct from those of the simplified circuit-cut condition. 

6. Conclusio~,s.--The problem of predicting the stick-free flutter characteristics of a control 
system is considered and a method of solution proposed which corresponds to impedance matching 
between circuit and control surface in the flutter condition. The method is applied, by  way 
of illustration, to two typical cases, an elevator system and a servo-tab system. Conclusions 
drawn from these two cases are listed below, but it should be emphasised tha t  some of these 
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conclusions may not apply universally. Stick-free flutter is termed ' i n -phase '  and 'out-of- 
phase ' when the stick is respectively in-phase and out-of-phase with the control surface end of 
the circuit. 

(a) If there is no stick-fixed flutter there will be no out-of-phase stick-free flutter. 

(b) A high value of co0 (high circuit gearing or low stick inertia) favours the elimination 
of out-of-phase stick-free flutter when stick-fixed flutter is present. 

(c) In-phase stick-free flutter may occur even if stick-fixed flutter is absent. 

(d) With a high circuit gearing or low stick inertia the in-phase stick-free condition 
approaches the circuit-cut condition. Otherwise, the two conditions may be quite 
different. For the elevator system considered in this report, in-phase stick-free 
flutter speeds would normally be higher than for the circuit-cut condition. 

(e) Addition of a stick-spring to a spring or servo-tab system may improve or worsen the 
stick-free flutter characteristics, depending upon the form of the flutter curves. 

(f) The stick-free flutter characteristics are acutely dependent upon the form of the 
flutter curves. The effect of structural damping on the flutter curves may be important  
in some cases. 

7. Acknowledgme~¢ts.--Acknowledgment is made to Mr. E. G. Broadbent and Mr. L. T. 
Niblett of Structures Department for the calculations which provided the flutter curves for the 
numerical examples. 
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LIST OF SYMBOLS 

Length of bob-weight arm 

Non-dimensional structural-plus-aerodynamic inertia coefficients 

Structural inertia coefficients 

Non-dimensional aerodynamic damping coefficients. 

Non-dimensional aerodynamic stiffness coefficients 

Non-dimensional structural stiffness coefficients 

Structural stiffness coefficients 

Gearings defining the movement of a point in the circuit (see 
section 2) 

Stick spring stiffness 

Real and imaginary parts of the circuit impedance (see Appendix I) 

Inertia coupling introduced by the circuit (see equation (8) and 
Appendix III) 

Stick inertia 

Effective stick inertia, including circuit (see equation (9) and 
Appendix III) 

Constant (see Appendix I) 

Circuit stiffness in terms of stick movement 
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Circuit stiffness in terms of operating lever movement 

Effective value of K s in the stick-free condition 

Subsidiary spring stiffness ~ 

General element of mass 

Bob-weight mass 

Tab follow-up ratio 

Tab eccentricity ratio ~ 

Generalised co-ordinate appropriate to the aircraft mode 

Amplitude of q 

Generalised co-ordinates 

Generalised {aerodynamic) force appropriate to co-ordinate q 

Air speed 

Distance aft of control-surface hinge 

Speed parameter 1/V 2 

Function defining vertical displacement in the aircraft mode 

Value of z at the stick 

Operating lever movement 

Amplitude of 

Non-dimensional coefficients occurring in the flutter equations 
(see section 4. l) 

Stick movement 

Amplitude of 0 

Frequency parameter appropriate to (D 

Summation over the aircraf~ 

Summation over the circuit 

Summation over the elevator 

Circuit gearing 8/0 with rigid circuit 

Circular flutter frequency 

Natural  frequency of control surface with stick fixed 
(direct-control system) k in 

Natural frequency of stick with operating lever fixed angular 
. J measure 

Natural frequency of stick on stick spring alone 
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A P P E N D I X  I 

T e c h n i q u e  o f  the F lu t t e r  S o l u t i o n s  

The flutter equation may be written generally as 

1~ + e Y l = O  . . . . . . . . . . . . . . . . . .  (a.1) 

where the order of the determinant is equal to the number of degrees of freedom chosen (excluding 
stick movement). The complex d coefficients represent the structural inertia and aerodynamic 
f o r ce s ,  

~ ,  = - -  a~,v ~ @ ibrsv @ % • . . . . .  . . . . . . . .  (A.2) 

and the real ey coefficients the structural elastic forces, y being the speed parameter 1 / V  ~. The 
a~ are known, and for a given frequency parameter v the bi~ and c~, are also known. 

The problem is to solve the flutter equation (A.1) for the relationship between the  speed V, 
the frequency co, and the elastic restraint K~ applied from the circuit. 

1. Direc t -Con t ro l  S y s t e m s . - - I n  a direct-control system the circuit is attached directly to the 
control surface and there is normally no elastic coupling between the control surface and any 
other degree of freedom. If the determinant in (A.1) is of order n say, this means t ha t  e~ = e,~ 
= 0 (r, s =/= n). The elastic restraint R e occurs only in e ..... which is of the form e .... = k,,Ke, 
k,~ being known. The remaining coefficients e,s (r, s < n) are known. 

For the simplest case of all, a binary system, the flutter equation (A.1) becomes 

/~11 = . . . . . . . . . . . .  . .  (A.3) 
+ ellY, 

0 

where e~ = k~R e. The flutter solution is in this case quite straightforward. For a given 
frequency parameter the determinant of (A.3) is expanded with e~,y and e ~ y  as variables. 
Equat ing real and imaginary parts separately to zero then gives two real equations from which 
the values of e,~y, e~y  are quickly determined, involving the solution of a quadratic only. For 
the known value of e,1 the values of y and e=~, and hence of V, oo, and Re,  are given. Repeating 
for other frequency parameters gives the required relationship between V, co, and R e. 
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For ternary and higher cases the solution is less straightforward. In the case of a ternary 
system with no structural cross-stiffnesses, for instance, the flutter equation (A.1) becomes 

~11 + elly, ~12, d13 

d~l, d~ + e~y, 02~ = 0 . . . . . . . . . . . .  (A.4) 

~at, da2, daa ~- eaa y 

where e33 = k~Ra. The binary type of solution described above is obviously not applicable to 
this ternary case, and a different procedure must be followed. 

An obvious method is to solve equation (A.4)_for V and co in the normal manner for a range 
of arbitrary values of Ka. For a given value of Ka the three e coefficients are known. Assuming 
a value of the frequency parameter v for the calculation of the b~, and c~, coefficients in (A.2)) 
equation (A.4) can be expanded as a polynomial in 
separately to zero then gives the two real equations 

__ po 0 + __ + p0 = 0 . . . .  

- + = 0 . . . .  

where the p coefficients are in general functions of elly, e2sy, e~sy. 

v. Equat ing real and imaginary parts 

. . . . . .  ( A . S )  

. . . . . .  (A.6) 

Equations (A.5) and (A.6) 
are then solved indirectly for V and ~o in the following manner. For a given speed V the p 
coefficients are determined. Solving (A.6) as a quadratic for r 2, the resulting values of ~s are 
substi tuted in the left-hand side of (A.5). Repeating for a range of speeds, the speed V and 
frequency parameter ~ (and hence the frequency co) are found for  which the left-hand side of 
(A.5) becomes zero. The frequency parameter should agree reasonably well with the value 
assumed for the calculation of the b,, and c,, coefficients : otherwise an iteration is necessary. 
The whole process is then repeated for other values of R~, and the variation between V, co, and 
R~ finally obtained. This method can also be applied to a quaternary system, for which the 
equations corresponding to (A.5) and (A.6) will be respectively a quartic and cubic in v~: but 
by  simple algebraic manipulation these equations are transformed into a cubic and quadratic, 
and the solution obtained as in the ternary case. The method is also applicable where structural 
cross-stiffnesses exist ; these merely add further terms to the expressions for the p coefficients, 
but  do not otherwise complicate the solution. 

There is an alternative method of solution for ternary and higher cases which has the advantage 
of simplicity of form and a certain generality, As explained in the main text  (section 4.2), 
the elastic restraint K¢ represents a circuit impedance tha t  is wholly real, i.e., in phase with 
the operating lever. In general, the impedance of a circuit is complex, containing a component 
that  is 90 deg out-of-phase with the operating lever. Such an impedance could be written as 
(I1 + iIs), where I1 and Is are respectively the real and imaginary components. Flut ter  
solutions for the ternary and higher cases are conveniently obtained in terms of a general 
complex circuit impedance, followed by  reduction to the special case considered here, viz., 
I1 = K~, I2 = 0. 

Considering again the ternary system represented by equation (A.4), and replacing R~ in 
e3a by a general complex impedance (I1 + iI2), the flutter equation becomes 

r311 + ell y ,  ~12, ~13 

~21, ~2~ + e~sy, ~ 3  = 0 . . . . . . . . . . .  (A.7) 

For a given frequency parameter ~ and a given speed V (and hence a given y) the determinant 
in (A.7) can be readily expanded with I1, Is as variables. Equating real and imaginary parts 
separately to zero then gives two linear simultaneous equations in I1 and I2, from which their 
values are quickly obtained. Repeating for a range of speeds but the same frequency parameter 
(which leaves the d coefficients unchanged) a curve of the variation Is ~-~ I1 can then be drawn, 
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each point of the curve corresponding to a particular speed and frequency. Repeating the 
process for a range of frequency parameters then gives a family of curves, each for a particular 
frequency parameter, and along each of which the speed a rd  frequency vary and are known. 
Such a family of curves represents a series of flutter curves appropriate to the system with a 
complex circuit impedance:  they could, as suggested elsewhere x'~, be used to provide solutions 
for the case with a powered control system. Reduction to the present case (Ix = K B, I~ ---- 0) 
is given by the intersections of the flutter curves with the axis I2 = 0, each intersection 
providing a particular set of values of V, co, and I1 ( = Ra) in the V N co ,-~ Ra relationship. 
For the present purpose the generalised flutter curves I~ --~ I~ need be calculated only in the 
region of I2 = 0. The method is equally applicable where structural cross-stiffnesses exist ;  
these merely add to the real parts of the a coefficients and do not complicate the solution in 
any way. 

2. Spring and Servo-Tab Systems.--Spring and servo-tab systems require special consideration 
because o f  the nature of the structural elastic coefficients in such systems. The .spring-tab 
system (of which the servo-tab is a special case) involves in general three springs in the control- 
surface-tab l inkage:  a main spring between the operating lever and the control surface, a 
subsidiary spring between the operating lever and the tab, and a spring representing the circuit 
stiffness applied to the operating lever (i.e., Ra). In a servo-tab system the main spring is 
omit ted.  

In a spring-tab system the effect of the various springs is to supply direct and cross elastic 
coefficients in the control-surface and tab degrees of freedom, assuming the latter to be represented 
directly by rotation of the control surface relative to the main lifting surface (wing, tailplane, 
or fin) and rotation of the tab relative to the control surface. For a typical ternary system 
(say wing-aileron-tab) the flutter equation (A.1) would be 

all + ell y, ax2, a13 

c5~,, ~ + %y ,  ~ + e~y = 0 . . . . . . . .  ( A . 8 )  

(~31, (~32 + e3~y, ~ -+- e~3y 

where the last two rows of the determinant are appropriate t o  the control surface and tab 
degrees of freedom respectively. In the general case the elastic coefficients e22, e23 ( =  e~2), 
e,a are each functions of the stiffnesses of the three springs i~ the control linkage. In particular, 
the circuit stiffness R~ occurs in all four coefficients : the case is therefore quite different from 
that  of a direct-control system already considered. 

In the case of servo-tab systems, and of spring-tab systems in which the stiffness of the main 
spring is small compared with that  of the subsidiary spring and with the circuit stiffness Ka, 
the general form of the elastic coefficients reduces to a simpler form which leads to a convenient 
flutter solution. With the main spring stiffness zero (or effectively so), the matrix of the elastic 
coefficients ill the control-surface and tab degrees of freedom is of the form 

e3~ y e~ y --  Ne~ y e~ y J 

where N is the follow-up ratio of the tab system. The coefficient e33 is then of the form 

= R /NI  + K ,  " . . . . . . . . . . . . . . .  (A.10) 

where k~ is known, K~ is the stiffness of the sub_sidiary spring, and N1 is the eccentricity ratio ~. 
With K, very large, (A.10) reduces to e~ = k~K¢. 

For a given frequency parameter (A.8), with (A.9) substituted, can be expanded in terms of 
e~ly and e,~y as variables. Because the determinant of the matrix in  (A.9) is zero, this expansion 
will contain no terms in (e~3y) ~. Equating the real and imaginary parts of the expansion 
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separately to zero then gives two equations from which the values of elly  and e~3y are determined, 
involving quadratic solutions only. Knowing e~ then gives y (and hence the speed V and 
frequency co), e3~, and from (A.10) the value of _Ka. Repeating for a range of frequency 
parameters finally gives the complete V ~-~ o~ ~-~ K s relationship. 

I t  Will be appreciated that,  because of the simplification represented by (A.9), the solution 
for the ternary system (A.8) is in form the same as that  for a binary direct-control system 
already described. For quaternary cases of the servo-tab system the solutions will likewise be 
of the same form as for ternary cases of the direct control system : either by expansion in terms 
of ~ for a range of arbitrary values of K s, or in terms of a complex circuit impedance. 

For a spring-tab system in which the stiffness of the subsidiary spring is comparable with 
tha t  of the main spring, the relationship (A.9) is no longer true and the solutions based upon 
it cannot be used. Solution is still possible however by expansion in terms of ~2 for a range of 
arbi trary values of R e. 

A P P E N D I X  II  

Stick-free Flu t ter  wi th  a Bob-weight  Fi t ted  to the S t ick  

The case considered here is one where a concentrated weight is attached to the stick on a 
horizontal arm, as is sometimes fitted for g-restriction purposes. To demonstrate the effect of 
such a weight in the flutter condition, a simple binary direct-control system is chosen--say 
fuselage bending and elevator rotation, in addition of course to stick movement- -and a routine 
flutter analysis applied to the complete ternary system. 

The degrees of freedom for such a case will then be : 

(a) Fuselage bending, involving a vertical displacement zq at any point of the aircraft, 
positive downward, z is a non-dimensional function of the point location, defining 
the mode ; q is the generalised co-ordinate and defines the displacement at the reference 
point, where z = 1. (?STICK 

(b) Elevator rotation/~ about FORWARD 

hinge (positive downward) < 
13 

(c) Stick rotation 0 i -~ "1 STICK ,~c/HINGE 
(positive forward) Mb 

If Mb is the mass of the bob-weight, and z~ the value of z at the stick hinge, the total kinetic 
energy (including stick and bob-weight) is 

T = ½Io0 2 + ½Mb(z~ + aO) 2 + Y, ½m(z~) 2 + E lm(z~/ + xt~) 2 . . . .  (A.11) 

where m is a general element of mass and x is the distance aft of the elevator hinge. Suffixes 
a and e attached to the summation signs denote summation over the aircraft (excluding elevator) 
and the elevator respectively. Circuit inertia effects are here ignored. 

The potential energy is given by 

V = ½Ko(O - -  ~/¢)~ + ½Ellq ~ . . . . . . . . . . . . . .  (A.12) 

where Ell is the stiffness coefficient appropriate to the aircraft mode (a). I t  is assumed tha t  
there is no elastic coupling between this mode and either elevator rotation or stick movement. 

Symbols Io, Ko, and $ denote stick inertia, circuit stiffness, and circuit gearing, as in the 
main text. 
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The Lagrangian equations of motion for the three co-ordinates q, ~, O, viz.,  

d aT aV 
dt ~ + aq - -  Qg' etc., 

are then, respectively 

A~lq @ A~fi @ E2~ -~- E2aO = Qa . . . . . .  

Aalq @ AaaO q- Ea~fl q- EaaO = 0 . . . . . .  

where A .  = E mz  ~ (including bob-weight) 
a e  

A ,~ = A ~, = Y_, m x z  
g 

A~a = A31 = M~a& 

a~2 

, ° 

I t 

= Xmx~.Aaa = I0  + Mva ~ 
e 

Ko 
E2,~ - -  4,2 - -  K s "  E ~  = K o  

Ko 
E=a = Ea~ = - -  4, - -  4, Ke. 

. .  (A.13) 
. .  (A.14) 
. .  (A.15) 

Q~, @ are the generalised (aerodynamic) forces appropriate to the co-ordinates q, ~. In the 
flutter condition, with frequency ~o and q = ~ e ~'~t, etc., Qq, @ will be linear complex functions 
of q, ¢~ but are independent of 0. Equations (A.13), (A.14) and (A.15) are then reducible to a 
non-dimensional form similar to that  of equations (10). The generalised force Qo in (A.15) is 
zero because there is obviously no aerodynamic force in respect of 0 alone. 

Coefficients A~, Aa~ represent the inertia coupling between the bob-weight and the fuselage 
mode. With these zero, equations (A.13), (A.14), and (A.15) can be reduced to the form 

A ~  -[- A.fi + /~f i  = @ . . . . . . . . . . . . . .  (A.17) 

AaaO + E~fi q- E~O = 0 . . . . . . . . . . . . . .  (A.18) 
= + = K (1 - -  where E2~ 

Equations (A.16), (A.17) thus become independent of 0, except in so far as/~2 is a function of 
0//~. At the same time equation (A.18), which is independent of q, provides a solution (after 
putt ing O = -- ~o~0) for 0//3 and hence for E2~ in terms of the frequency % viz.,  

Ko 
~2 (where %2 A~3 ) (A.19) 

/ ~ 2 ~  = Ks ~ _ COo ~ . . . . . . . . . . . .  

The complete ternary (q,_fi, 0) system thus reduces effectively to a binary (q, ~) system in which 
the stiffness coefficient E2~ is a function of frequency. 

Equation (A.18) is in fact identical with equation (1), and E~2 is of course the same as R e 
(see equation (5)). The above analysis for the case AI~ = A~I = 0 thus corresponds exactly 
with that  followed in the main text. 

For the case where the inertia coupling Ala, Aal is present, however, the  system cannot be 
reduced so simply. Putt ing ~ /=  -- co'q, etc., in equations (A.13), (A.14) and (A.15), equation 
(A.15) then gives 

0 = -  E ~ d ~ -  co~Aalq . . . . . . . . . . . . . .  (A.20) 
E ~ -  ~o2A~ 
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Substituting for 0 from (A.20), equations (A.13) and (A.14) then become 

& ~  + &~p + El~q = Q~ . . . . . . . .  

A21q + A~2~ + E2~ = Q~ . . . . . . . .  

$ g 

4 @ 

I O 

0 I 

. .  (A.21) 

.. (A.22) 

co2A 13 2 

where Al~ = Al1~ - -  A£(o~ _ o~o~) 

E~3A13 
&~ = -g~l = AI~ + A~(~o2 _ ~,02) 

and E22 is again as given by (A. 19). 

The ternary (q, ~, 0) system is thus reduced effectively to a binary (q, fi) system in which the 
effect of the stick movement is not only to make the stiffness coefficient E2~ variable with 
frequency, but  also to provide contributions to the inertia coefficients Zm ~rl~. ~f2~ that  are 
functions of bo th  the frequency and the inertia coupling A~3, A~I. 

APPENDIX III 

Circuit Inert ia Effects 

The system considered ill Appendix II--fuselage.bending-elevator-rotation-st ick-movement--  
is again considered here. In this case, however, the bob-weight is deleted but circuit inertia 
effects included. I t  is assumed that  there are no circuit masses large enough to introduce 
additional degrees of freedom of appreciable ampli tude;  or to introduce appreciable inertia 
coupling with tile aircraft mode (q), as in the case of the bob-weight of Appendix II. 

With these assumptions, tile kinetic energy of the system can be written 

T = ½Io 02 + ~½m(gl¢ + g20) 2 + E ½m(z~t) 2 + E ½m(z~ + x¢) ~ . . . .  (A.23) 

where gl, g2 are gear ratios appropriate to a point in the circuit, defined as in the main text 
(section 2). Suffix c attached to the summation sign denotes summation over the circuit. 

The potential energy, as before, is 

V = ½Ko(O - -  ~/¢)2 + ½Ellq2 . . . . . . . . . . . .  (A.24) 

The flutter equations (A.13), (A.14), (A.15) then become (with Ala = Aal = 0) 

A~lq + A~2~ + E~lq = Qq . . . . . . . . . . . .  (A.25) 

Al1(~ + ff-22fl + A230 + E~2~ -? E2aO = @ . . . . . . . .  (A.26) 
A ~  + ff-330 + E3~t~ + E,30 = 0 . . . . . . . . . .  (A.27) 

where 
&~=&~+ ~ m g l  2 

Xs~= A38 + X mg22 = I o '  

and the unbarred coefficients (excepting A2a, A3~) are as in Appendix II. 

Circuit inertia thus adds known contributions to the direct inertia coefficients A22, A~a and 
introduces an inertia coupling A2a, A3~ between the degrees of freedom/~ and 0. 
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Putt ing ~ = -- ~/3, 0 = -- o)~0 in (A.27) gives 

Es~ - -  co2A~2 
0 = - - E ~ _ _  ~o2X~ P " "" ..  (A.28) 

Substituting for 0 from (A.28), equations (A.25) and (A.26) then become 
A~q + A~p + E~q = ~2~ . . . . . . . . . . . .  (A.29)  

A21q + ~f22~ + /72~2/3 = @ . . . . . . . . . . . .  (A.30) 
where now 

/~'2~ ~o2 E22 - -  2E2~ A23 + 
- - ~o? A ~  ~ j 

= - LI+~+ Ks~,~ ~° ~ , , . .~ ,oz , / j  
(A.3~) 

and o,o ~ = Kol~f3~ . . . . . . . . . . . . . . . . . . . . .  (A.32) 

The ternary (q, /3, 0) system is thus again reduced to a binary (q, /3) system in which the 
effective circuit stiffness K s (=  E~2) is a function of frequency. The effect of circuit inertia 
is to add a known contribution to the control-surface inertia A,2, and to change the va!ue of 
the effective s t i f fnes s /~  from that  of (A.19) to that  of (A.31), the difference being a function of 
the inertia coupling A,3, A~, between stick and control surface. 

For simplicity, the above demonstration of circuit inertia effects has been made for a direct- 
control system. Similar principles, however, apply to a spring-tab system. In the lat ter  case, 
circuit inertia adds known contributions to the direct and cross inertias of control surface and 
tab, and modifies the corresponding effective stiffnesses E,,, by  amounts dependent upon the 
inertia couplings introduced by the circuit inertia between stick and control surface and between 
stick and tab. 
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