MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

An Analysis of the Lift Slope of Aeroforls of Small Aspect Ratio, including Fins, with

Design Charts for Aeroforls and Control Surfaces

By
D J Lyons, B Sc (Eng) -and F/O P L Bisgood, B Sc (Eng)

LONDON HIS MAJESTY'S STATIONERY OFFICE 195°
price 4 6d net

An Analysis of the Lift Slope of Aerofoils of Small Aspect Ratio, including Fins, with Design Charts for Aerofoils and Control Surfaces

By
D. J. Lyons, B.Sc. (Eng.) and F/O. P. L. Bisgood, B.Sc. (Eng.)
Communicated by the Principal Director of Scientific Research (Air), Ministry of

> Reports and Memoranda No. 2308 > January, 1945^{*}

Abstract

The analysis of R.A.E. Report No. Aero. 1840 has been extended to cover the lift slope of aerofoils of small aspect ratio and of fins in place upon an aeroplane. The charts of that report for the estimation of lifting characteristics of aerofoil controls have been included in this report with some small modifications, and those necessary for the estimation of fin and rudder lifting characteristics added. In general it is possible to estimate the lift slope of the aerofoils on an aircraft, taking account of interference effects, to within about ± 5 per cent. and control powers to within about ± 10 per cent.

[^0]1. Introduction.-Following the analysis of the lift slope of aerofoils and controls reported in Ref. 1, an extension of the work has been made to cover the lift slope of aerofoils of very small aspect ratio and of fins in place on an aircraft. This has been done with a view to improving the estimation of the side loads on a fin and rudder, and of the contribution of the fin and rudder to the yawing moments on an aircraft. At the same time the opportunity has been taken to amend slightly the aspect ratio correction as given in Ref. 1, and to gather together, in the present report, all the charts required for the estimation of the lift of aerofoils and controls produced during the analysis up to date. A change in presentation has been made, in that all the coefficients are now quoted in terms of radians instead of degrees, as it is felt that this is a more useful method of presentation to the British reader.
2. Extension of the Aspect Ratio Correction to Aerofoils of Swall Aspect Ratio.-2.1. Method of Analysis.-In Ref. 1 the correction for aspect ratio was made by use of the formula

$$
\begin{equation*}
a_{1}=\frac{a_{0}}{1+\frac{a_{0}}{\pi A}(1+\tau)}, \quad . \quad . \quad . \quad . \quad . . \quad . \tag{1}
\end{equation*}
$$

in accordance with Glauert's presentation of the " lifting line " theory. In this formula :-

$$
\begin{aligned}
& A=\text { aspect ratio } \\
& a_{0}=\text { slope of curve of lift coefficient against incidence in radians for infinite aspect } \\
& \text { ratio } \\
& a_{1}=\text { ditto for the finite aspect ratio } A \\
& \tau=\text { a numerical coefficient tabulated by Glauert depending on taper ratio. }
\end{aligned}
$$

This formula was always used since the divergences from it for normal aspect ratios are small. However, two more recent papers ${ }^{2,3}$ give aspect ratio corrections, one slightly and the other widely divergent from (1). The experimental results on the lift slope of aerofoils of medium and small aspect ratio have therefore been examined with a view to determining the relation between aspect ratio and lift slope which most nearly represents that found in experiment.

Now τ in Glauert's equation (1) is dependent on the value of A / a_{0} and the taper ratio of the aerofoil only, so that for a given taper ratio a unique curve of a_{1} / a_{0} against \dot{A} / a_{0} can be drawn. Hence in studying the effect of aspect ratio on a_{1}, it is to be expected that the variations in a_{0} may be eliminated by examining the experimental results on this basis. All the data were corrected to rectangular plan form (this correction is at the most about 4 per cent.), and the value of a_{0} has been estimated by the method of Ref. 1. The analysis was confined to the lift slope between $\pm 10 \mathrm{deg}$. of incidence. A few cases, where Reynold's number was a little below 10^{6} were included, as these showed no marked deviation from the general trend, but in general only tunnel results of Reynold's number greater than 10^{6} were relied upon.
2.2. Results of Analysis.-Fig. 1 shows the comparison between the mean curve of a_{1} / a_{0} against A / a_{0} drawn through the experimental points, the Glauert theoretical curve, and the other empirical curves of Refs. 2 and 3. The scatter of the experimental points about the mean curve drawn is small (usually less than 5 per cent.) and the deviation of this mean curve from Glauert's theoretical curve is really very little. There is no appreciable difference until the value of A / a_{0} is less than $0 \cdot 5$, but below that value there is a justification in drawing the mean curve below the Glauert curve, the maximum deviation being of the order of 20 per cent.

The curves of Refs. 2 and 3 give values of a_{1} which are both lower than either the theoretical curve or the mean curve of this report. The curve of Ref. 2 is not markedly different, but that of Ref. 3 appears to give much too low a value of a_{1}, but as no indication of the method of its construction is given in the report, it is not possible to investigate the cause.
3. The Endplate Effect of a Horizontal Surface on a Vertical Surface.-3.1. General.-As far as is known, there is no complete work or series of works giving the theoretical value of the endplate effect, such as that due to the tailplane on the fin, when the fin is in a general position relative to the tailplane; but a number of reports ${ }^{4,5,6}$ have been issued in which solutions for some of the possible geometrical conformations have been given. As some knowledge of this effect is necessary, however, to estimate the lift slope of the fin and rudder to a fair degree of accuracy, an attempt has been made to synthesise from the solutions published, corrections for the effect with a fin and rudder in a general position. These synthesised corrections cannot be claimed to be theoretically correct, but only to be of the right order so that fair estimations can be made, until the theoretical work is extended to cover the general case.
3.2. Central Fins.-The general solution for the endplate effect of the tailplane on a central fin, with the tailplane in any vertical but symmetrical position relative to the fin, has been given by Rotta ${ }^{4}$, but unfortunately this has been proved to be invalid by the results of Katzoff and Mutterperl ${ }^{5}$. They have shown that if the span of the endplate is greater than the span of the surface whose lift is being considered, a considerable error may be introduced by the assumption of minimum induced drag as used by Rotta. In Ref. 5, however, a comparison is drawn between the solution depending on the assumption of minimum induced drag and the more strict solution, for the one case of a horizontal endplate symmetrically placed at the base of a vertical fin.

Now if we write

$$
\begin{equation*}
\left(A_{E} / A-1\right)=K_{1}\left(A_{E}^{\prime} / A-1\right) \quad \text {.. } \tag{2}
\end{equation*}
$$

where $A_{E} / A=$ the ratio of the effective aspect ratio to the geometrical aspect ratio for the strict solution of Ref. 5.
and $A_{E}{ }^{\prime} \mid A=$ the ratio of the effective aspect ratio to the geometrical aspect ratio for the solution assuming minimum induced drag,
we can obtain values of K_{1} for this one case, the values varying with the ratio of the vertical tail height to the horizontal tail span, and also with the aspect ratio of the vertical surface. The variation with the aspect ratio of the vertical surface can be ignored in most cases as A usually lies between $1 \cdot 25$ and $2 \cdot 5$, and the variation in the value of A_{E} / A over this range of A is small. The values of K_{1} were obtained therefore for a value of A of $1 \cdot 75$. Now, though it is strictly incorrect, it is considered that reasonable values of A_{E} for the fin with the endplate in any vertical but symmetrical position can be obtained from equation (2) by using the values of $A_{E}{ }^{\prime} / A$ from Ref. 4 and the values of K_{1} obtained as above.

Fig. 3 (a) gives the deduced endplate corrections as well as the original curves of Refs. 4 and 5 for comparison. Now, the value of A_{E} / A varies extremely slowly with the change in the parameter, vertical tail height/horizontal tail span, and as for a conventional tail assembly the value of this parameter is usually between 0.25 and $0 \cdot 7$, a further simplification can be introduced by assuming the value of A_{E} / A is independent of this parameter. We can thus obtain a curve of A_{E} / A against the vertical position of the horizontal tailplane relative to the fin, and this is shown in Fig. 3 (b). It must be emphasised, however, that this curve will not apply to aeroplanes where the body and not the tailplane forms the endplate, since the endplate span will then be small compared with the aerofoil span; in this case the curves of Fig. 3 (a) must be used.
3.3. End Fins.-In the absence of any known published work on the endplate effect of a tailplane on end fins, approximate estimations of the effect have been derived from Refs. 4, 5 and 6 by the following method:

Mangler ${ }^{6}$ has solved the problem for both
(a) two endplates symmetrically placed about an aerofoil surface thus:-

(b) two endplates placed wholly to one side of an aerofoil surface thus :-

In this report, the assumption of minimum induced drag has been made, but as the ratio of the endplate span to the span of the aerofoil under consideration is less than 1 , no serious error is introduced. Now if we write
$\left(A_{E} / A-1\right)$ for symmetrically placed endplates $=K_{2}\left(A_{E} / A-1\right)$ for asymmetrically placed endplates,
we find that K_{2} can be assumed constant and equal to 0.9 for any given value of h / b. The next step is to assume that this factor K_{2} still applies when there is only one endplate. We can then deduce from the values of A_{E} / A for a central fin (Fig. 3 (b))

the values of A_{E} / A for an end fin,

for the conversion of a central fin to an end fin is obtained by moving the endplate (usually the tailplane) from the symmetrical position to the asymmetrical position. The deduced values of A_{E} / A for end fins are given in Fig. $3(b)$.
4. The Lift of Fins in place upon an Aeroplane.-4.1. Sidewash.-Let us define the lift slope of the fin and rudder on an aeroplane as $a_{1}{ }^{\prime}$, where

$$
a_{1}^{\prime}=\frac{\Delta n_{v}(\text { due to fin) }}{\overline{\bar{V}}} \text { or } \frac{2 S \Delta y_{v}(\text { due to fin) }}{S^{\prime \prime}} .
$$

Then the value of $a_{1}{ }^{\prime}$ will be reduced compared with the lift slope of the isolated fin $\left(a_{1}\right)$ by two factors
(i) the sidewash over the fin and rudder,
(ii) the reduction in total head of the airstream over the fin and rudder.

The sidewash generated by the trailing vortices of the wing on the fins of the tail surfaces will in general be small (the major part of the sidewash arises from the body), the body shape and the wing body interference effects being the man variables. Engine nacelles will obviously give some coniribution, but in the absence of sufficient information on their separate effects, no analysis of these have been made and their effects will be included in the body effects.

Now let us consider separately the cases of end fins and central fins, as there are obviously some fundamental differences between them. In each case we shall combine the effects of sidewash and tail efficiency together, because, when analysing most tunnel results, these two effects are inseparable.
4.2. Central Fins.-4.21. Definition of areas.-The main practical difficulty when considering the lift of central fins and rudders is the definition of the area, aspect ratio, etc. At the present stage, only an arbitrary definition can be made and in this report a gross area is used for the following reasons :-
(i) On many aircraft there is considerable difficulty in defining net fin and rudder area, due to the complete merging of the body into the fin and rudder.
(ii) When estimating rudder power considerable difficulty is encountered in applying the results of systematic tests on control powers, if the net area definition is used and part of the rudder is behind the body.
(iii) When the gross area definition is used, a fairly systematic variation of fin lift and rudder power with a number of parameters can be found.
Illustrations of the definitions arising from the inclusion of the area of the body under the fin in the fin and rudder area, are given in Fig. 2 for representative types of fin.
4.22. Method of analysis.-When a body is yawed to the direction of airflow, a cross flow is caused in the immediate vicinity of the body both above and below it which is at a greater angle to the body axis than the undisturbed airflow. Hence, the effect of the body on the flow round a central fin and rudder, is to cause an increase in the local incidence of the flow, above the angle
of sideslip, on that part of the fin and rudder outside the body. The greatest change in incidence is near the body surface, the change decreasing as the distance from the body increases. Both for this reason and from consideration of the proportion of the body area included in the fin and rudder area, the mean sidewash over the whole fin would be expected to depend upon the ratio of the height of the fin to body height, and though the general shape of the body should strictly be considered, it appears reasonable to suppose that the height of the body in the region of the fin would be the major variable in this effect.

The wing body interference causes a twist to be imparted to the flow around the body when the aircraft is yawed ${ }^{7}$; this will tend to increase the fin lift on a low-wing aircraft and decrease it on a high-wing aircraft. If, however, a horizontal tailplane is present on the body the asymmetric lift produced on this will act as a straightener to this flow. We might therefore expect there to be an appreciable difference on high- and low-wing aircraft between the contribution of the fin and rudder to the yawing moments according to whether a tailplane was present on the body or not. A good demonstration of this is shown by some systematic tests ${ }^{8,9,10}$ on lateral derivatives made on behalf of the National Advisory Committee for Aeronautics, U.S.A.

We have during our analysis of the various wind tunnel tests on fin lift used the following method:-
(a) Areas, aspect ratios, etc., are defined as in Fig. 2.
(b) The combined effect of the addition of tailplane as well as the fin and rudder to the aircraft is considered.
(c) Aircraft models with horizontal tails are separated from aircraft models without horizontal tails or with horizontal tails in a high position on the vertical fin well clear of the body.
(d) The values of $a_{1}{ }^{\prime} / a_{1}$ have been examined with regard to the variation with

$$
\frac{\text { body height at the fin }(W)}{\text { total fin height }}(h)
$$

and with fuselage-wing position. The value of a_{1}, which is the value of the lift curve slope the fin-rudder-horizontal-tail combination would have when isolated from the body, is estimated by the method of Fig. 10 using the endplate corrections of Fig. 9 (b) but assuming the taper ratio is unity because of the difficulty of definition. This appears justifiable because of the small variation of a_{1} with taper ratio.
The analysis was limited to a sideslip range of $\pm 10 \mathrm{deg}$. and to wing incidences less than 10 deg .
4.23. Results of analysis.-The results are given in Figs. 4 and 5, where the value of $a_{1}{ }^{\prime} / a_{1}$ is plotted against w/h; Fig. 4 gives the points for models with a tailplane on the body and Fig. 5 for those without a tailplane or with it clear of the body.

It is evident that there is little variation of $a_{1}{ }^{\prime} \mid a_{1}$ with variation of wing height on the body when there is a tailplane on the body. It is just possible to suggest three mean curves for the low-, mid- and high-wing models. The scatter from these curves is small except for two points obtained from two high-wing models. Both these aircraft were flying boats in which a sudden change in body section occurs just forward of the fin. It is thought possible that due to this, there is an unusually large stabilising sidewash over the fin arising from the body which causes the rise in the value of $a_{1}{ }^{\prime} / a_{1}$.

When there is no tailplane present on the body, there is considerable spread of the points with the position of the body relative to the wing, and though the N.A.C.A. systematic tests ${ }^{8,9}$ form the basis of the curves drawn, representing high-, mid- and low-wing models, there are a few confirmatory points from some British " ad hoc " tests.
4.3. End Fins.-4.31. Method of analysis.-There is no difficulty about the geometrical definitions of end fins, and from the analysis of central fins (section 4.2) variation in the value $a_{1}{ }^{\prime} / a_{1}$ with wing-body position would be expected to be small due to the presence of the tailplane on the body. Due, however, to the presence of the body some reduction in the incidence of flow
over the fin would be expected. This reduction should increase as the fins are brought nearer to the body and also as the fin height decreases relative to the body height. The variation of the value of $a_{1}{ }^{\prime} / a_{1}$ with two parameters has therefore been examined:-
(i) the ratio of the fin distance from the body centre-line to the length of the body d / l_{b}.
(ii) the ratio of the body height at the fin to the fin height, w/h.
4.32. Resulis.-In Fig. 6 the values of $a_{1}{ }^{\prime} / a_{1}$ for a number of models have been plotted against values of d / l_{b}. It will be seen that as expected there is a tendency at a constant value of d / l_{b} for the value $a_{1}{ }^{\prime} / a_{1}$ to decrease with increase in w/h and a family of curves has been drawn for varying values of w / h from which the scatter is quite small. When the value of d / l_{b} is greater than $0 \cdot 6$ or so, the indications are that there is negligible interference from the body, and so for end fins on wings the values of $a_{1}{ }^{\prime} / a_{1}$ can usually be taken as $1 \cdot 0$. What little evidence there is on this point confirms this.
5. Rudder Power.-For end fins symmetrical about the tailplane the rudder power can be obtained directly by the method of Ref. 1, but both for asymmetric end fins and central fins the present theoretical and systematic practical knowledge is inadequate to enable one to obtain a really reliable estimate. It is suggested, however, that a very rough estimate may be obtained by the method of Ref. 1, using the part-span flap correction factors given there as applicable to the fin, despite any asymmetry present. For such an estimate the rudder is divided into sections in which the values of C_{f} / c, balance and trailing edge angle are approximately constant in a similar manner to that suggested in Ref. 1 for an elevator.

Using this method, a comparison has been mäde between estimated and measured rudder powers, the measured values being obtained from wind tunnel model tests, and a fin and rudder efficiency of 100 per cent. being assumed for the estimations (Fig. 7).

This comparison indicates that the average fin and rudder efficiency on the models is about 90 per cent., and this is supported by a few*tests in which the efficiency has been measured directly. There is a tendency for this efficiency to be lower for twin fins if the fins are of small height and in the region of the flow from the nacelles, in that case the mean efficiency may be as low as 80 per cent.
6. Horizontal Tail Efficiency.-In order to complete the data needed for the estimation of the lift slopes of all the aircraft surfaces, an investigation has been made of the efficiency of the horizontal tail. The method has been to define the tail efficiency as

$$
\frac{\text { the } a_{1} \text { or } a_{2} \text { deduced from wind tunnel tests }}{\text { the } a_{1} \text { or } a_{2} \text { estimated by the method of this report }}
$$

assuming in the estimations that the tail surfaces are isolated from the body, and using definitions of aspect ratio, area, etc., based on gross tail area. The tail efficiency would then be expected to be dependent on the ratio of tailplane span to the width of the body at the tail; for when these quantities are equal, the efficiency as defined above should be zero, and when the body width is zero, the efficiency should be 100 per cent. except for wing and body wake effects.

In Fig. 8 therefore, the tail efficiency has been plotted against the value of the ratio

$$
\frac{\text { body width }\left(w_{1}\right)}{\text { tailplane span }(b)}
$$

All of the points obtained from tests on aircraft tailplanes have values of w_{1} / b less than $0 \cdot 3$, so the resource has been made to fins on bombs and airships to extend the curves to larger values of w_{1} / b. The analysis of the effect of fins on bombs has already been made by Hills. It should be noted that for the bomb and airship fins direct measurements were not made of the a_{1} of the fins, but were deduced from measurements of either Δn_{v} or Δh_{n} due to the fins, on the assumption that the sidewash generated by the body lift was negligible.

The trend of the tail efficiency with the value of w_{1} / b is fairly evident in Fig. 8, and there is evidence from the tests on bomb fins that two separate curves can be drawn, one for fins on faired bodies and one for fins at the end of bluff-ended bodies. The scatter from these two curves is reasonably good in view of the unknown reductions in tail efficiency due to wing and body wake.
7. Estimation of the Lift of Aerofoil Surfaces and Controls.-Figs. 9-15 indicate methods of estimation of the values for a_{1} and a_{2} of all the normal aerofoils and controls of the aircraft, with the tail efficiency of the tail surfaces of the conventional aircraft included. Many of the figures are reproduced from Ref. 1, with, however, some modifications which it is hoped will make the estimations as easy and straightforward as possible.
7.1. The Lift Slope of Wings and Tailplanes (Figs. 10 and 11).-Fig. 10 shows the method used and gives or refers to the curves needed in this estimation.
7.2. The Lift Slope of Vertical Fins (Fig. 12). - The a_{1} which the isolated fin and tailplane combination would have when yawed is estimated by the method of Fig. 10. The value of $a_{1}{ }^{\prime} \mid a_{1}$ is then obtained from Fig. 12. Hence the value of $a_{1}{ }^{\prime}$ is obtained.
7.3. Elevator Lift Curve Slope (Fig. 13).-7.31. Without a cut-out.-To obtain the elevator lift curve slope, a_{2}, the elevator is first divided into sections in which the values of C_{f} / c and balance are fairly constant. The value of a_{2} / a_{1} is then obtained from the following equation.

$$
a_{2} / a_{1}=\left[\left(a_{2} / a_{1}\right)_{s 1} \cdot n_{i} \cdot f_{1}+\left(a_{2} / a_{1}\right)_{s 2} \cdot n_{2} \cdot f_{2}+\ldots\right]
$$

where $\quad\left(a_{2} / a_{1}\right)_{s 1}=$ the value of $\left(a_{2} / a_{1}\right)_{s}$ from Fig. 13 for section 1.
$n=$ the value of the balance and gap correction factor from Fig. 13 for section 1.
$f_{1}=$ the value of the part span factor from Fig. 13 for section 1.
and similarly for the other sections. Then the value of a_{1} is obtained from Fig. 10 and hence the value of a_{2} for the isolated tail. The elevator power is then equal to $a_{2} \bar{V} \times$ (the tail efficiency), the value of the tail efficiency being obtained from Fig. 8.
7.32. With a cut-out in the elevator.-First the value of a_{2} / a_{1} is worked out by the method of Section 7.31 completely ignoring the cut-out, i.e. assuming that the elevator is full span. Then an approximate correction for the cut-out is obtained by multiplying the value of a_{2} / a_{1} thus obtained by the factor Z,
where $\quad Z=\frac{\text { elevator area with cutout }}{\text { elevatoo area for the corresponding full span elevator }}$
7.4. Rudder Lift Curve Slope (Fig. 14).-A rough estimation of the rudder lift curve slope, a_{2}, may be obtained ignoring the asymmetry of the normal rudder. The method is indicated in Fig. 14.
7.5. Rolling Power (Fig. 15).-Fig. 15 shows the method and gives or refers to the curves needed in this estimation.
8. Conclusions.-(i) Methods of estimation of the lifting characteristics of all the aerofoil surfaces and main controls of the aircraft have been derived; these give an accuracy of the order of ± 5 per cent. for the value of a_{1} and ± 10 per cent. for the value of a_{2}. Care will be needed when dealing with unconventional layouts, but an attempt has been made to keep the methods as general as possible. This general guarding statement will apply to aerofoils with trailing edge angles greater than 18 deg. or so, when, strictly speaking, the effect of transition point should be included.
(ii) Many gaps in our knowledge have been revealed, the most important of which are :-
(a) the lack of a full theoretical work on the end-plate effects on lift.
(b) the scarcity of evidence on the variation of sidewash over the fin and rudder, and of the effect of the body shape at the tail on fin and rudder lift.
(c) the scarcity of direct measurements of tail efficiency.

LIST OF SYMBOLS

a_{0} Two-dimensional slope of aerofoil lift coefficient against incidence curves
$a_{1} \quad$ Three-dimensional slope of aerofoil lift coefficient against incidence curves
$a_{1}^{\prime} \quad a_{1}$ for a fin with tailplane assembly including sidewash and tail efficiency factors
a_{2} Rate of change of aerofoil lift coefficient with control angle
$\left(a_{2} / a_{1}\right)_{s}$. The sectional value of a_{2} / a_{1} for an aerofoil with a plain sealed hinged flap
A Geometrical aspect ratio
$A_{E} \quad$ Effective aspect ratio
$A_{E}{ }^{\prime} \quad$ Effective aspect ratio based on assumption of minimum induced drag
b Total span of an aerofoil
c Chord of an aerofoil
$C_{f} \quad$ The chord of a hinged flap behind the hinge
C_{l} The rolling moment coefficient (Rolling moment $/ \frac{1}{2} \rho V^{2} S b$)
$C_{L} \quad$ The lift coefficient (Lift/ $/ \frac{1}{2} \rho V^{2} S$)
$C_{r} \quad$ The aerofoil root chord
$C_{t} \quad$ The aerofoil tip chord
d The distance of end fins from the body centre-line
f. The part span correction factor for elevators (or flaps)
h The total fin height
$h^{\prime} \quad$ The distance of the tailplane from the top of the fin
K The aspect ratio correction factor on rolling moment
$K_{1} \mid$ Correction factors used in the synthesis of approximate end plate corrections
K_{2} for a horizontal endplate on vertical fins
l_{b} The total body length
m The rolling power factor allowing for aileron position
n The factor correcting a_{2} / a_{1} for the effect of gap and balance
$n_{v} \quad$ Rate of change of yawing moment with sideslip ($d C n / d \beta$)
s The wing semi-span
S Total wing area
$S^{\prime \prime}$ Gross fin and rudder area
$\bar{V} \quad$ Tail volume $\left(\frac{S^{\prime} l^{\prime}}{S c}\right)$
$\overline{\bar{V}} \quad$ The fin and rudder volume $\left(S^{\prime \prime} l^{\prime \prime} \mid S b\right)$
w The body depth at the longitudinal position of the fin and rudder
$w_{1} \quad$ The body width at the longitudinal position of the tailplane
$y_{v} \quad$ Rate of change of side force with sideslip ($\left.\frac{1}{2} d C y \right\rvert\, d \beta$)
$Z \quad$ The correction factor to allow for the effect of central cutout on a_{2}
α Wing incidence
$\tau \quad$ The monoplane coefficient of Glauert
$\xi \quad$ Aileron angle

REFERENCES

No	Author	Title, etc.
1	Naylor and Lyons	An Analysis of the Lifting Characteristics of Aerofoils and Controls with Special Reference to Methods of Estimation for Design Use. R.A.E. Report No. Aero. 1840. A.R.C. 7149. June, 1943. (Unpublished.)
2	Pass	Analysis of Wind-tunnel Data on Stability and Control. N.A.C.A. T.N.775. September, 1940.
3	Ames and Sears	Determination of Control Surface Characteristics from N.A.C.A. Plain Flap and Tab Data. N.A.C.A. Rep. 721. 1941.
4	Rotta	Aerodynamic Forces on a Wing fitted with a Lateral Plate. R.T.P. Translation No. 2039. (Ing-Archiv, Vol. 13, No. 3, 1942, pp. 119-131)
5	Katzoff and Mutterperl	The End Plate Effect of a Horizontal Tail Surface on a Vertical Tail Surface. N.A.C.A. T.N.797. February, 1941.
6	Mangler	Die Auftriebsverteilung am Tragflügel mit seitlichen Scheiben. Luftfahrtforschung. 20th May, 1939.
7	Multhopp	Aerodynamics of the Fuselage. Luftfahrtforschung. 29th March, 1941. R.T.P. Translation No. 1220.
8	Recant and Wallace	Wind-tunnel Investigation of the Effect of Vertical Position of the Wing on the Side Flow in the Region of the Vertical Tail. N.A.C.A. T.N. 804. 1941.
9	Bamber and House	Wind-tunnel Investigation of Effect of Yaw on Lateral Stability Characteristics. II. Rectangular NACA 23012 Wing with a Circular Fuselage and Fin. N.A.C.A. T.N.730. September, 1939.
10	Recant and Wallace	Wind-tunnel Investigation of Effect of Yaw on Lateral Stability Characteristics. III. Symmetrically Tapered Wing at Various Positions on Circular Fuselage with and without a Vertical Tail. N.A.C.A: T.N.825. 1941.
11	Imlay	The Estimation of the Rate of Change of Yawing Moment with Sideslip. N.A.C.A. T.N.636. February, 1938.
12	Glauert	The Elements of Aerofoil and Airscrew Theory. Cambridge University Press. 1926.
13	Shaw and White	Measurements of Hinge Moments and Pressure Plotting on a Swordfish Rudder in the $24-\mathrm{ft}$. Tunnel. R. \& M. $1976 . \quad$ September, 1938.
14	Harris	Reduction of Hinge Moment of Airplane Control Surface by Tabs. N.A.C.A. Report 528. 1936.
15	Zimmerman	Characteristics of Clark Y Airfoil of Small Aspect Ratios. N.A.C.A. Report 431. 1932.
16	Silverstein and Katzoff	Aerodynamic Characteristics of Horizontal Tail Surfaces. N.A.C.A. Report 688. 1940.
17	Goett and Reeder	Effects of Elevator Nose Shape, Gap, Balance and Tabs on the Aerodynamic Characteristics of a Horizontal Tail Surface. N.A.C.A. Report 675. 1940.
18	Adamson and Barnes	The Effect of Nose Shape and Gaps on Elevator Balance and the Effect of Tabs on a 16 per cent. Thick Tailplane. R. \& M. 2326. May, 1940. (To be published.)
19	Jacobs and Sherman	Airfoil Section Characteristics as affected by Variations of the Reynolds Number. N.A.C.A. Report 586. 1937.
20	Priestley	Variations of Effective Aspect Ratio and Slope of the Lift Curve due to Twin Fins. R.A.E. Report No. Aero. 1814. A.R.C. 6796. April, 1943. (Unpublished.)
21	Levačic	Rolling Moment due to Sideslip. Part I. R.A.E. Report No. Aero. 2028. A.R.C. 8709. April, 1945. Part II. R.A.E. Report No. Aero. 2092. A.R.C. 9278 . November, 1945. Part III. R.A.E. Report. No. Aero. 2139. A.R.C. 9987. July, 1946. (Unpublished.)

TABLE 2
Key to Figs． 4 and 5.

TABLE 1
Key to Fig． 1

No．IN REFERENCE LIST	AIRCRAFT \＆／OR CONTROL	SYMBOL
15	tailplane，square tips	\times
15	TAILPLANE，FAIRED TIPS	\otimes
15	tailplane，semicircular tips	
4	tailplane	－『 『
14	tailplane	＋
－	aircraft 1 tailplane	$\stackrel{+}{+}$
17	tailplane	\bigcirc
－	AIRCRAFT 2 tailplane	\varnothing
－	AIRCRAFT 3（ORIGINAL）	㕩
－	AIRCRAFT 3 （ENLARGED）	\oplus
－	AIRCRAFT 4 FIN	\triangle
－	AIRCRAFT 5 tailplane	T
－	AIRCRAFT 5 TAILPLANE（E．C． 1240 SECTION）	¢
－	blackburn OOI8－J TAILPLANE	$\stackrel{\rightharpoonup}{+}$
－	tailplane	\oplus
－	aircraft 6 tailplane	\bigcirc
18	TAILPLANE，16\％THICK．	$\stackrel{\circ}{*}$
16	TAILPLANE，GOttingen 409	$\stackrel{\rightharpoonup}{*}$
16	tailplane	∇
－	AIRCRAFT 7－FIN	ఠ
－	AIRCRAFT 7－FIN	${ }^{\circ}$

\oint TESTS CARRIED OUT WITH \＆WITHOUT TAILPLANE ON BODY．

TABLE 3
Key to Figs. 6, 7 and 8

(a) Gross fin area, $S^{*}=$ total shaded area in. The above SkETCHES.
(b) FIN HEIGHT, h, IN TYPES 2 a 3 IS MEASURED FROM TOP TO BOTTOM OF FIN; IN TYPES $1 \& 4$ IT IS MEASURED FROM TOP OF BOTTOM OF FIN; IN TYPES 1\& \triangle IT IS MEASURED FROM TOP O LINE $x-x^{\prime}$.
(C) GEOMETRIC ASPECT RATIO $=\frac{k^{2}}{\text { TOTAL SHADED AREA }}$
(d) LOCAL $C_{f} / C=\frac{A R E A ~ B}{A R E A A}+A R E A B$. FOR TYPE 3, THE LOCALCf/C FROM TOP OF FIN TO TOP OF TAILPLANE CUT-OUT $=\frac{B_{2}}{A Z+B 2}$, \& FROM BOTTOM OF TAILPLANE CUT-OUT TO BOTTOM OF FIN $=\frac{B_{1}}{A_{1}+B_{1}}$
(e) OWING TO DIFFICULTY OF definition, the taper ratio is taken AS UNITY (THE MAXIMUM ERROR INVOLVED TAPER
f) in estimating a_{1}, the gap is treated as being full span

Fig. 2. Typical Examples of Fins and Rudders.

14

EIg. 3 (a). Endplate Correction of a Tailplane on a Central Fin.

Fig. 3 (b). Simplified Endplate Corrections for Central and Twin Fins.

Fig. 5. Variation of a_{1} / a_{1} for a Central Fin in Position upon an Aircraft with Tailplane Absent, or High-set and Clear of Body.

Fig. 6. Variation of $a_{1}{ }^{\prime} / a_{1}$ for End Fins in Position upon a Complete Aircraft.

NOTE - IN THE ABOVE FICURE, RUDDER POWER IS BASED ON THE VERTICAL TAIL AREA, AS DEFINED IN FIC Z. A FIN \& RUDDER EFFICIENCY OF 100% WAS ASSUMED IN THE ESTIMATION. COMPARINE THE MEASURED \& ESTIMATED VALUES, THE MEAN EFFIGIENGY IS FOUND TOBE 90%

$$
\text { i.e }\left(a_{2} \overline{\bar{v}}\right)_{\text {MEASURED }} \bumpeq 0.90\left(a_{2} \overline{\bar{v}}\right)_{\text {ESTIMATED }}
$$

THE POINTS MARKED 'N'IN THE FICURE, DENOTE SMALL FINS IN THE REEION OF THE NACELLE WAKE \& FOR THESE FINS, THE MEAN EFFICIENCY IS 80%

Fig. 7. Comparison of Measured and Estimated Values of Rudder Power.

inerease in effeetive aspect ratio of an aerofoil due to end plates

increase in the effective aspect ratio of a fin, due to the endplate effect of a tailplane.

Fig. 9. Estimation of Effective Aspect Ratio.

Fig. 11. Reduction in Lift Slope due to a Central Cut-out.

METHOD OF ESTIMATINE $A_{\text {, FOR AN AEROFOLL }}$ WITH OR WITHOUT END-PLATES

(1) NEEESSARY DATA
(a)TRAILING EDCE ANCLE
(b) CONTROL CAP SIZE-IF $<0.0025 E$ TREAT AS SEALED

IF >0.0025 E TREAT AS UNSEALED
(c) CONTROL GAF FOSITION, MEASURED FROM TRAILING EDEE \& EXPRESSED AS A PERGENTACE OF THE AEROFOIL MEAN CHORO
(d) EFFEETIVE ASPECT RATIO (SEE FICS. O(a) B(b) FOR ENDPLATE CORREETIONS)
(e) TAPER RATIO $=\frac{\text { ROOT CHORD }}{\text { TIP CHORD }}$
(c) EXAMPLE OF METHOD

TO ESTIMATE THE LIFT SLOPE OF AN AEROFOIL
FOR THE FOLLOWINE CONDITIONS:-
(a) TRAILINO EDCE ANELE $=14^{\circ}$
(b) UNSEALED, FULL SPAN CONTROL GAP AT 40%

OF THE MEAN CHORD AHEAD OF THE TRAILING EDCE
(c) EFFEGTIVE ASPECT RATIO $=4$
(d) TAPER RATIO $=1.5$
the trace ab.CD. indicates the method adopted
(i) A VERTICAL LINE A.B. 15 DRAWN THROUCH 14° ON THE t.E. ANELE SCALE TO MEET THE APPROPRIATE GAP CORRECTION CURVE (i.e. CAF 40% E AHEAD OF THE TE.) AT B.
(ii) FROM R, A HORIZONTAL LINE IS DRAWN TO MEET THE ASPECT RATIO CORRECTICN CLIRVE ($A_{E}=4$) AT C.
(iii) FROM C, A VERTICAL LINE IS DF AWN TO MEET THE TAPER RATIO CORRECTION CLRVE ($e_{R / K_{T}}=1.5$) AT D.
(iv) THE REQUIRED VALUE OF a_{1} IS READ OFF THE CIRCULILAR SCALE i.e. $a_{1}=3.45$. FOR A REAR TAILPLANE ONTHE BODY, THIS VALUE MUST BE CORRECTED FOR TAILPLINE EFFIEIENEY (SEE FIG.8.)
(3) NOTE

FOR THE EFFECTS OF A CENTRAL CUT-OUT SEE FIG.II.

METHECTED. THE ERROR SO INTRODLLED IS LESS THAN 4%
METHOD OF ESTIMATINC a_{1}^{\prime} FORA CENTRAL FIN
IN POSITION ON AN AEROPLANE
(1) NECESSARY DATA.

IN ADDITION TO THE LIST OF NEEESSARY DATA GIVENIN §(DOF FIG. 10 SEE FICZ. FOR DEFINITIONS OF FIN AREA \& ASPEET RATIO),
THE FOLLOWING ITEMS ARE REQUIRED:-
(a) $\frac{\text { VERTICAL }}{\text { DISTANCE OF TALLPLANE FROM TOP OF FIN }}=\frac{h^{h}}{\text { TOTAL FIN HEIGHT }}$
(b) $\frac{\text { BODY HEICHT AT FIN }}{\text { TOTAL FIN HEICHT }}=\frac{W}{h}$ (SEE FIC. 2.FOR DEFINTIIONS OF $w \& h$)
(2) METHOO OF ESTIMATION
(a) TALLPLANE ON BOOY () ESTIMATE THE VALUE OF A, AS LAID DOWN
in es a of FIGIO.
(ii) USINE THE APPROPRIATE VALLLE OF w/h

READ THE VALUE OF a, I OFF THE
APPROPRIATE FULL-LINE CURVE IN
Fiic(a) ON LEFT
THE RESULTS VALLUE OF a^{\prime} MULTIPLY
THE RESULTS OF
i.e. $a_{i}=a_{1} \times a / 9$,
(b) TALLPLANE ABSENT, OR HICH-SET
(i) ESTMMATE THE VALUE OF a_{1} AS LAID

DOWN INGZ OF FIC. 10
(ii) USINE THE APPROPRIATE VALLUE OF vs / h READ THE VALLUE OF $4 / 1 / 2$ OFF THE APPROFRIATE DOTTED CURVE IN FIC(A)
(iii) to obtain the value of a! multiply The results of (i) \& (ii)above. i.e. $a_{1}^{1}=a_{1} \times a_{1}^{\prime} / a_{1}$

METHOD OF ESTIMATINC a' FOR AN END FIN IN POSITION ON AN AEROPLANE.
(1) NEEESSARY DATA

IN ADDITION TOTA THE LIST OF NECESSARY DATA. GIVEN IN (1)OF FIC. 10 THE FOLLOWING ITEMS ARE REQUIRED:-
(a) VERTICAL DISTANEE OF TALPPLANE FROM TOP OF FIN. $=\frac{h^{\prime}}{h}$
(b) $\frac{\text { BOOY HEICHT AT FIN }}{\text { TOTAL FIN HEICHT }}=\frac{\text { WV }}{\frac{1}{4}}$
(c) $\frac{\text { HORIZONTAL DISTANCE OF FIN FROM BOOY } \$}{\text { TOTAL BODY LENGTH }}=\frac{d}{b_{b}}$
(2) METHOD OF ESTIMATION
(i)estimate the valle of a_{1}, as laid down ing(2) of fig. 10 (ii) USINC THE APPROPRIATE VALUES OF $\mathrm{d} / \mathrm{L} 8 \mathrm{z} \mathrm{W} / \mathrm{h}$, READ THE VALUE
OF AI, OFF THE CURVE IN FIC.(b) ON LEFT OF $\frac{1}{1}$, O $_{1}$ OFF THE CURVE IN FIC.(b) ON LEFT
(iii) To obtain the value of a_{i}^{\prime}, multiply the results of (i) \& (ii) ABOVE. i.e. $a_{i}^{\prime}=a, \times a!/ a$,

$$
\Delta_{n V} \text { DUE TO FINS }=a_{!}^{\prime} \overline{\bar{V}} .
$$

CHARTS FOR ESTIMATING a_{1}^{\prime} \& $\triangle n_{v}$ OF FINS.

VARIATION OF $\left(a_{\varepsilon} / a_{1}\right)$ SITH CONTROL CHORD 2 TRAILING EDGE ANGLE FOR

CORRECTION FACTOR APPLIED TO a_{z} / a_{1} FOR FULLL SEAN BALANCE \& GAF.

METHOD OF ESTIMATING $a_{2} /$,

(1) NEEESSARY DATA.

(a) TRAILINC EDEE ANCLE
e) PEREENTACE BAL ANEE NOSE SHAPE AND GAP FOR SET-BACK HNEE
() PERCENTAEE BALANCE, NOSE SHAPE AND EAP, FOR SET-BACK HINEE
d) SPANWISE LIMITS OF CONTROL, 8 SPANWISE EXTENT OF HORN, IF ANY EXPRESSED AS A PEREENTACE OF THE SEMI-SPAN. (NOTE:- IF THE INBOARD END OF THE CONTROL LIES ON, OR NEAR THE SIDE OF
THE BOOY, IT SHOULD BE TREATED AS THOUEH EXTENOING TO THEL
(e) TAPEE RATIO
(2) EXAMPLE OF METHOD

(a) TE:ANCLE $=1$

E 30% BLLUNT NOSE BALANCE, CAP UNSEALED
(d) SPANWISE LIMITS OF CONTROL $0.1 \mathrm{~b} / 2-0.9 \mathrm{~b} / \mathrm{d}$
e) TAPER RATIO - z:1

FROM FIE. $\left.a_{0},\left(a_{2} / a_{1}\right)=0.61\right\}$ HENEE $\left(a_{1 / 2} a_{2}\right) s=0.65$. N.B SECTIONAL VALUE OF $a_{2} / a_{1}, ~$
FROM FIG. $\epsilon_{2}, f_{1}=0.98-0.57=0.41 . \quad f_{2}=0.43-0.02=0.41$
HENCE $\left.a_{2} / a_{1}=\left[\left(a_{2} / a_{1}\right) s_{1} n_{1} f_{1}+\left(a_{2} / a_{1}\right)\right)_{s 2} n_{2} f_{2}+\ldots . ..\right]=\left[0.65 \times\left(0.41+0.4_{1}\right)\right]=0.53$

CHARTS FOR ESTIMATION OF $\left(a_{2} / a_{1}\right)$

METHOD OF ESTIMATION OF ROLLING POWER

(1) NECESSARY DATA

(a) AEROFOIL SEction data at mid-aileron, to determine a_{0} (see fig. 10)
(3) AEROFOLL SECTION DATA AT MID-AILERON, TO DETERMINE SECTIONAL Q2/a, (SEE FIG.I3) (c) SPANWISE LIMITS OF AILERON
(e) ASPECT RATIO OF WING

(2) EXAMPLE

(a) THE PERTINENT DATA ARE AS FOLLOWS:-
(i) Wing profile naca 23012 - trailing edge angle $=14.6^{\circ}$
(ii) SPANWISE LIMITS OF AILERON $=0.5 \mathrm{~s}-0.95 \mathrm{~s}$
(ii) AILERON CONTROL CHORD RATIO $=20 \%$
(v) SET BACK HINGE BALANCE $=25 \%$ (UNSEALED GAP, ROUND NOSE)
(v) WING TAPER RATIO $=1.67: 1$
(b) IN FIG. (a) AbOVE DRAW LINES A-B AT 0.5 S \& C-D AT 0.95s. The difference in lengit

OF THESE LINES ($=B E=m$) GIVES THE VALUE OF $\frac{d C_{0}}{\delta}\left(\frac{d_{1}}{d}\right) \cdot \frac{1}{\alpha} \cdot \frac{1}{k}=0 \cdot 105$ (FORA=6)
(c) FROM FIG. (b) ABOVE WE OBTAIN THE CORRECTION FACTOR FOR $A=7 \cdot 4, \underline{K}=1.07$ (d) FROM FIG. 10 , WE OBTAIN THE VALUE OF $\alpha_{0}=5.36$
(e) FROM FIG. 13, WE OBTAIN THE SECTIONAL VALUE OF $a_{2} / a_{1}=0.40$
(f) FROM §(b),(c), (d) \& (e) ABOVE WE OBTAIN $\frac{d C(}{d \xi}=0.105 \times 1.07 \times 0.4 \times 5.36=0.241$ (C6/RADIAN) $\frac{d C_{b}}{d \xi}=$

TAIL UNIT OF LOW-WING AIRCRAFT.
(1) GEOMETRIC DATA.
(a) FIN \& RUDDER VOLUME $=\overline{\bar{V}}=\frac{S^{\prime \prime} l^{\prime \prime}}{S b}=0.045$.
(b) FIN \& RUDDER HEIGHT $=h=7.06 \mathrm{FT}$.
(c) DISTANCE OF TAILPLANE FROM TOP OF FIN $=h^{\prime}=4.86 \mathrm{FT}$.
(d) FIN \& RUDDER ASPECT RATIO $=2.17$
(e) BODY DEPTH $=w=2.92 \mathrm{FT}$.
(f) HORN SPAN OBTAINED BY CONVERTING FROM A PART- SHIELDED TO AN UNSHIELDED HORN OF THE SAME AREA $=h_{H}=0.54 \mathrm{FT}$.
(g) CONTROL CHORD RATIO $=C_{f} / \bar{c}=42.5 \%$
(h) GAP UNSEALED, CONCENTRIC NOSE (i.e. \% BALANCE $=8 \%$)
(i) TRAILING EDGE ANGLE $=10^{\circ}$
(2) METHOD OF ESTIMATION.
(a) LET SUBSCRIPTS $1,2 \& 3$ REFER TO THE AREAS INOICATED ABOVE. FOR UPPER HALF OF FIN \& RUDDER, THE CONTROL EXTENDS FROM O TO $0.84 .7^{\mathrm{h}} / 2$ \& THE HORN FROM 0.847 TO $1.0 \mathrm{~h} / \mathrm{z}$: FOR THE LOWER HALF, THE CONTROL IS FULL-SPAN.
(b) FROM FIG. $13\left(a_{1}\right)\left(a_{2} / a_{1}\right)_{S_{1}}=1 \cdot 0,\left(a_{2} / a_{1}\right)_{S_{2}}=\left(a_{2} / a_{1}\right)_{S_{3}}=0.73$

FROM FIG. 13(b), $n_{1}=1.0, \quad n_{2}=n_{3}=0.89$
FROM FIG. $13(c) f_{1}=0.05, f_{2}=0.45, f_{3}=0.5$.
HENCE $\alpha_{2} / L_{1}=[0.05+0.73(0.89 \times 0.45+0.5 \times 0.89)]$

$$
=0.67
$$

(c) FROM FIG. $10 \quad a_{i}=2.75$
(d) FROM FIG. 7 RUDDER EFFIGIENCY $=90 \%$
(e) FROM (b), (c) \& (d), ABOVE:-
$a_{2}=0.67 \times 2.75 \times 0.90=1.66$.
(f) FROM (e) \& §(1)(d) RUDDER POWER $=1.66 \times 0.045$
$=0.075$.
Fig. 14. Method of Estimating Rudder Power.

Publications of the Aeronautical Research Committee

TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

```
1934-35 Vol I Aerodynamics 40 s (40s 8d)
Vol II Seaplanes, Structures, Engines, Materials, etc 405 (40s 8d)
1935-36 Vol I Aerodynamics 30s (30s 7d)
Vol II Structures, Flutter, Engines, Seaplanes, etc 30s (305 7d)
1936 Vol I Aerodynamics General, Performance, Arrsciews,
``` Flutter and Spinning 405 ( 405 9d)
Vol II Stability and Control, Structures, Seaplanes, Engınes, etc 505 (50 s rod)
1937 Vol I Aerodynamics General, Performance, Airscrews, Flutter and Spinning 405 (405 9d)
Vol II Stability and Control, Structures, Seaplanes, Engınes, etc 6os (6Is)
1938 Vol I Aerodynamics General, Performance, Aırscrews, 50s (5Is)
Vol II Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials zos (30s 9d)
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

INDEXES TO THE TECHNICAL REPORTS OF THE ADVISORY COMMITTEE ON AERONAUTICS-
December I , 1936 - Juñe 30, \(1939 \mathrm{R} \& \mathrm{M}\) No 1850 is \(3^{d}\) (\(\mathrm{Is} 5 d\))
July 1 , 1939 - June 30 , \(1945 \quad \mathrm{R} \& \mathrm{M}\) No 1950 is (is \(2 d\))
July I, 1945 - June 30, 1946 R \& M No 2050 is (Is Id)
July i, 1946 - December 31, 1946
\(\mathrm{R} \& \mathrm{M}\) No 2150 I's \(3^{d}\) (rs \(4^{d}\))
January I, 1947 - June 30, 1947
\(\mathrm{R} \& \mathrm{M}\) No 2250 Is \(3^{d}\). (\(\mathrm{Is} 4^{d}\))
Prices in brackets include postage
Obtanable from

\section*{"His Majesty's Statıonery Office}

London W C 2 York House, Kingsway
[Post Orders-P O Box No 569, London, S E I]
Edinburgh 21 I A Castle Street Manchester 2 King Street
Birmingham 32 Edmund Street Cardıff I St Andrew's Crescent Bristol I Tower Lane Belfast 80 Chichester Street or through any bookseller```

[^0]: * R.A.E. Report No. Aero. 2011 received 19th March, 1945.

