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Summary.--This is a detailed study of the effect of the presence of walls on the flow past a symmetrical aerofoil at 
zero incidence. The low-speed case is considered first, followed by solutions at a Mach number of 0.7. The methods 
used are essentially arithmetical, but a new approach is used for the compressible case. The manner in which the 
walls affect the pressure distribution is clearly shown. 

1. Introduction.--In an earlier paper  1 a s tudy  was made  of the  compressible flow past  a 
cusped body  in a channel.  The present  paper  deals wi th  the  corresponding case for an aerofoil. 
The  first few sect ions describe in detail  the  ar i thmet ical  solution of the  incompressible flow 
past  an aerofoil be tween parallel walls by  a superposit ion me thod  which is capable of dealing wi th  
a var ie ty  of problems. This is followed by  a solution at  a Mach number  of 0- 70. As this solution 
was made  using a grid of 10 squares to the  chord some doubt  existed as to its accuracy. Accord- 
ingly the  work was repeated  wi th  20 squares to the  chord. 

1.1. In  order to make  a detai led s tudy  by  ar i thmetical  methods  of the  compressible flow past  
a body  between walls it is desirable to have a grid on which the  solution can be convenient ly  
worked. This grid is the  orthogonal  net  given by  the  incompressible solution. As the  object  
of the  invest igat ion is to find the  effect of the  presence of the  walls we really require two grids or 
nets, namely  the  free-stream case and the  walled or bounded  case. In  order to keep the  effect of 
the  neglected terms as small  as possible it was thought  advisable to keep the two nets  in the  
vic ini ty  of the  body  as similar as possible. Consider, for example,  Fig. l a  where the  dep th  of the  
net  is two squares and the  quadran t  of the  body  abcs is an integral  number  of squares. In  tile 
free-stream case (Fig. la) the  equipotent ia l  ~ = 3 springs from the  s tagnat ion point  s. If now 
parallel walls are superimposed having  a total  spacing at infinity.of 4 squares (9. to the half width) 
the  veloci ty past  the  body  will rise and the  equipotent ia l  spacing will decrease. The nets will 
be no longer alike, especially in tile ne ighbourhood of the  s tagnat ion point  where the  equipotent ia l  
$ = 3 will no longer spring from s but  from s i  (Fig. lc). To re turn  it to s we mus t  increase the  
wall spacing or decrease the  size of the  body. 

Having  re turned  the  line $ = 3 to s it does not  follow tha t  the  foot of the  in termedia te  equi- 
potentials  at  b and c have come back exact ly to the  same places as in the  unbounded  case. I t  is 
found tha t  in fact ab shortens slightly, which means tha t  walls t end  to produce a greater  rise in 
veloci ty (or blockage effect) at  the  central  portions of an aerofoil t han  towards the  ends (see Ref. 1). 
I t  is evident  tha t  the  mean  blockage effect over the  whole aerofoil is approximate ly  the  percentage 
decrease in the  size of the  aerofoil necessary to re turn the  s treamline $ = 3 to s, and the  m o v e m e n t  
of b and  c is then  a measure of tile distort ion of the  flow produced by  the  wall. 

In  so far as this distort ion can be neglected the  me thod  of this paper  gives the  grid constants  
direct ly wi thout  laborious repetit ion. Tile m o v e m e n t  of the  in te rmedia te  points b and c can 
then  be calculated and  allowed for in a second and, if necessary, a th i rd  approximation.  

I t  will be evident  from the  above tha t  we do not  set out  to solve the  problem for a given ratio 
of channel  wid th  to chord. The exact value we have  used is only found after the  solution is 
complete.  



2. Theory of the Method for Incompressible F low.~Fig .  la  shows the 0pen field grid in the 
z = x + iy field and Fig. lb the grid for the bounded field. Figs. ld  and le show these grids in 
the w = $ + i~ fields. Let the relation between la and ld  (unbounded case) be Zo = fo(W) and 
that  between lb  and le (bounded case) be z~ =f~(w). 

Then 

l ° g l  + io° = l°gdZ° = f f  

l ° g l  + ioB = l°gdZ~ = f f  • . . . . . . .  (1) 

or, subtracting 

qo log ~ + i(0~ - 0o) = / ' ~ ( w )  - y o ( W )  

= say f'(w) . . . . . . . . . . . .  (2) 

Hence our problem is solved when we have foundff(w) sinceff(w) added to the open field gives the 
bounded field. So we start by calculating tile value of 0 at d, e, f, g, etc., in the open field. The 
corresponding values of 0 in tile bounded field are zero, or if the walls are not straight and parallel 
the 0 values are known. Neglect in the first place the movements of b and c. In other words 
take (0B -- 0o) zero everywhere along the lower boundary. Thus we have all the boundary values 
and can 'square' the field directly. (Ref. 7.) 

Now since all the networks are conformal 

l o g  = ~-~ . . . . . . . . . . .  

This gives the ratio qB/qo of the bounded to the unbounded velocity in the form 

qo = C ~(o~ - Oo) d~ 
log 

and 
qo ( ~ (0o -- 0 ~) dr, 

log = 3 a4} . . . . . . . . . . . .  (4) 

where, as before, the subscript 0 refers to the open field and B to the bounded. The integration 
can be started at any point where the velocity is known, e.g., in the undisturbed stream. 

2.1. Second A pproximation.--I f  s is measured along a streamline, q = d$ /ds, so that  ds = (1/q) d$ , 
dx = (l/q)cos 0 d$ and dy = (I/q)sin0 d$. Thus from the first approximation we can by 
integration find values of x and y at any point. At present we are only really interested in the 
amount by which the points on the surface like b and c have moved so as to find tile true value of 
0~ -- 0o at these points. It is not advisable to try to find x or y directly because, in the integrals, 
1/q becomes infinite at stagnation points. The main virtue of the present soht ion  is in fact that  
this infinity at the stagnation points can be avoided by using the differences from the known 
free-stream solution. We have 

l \ Xo = ~ -  cos 0o d ,  

J 
Neglecting the difference between cos 0o and cos 0~ we have 

_1o) o  0o (s) 
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If we in tegra te  from one end of the  body  (or aerofoil) to the  other  we obtain  the  to ta l  reduct ion  
in the  chord, i.e., the  amoun t  b y  which  we imagine the  aerofoil r educed  in size in order  to obta in  
as near ly  similar grids as possible in the  open and  closed fields (see section 1.1). Calling this 
reduct ion  Oc we have  

r = Co/C~ = Co/(Co - -  ~c) . . . . . . . .  (7) 

as tile rat io of the  chords. Hav ing  then  obta ined  dx for any  point  on tile surface of the  body,  
and  knowing  xo we find xB from xz = Xo + ~x. Then  scaling this up in the ratio r we obta in  

A x  = r x .  - -  X o  . . . . . . . . . . . . .  (8) 
Knowing  the  geomet ry  of the  body  we have  dO/dx and so 

08 - -  Oo = AO - -  A x  dO/dx . . . . . . . . . . .  (9) 

The  values thus  calcula ted are the  new b o u n d a r y  values of 0B -- 0o along the lower b o u n d a r y  
(~0 = 0) of the  grid. 

There  is no need to begin to square the  0 field again completely.  All we need do is to s tar t  a 
new 0 field wi th  the  above values of 0 wr i t t en  at  the  appropr ia te  points on the lower b o u n d a r y  
and  wi th  the  upper  b o u n d a r y  everywhere  zero. Hav ing  squared  this field it is s imply complemen-  
t a r y  to the  original 0 field, which  remains una l te red  th roughout .  Thus  we can proceed to obtain  
a second set of values of AO. 

I t  will be seen t ha t  th roughou t  the whole solution we operate  on the difference be tween  the  
open and  bounded  fields and  so the  accuracy  of the  result  is increased. 

3. A p p l i c a t i o n  o f  the M e t h o d  f o r  the Incompress ib le  C a s e . - - T h e  m e t h o d  out l ined in section 2 
was applied to a symmet r ica l  aerofoil. The aerofoil used is one of the series developed b y  Piercy,  
Piper  and  Pres ton  ~,5 by  t ransformat ion  from a hyperbola .  The trai l ing-edge angle was t aken  
as 0-3735 radians.  This makes  tile m a x i m u m  thickness t/c = 14.34 per cent  at  34 per  cent  of 
the  c h o r d .  

Wi th  ¢ = + 2  at  the  leading edge and  trai l ing edge respect ively the co-ordinates x, y of any  
point  on the  grid are given b y  

1 + c o s h u  cosy  
x-- - -  

(cosh u + cos v) 2' 

where  u and  v are obta ined  ~ from 

c ¢ = V { ( 6  + 2 )  5 + ~ 2 } ,  

cosh 2 u _ ~ + f l + 4 ,  
eo 20¢ 

co = 2 ( 1 - - ~ ) ,  

The veloci ty  vec tor  is given by  

1 (cosh v + cos v) 3/2 
q --  20) ~ c%/fl (cosh u --  cos v)~/2 

sinh u sin'v 
Y = (cosh u + cos v) 2 

= V {  (¢ - 2) 2 + 

sin 2 v - ~ _  ~ + f l - - 4  
co 2o~ 

2 ~  = + = trai l ing-edge angle. 

(10) 

i • 

(11) 

where  

0 ~ ~ t a n -  t ~o - -  t a n -  ~ --  2 + t a n -  1 
2 ¢ - - 2  ¢ + 2  

sin v 1 - - s i n h  2 u + c o s h u  c o s v .  
s i n h u  cos 2 v - 2 - c o s v  c o s h u  

(12) 

* u and  v are no t  veloci ty components  in the physical plane. 
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The velocity has been mult ipl ied by 20)" to make  it equal to un i ty  at infinity. 

3.1. The co-ordinates of the  aerofoil are given in Table 1 and Table 4. Using the  above formulae 
values for 0o, the  direction of the  velocity vectors in the  unbounded  field, were calculated along 

= 4. But  here 08 = 0, so the  upper  boundary  of the  (08 --  0o) field was known. O n  the  lower 
boundary  (08 --  0o) was assumed zero in the first approximation.  This field was squared (see 
e.g., Ref. 7) and using equat ion (4) values of log qo/qB were obtained. Then  new boundary  values 
on the  lower boundary  were calculated according to equations (6) to (9). I t  was found tha t  the  
movemen t s  AO were small, as will be seen b y  the  values in Table 2. 

T A B L E  1 

Co-ordinates of A erofoil Profile. (c = 0.50438) 

¢ x y 

--2 
--1 '6 
--1 -2 
--0"8 
--0"4 

0 
0"4 
0 ' 8  
1"2 
1"4 
1"6 
1"8 
2 

0 
0.06043 
0.11509 
0.16745 
0.21828 
0-26793 
0.31663 
0.36453 
0.41174 
0.43511 
0.45834 
0.48142 
0.50438 

0 
0.01068 
0.01901 
0.02567 
0.03077 
0-03426 
0.03600 
0.03570 
0.03276 
0.02990 
0.02565 
0.01901 
0 

¢ 
--2 
- - I  -6 
- - I  -2 
--0"8 
- -0-4  

0 
0-4 
0"8 
1-2 
1"4 
1-6 
1-8 
2 

T A B L E  2 

AO (lst round) 
0 

--0.00003 
--0-00004 
--0.00005 
--0-00004 
--0.00003 
--0.00003 
--0-00001 
+0.00002 
+0-00002 
+0.00008 
+0.00009 

0 

AO (2nd round) 

0 
--0.00003 
--0.00004 
--0-00004 
--0.00004 
--O.OOO03 
--0"00002 

0 
+0"00002 
+0-00002 
+ O- 00004 
+0.00004 

0 

Eviden t ly  there  is no need to make  a fur ther  repetit ion. Differentiating across and integrat ing 
along ~0 = 0 in the  AO field incremental  boundary  values of log qo/q~ were obta ined and the  field 
squared. These values added  to the values found from the  first approximat ion give the  final 
values of log qo/qB. 

The velocities in the  unbounded  case were found by  calculating values of log qo from (H) on 
the  boundaries  and in small regions around the  leading edge and trailing edge. The rest of the  
field was filled in by squaring. 

The value of r from (7) was r = 1.0111. Taking the chord c = 0. 5044 we obtain the channel  
half wid th  h = 0. 5715. 
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The mean blockage as obtained from 1 + ~ m_ r is ~ -~- 0.0111. This can be compared with the 
usual value S. ,: 

= (1 + t/c) A 6 H  - -0 .0113  . . . . . . . . . . . . .  (13) 

Fig. 3 shows the blockage factor ~ along the aerofoil and along the channel wall (see also Table 6). 
Contours o f ,  are shown in Fig. 2 and contours of velocity in Fig. 4. Table 3 gives the free-stream 
velocity and the increment in velocity due to the channel walls throughout the main part of the 
field. 

3.2. It is interesting to note in Fig. 3 how the blockage effect rises as the aerofoil is approached 
along the axis, reaching a maximum behind the position of maximum velocity. The maximum 
value is 4.5 per cent greater than the mean over the aerofoil. The distribution over the aerofoil 
would be more uniform if the ratio of channel width to chord were larger as in most practical 
cases it is. The increase in blockage effect as the wall is approached (Fig. 2) is perfectly normal 
as can be seen by referring to Ref. 3, Fig. 7. 

The total velocity due to the aerofoil and the walls is shown in Fig. 4. The value on the wall 
opposite the aerofoil centre is 1.0321 (Table 3): 

It has been shown by Thorn and Jones (Ref. 6) that  the ratio of the maximum incremental 
velocity at the aerofoit produced by the walls to that  on the walls procluced by the aerofoil is 

1 4 ~  2 K ~ 
R------~+ 15 H ~ . . . . . . . . . . . . . . . .  (14) 

where K is the radius of gyration of the aerofoil profile about an axis through the centroid at 
right-angles to the chord. In our example we have 

K/c ~ 0.237 H/c ~ 2.27 so that  from (14) 

R = 0.362. 

To compare with this we have the following values calculated from the fields 

Mean velocity over aerofoil (open channel) 1" 12 

Mean velocity over aerofoil (with walls) 1.12 × 1.0111 

Incremental velocity on walls (Table 3) 0. 0321 

These give R • 0.39. 

If we use the maximum increment in velocity on the aerofoil we find a larger value of R 
namely 0.43. 

3.3. It  is believed that  the above is a fairly accurate arithmetical study of the tunnel-wall 
effect on a symmetrical aerofoil at zero incidence. The grid was 10 squares to the chord but as 
we were operating on the difference of two fields no serious error is likely to have been thereby 
introduced. 

4. Compressible Flow.--For the compressible flow it was  considered desirable to develop a 
method depending on the use of the velocity vector which could possibly be adapted to cover 
cases where a shock wave was present in the field. The method is shown to be capable of dealing 
with the supersonic region but a discussion of shock waves is not included. It  is proposed to 
operate on the 'grid' given by the orthogonal network obtained from the incompressible solution 
given in the preceding sections. 

4.1. Theory of the Compressible Solution.--Let the velocity vector for the incompressible case 
be ql, 01 and for the compressible case q, 0. 

We wish first to obtain suitable expressions for V 2 log 1/q and V 30 since these are zero for 
the incompressible case. 



Take the fundamentals in the form: 
Bernoulli 

1 ~q~ 1 ~p 
+ - ~  - -¢v  = 0  

2 3x p ~x 

Continuity 

Vorticity 

1 ~q2+ 1 ~p 
2 ~y ~ + ~ = o  

a(pu) + a(pv) _ 0 
~x ~y ' "" 

Ov 3u - - ~ .  
~x ~y 

X 
(15) 

(16) 

(17) 

Putt ing a 2 = Op/Op, where a = velocity of sound, Bernoulli's equation can be written 

1 Oq2 1 ~p ¢v 
2a ~ ~x + - -  -- 0 p ~x a s 

and 1 ~q2 + 1  0p Cu 
2a~-~ p ~  + - ~ = o  

Using these, the continuity equations can be written 

_ ov ± ( ~ 2 ~  ~ ~e2~ a u +  _ + v  ~x ~y 2a2\ 0x ~y / " 

Put  u = q c o s 0 ,  v = q s i n 0 ,  A ~q ~0 = ~x + e~, 

= 0 1 and Z o ( Oq~ cos 0 -}- ~q2 sin )2--J \ ~x -@- ' " 

Then (19) can be written 
Ac os0  + B s i n 0  =qZo.  

Similarly (17) can be written 

A s i n 0 - - B c o s 0  = ¢ .  

Solving these for A and B and noting that  

and 

f. 

1 _ 10q log q q 0y 

Oq ~0 B = ~  - e ~  

we find 

_ ~ 0  ~ l o g q = ~ o s i n 0 - -  -¢cos0 
~x ay q 

0 _ @ x  l ° g l  X~cos0+ ¢ s i n 0  
~y q q 

Differentiating and combining we obtain 

V 2 0  = - - ~  s i n 0 - - - c o s 0  + XoCOS0+ Csin0 
q q 

2 1  = _ 0 ( q C S i n 0 ) - - @ ( X ° s i n 0 - - ~ c ° s 0 )  

6 

0 I Q 0 O D 

I o • ° o ° 

J 

. o o o o 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 



It would probably be possible to use these for squaring 0 and log 1/q but it is better to transform 
to the w field which is given by the Laplacean solution already obtained for the field having the 
same boundaries. We have 

w = ¢ + i ~ ,  q:~= ~-~ + \ ~ y /  . 

Further let 01 be the angle between the x-axis and the incompressible velocity vector; and let 
c( be the angle between the incompressible and the compressible vectors. 

Thus 0 = 0 : +  e. 

Then we get 

V=~O -- ~¢(~ s i n e - -  ¢ c ° s @ +  ~(  ~ ¢ ) ~ qq---- cos ~ + qqi-- sin 

0~(~ cos c~ + qq:~ sin ~ ) -  ~(X s i n ~ - -  qql ¢--- cos @ 1 V ~2 log -- 
q 

where '~ = 2a 2\ ~4' cos c~ + ~ sin ~ . 

(25) 

Again these could be used as working formulae but the real simplification of the method is 
obtained by operating on ~ instead of 0. Thus rrote that V~20:----0 and v ~ l o g  l/q: = O. 
Subtract these from (24) and so obtain the final forms. 

(26) 

V~2c~-- ~ ( 2 s i n ~ - -  ~ c ° s @ +  ~(  2 ~  ~ ) \ qq-~: cos o~ + --qq: sin 

v.'logq./q-- ~(~tcos~+-~-¢ s i n @ - - O ( ~ s i n ~  - ~ q q .  ~ qq. cos@ f 

, ) 
= 2a2\~¢ cos ~ + aq" sin~o ~ 

(27) 

1 M 2 

M and U being the free-stream values. 

In practice considerable simplification takes place. Except behind shock waves ~ is zero. 
It is evident that ~ will in general be a very small angle being simply the change in direction of 
the streamlines due to compressibility. Thus the terms containing sin ~ are negligible over a 
great part of the field. 

5. A Compressible Solution at M = 0.7.--The method described in the last section was applied 
to the aerofoil used previously in section 3. 

Neglecting in first approximation the terms containing sin ~ we have 

2a ~ ~¢ 
and 

For a start a first set of ~ values was obtained from the incompressible velocity values. 
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Having settled the e-field we obtain the values for log q l / q  from 

- - .  7 - ' - -  ~p 2¢ ~ sin e 

-~ log -- ~o 

which become 

cos e)  de along constant ~0-1ines log -~ . ~\~0 

. . . . . .  (28) 

a n d  log ql  ( De \ 
sin e)  d~ along constant C-lines . . . .  (29) 

?- o . -  - . . . . .  

To avoid any possible trouble at the stagnation points the integrations were done along the 
top boundary and down each equipotential. With the new values for q another set of values was 
calculated. As the values for q go up, the first neglected parts have  to be taken into account 
near the aerofoil, so that  we now use the full expressions for X and V ~e given at (26) and (27). 

The process was found to converge fairly quickly to the solution shown in Fig. 5. I t  can be seen 
tha t  a small supersonic region has developed at this Mach number, but  this presented no 
difficulties. 

Fig. 6 shows the pressure coefficient along the aerofoil as calculated from 

C , -  10 [(5 -¢- M S x 7 ] 2  1] for compressible flow 
7 M 2 .  5 + M L 3 /  

and Cp = 1 -- ql ~ for incompressible flow. 

Due to the coarseness of the grid used (10 squares to the chord) the curves shown are uncertain 
in the neighbourhood of the stagnation points but this is investigated in section 6. 

To obtain a comparison with the linear perturbation theory we apply the theorem enunciated 
by Goldstein and Young 8 namely: - - ' for  compressible flow in a tunnel of breadth 2h the increase 
in the longitudinal velocity is 1//~ times the increase in the longitudinal velocity in incompressible 
flow in a tunnel of breadth 2~h'. 

We have from section 3 the incompressible velocity in the unbounded case and in a channel 
of width H. To obtain the velocities in a channel of width SH we write by analogy with the 
usual blockage expression* 

e~i = (q~ --qo)/qo = K t c / H  ~ 

where qB and qo refer to the velocities in the bounded and unbounded cases. I t  is thus possible 
to calculate K for each point on the aerofoil. Then we assume that  the same value of K applies 
to the narrow channel so tha t  

e ~  = K t c / f l ~ H  ~ . 

The velocity in the narrower tunnel is then 

q ~ .  = qo(1 -t- e f l i~) .  

Thus, applying the rule given above, the compressible velocity is 

q = 1 + (qa- -- 1)//~ . . . . . . . . . . . . .  (30) 

* When  the blockage effect is only a few per cent it  is immater ia l  whether  we use this form or 

e = (qo - qB)/U 

where U is the veloci ty far upst ream,  bu t  care has to be t aken  as to which form is used when the effect becomes so 
large as it  does in this paper  in the compressible case. 
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These values are compared inF ig .  7 with the velocities from the arithmetical solution. I t  is 
seen tha t  in the region of high velocity the linear perturbation theory gives too low a value. 
Things would be improved if instead of using 1/t3 in (30) we used the Kr~.m~m-Tsien factor but it  
seems that  a still larger factor is necessary to give agreement. 

6. Check Calculation with Finer Grid.--The process described in the preceding sections has 
been repeated for the same aerofoil between walls with the same spacing but  the work was done 
on a finer grid; 20 squares to the chord. 

6.1. The comparison of the two sets of results is given in Table 4 and shown in Fig. 8. The 
agreement is seen to be good except that  near the leading edge (at $ = 1.6) the coarse grid 
velocity is slightly lower. 

The table also contains the ordinates of the profile at all the grid points. 

7. Open Field Compressible Flow.--To obtain the tunnel-wall effect it is necessary to have the 
solution for the same aerofoil in an unbounded stream. This solution was obtained (as in 
section 3) by operating on the difference in direction between the compressible and incompres- 
sible flows. I t  is shown in section 6.1 that  there is no great gain in accuracy by using 20 squares 
to the chord as against 10. So, as we are interested in the difference between the bounded and 
unbounded cases, it is sufficient to use 10 squares. 

I t  has been shown by Woods (Ref. 11, Part  N) that  . 
= . . . . . . . . . . . . . . . .  ( 3 1 )  

and 0 ($, ~o) = 01(~,/39) . . . . . . . . . . . . . . . .  (32) 

where q, 0 refer to the compressible flow and ql, 01 to the incompressible. (31) and (32) were 
used to start  the solution. An outer boundary was taken at ~0 = 4 or roughly one chord distant 
from the aerofoil. The values of ~ ~ 0 --0~ were calculated along this boundary by making 
use of (32). In brief, this reduces to using 

c~ -- ~2.8s7 ~ log 1/q d~o where 2.857 ~ 4/3 
J 4  ' ~q~ 

to find the boundary values. The assumption is tha t  (32) is likely to be a good approximation 
at points well back from the aerofoil and that  any residual error there Will not seriously affect 
the values on the surface obtained by squaring from ~p = 4 to the aerofoil. 

Two complete rounds were worked on the field; from these the values of q in Table 5 were 
obtained. It  will be seen that  the values are still altering slightly after the 2nd round. Final 
values obtained by extrapolation are shown in Table 6. The method of extrapolation used has 
already been described in Ref. 1, §9. Table 6 also contains blockage factors deduced by a compari- 
son with the bounded case in Table 4. The blockage for the incompressible case is given for 
comparison. 

The velocity distribution on the aerofoil surface is compared with the incompressible and with 
the linear perturbation theory value in Fig. 9. 

8. Compressible Blockage.--Fig. 10 compares the compressible and incompressible blockage 
factors and Fig. 11 shows their ratio. On the linear perturbation theory the ratio is 1//33 or 2.75. 
I t  is seen that  in the region of maximum thickness the blockage factor is much higher than 
towards the ends. In Ref. 10 Woods shows tha t  the blockage effect is a maximum near the 
centroid of the section. 

8.1. Comparison with Mass Flow Theory.---In Ref. 9 it is shown that  on certain assumptions 
the blockage factor is given by  

tc t ~ 
e = 0"5 ~ + 0"3 Hc/3--------- ~ • 
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Replacing the first term by its more usual value and substituting M = 0.7, t/c = 0.147, 
H/c = 2.27, A/c ~ = 0. 102 we get 

A t ~ 
~ H ~  3 + 0"3Hc~ 

= 0-029 + 0"015 = 0"044. 

Even this value is not so high as the peak in Fig. 10 but it happens to be not much different 
from the mean taken over the chord, namely 0.046. 

Conclusions.--In sections 9. and 3, a method of finding the incompressible flow past an aerofoil 
in a channel is developed and used. In sections 4 and 5, a method is given and used of solving 
the compressible case of the same problem. The advantage of this method is that, as we work 
directly on the difference in the velocity vector brought about by compressibility, a fairly 
accurate solution can be achieved, even if the grid is somewhat coarse. 

The actual example worked is that  of an aerofoil 14} per cent thick between walls 2.27 chords 
apart. For these values we draw the following conclusions: 

(a) The effect of the walls is to raise the surface velocity on the aerofoil rather more towards the 
centre than at its ends; the maximum occurring about 0.45c. 

(b). The effect of compressibility alone is to raise the velocity much more in the region of 
maximum thickness than elsewhere, the maximum change occurring about 0.26c. 

(c) The effect of walls and compressibility is to raise the velocity most at an intermediate 
position, namely near 0.29c. 

(d) The mean value of the blockage effect over the chord is roughly 50 per cent higher than 
that  given by the usual image theory combined with the linear perturbation theory. The 
maximum value being some 70 per cent greater than the mean shows that  for an aerofoil of this 
size, relative to the channel, no single blockage factor can give a representation of velocity 
over the whole surface. 

Physically it would be necessary to use a thinner aerofoil in a wind tunnel to give a proper 
representation of the velocity distribut%n on an aerofoil in free air. It should, however, be 
remembered that  the example chosen is an extreme case. Normally such a large aerofoil would 
not be used in a wind tunnel. 

10 
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TABLE 3 

Velocities in the Unbounded Field with Increments due to the Walls. Incompressible Flow 

4 

- - 4  

- - 3  "6 

- - 3 . 2  

- - 2 - 8  

- - 2 . 4  

- - 2  

- -1  "6 

- - 1 . 2  

- - 0 . 8  

- - 0 . 4  

0 

0 .4  

0 . 8  

1-2 

1 .6  

2 

2 . 4  

2 . 8  

3 . 2  

3 . 6  

4 

0 .9848  
72 

0"9806 
78 

0-9742 
83 

0"9631 

0"8 

0 .9870 
73 

0-9843 
79 

0"9810 
83 

0 .9774 

1 .6  

0 .9915 
73 

0"9909 
79 

0 .9909 
86 

0 .9920 

2 .4  

0 .9956 
71 

0.9961 
78 

0 .9972 
86 

0"9991 

3 . 2  

0 .9984 
66 

0 .9993 
75 

1.0005 
85 

1.0021 
88 

0-9396 
91 

O(T.E.) 

0"9906 
105 

1-0497 
115 

1"0901 
123 

1"1219 
128 

1"1483 
133 

1 '1705 
135 

1"1883 
137 

1"1996 
135 

1-1908 
130 

0(L.E.)  

0 .8979 
92 

0 .9449 
9 3  

0"9640 
89 

0 .9742 
84 

0 .9804 
79 

89 
0 .9757 

96 
0-9820 

100 
1.0013 

108 
1.0265 

115 
1.0502 

121 
1.0696 

125 
1.0837 

128 
1.0911 

129 
1.0891 

128 
1.0734 

123 
1.0396 

116 
0 .9979 

107 
I 
I 0 .9756 

101 
0 .9728 

95 
0-9763 

90 
0-9805 

85 
I 0 .9840  

79 

92 
0-9951 

99 
1-0011 

106 
1-0100 

1t3 
1-0208 

119 
1.0317 

124 
1.0408 

129 
1.0470 

130 
1.0490 

130 
1.0459 

130 
1-0376 

125 
1-0253 

120 
1.0121 

115 
1.0014 

107 
0 .9947 

100 
0 .9916 

93 
0 .9906 

87 
0 .9907 

79 

94 
1.0020 

103 
1.0059 

112 
1.0107 

120 
1.0161 

128 
1-0212 

134 
1.0254 

139 
1-0280 

142 
1-0286 

142 
1.0270 

139 
1.0232 

134 
1.0180 

129 
1.0122 

121 
1.0067 

114 
1-0023 

105 
0 .9992 

95 
0 .9972 

87 
0.9961 

79 

96 
1.0042 

107 
1.0067 

120 
1-0094 

131 
1-0123 

141 
1-0148 

150 
1.0168 

158 
1.0181 

161 
1.0183 

162 
1.0174 

159 
1.0156 

153 
1-0131 

144 
1.0101 

134 
1.0072 

122 
1.0045 

109 
1.0023 

98 
1.0006 

86 
0-9994 

76 

1"0001 
58 

1-0009 
68 

1-0020 
80 

1-0032 
94 

1.0046 
94 

1.0062 
128 

1.0078 
146 

1.0094 
164 

1.0108 
177 

1.0119 
186 

1-0125 
195 

1.0126 
195 

1.0121 
191 

1.0112 
180 

1.0098 
166 

I 1"0082 
150 

1"0066 
131 

1-0049 
118 

1"0034 
96 

1"0021 
82 

1"0011 
6g 
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T A B L E  4 

A erofoil Profile and Comparison of the Surface Velocities from the Coarse and Fine Grid. Bounded'case 

M = 0.7 H/c = 2 . 2 7  

A r e a  of  P ro f i l e  A = 0 .  101c 2 

C e n t r o i d  x = 0 . 4 3 c  

¢ 

Trailing edge --2 
- -1 .8  
~ 1 . 6  
- -1-4  
- -1 .2  
- -1 .0  
- -0 .8  
- -0-6  
- -0 .4  
- -0 .2  

0 
+ 0 . 2  

0-4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 

Leading edge + 2  

x/c 

1.00000 
0.93726 
0.88018 
0.82528 
0.77182 
0.71947 
0.66801 
0.61730 
0.56724 
0.51776 
0.46880 
0.42030 
0.37224 
0.32457 
0.27727 
0.23031 
0.18368 
0.13734 
0.09130 
0.04552 
0.02273 
0.01136 
0.00000 

. 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

y/c 

.00000 

.01146 
-02118 
.02728 
-03769 
.04468 
-05089 
.05633 
.06100 
.06487 
.06792 
.07011 
.07138 
.07164 
.O7O78 
.06863 
-06493 
.05928 
-05086 
.03769 
• 02725 ~ 
.01947 
-00000 

qB 
Coarse grid 

0 

0.998 

1.093 

1.170 

1.238 

1.300 

1.365 

1.423 

1.399 

1.262 

qB 
Fine grid 

0 
0.9335 
1.0009 
1.0522 
1-0948 
1.1335 
1.1696 
1.2057 
1.2366 
1.2678 
1.2981 
1.3302 
1.3638 
1-3985 
1.4219 
1.4253 
1.4024 
1.3542 
1.2836 
1-1551 
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TABLE 5 

Velocities on A erofoil Surfaces, Open Field 

Starting qo After 1st round After 2nd round 

--2 
- -1 .6  
~ 1 . 2  
- -0 .8  
- -0 .4  

0 
+ 0 . 4  

0.8 
1.2 
1.6 

+ 2  

0 
0.9868 
1.0702 
1.1284 
1.1147 
1.2136 
1.2466 
1.2734 
1-2902 
1-2770 
0 

0 
0.9740 
1.0660 
1.1278 
1.1786 
1.2224 
1.2607 
1.2932 
1.3047 
1.2290 
0 

0 
0.9724 
1.0615 
1.1278 
1.1821 
1.2269 
1.2679 
1.3056 
1.3101 
1.2258 
0 

TABLE 6 

Blockage Factor 

M : 0 . 7  M = 0  

qo ~ e l  F~/~ 1 

--2 
- -1 -6  
--1 "2 
- -0"8 
- -0-4  

0 
+ 0 " 4  

0"8 
1"2 
1"6 

+ 2 " 0  

0.972 
1-061 
1 128 
1 183 
1 230 
1 274~:0.002 
1 320±0.005 
1 313+0.002  
1 225 

0.027 
0.030 
0.037 
0.047 
0.057 
0.072 
0.078 
0,066 
0.030 

0.0106 
0.0109 
0-0113 
0.0114 
0.0115 
0-0115 
0.0115 
0.0113 
0.0109 

2.5 
2.8 
3.3 
4-1 
4.9 
6.3 
6.8 
5.8 
2.8 

U = velocity at infinity, is unity throughout. 

e = (qB - -  qo) /qo.  
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