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Flutter calculations, have been made on a strai@t-tapered unswept 
ting of low-aspect-ratio both with and wxthout wing engines to discover 
the stiffness necessary to avoid flutter up to a Ma& nwnber of 2 and to 
find whether wing engines can be used to massbalance the wing effectively. 
Simple arbitrary modes of flexure and torsion were assumed. and Calcu- 
l&ions were made using subsonic, transonic and supersonm derivatives. 

It has been found that the stiffness required to prevent flutter of 
the bare wing is not excessive and that wing engines h&ve a powerful. 
masshalencing effect if placed farwar d on the wing. The transonic case 
is the lnost critical, but as the tranaonic derlvatlves used were -two- 
dunensional thii -0ncluslon must be regarded as tentative. 
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1 Introduction 

Unswept wings have been proposed for aircraft designed to achieve a 
lich number of 2. In this report the flutter stability of a typical 
unswept wing at subsonic, transonic and supersonic speeds is investigate& 
theoretically to find (a) the structural stiffness necessary to prevent 
wing flutter, and (b) the amount of relief given by suitable location of 
the engines if these are carried on the wing. Wing flutter only is 
considered as control-surface flutter de-pen&s to a greater extent on the 
detailed shapes of the modes and less drastic mo~if'ications are neede?. 
to eradicate it. 

The arbitrary modes chosen for the bare lving ease are parabolic 
f'lexure and linear torsion about the flexural axis from root to tip. 
A?uLti.onel modes of parabolic flaxure and linear torsion about the 
flexural axis outboard of the engine oentre-lines are inoluded in the 
wing-mth-engines case. In both cases the wing is taken to be encant& 
at the root. The aerodynnrmc derivatives used are taken from different 
sources and involve approximations, an extreme case being the use of the 
trsnsonio derivatives given by linear two-dimensional theory for a 
relatively low-aspect-ratio wing. Owing to lack of data, no account is 
taken of the aerodynamio effects of the engines and their &welles, vhe 
wing being considered as unbroken in planform. 

The results for the bare wing are given in the form of the necessary 
wing stiffnesses to avoid f':utter, whilst estimated stiffnesses were used 
III the wing-with-engines case an& the variations of flutter speed with 
chordwise position of the engines are given. 

2 General data for oalculatlons 

The half wing considered is shown in Fig.1. The mean chord is 10 
feet, the taper ratio (r) 1s 5 and the aspect ratio (A) of the whole 
wing is 2.8. The wing section of a supersonic aircraft is li':ely to be 
symnetrac both about the chord ana about a vertical line through the 
mid-chord point, and the inertia axis has accordingly been assumed at 
the mid-chord. Since the trailing-eQe controls wall cover more of the 
chord than the leading-edge controls the flexural axis has been taken 
to be ahead of the mid-chord lane, at 45$ chord. The sectional mass of 
the wing IS taken to vary as the square of the looal chord and the radius 
of gyration about the inertia s.x~~ 1.6 taken to be a quarter of the local 
chord. The wing engines are assumed to be concentrated masses, possessing 
mcments of inertia in pit&, at mid semi-span. The inertia ooeffrcients 
are obtained by sperm&se integration. The structural stiffness 
coefficients are represented by overall stiffnesses 4 

f+ 
and mg based 

on the tip section. 

3 Bare x&g 

For the case of no concentrated masses, such as e-es, on the wing, 
the flutter o.haracteristios are determinea on a banary basis. The assumed 
mdes are parabolic flexure en& linear torsion of the wing about its 
flexural axis. The flutter equations were solved vdith the ala of desk 
Cal&tin& machines. 

3.1 Subsonic flutter 

The aerodynamic force and moment coefficients are esttiated on the 
basis of strip theory and equivalent constant strip derivatives, the 
spanwise integration being carried out analytically. The derivatives 
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are evaluated accord_mg to the reoommendatrons for low-aspect-rat10 wings 
given by Minhinnick~. Estimated steady motion values are assumed for the 
stiffness derivatives. The damping fierivatives are assumed the same as 
the equivalent stUY'ness derivatives where possible (e.g. :i assumed to 
be ~,a); otherwise they are obtained by a comparison of the three-dimen- 
sional steady-motion derivatives and the timing point values of the 
two-dimensionsl damping and stiffness derivatives. The inertxa cleriva- 
tives are given their two-dimensional values. All these aerlvatives are 
independent of frequency parameter. The steady-motion derivatives used 
are estimates for a Mach number of 0.9. 

The flutter equations define the relationship between the flexural 
and torsional stiffnesses for flutter at a Mach number of 0.9. The 
critmal stiffnesses at sea level are given in Fig.2 and the curve is of 
the usual subsonic type. The critical stiffnesses at any height are 
proportional to the dynamic head at that height and can be obtained frem 
Fig.2 by altering the scale. It is obvious that flight at sea level will 
call for the largest stiff'nesses. 

3.2 Swersonx flutter 

The possibility of flutter 1s investigated for three values of Enach 
number - 1.4, 1.8 and 2.5 - at heights of sea level, 10,000 feet and 
25,000 feet. The derivatives for the two lower Eiiaoh numbers are taken 
from a report by Acum2 which gives derivatives for rectangular low- 
aspect-ratio wxngs performing pitching oscillatxons at &i&h numbers of 
1.2, 1.4, 1.6, 1.8 and 2.0. The aspect ratio of the inng is too high 
for the derivatives for a Each nmber of 1.2 to be applicable, and for 
a Mach number of 2.0 Acum's derivatives were not evaluated for 
sufficiently low frequency parameters. The derivatives for a reotangulsr 
wing having the same mean chord and aspect ratio as the wing under 
consideration are used as constant strip derivatives. 

The derivatives for a Eliach number of 2.5 are -t&en fYom tables3 of 
Schwarz's two-dimensional cierivatives. Approximations to the lift 
dutrlbutions over the tip and root of the wing where the flow will not 
be two-dimensional are obtained from a report by Watkins& This gives 
the lift distribution over a rectangular wing of aspect ratio 4 per- 
forming pitching oscillations at a low frequency parameter in a super 
sonic stream. For the wing of Fig.< the force distribution over the tip, 
up to the intersection of the Ivlach lme from the tip leading edge with 
the trailing eke, IS taken to be the same as that forWatl:ms' xing, 
an&the derivative distribution over the inboard mixed region is taken 
to be the mean of the tip distribution and the constant two-dinensional 
value. The loss of aerodynamic foroe at the tip will be oompsratively 
greater for a parabolic-flexure mock than for a linear mo& and it is 
for this reason that the force distributions over the tip region, and 
not the derivative distributions are taken to be similar for the two 
wings. If the derivative distributions are assumed similes the f~??ces 
on the tip will be overestimated. Little is known about the lift 
distribution in the inboard nrxed region but the assumptions msde should 
not be too seriously III error. The structural data used are the same as 
those used in the subsonx case. 

The flutter equations are solved by assuolmg a frequency parameter 
and de+mminin g the flexural and torsxmal stiffnesses for the critical 
flutter condition. Sets of derivatives for two frequency parameters 
are used, the assumed frequency parsmeters being 0.4 and 0.6 for the 
Acum Grivatives and 0.336 and 0.672 for the Schwarz derivatives. The 
results are given in Figs.3 and 4. It w.s found that the critical 
stiffnesses were very insensitive to frequency parameter, and the curves 
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of Figs.3 and 4 make no differentiation in this respect. It will be seen 
that the curves for the different Mach numbers and heights are very 
similar in shape and show that for practical stiffnesses the torsional 
stiffness necessary to avoid flutter is greater the greater the flexural 
stiffness. This is a well hewn feature, and it arises from the fact 
that increasing the flexural stiffness brings the natural frequencies 
closer together and increases the effect of any couplings that are 
present. The uncoupled flexural and torsional frequencies are coincident 
when the flexural stiffness 
h3), 

cq# 1 is twenty times the torsional stiffness 
and it will be seen that wings with this stiffness ratio lie practi- 

cally in the middle of the unstable region in every case. As expected, 
the flutter problem becomes easier at high altitudes due to the reduction 
in the dynsmic head of the airflow at a given &ch number. In most cases 
slightly less stiffness is needed as the Mach number increases end the 
flutter requirements are saversst at the lower Mach numbers. This agrees 
with the conclusion of Green and Peattid who have investigated theoreti- 
cally the roll-torsion flutter of low-aspect-ratio rectangular missile 
Wit-lgS. 

4 Wings with engines 

Wing engines ars likely to give lower modal frequencies, especially 
for the overtone modes, and possible flutter modes csrnot in general be 
represented closely enough by two degrees of freedom. For the wing with 
engines, therefore, modes of parabolic fle- and linear twist about 
the f1exure.l axis of the Wang outboard of the engine centre-lines are 
included. in addition to the modes used in the bare wing case. Estimates 
of the associated stiff'nesses of a wing with a thickness/chord ratio of 
3s were msde and these stiffnesses are used throughout the calculations. 

The 
gu 

aternary flutterequations were solved on the R.A.E. flutter 
simulator for criLical flutter speed end frequency with different 
positions of the engine centres-of-gravity. 

Ths estimated flexural ana torsional stiffnesses of the whole wing 
measured at the wing tip in the semi-rigid modes of the binary calculation 
are 2.74 and 1.21 lb ft 106 tiespectively, in the semi-rigid modes of the 
quaternary CaJculations are 2.74 and O.gl 1 
loads at the tip are 2.74 end 0.76 lb ft 10 8 

ft 106 and for concentrated 
. The flexural an% torsional 

stiffnesses of the outer wing alone are 2.66 end 1.21 lb ft 10 in the semi- 
rigid modes and 2.66 and 0.99 lb ft 106 for concentrated loads at the tip. 

4.1 Subsonic flutter 

The 8eroaynamic derivatives used are those previously used in the bare- 
wing case andno acaountisteken of the flowthrough and over the engine 
nacelles, which are ignored in the evaluation of the aerodynsmic coefficients. 
The curve of sea-level flutter speed against chordwise position of the 
engine is given in Fi.g.5. 

Flutter is shown over en extensive speed renge but the derivatives are 
for a Nach number of 0.9 and, strictly, the curve is accurate only in the 
region of 600 knots. The results at other speeds have some practical 
significance, however. The elements of the flutter determined can be 
expressed in the form -$A + iwVB + V*C + E where w PJX~ V are the frequency 
and airspeed, A, B, C and E sre coefficients and in particular E is the 
structural stiffhsss ooefficient. If wand Vare suchthatths determinant 
is equal to zero (corresponding to a critical flutter condition) the 
determinant will also be zero for kw and kV when the structural stiffness 

coefficient is k*E. The frequency parameter (y2) , on which the 
coefficients B end C depend, till remain the ssme. Thus 1000 ft/sec for 
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one wing is equivalent to 500 f%/sec for the ssme wing with all the 
structural stiffnesses quartered. With the stiffnesses ass= it is 
necessary to have the engine centre-of-gravity forward of 4G$ chord to 
avoid flutter. If this is achieved it would seem from the steeply 
rising curve that the wing stiffness could be reduced quite con- 
siderably without any ill effects on the flutter stability. 

The results show some agreement with low-speed wind-tunnel tests by 
Gaukroged in respect of the massbslsncing effect of the localised mass 
over the c.g. range of Fig.5. He also obtained sn overtone flutter, for 
forwsrd centres of gravity of the nass, which was essentially flexure- 
torsion flutter of the wing outboard of the mass. If the effect of the 
lower aspect ratio is ignored, Fig.2 shows that, for the estimated stiff- 
nesses (Section 4)‘ the outboard wing is well clear of binsry flutter. 
The lower aspect ratio of the outboard part of the wing would probably 
make for even greater stability. 

The rapid disappearance of flutter is due to the massbalancing of 
the fundamentslwingmo&es by the engineswhentheyare forwardonthe 
wing. The effect is probably accentuated by there being a near coinci- 
dence of the fun&mental frequencieswhenthe engines are inthis area. 

4.2 !Ikansonic flutter 

Unfortunately no derivatives mm available for low-aspect-ratio 
wings in transonic flow and the derivatives used m-e those given by 
Jordan8, which are based on linear two-dimensional theory. Figure 6 
shows the results that were obtained for a height of 25,000 feet. The 
flutter curve has two branches and the range of speeds covered is greet. 
In fact the vertical extent of the curves is such that the only wsy of 
achieving stability is by careful location of the engines. For the 
stiffnesses assumed the engine centres-of-gravity have to be between 20$ 
ana 45% of the chord. The extent of the stable region remains nearly 
constant with variation of the stiffness but the range itself rcoves 
rearward as the stiffnesses srs increased. The left-hand branch has not 
been investigated fully but it is probably due to the forward position 
of the engine inducing a normal mode which has negative aerodynsmic 
dmping. Areasonable amount of structursl dsmpingwas includedwhen 
the equations were solved on the simulator. 

4.3 Supersonic flutter 

The aerodynamic coefficients used ere those used in the bare-dng 
case aa no account is taken of the airflow through ana over the engine 
nacelles, which are ignored in the evsluation of the aerodynsmuc 
coefficients. The curves of flutter speed. at 25,CCO feet against chord- 
wise position of the engine are given in Fig.6 for Mach numbers of 1.4 
aa 4.8. 

Thz flutter -e has one branch at re -a positions of the engine 
centres-of-gravity. It has rmxhthe ssnie shape as the equivalent curves 
in the t-ox&c and subsonic cases and shows a large increase in flutter 
speea when the engine centres-of-gravity are near to the flexural axis. 
Again the curves are only correct near one speed in each case with the 
assumed stiffnesses, but the variation of the coalitions for flutter 
stability tith aircraft stiffiess can be estimated as before. The curves 
near the points where the speeds are identicsl with the assund Mach 
numbers are nearly vertical and agree well with the transonic result. 
If all the stiffnesses of the aircraft are increased in the same proportion 



the furthest rearward position of the engine for flutter stability moves 
eft and eventually a condition csn be reached in which the stiffness is 
sufficient to prevent flutter with the engine in any position. Such a 
stiffness however is not likely to be countenanced on weight grounds and 
correct location of the engines must be relied on for the prevention of 
flutter. For the assumed stiffnesses stability is achieved if the engine 
centres-of-gravity are forward of 457% chord. The wing stiffnesses can 
then be decreased without incurring much further limitation of the chord- 
wise position of the engines. 

It might be noticed that the assumed frequency parameter for the 
ill q 1.4 case was 0.6 whilst that for the N = 1.8 case was 0.2. A value 
of 0.2 is more appropriate for the M = 1.4 case but the pertinent aero- 
dysnmic coefficients led to oscillations of an ill-defined character on 
the sitiator. The M = 1.8 osse was done for both frequency psrs.maters 
and the results differed little from each other. It is reasonable to 
assume that the same insensitivity to assumed frequency parameter will 
hold at a Maoh number of 1.4. 

5 Discussion 

5.1 Assumptions 

'Ihe value of the results is limited by the number of assumptions 
that have been made, especially in evaluating the aerodynamic forces on 
the wing. Such assumptions are inevitable until more data are obtained 
on vtings in three-dimensional flow, but until they ere obtained as umch 
information as possible amst be gleaned from calculations of this kind. 

The structure of a win@; with a thickness/chord ratio of 7s is likely 
to be comparatively simple, and the assumption of simple modes of 
vibration should be better then it is for conventional wings. The 
flexibility of the wing-nacelle joints will affect the modes but the 
amount present will depend on their design and is difficult to estimate. 
Chordwise distortion of the wing will probably be present but as yet 
there is no evidence of its effect either from oalculations or experience 
withaircraft already flying. It till probably be most severe on the 
inboard wing which does not plsy a very great part in flutter. Ignoring 
the nacelles aerodynemicslly should not introduce a large error; steady- 
motion results suggest that whilst the nacelle centres of pressure will 
probably be ahead of those for the wing the forces on the nacelles will 
be smaller than those on the wing, and these two effects will tend to 
cancel each other. 

5.2 Results 

The results of the calculations show that flutter stability of a 
supersonic (M=2) aircraft wing carrying no concentrated masses should 
be achieved with reasonable stiffnesses. Considering the supersonic 
results the stiffnesses show a tendency to increase 89 the Each nunber 
is reduced, bringing the t-onic range into a position of importance, 
but unfortunately no adequate aemdynamio derivatives exists with which 
to investigate this renge effectively. The evidence available from 
rocket tests suggests there is no sudden change in flutter stability at 
sonic speeds. In the wing-with-engines case the transonic derivatives 
used give results, for flutter with re arward engine positions, that 
compare well with those from supersonic derivatives. 

For the wing-with-engines case the flutter stability depends on the 
chordwise position of the engine. With favourable location of the engine 
flutter will be avoided with quite low stiffnesses, and divergence and 
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aileron reversal will set the lower limit to the wxng stiffness required. 
Limitations on engine position due to overall 0.g. requuwnents do not 
appear likely to conflict seriously with these flutter requirements. 
The forward limit set to the engine position m the transonlc case might 
prove troublesome; it IS consdered that this feature requires further 
consideration, partxularly in view of the aerdynsmic assumptions used 
in the present investigation. 

6 Conclusions 

A limited. theoretical investigation of the flutter stabdity of an 
wxwept aircraft wing of low aspect ratio both with and without wing 
engines has been made up to Mach numbers in the region of 2. It has 
heel; found that the stiffness required to prevent flutter of the bare 
wing is not excessively large an& that wing engines osn have a powerful 
massbtisncmg effect. The transonic ease appears to be the most CrItical, 
but as the transonic derivatives used were two-dimensional thus ooncluslon 
must be regarded as tentative. 
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