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Summary.--An iterative method of solution is given for the problem of loss in rolling power due to wing deformation. 
The method is applicable at subsonic or supersonic speeds, and compressibility effects are allowed for, provided the  
variation of the aerodynamic derivatives with Mach number is known. The numerical labour involved in the solution 
is not great and the accuracy is considerably greater than can be achieved by the semi-rigid method. 

1. Ir~troduction.--The loss in roiling power due to wing deformation often provides the design 
criterion for the torsional stiffness of a wing. A number of reports examine the theory of this 
problem for unswept wings. At first, the semi-rigid theories of Pugsley and Roxbee-Cox 1, and 
Hirst 2 proved sufficiently reliable in practice, and the great rapidity with which these theories 
could be applied led to their almost universal adoption. Eventually, however, it became apparent 
that  on some occasions a more exact method was desirable, and an iteration process was devised. 

There are indications that  work on swept wings is following the same course as that  on unswept 
wing s in the past. Simple semi-rigid methods are becoming no longer adequate and there has 
arisen a pressing need for an iterative process giving greater accuracy. The present paper offers 
an iterative method of solution developed on similar lines to that  for unswept wings 3, although 
it has been found convenient to use matrix notation throughout. The matrices are introduced 
purely as a shorthand notation, and no advanced matrix theory is used ; a brief explanation is 
given in the Appendix. 

The physical basis of the method of solution is the same as that  of Collar and Broadbent 3. 
A specific Mach number is assumed and the appropriate aerodynamic derivatives al, a2 and m 
are obtained for this Mach number, either from theory or wind-tunnel tests or a combination of 
both. The derivatives are determined for an arbitrary mode of deformation of the wing and are 
assumed to be constant. 

The next step is to assume a particular value of the rolling power, which is defined in terms 
of X, where X is the ratio of the rolling velocity of the aircraft considered to that  of an otherwise 
identical aircraft in the same condition but with infinitely stiff wings. When a value has been 
assigned to X it is only necessary to obtain the mode of deformation of the wings in order to 
solve the roiling equation in terms of the dynamic pressure q. From this, since the Mach number 
is prescribed, the height appropriate to the assigned value of X can be evaluated. To determine 
the mode of deformation of the wing, it is necessary first to decide what is the most useful form 

* R . A . E .  Report Structures 85, received 2nd January, 1951. 
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in which to express its elastic properties. In the method Suggested this is done by means of two 
square matrices of flexibility coefficients, related to the applicatiori of a vertical load and pure 
torque about an axis perpendicular to the centre-line respectively. A matrix iteration process, 
somewhat different from tha t  of Collar and Broadbent a, is then used to determine the mode of 
deformation. Further  iterations are performed for different values of X, and a graph of roiling 
power against height is obtained for the chosen Mach number. 

The method is more laborious to apply than the semi-rigid approach of Broadbent and 
Mansfield 4, but  on the other hand it is not subject to the error caused by the structural assumption 
of semi-rigidity. The error introduced by the aerodynamic assumptions depends "upon the 
accuracy with which the derivatives are determined for the assumed mode and the extent to 
which they then apply to the final mode. Allowance for the change of derivatives with mode, 
though not precluded in principle, would increase the labour considerably, particularly if the 
derivatives were to be determined theoretically. The iterations suggested in the present paper 
appear to converge very rapidly (although no proof of convergence is attempted) and the time 
taken to do the calculations is about the same as for the iterative method of R. & M. 2186 ~ for 
unswept wings. 

2. Assumptions and Presentation of I~itial Data.--2.1. Aerodynamic Assum~tions.--The basic 
assumption here is tha t  the aerodynamic forces on a swept wing with aileron can at all times be 
expressed in terms of the values, over a number of fore-and-aft strips, of the derivatives 
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This assumption implies not only tha t  the derivatives remain constant over a wide range of 
incidence and aileron angle, but  also tha t  they are independent of the mode of deformation*. 
Since the calculations are made at constant Mach number it is most convenient to express the 
derivatives in the form of spanwise functions for a series of Mach numbers, which can cover both 
subsonic and supersonic speeds if needed. 

One simplifying assumption is made, which differs from that  of R. & M. 2186 ~, tha t  the aileron 
angle is constant over the span. In R. & M. 2186 the aileron is assumed to be torsionally rigid 
so tha t  the aileron angle varies over the span due to the wing twist. With a swept wing, however, 
the changes of incidence along the span are in part  due t O bending and in part due to torsion. Of 
these the bending component at least cannot induce any  local changes of aileron angle as the 
aileron will be forced to bend with the wing, and since the method of the present report is to deal 
with flexibilities tha t  involve both bending and torsion without separating them, the assumption 
of a torsionally rigid aileron would represent a major complication. 

No account is taken of sideslip effects. 

2.2. Elastic Assumptions.mOther than the assumption of constant aileron angle, which has 
already been referred to, there are no restrictions imposed on the elastic deformation of the struc- 
ture. The main problem Js to express the elastic properties in the required matr ix form. 

* The var ia t ion  of a 1 against  span will no rmal ly  be known from exper iment  for a mode of constant  pitch.  A somewhat  
be t t e r  answer m a y  be given if a 1 is known for, say, a l inear  mode of twist ,  as this  will not  be so far removed from the 
t rue  mode.  I f  ex t reme  accuracy  is necessary the  var ia t ion  of ~1 could be included in the  i terat ion,  bu t  then the  increase 
in computa t iona l  effort would be ve ry  grea t  and  would des t roy  the chief a t t r ac t ion  of the  method.  
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Consider the swept-back wing shown in Fig. 1 with a fore-and-aft section (paralM to the 
aircraft centre-line) given by X X '  cutting the leading edge at X~ and the trailing edge at XT. 
A contour board is fitted to the wing in the vertical plane through X X '  such tha t  a vertical load 
can be applied to the wing on this line, and if necessary outside the section X~X~. A vertical 
load is now applied at a point Q in this section with the aircraft held at its centre-line. In general 
the section XLXr will be deflected vertically, but it will also rotate either nose-up or nose-down 
according as the load is applied well aft or well forward in XX' .  There will be one point in the 
section, Q0 say, at which a vertical load produces no rotation of XLX~. By repeating the test 
at a number of different spanwise stations a locus of points similar to Qo will be obtained (AB 
for example in Fig. 1) such tha t  a single vertical load applied at a point on the Qo line* will produce 
no rotation of the fore-and-aft section through tha t  point. This does not, of course, mean tha t  
there will be no rotation of any other fore-and-aft section, and in general for a swept wing all the 
sections inboard of tha t  loaded will rotate through a finite angle. 

Thus the fore-and-aft section through a point R on the Q0 line may rotate through an angle 0 
when a vertical load is applied at a point P on the Qo line outside the section through R. 

Let the nose-up rotation under unit down-load at P be written 

rotation at R due to load P ---- ORz. 

Then the rotation of each section of the wing under any known loading along the Q0 line can 
be obtained from the square flexibility matrix [ORpl, where the order of the matrix is determined 
by the number of strips considered. For the distributed load along the Q0 line can be considered 
as a number of concentrated loads, one being applied in each strip, when the rotations of the 
sections are given by the matrix product 

{0}  = E o l { z }  . . . . . . . . . .  (1) 

where {0} is the column matrix of the required rotations, 

{Z} is the column matr ix of the applied concentrated loads, 

and [01 is the square flexibility matr ix defined above. 

We may note certain properties of the matr ix [O 1. By definition all the terms in the principal 
diagonal are zero. Also, to first-order theory, all the terms to the left of the principal diagonal 
would be zero, since if a load produces no rotation of the section in which it is applied it will 
produce no first-order rotations of the sections outboard of itself. If EOI is obtained by means 
of a series of stiffness tests, however, any measured values of ORp, R > P should be included. 

A matr ix  similar to [O~q must now be defined under unit torque loading instead of the linear 
vertical load. Let the nose-up rotation of the section through R due to unit applied nose-up 
moment in the section through P be written : -  

rotation at R due to moment at P = ORp. 

The moment to be applied in order to determine ORp must of course be about an axis perpendicular 
to the aircraft centre-line. An equation similar to (1) may now be used to express the rotations 
of the fore-and-aft strips under a series of fore-and-aft moments (i.e., about axes perpendicular 
to the aircraft centre-line) applied one to each strip. Thus 

{0} = [01 {M} . . . . . . . . . . . . . .  (2) 

where {2Er} is the column matr ix of the applied nose-up moments (the bar is used to differentiate 
from the symbol for Mach number), 

and [0! is the square flexibility matrix. 

* The line AB of Fig. 1 obviously bears consideraMe similarity to the flexural axis of an unswept wing. 
confusion, however, it will be referred to as the Q0 line throughout the present paper. 
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The matrix [01 should be symmetric and to first order should also obey the relationship 

G~  = G~ ( =  G~), P > R . . . . . . . . . . .  (3) 

A further first-order relationship may be derived between the elements of the matrices [01 
and [0 3 . I t  can be expressed 

ORp = (x~ -- xR) ORR, P > R . . . . . . . . . .  (4) 

where x~ is the distance of the point P aft of A (see Fig.  1), 

and xR is the distance of R aft of A. 

The suffixes relating to the various strips P, R, etc., are defined to increase consecutively from 
wing root to tip ; e.g., equations (3) and (4) relate to the rotation of a strip R due to loads applied 
at the strip P which is outboard of strip R. 

The two matrices [O] and [0] together with the location of the Qo line provide all the elastic 
information required in a form useful for the iterations. Their application will be illustrated 
by  the example of section 4. 

3. The TheoreticaZ Consideration.---3.1. Derivation of the Basic Equation.uConsider the swept 
wing of Fig. 2. The elastic properties defined in section 2.2 are known, and the Q0 line (AB) is 
drawn on Fig. 2. The locus of aerodynamic centres must also be known, and it is indicated in 
its typical quarter-chord position on Fig. 2, although it is not essential tha t  the locus should be a 
straight line, and of course it may vary with Mach number. The line as drawn will be supposed 
to refer to the particular Mach number under consideration and will correspond to that  used in 
evaluating al, a2 and m. A fore-and-aft strip of chord c and width dy is shown at a distance y 
from the centre-line. In the strip dy the Qo line is aft of the aerodynamic centre by  a distance ec. 
The wing semi-span is s. The aircraft is flying with forward speed V and is free to roll about 
its centre-line. 

Application of aileron will produce a redistribution of lifting pressures over the wing that  
can be expressed as lift forces along the aerodynamic centre and pitching moments about this 
line. When the aircraft has reached a steady rolling velocity p this redistribution will be due 
par t ly  to the direct effect of the aileron, but also part ly due to the wing deformations and due 
to the aerodynamic damping in roll. The forces are converted into a series of lift forces (one to 
each strip, of which there will normally be about 6 or 8 taken over the span, some over the aileron 
sections and some not) acting along the Q0 line, and pitching moments about this line. These 
forces and moments can be written as column matrices. 

Let {L} be the matrix of lift forces under  the application of down aileron angle, 

and {/~} be the matrix of nose-up pitching moments about the Q0 line. 

We may write 
{L} = ( L 0 } 0 o -  

where Lo is the component due to 

Ly . . . .  component due to 

{ L , > / V  + 

deformation, 

damping, 

L~ . . . .  component due to the aileron application, 

0o . . . .  rotation of a reference section (say the tip strip), 

. . . .  aileron angle (assumed constant). 

In a similar way the moments can be written 

- -  { 0}0o- {M,}p/V + 
4 
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The condition of steady rolling implies that  the net rolling moment is zero, and this is expressed 
by the equation 

LYA{L} = 0 . . . . . . . . . . . . . . . .  (7) 

where [yJ is the row matrix of the dimension y applied to each strip. Substitution of equation (5) 
gives - 

Lyj({Lo}Oo -- {L,}/5/V + {Le}~) = 0 . . . . . . . . .  
% 

(s) 

The corresponding equation for an otherwise identica! aircraft with rigid wings would be 

( { "~P'V) --- 0 . . . . . . . . . .  L y ~ d L , } ~  - L 

where p, is the rolling velocity of the rigid aircraft. 

elastic akcraft  is given by/5//5, ; let this ratio be X. 

[yJ(L~}~ = LyA{L,}PV : . .  

(9) 

A measure of the rolling effectiveness of the 

Then equation (9) may be rewritten 

. . . . . . . . . . . .  ( l o )  

This equation expresses the rolling velocity p in terms of the aileron angle ~, and by means of 
equations (8) and (10) a similar relation is obtained between 00 and ~. These two equations may 
be written 

_ _ I y I { L ~ }  P x -  
v - LyJ{L,} 

and . . . . . .  ( l l )  

0o = - - (1  - -  X)LyA{L,)  
LyA{Lo} 

It  now remains to relate the forces acting on the wing to the displacements by means of the 
flexibility matrices. By means of section 2 the relation is 

{0} = -- EO]{L} + EO3{~ r} . . . . . . . . . . . .  (12) 

where {0} is the column matrix of rotations in the condition of equilibrium. 

Since the columns {L} and {21~r} as given by equation (5) and (6) are in terms of 00, p / V  and ~, 
the equation (12) can be written in terms of $ only by use of the relations (11). Before proceeding 
with these substitutions it will be convenient to write the forces L and M non-dimensionally by 
introducing the aerodynamic derivatives al, a2 and m. Consider, for example, the moment 
term Mo. The distribution of lift (al) is known for the Mach number considered, so that  

Mo -= qc dy a~(O/Oo)ec . . . . . . . . . . . . . .  (13) 

since the term ec represents the required moment arm of the lift force. Here q is again the 
dynamic pressure, and dy the width of the strip considered (see Fig. 2). 'We write 

Mo = qc,2smo . . . . . . . . . . . . . . . .  (1 4) 
where 

m o =  ea~(c/c,)2f dv . . . . . . . . . . . . . .  (15) 

is the non-dimensional aerodynamic moment*, and c, is a reference chord. The function 0/0o 
representing the variation of acquired incidence over the span is replaced bvf ,  which is a spanwise 
twist function made uni ty  at the reference section where 0 -- 0o. The word twist is used here in 
the sense of rotations of the fore-and-aft strips. The symbol ~ in equation (15) is defined by 
tile relation 

= y / ~  . . . . . . . . . . . . . . . . .  ( 1 6 )  

* The bar  is inserted over mo to avoid confusion with the s tandard  symbol for torsional stiffness. 

5 
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Finally, since the definition (15) applies to all tile strips, it may be written in matrix form 

{N0} = {(c/c~)~ea~f drl} . . . . . . . . . . . . . .  (17) 

where the brackets { } enclose column matrices. The expression corresponding to equation (14) 
is now 

{Mo} = qc,2s{No} . . . . . . . . . . . . . . . .  (18) 

The other non-dimensional coefficients are defined by expressions similar to (17), and tile six 
may be summarised 

{Z0} = {~(c/c,)f d~} 

[~0} = { ~ ( ~ l c ~ ) y  d ~ }  

so that  the equations corresponding to (18) are 

{Lo} = q~{Zo} 
{ f , }  = qc,s%} 

{Mo} = qc,2S{No} 

. .  . .  (19) 

. . '  . .  (20) 

{Me} = qc~s{m,} 

The equations (20) are now substituted in (5) and (6) to give the aerodynamic forces in terms 
of the non-dimensional coefficients (19). These in their turn are now substituted in the basic 
equation (12) which relates the aerodynamic forces to the elastic displacements. This, with {0} 
written in the form {f}Oo gives 

{f}Oo ps 
qc,s = - [o3 ({10}0o - {Z~} 5 ÷ {Z,}~) + c, E03({~o}Oo- {m,} ~s + { m , } ~ ) . . .  (21) 

It  only remains to substitute for 0o and p / V  from (I1), which gives on cancellation of 

{f}A(1 -- X) 
qC,S = - Eo? ({z0}A(1 - x )  + {z.}x - {Z,}B)  

+ c.EO?(A(1 - -  x ){~0}  + X { = ~ } -  B{,@ 
where A and B scalar quantities defined by 

[~j{zo} 
A = LvJ{z0} 

and B - -  Lvj(Z,} 

(22) 

(23) 

I t  should be noted that  in substituting in equation (21) some re-arrangements have been made 
to give the form (22) (the equation has been multiplied through by B). The equation (22) is now 
solved for each Mach number required by the iteration process described in section 3.2 and 
illustrated by the example in section 4. 

6 



3.2. The Method of Solution.--The wing is divided into a number of fore-and-aft strips. To 
make the method worthwhile from the point of view" of accuracy the total  number of strips 
should be not less than five, with at least three over the aileron span ; in practice between six 
and eight strips is usual. The elastic data appropriate to the number of strips chosen are now 
required, and are best obtained directly from stiffness tests at the required sections. If the test 
results are only available for three or four intermediate Sections, the full matrices cannot be 
obtained directly by  means of interpolation. Probably the best plan in such a case is to obtain 
the principal diagonal terms of the matrix [0] by  interpolation, from which by use of the properties 
mentioned in section 2.2 the two matrices [0], and [(~1 can be built up on first-order theory. 
Correction factors may then be deduced on the basis of the test results already available: for 
example 

0t,R = OR~ = I'02ORR, P > R ; 

0Rp increased by 1 per cent from its first-order value, P > R;  

OvR = - -  0"01ORp, P > R;  

where the factors of 2 per cent, 1 per cent and --1 per cent are obtained from the test results. 
If the aircraft is in the design stage, the stiffness matrices may be calculated. 

A particular Mach number is now assumed at which the calculations are to be made, and 
preferably one at which the spanwise variation of the derivatives al, a~ and m is known. All the 
required data are now available. Matrix columns are now set up to give the four invariable 
coefficients l~, le, m; and m,, from which the constant B (equation (23)) is evaluated. An initial 
modal function is now assumed; if no special guidance is available it is probably best to choose f 
proportional to ~. A value of X is assigned, and the values of A (equation (23)) and A (1 -- X) 
worked out. The two factors of the stiffness matrices in equation (22) are now worked out as 
column matrices, and the matrix multiplication carried out as indicated. Summation of the two 
columns now leads to a column which as indicated by equation (22) should be proportional to f. 
In general this will not be so and a second mode is derived with which the iteration is repeated. 
The process is continued until  the mode obtained repeats tha t  assumed to the required accuracy. 

Suppose tha t  when the iterations have converged the value of the last column (corresponding 
to the right-hand side of equation (22)) is n times tha t  of the function f (normally n will be of the 
order 10 .6 due to the presence of this factor in the flexibility matrices). Then, from equation (22) 

2A(1 -- X) 
pg2 __ i~Cr sn 

where a is the speed of sound, 

and M is the Mach number. 

. . . . . .  (24) 

By repeating the iteration with different values of X (normally only one iteration is needed for 
each new value) a graph of X against pa ~ (and therefore against a l t i tude) is  obtained. Further  
calculations at different Mach numbers will yield the complete picture from which a cross-plot 
will show the variation of rolling power (X) against Mach number for any chosen height. 

The solution in terms of X is readily converted into a solution in terms of ps/~V or ps/~a, for 
by equation (11) 

_ _  x . . . . . . .  ( 2 s )  
V L, TJ{z.} . . . . . . . .  



This may be written 

ps X /B  (26) 

which can be compared with equation (22) of R. & M. 21865. . Also 

2bs ps 
~a- -  M ~ . . . . . . . . . . . . . . . . .  (27) 

I t  is evident that  by use of equations (26) and (27) the results of the calculation can be presented 
in any desired form. 

4. An Exa%C)le of the Method.--The example which follows is intended only to illustrate the 
method of solution described in section 3.2. The wing considered is hypothetical and is not 
intended to approximate to any known design, and the aerodynamic and elastic data are not 
based on any detailed design; they are, however, believed to be reasonable. 

4.1. The Initial Data.--The wing considered is shown in Fig. 3. The sweepback over the root 
portion is 45 deg and over the tip portion 30 deg at the quarter-chord. The aileron spans the 
portion of reduced sweepback with a ctrord ratio of 20 per cent. Six strips are considered of which 
the outer three cover the aileron span. 

The elastic data are assumed to have been already converted to the form required either from 
stiffness tests (with or without the method of interpolation suggested in section 3.2) or from 
theory. The matrix [0] has been multiplied by the reference chord cr which in this example is 
taken as the centre-line chord (obtained by producing the leading and trailing edges to the 
centre-line); this saves an additional multiplication in evaluating the right-hand side of 
equation (22). The Q~ line is shown on Fig. 3; it is quite possible that  the shape in which it has 
been drawn (which is, in fact, parabolic) may be unrealistic, though the tendency for it to move 
ahead of the leading edge at the tip is correct for a swept-back wing. The two matrices are  

[ 0 ] =  r 0 0"08 0"29 0"51 0"80 1"167 

/ o 0 0.52 1-02 1.72 2.56[ 
--0.01 --0.03 0 0.99 2.31 3 .91 |  

/ - 0 . 0 2  - 0 . 0 4  - 0 . 0 4  0 2.33 5 .11 |  
- o . o 7  - o . , o  - o . , o  o 

[--0"04 --0"09 = -0"13  --0"18 --0"18 o J 

X 10 . 6  

(28) 

cr[O]= 2.19 2 
2.26 5 
2.26 5 
2.26 5 
2.26 5 
2-26 5 

both in radians per pound. 

26 2"26 2"26 2:26 2 
16 5"28 5"28 5"28 5 
28 9"80 10"05 10"05 10 
28 10"05 17"0 17"4 17 
28 10.05 17.4 36:2 37 
28 10.05 17.4 37"1 81 

28 
05 

× 10  . 8  

(29) 

The calculation will be made for a Mach number of 0.8, and for this value the aerodynamic 
derivatives are given by the graphs of Fig. 4. (Values of al are appropriate to a mode of constant 
pitch.) These graphs show the spanwise variation of the derivatives and are typical of high-speed 
tunnel results. They do not, however, relate specifically to the wing considered and since they 
are quite a rb i t ra ry  it has not been thought worthwhile to carry through calculations for a series 
of Mach numbers as would b~ done in practice. 



4.2. The Iteration Process.--Table 1 gives a typica l  i terat ion and  is explained be low;  
value of X assumed is O. 4. 

T A B L E  1 

the 

General  dimensions" s = 20 ft Let  X = 0" 4 

c, = 12.89 It 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Strip ~ d~ c/c ,  e(c/c,) a 1 a~/al m a~ 

0"18 
0-35 
0.52 
0"66 
0"8 
0"94 

0"16 
0"18 
0"16 
0"12 
0"16 
0"12 

0.876 
0.759 
0.641 
0- 545 
0.448 
0.352 

0.192 
- -0-037 
- -0 .205  
- -0 .282  
- -0 .276  
- -0 .236  

4-0 
4-3  
4 .7  
5.1 
5 .5  
3 .9  

0.02 
0-06 
0 .13 
0.50 
0 .63 
0 .63 

0.02 
0"04 
0-10 
0.56 
0-71 
0-71 

0"08 
0"26 
0"61 
2"55 
3"46 
2 "46 

(10) (11) (12) (13) (14) 

~ C / C. 14¢~ 1 ( e a , - - m )  , _ l~ l~ m~ 

- -0 .00216 
- -0 .9400 
- -0 .189  
- -  1.024 
- -1 .273  
- -0 .830  

0.101 
0.206 
0.252 
0-220 
0.316 
0.155 

0 .01 t2  
0.0356 
0.0628 
0.167 
0.248 
0.104 

0.0194 
--0.00765 
--0.517 
--0.0622 
--0.0869 
--0.00365 

- -0 .000302 
- -0 .00548 
- -0 .0195  
- -0-0670 
- -0 .0913  
- -0-0350 

0.76502 
whence B - - 0 . 4 5 3 5 1 - - 1 " 6 8 7  

(15) (16) (17) (18) 

al  . c/cr . d~ ea~ . (c/or) ~ . d~7 f3  lo 

0.560 
0.589 
0.484 
0.334 
0.394 
0.165 

0"108 
--0"0219 
- -0 .0992 
--0"0938 
--0"1089 
--0"0388 

O- 0694 
O" 158 
0-294 
O" 480 
O" 793 
1"0 

O. 0389 
O" 0931 
O. 142 
O" 160 
0.312 
O. 165 



T A B L E  1--continued 

0 .  76502 
whence A a -- O" 62373 -- 1. 227 ; A3(1 - -  X) = 0"7359 

1 
2 
3 
4 
5 
6 

(19) (20) (21) (22) (23) (24) (25) 

m0 Matrix factors Matrix products sum f~ 

0.0075 
--0.0035 
--0.0292 
--0.0450 
--0.0864 
--0.0388 

--0.0501 
--0.0909 
--0-0994 

0-076 
0.0624 

--0-00798 

0"0138 
0"00361 

--0.00927 
0.0550 
0.0557 
0.0159 

0"0433 
0-113 
0.191 
0.113 

--0.0371 
--0"00180 

0.3035 
0.669 
1.232 
2.138 
3.520 
4.276 

0.3468 
0.782 
1.423 
2.251 
3.483 
4.274 

0.0811 
O. 183 
0.333 
O. 527 
0.815 
1.0 

Note . - -The  factor 10 -6 is omit ted from columns (22) to (24) inclusive. 

Columns (1) to (4) give the geometric da ta  of the  wing strips and column (5) gives the  posit ion 
of the  Q0 line t aken  from Fig. 3. Columns (6), (7) and (8) are the  aerodynamic derivatives (the 
mid-str ip values) taken  from Fig. 4. Column (9) is obtained by  the  product* (6) × (7), and 
column (10) is [(5) × (9)] --  [(4) × (8)]. The coefficients l,, l~, m, and me can now be worked 
out and t abu la ted  in columns (11) to (14); the relations are 

(11) = (2) × (3) x (4) x (6) 
(12) = (3) X (4) X (9) 
(13) = (2) x (3) x (4) x (5) x (6) 
(14) = (3) x (4) x (10) 

The constant  B is now evaluated : 

B = (2) × (11) .  
(2) × (12) 

Columns (15) and (16) should be worked out at this  stage in order to derive the  columns 
appropria te  to l0 and ~0; column (15) is given by  (3) x (4) × (6) and column (16) by  (5) × (15). 
A mode of distort ion mus t  now be chosen, and as ment ioned earlier a good first a t t emp t  in lieu 
of any  direct suggestion as to the  correct mode is to choose f proport ional  to r/. In  the  present  
calculation, however, a test  of the  rap id i ty  of the  convergence of the  process was desired, and the  
mode ini t ia l ly  chosen was deliberately made quite artificial (see Table 2). Consequent ly  the  
i terat ion actual ly  shown in Table 1 is tha t  performed on the  th i rd  mode;  this mode is given in 
cotumn (17). The coefficient l0 is now obtained by  (15) and (17) and given in column (18). The 
constant  As is obta ined:  

(2) x (11) .  
A3 = (2) × ( lS)  

I t  will be noted tha t  A assumes a different value with  each value of f,  and hence the  suffix a 
denotes tha t  the  value of A obtained corresponds to fa. Column (19) gives Vao, which is obtained 
by  the product  (16) × (17). The mat r ix  factors can now be calculated;  thus  column (20) is 
[-- (18) × 0.7359] -- [(11) × 0.4] ~ [(12) × 1.687] where 0.7359 is Aa(1 --  X), 0"4 is X and 
1.687 is B. In  a similar way  column (21) is [(19) × 0.7359] + [(13) × 0-4] --  [(14) × 1.687]. 

* In this description the product of two columns is to be taken as the column obtained by multiplying the elements 
of the first column by the corresponding elements of the second column 
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The matrix [0] given by equation (28) is now post-multiplied by  the column (20) to give (22) 
and the matrix c,[O] given by equation (29) is multiplied by (21) to give (23). The sum of the 
columns (22) and (23) gives column (24) which is proportional to the new mode. This mode, 
f4, is given in column (25) by dividing column (24) by the value at the sixth strip. The iteration 
from column (17) onwards is now repeated until  column (25) repeats column (17); the columns 
corresponding to (17) and (24) are now given in Table 2 for the set of iterations until  convergence 
was achieved. 

TABLE 2 

(17)1 (24)1 (17)~ (24)~ (17)3 (24)3 (17)4 

.f~ A f3 f4 

0 
0 
0 
0 
0 
1 

0.266 
0.581 
0.949 
1.468 
1.173 
0.310 

O. 858 
1.87 
3.06 
4.74 
3-78 
1.0 

0.422 
0.959 
1.789 
2.917 
4-822 
6.079 

0.0694 
0.158 
0.294 
0.480 
0.793 
1.0 

0.3468 
0.782 
1.423 
2.251 
3.483 
4.274 

0.0811 
O. 183 
O" 333 
O" 527 
0.815 
1"0 

(24), (17)5 (24)5 (17)6 

A A 

0.3547 
0.800 
1.46 
2.314 
3.598 
4.420 

O. 0802 
0.181 
O. 330 
0.524 
0.814 
1.0 

0.354 
0.799 
1.457 
2.31 
3.593 
4.413 

O. 0802 
O. 181 
O. 330 
0.5235 
0.814 
1.0 

The mode given under (17)1 was that  originally assumed, and in this case the impossible mode 
given (zero everywhere except at the tip) was chosen to test the rapidity of the convergence. 
The first iteration leads to an equally improbable mode, but  the second iteration gives fa which 
is already fairly close to the final mode. The error in f8 is about 15 per cent in the worst case 
near the root, in f4 is nowhere greater than about 1 per cent and in f5 is zero to three-figure accuracy. 
The final mode (for which A (1 -- X) = 0" 6996) is plotted in Fig. 5. Reference to equation (24) 
shows that  the height is now obtained from the ambient pressure p~ given by 

2 × 0 .6996  × 106 
YP~ = Pa2= 4.413 × 0.64 x 20 × 12.89 

-- 1,921 

from which the height h = 14,300 ft. 

As regards the convergence of the overall process, the critical parameter is A (1 -- X) divided 
by the number in the sixth strip of column (24). The values of this parameter, which is directly 
proportional to oa 2, converge in the following manner : - -  

9.55, 0.0208, 0.172, 0.158, 0.158, 
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or expressed as ratios to the final value of 0. 158 in such a way as to be always greater than uni ty 
(' octaves '  up or down), 

60-4, 7.60, 1.09, 1.00, 

which is exceedingly rapid in view of the large initial error. 

4.3. The com251ete Cah:ulation.--The iterations described in section 4.2 have sufficed to give the 
air density o, and consequently the height, at which the aircraft considered will have a rolling 
performance given by X = 0.4 at a Mach number of 0.8. To cover the variation with height 
the calculations must be repeated from column (17) onwards for different values of X. This 
process is not so laborious as it may seem since the mode changes very little with X from that  
already found, and for the calculations relating to the example of this section one iteration proved 
sufficient for each new value of X. Table 3 gives the result of these calculations, and the curve 
of X against height is plotted in Fig. 6. 

TABLE 3 

X pa 2 h 

0 
0.1 
0-2 
0.3 
0-4 
0.6 
0.8 

3~564 
3,117 
2,697 
2,302 
1,921 
1,220 

582"5 

--6,000 
- -  1 , 5 0 0  

2,700 
6,900 

11,600 
22,700 
38,900 

In Table 3, pa 2 is in pounds per square foot and h in feet above sea-level. Table 3 (Fig. 6) 
shows that  complete aileron reversal does not occur at a Mach number of 0.8 for any real height 
(i.e., above sea-level), but it also shows tha t  the value of X has fallen to 0.13 at sea-level which 
represents very poor rolling performance. 

For reasons stated earlier the calculations have not been made for any other Mach number. 
Nevertheless the sort of variation to be expected with~Mach number is indicated by the dotted 
curves of Fig. 6; it is apparent tha t  for M = 0, X = :  1 at all heights, and further tha t  all the 
curves are asymptotic to the line X = 1 as the height becomes indefinitely large. If Fig. 6 is 
plotted for sufficient Mach numbers then it presents the roiling effectiveness under all conditions, 
although the cross-plot of X against Mach number for different heights is also useful from some 
aspects. 

To plot the actual roiling performance, it is necessary to transform X into the wing-tip helix 
angle ps/~V given by equation (26). In a similar way the expression ps/~a, which is proportional 
to the roiling velocity per unit aileron angle, is obtained from equation (27), and the variation 
of these two parameters with height at M = 0.8 is given by Table 4. 

TABLE 4 

x h ps/~V ps/~a 

0 
0.1 
0-2 
0.3 
0.4 
0.6 
0-8 
1.0 

--6,000 
- -  1 , 5 0 0  

2,700 
6,900 

11,600 
22,700 
38,900 

oO 

0 
0"059 
0.119 
O- 178 
O" 237 
0.356 
O. 474 
O" 593 

0 
O" 047 
O" 095 
O" 142 
O. 190 
0.285 
O- 379 
O" 474 
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Since the calculation is made for constant Mach number; the two columns ps/~V and 2bs/~a are 
directly proportional to each other, but the constant of proportionality will be different at different 
Mach numbers. In Fig. 7 ~s/~V is plotted against height for M = 0.8 and the trend for other 
Mach numbers shown dotted ; ps/~a is treated similarly in Fig. 8. 

5. Concluding Remarks.--The method outlined in this paper is not restricted in application 
to subsonic speeds. I t  was in fact first developed to assist in the interpretation of aerodynamic 
tests on rocket models at both subsonic and supersonic speeds, and provided the aerodynamic 
data  are available it can be used over any range of Mach numbers. 

Since the example of section 4 was worked out for a purely hypothetical  case the results have 
no great quanti tat ive significance. I t  is, however, interesting to compare the value of the familiar 
stiffness criterion for wing flutter achieved by the hypothetical  wing of section 4 with the standard 
requirements. The criterion is 

1 ( h I" (a0) K=E a-Eg / . . . . . . . . . . . .  

where m0 is the Symmetric ' t o r s iona l '  stiffness measured at ~ = 0.7 in respect of a torque 
applied about an axis perpendicular to the centre-line 

d is approximately 0.9s 

c,,, is the geometric mean chord 

and Vd is the design diving speed (E.A.S.) of the aircraft. 

If the design diving speed of the aircraft is taken as that  corresponding to M = 0.8 at sea 
level, then the achieved value of K (using slug, foot, second units) is 0.025*. This is considerably 
less than the usual requirement for wings without wing engines of 0.04, although not very 
different from the requirement of 0.028 for wings carrying engines. Two major factors, as well 
as a minor one, should be mentioned as relevant to the numerical value of 0.025 achieved. 
First it is clear from Figs. 6 to 8 that  the rolling power achieved at M = 0.8 at sea level (the 
hypothetical  design diving conditions) is quite inadequate. Moreover little change in the values 
of the derivatives would be needed to reduce the margin of positive rolling power under these 
conditions to zero. A more realistic value of the design diving speed might be tha t  appropriate 
to M = 0-8 at 10,000 ft, in which case K = 0. 029. Secondly the ' torsional ' stiffness is tha t  
obtained by applying a torque about an axis perpendicular to the centre-line, and the flexibility 
therefore is not purely torsional in the sense of rotation about the spar axis. The magnitude and 
direction of this effect will depend on the relative bending and torsional stiffnesses, and on the 
degree of sweep ; for example, if the wing is very flexible in bending and of appreciable sweepback 
no amount of purely torsional stiffening will have much effect on the achieved value of K. This 
effect is shown in Ref. 4. The third minor comment which must be made on the value of 0-025 
for K for the hypothetical wing is tha t  K should be based (as regards comparison with the 
criterion used in the past in flutter work) on the symmetric stiffness, which would perhaps give 
a value for K some 10 per cent higher than tha t  quoted. 

* This value is based on the stiffness obtained from the example of section 4, which is antisymmetric (see below). 
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LIST OF PRINCIPAL SYMBOLS 

Constants defined by equation (23) 

Aerodynamic section lift coefficient 
Aerodynamic section moment coefficient 
Torsional stiffness criterion defined by equation (30) 
Aerodynamic lift force 
Component of lift due to rolling velocity 
Component of lift due to distortion 
Component of lift due to aileron 
Mach number 
Aerodynamic pitching moment 
Component of moment due to rolling velocity 
Component of moment due to distortion 
Component of moment due to aileron 
Forward speed 
Aileron effectiveness given by p/p~ 
Speed of sound 
Aerodynamic derivative OCL/~c~ 
Aerodynamic derivative OCL/O$ 
Wing chord 
Value of c at a reference section 
An elastic parameter (see section 2.2 and Fig. 1) 
Distortion function 0/00 
Height 
Non-dimensional counterparts of Lo, Ly and L e respectively 
Aerodynamic derivative -- (0 C,,]O ~) CL .... t 
Torsional stiffness of wing 
Non-dimensional counterparts of Mo, My and M e 
Rolling velocity 
Roiling velocity of hypothetical rigid aircraft 
Dynamic pressure 
Wing semi-span (measured perpendicular to centre-line) 
Dimension parallel to aircraft centre-line 
Dimension perpendicular to centre-line 
Flexibility matrix (see equation (1)) 
Flexibility matrix (see equation (2)) 
Wing section incidence 
Angle of rotation of fore-and-aft sections 
Value of 0 at the tip section 
Non-dimensional counterpart of y (rl ~- y/s) 
Air density 
Aileron angle relative to wing 
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A P P E N D I X  

The M a t r i x  No ta t ion  

The notation used is taken from Ref. 5. Square brackets, [ ], are used generally to denote 
matrices, and brackets { } and L J denote column matrices and row matrices respectively• In 
practice the only matrices denoted by square brackets in the present report are square matrices• 
Thus equation (1) 

may  be written 

{0} = [ol  {z} 

-011 

02 I 
03l 

. , 

o . J  

011,  •I2, B l g  0 1 n -  

821,  (022, . . . . . . .  0 2  n 

08i, Oa2, • . . . . . .  0 ~  

0,~1 " . . . . . . . . . .  O~n 

z~7 
z2 I 
Z~ I 

.&/ 

which is equivalent to the n linear equations 

o~ = o J ~  + o~.,z~ + o J ~  + . . .  + o~,z,, 

o2 - -  o21z1 4- o22z,, + o23z~ + • • •  + o2,~z, 

On = O n l Z  1 A 7 0 , , 2 Z g  A[_ O n 3 Z  3 _~_ • • • 31_ O,~nZn • 
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A row matrix post-multiplied by a column matrix gives a scalar quantity. Thus equation (10) 

P 
LyJ{L,} ~ --=- [yJ{L,} XV 

is the same as 

[Yl, Y2, Y3 . • • Y,J  L ,  l'] :!:j ~: = [ Y l ,  Y2,  Y8 . - iy,7,]  L, 1] p 
Ly ~ , X V  

Ly 31 

which is equivalent to the single equation 

( y ~ L ,  ~ -k  y ~ L ,  ~ + y3L~ ~ + . . . + y,,L~ ,~) 

= (y:tLy~ + y~Ly2 + Y3Ly3 + . . .  :k y,,Ly ,,) X V  

The more involved equations of the report, such as equation (22), are built up from simple 
products of the type illustrated in this Appendix. 
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