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S~tmmary.--The present report deals with the frequency response of pivoted gyratory systems, and in particular, 
with the response of the ordinary rotor blade, the Hiller servo-blade, and the Young-Bell stabiliser to sinusoidal 
disturbances caused by pitching oscillations with constant amplitude. Physically, the problem corresponds to a single 
degree of freedom system excited by beats. The resulting forced oscillations are characterised by the two following 
phase angles : - -  

(a) a phase angle in the plane of rotation 
(b) a phase angle of the oscillation of the tip-path plane, where the tip-path plane may be considered as a solid 

body. 

The latter, which is the controlling consideration, depends on the specific damping of the system and the frequency ratio. 

In general, the tip-path plane of the systems mentioned above oscillates in two directions, longitudinal, and lateral, 
where both modes of oscillation can be split up into components in phase with the attitude and in phase with the rate 
of change of attitude. For each individual system explicit formulae are given and the effect of the frequency ratio on 
the control characteristics of the Bell stabiliser and Hiller servo-blade is shown by vector loci. 

1. I•troduction.--.In the investigations of stabili ty problems and transient motions of 
rotary-wing aircraft, the flapping motion of the rotor blades is generally considered as a 
sequence of steady conditions. This means the coefficients al, bl of the flapping angle 
~(~ = a0 -- al cos ~0 -- b~ sin ~r) are calculated from a. state of steady rotation corresponding to 
the momentary angular velocity of the helicopter. 

In actual practice, however, the helicopter oscillates in pitch and/or roll. The present reDort 
checks the 'quas i - s ta t ic '  approximations mentioned above by investigating a rotor which is 
subjected to pitching oscillations with constant amplitude. For simplicity, it has been assumed 
tha t  the rotor oscillates about its centre. 

The equations of motion for the rotor blade hold good too for the Hiller servo-blade and-- i f  a 
minor term is omit ted--for  the Bell stabiliser. I t  is therefore convenient to deal with the three 
systems together. The first part  of the report gives the analytical solution for each case, and in 
the second part  the well-known vector loci method for the study of servo-mechanisms is applied 
to the two control devices. Moreover, a physical interpretation of the results is given. 

2. Discussio~¢ rind Solution of the Equations of Motio~.--The equation of motion for the flapping 
of a rotor with plain flapping and drag hinges can be written as 

p .5 2Kf2CJ -5 X22¢1 = -- 200~sin %0 -5 ~cos ~ -5 2K9,~ cos ~0 . . . . .  (1) 

* R.A.E. Report Aero. 2367, received 18th December, 1950. 
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In this equation 
f/ is Flapping angle of the blade 
f2 Angular velocity of the rotor 
K Specific damping (damping/critical damping). K -- 7B4/16 for an ordinary rotor 

blade 
Inertia number of t heb lade  

B Tip loss factor 
c~ Angle of helicopter in pitch, positive nose-up 
~p Azimuth angle of blade measured from rear position in direction of rotation. 

The terms on the right-hand side of equation (1) represent the exci£ement due to the gyroscopic 
effect, the excitement due to the mass forces of the angular acceleration and (underlined) the 
excitement due to the air forces caused by the rate of change of the angle in pitch. I t  can be 
easily shown that  equation (1) may also be applied to the angular displacement of the Hiller 
servo-blade, and, if the underlined term'is omitted, to the Bell stabiliser. In the case of the Hiller 
servo-blade, the specific damping is given by 

K----~Ys ( 1 - - B s  4) . .  . . . . . . .  . .  . (2) 

where ~'s is Inertia number of the servo-blade 

Bs Beginning of the profile of Hiller servo-blade in fraction of its radius, 

see Ref. 1, Chapter 6. If, as in the case of the Bell stabiliser, the see-saw motion is provided 
with viscous damping, the quant i ty  K is defined by the equation 

Damping moment = 2KY2I¢ . . . . . . . . . . . . . .  (3) 

where I ---- moment of inertia ot the bar about  its pivot. 

In  the following the three gyratory systems are d e a r  with separately. To avoid reiterations, 
we shall underline the term which does not apply to the Bell stabiliser. This means tha t  tha t  
term has to be omitted if the damping by the air forces is replaced by viscous damping. 

(a) Flap!bing motion, of the rotor blade. 

With 
= a. -- a~ cos ~p -- b~ sin ~ . . . . . . . . . . . . . .  (4) 

/~ = sin ~(alf) -- bl) -- cos ~(a~ q- b~£2) . . . . . . . . . .  (5) 

p = sin ,p(- + 2P-al + ÷ cos ,p(-- -- 2 bi + .... (6) 

equaLion (I) can be split up into the two following differential equations with constant coefficients 

q- 2Kg'a~ q- 29~ -- 2K9/~ -- bl ----- -- 2£2a . . . . . .  (7) 

-- 2Kg"bl - 2~bi -- 2Kgal -- d~ = 2K~a + ~ . . . . . . .  (8) 

For the ' quasi-static' condition (i.e., ~1 = ~/~ = bl = bl = 0), it follows 

. . . . . . . . . . . . . . . . . .  (9) 

where K -'- ~/16. Equations (9), (I0) are the well-known 'formulae for the flapping motion of a 
rotor with uniform angular pitching velocity ~. 
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Let us consider now a rotor which is subjected to angular  oscillations with constant  ~mpiitude 
such as 

----- s<0 sin vt . . . . . . . . . . . . . . . . . . .  (11) 

• In  this case it is convenient  to divide a~ and bl into components  proport ional  to the  a t t i tude  
and proport ional  to the rate of change of a t t i tude  : - -  

a~ = al~,~ + a~& . . . . . . . . . . . . . . . .  (12) 

b~ = b~,~z + b~qd: . . . . . . . . . . . . . . . . .  (13) 

Insert ing the values a~, bl, c,. and of their  differentials in equations (7), (8) and equat ing coefficients 
leads to the following equations for the  unknowns a~, a~q, b~ and b~ : - -  

+ 2 K a ~  - -  2-;2a~J) + ;~bl~ + 2K;~b~q9 - -  0 . . . . . .  (14) 

+ 2a~ + 2KCtlqD -- 2Kbl~ @ -;2b~qQ - -  - -  2 . . . .  (15) 

+ ;,2a~ + 2K~O"a~qY2 - -  2Kb~. + 2~,"b~qY2 = --  ~ . . . .  (16) 

- -  2Kaa~ + ;"axJ2 - -  2b~ - -  2Kblq~ - -  2 K  . . . . . . .  (17) 
where approximately* : - -  

a ~ = - - K 2  q .;2 1 - -  K~ +.~2 . . . . . . . .  (18) 

K 
aa¢.c2 --. K 2 q_ 72 . . . . . . . . .  . .  .. (19) 

1" 5 K 8 ~  2 
b~. - - -  ( K  2 _1_ ;2)2 . . . . . . . . . . . .  ( 2 0 )  

K ~ 
= - / K  + . . . . . . . . . . . . .  (21) 

In  these equations the frequency ratio 

; - . . . . . . . . . . . . . . .  (22)  

The result is represented in Figs. 1 and 2. Fig. 1 shows the components  of the  longitudinal  tilt 
and Fig. 2 the  components  of the lateral tilt  of the  rotor disc in fraction of the  ampli tude c~0. 
The curves, are p lo t ted  against the  frequency ratio 7, the  full lines correspond to an inert ia 
number  ), = 12 and the  broken lines to r = 8. I t  is to be seen tha t  the  flapping mot ion depends 
to a large extent  on the  frequency ratio 7. For the  free oscillations of a present-day full-scale 
helicopter 7 < 0.02. I t  follows from Figs. 1 and 2 tha t  in this f requency range the  components  
in phase with the a t t i tude  are smaller than 0.001~o, i.e., they  are practically zero and can be 
neglected. This means tha t  the  flapping motion of the  blade is at  any t ime proport ional  to the  
ins tantaneous rate of change of a t t i tude  and tha t  the  ' quasi-static ' equations (9) and (10) may  
be used. It  is td be seen that ,  if ~ ~ K ~, the  equat ions (19) and (21) for the  oscillating rotor 
take  the  form of equations (9) and (10) corresponding t o '  quasi-static 'condi t ions .  For the ordinary 
rotor blade this is generally the  case. 

This simplification, however,  cannot  be applied if h igher  frequency ratios occur. It  will be 
shown later tha t  the  stabilising effect credited to the downwash lag (see the  model  test  described 
in Ref. 2) is par t ly  due to the  static stabil i ty caused by the  term al~ of the  flapping motion.  
General ly  speaking, the  quanti t ies  al~ and b~ increase with 

(a) an increasing frequency ratio 
(b) a decreasing inertia number  ), 
(c) the  magni tude  of the  damping of tile pitching motion. 

* To  get  d imensionless  te rms ,  alq a n d  .b~¢ h a v e  been mu l t i p l i ed  b y  X2. 
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The  l a t t e r  effect, which  is no t  deal t  w i th  in t he  p resen t  repor t ,  can be easily found  if t h e  ro to r  
is sub jec ted  to an  increasing or decreas ing oscillation, i.e., if equa t ion  (11) is replaced b y  

= ~oe a' sin vt . . . . . . . . . . . . .  (23) 

In  this  case the re  is ano the r  pa rame te r ,  n a m e l y  t he  non-d imens iona l  d a m p i n g  

---- ~ / t )  . . . . . . . . . . . . . . .  ( 24 )  

In  t h e  mode l  tes t  discussed in Ref. 2, 

~, - -  8 . 8  

= O. 147 . . . . . . . . . . . .  (25) 

= --  0 .0123  

If  these  figures are appl ied  to  a full-scMe hel icopter  wi th  a ro to r  speed of ~9 = 25 per  sec, we 
ob ta in  a per iod  of oscil lat ion of 

2~ 
1" 7 sec . . . . . . . .  (26) = 2 5  × 0 . 1 4 7 =  "" TO 

a nd  a t ime  to ha l f - ampl i tude  of 
0 . 6 9  

Tn --  25 × 0 .0123  ---- 2- 2 sec . . . . . . . . .  (27) 

I t  is obvious  t h a t  these  t imes  lie outs ide  the  n o r m a l  range  of a full-scale helicopter• 

The  calcula t ion of the  f lapping m o t i o n  of t he  mode l  t es t  m e n t i o n e d  above  resul ts  in : - -  

a~  --  - -  0 .063  

alqf f2  = - -  1"96 
. . . . . . . . . . . .  ( 2 8 )  

bl~ ----- - -  0" 061 

blq~ = - -  0"89 

This  mea ns  t h a t  the  long i tud ina l  t i l t  of t he  ro to r  disc has a c o m p o n e n t  of 0. 063 e~c~0 in counter -  
phase  wi th  the  a t t i t u d e  and  a c o m p o n e n t  of 1 .96 × 0. 147 e~t~0----0.29 e ~ 0  in coun te rphase  
wi th  the  ra te  of change  of a t t i tude .  The  fo rmer  has the  same effect as an  au to-p i lo t  w i th  the  
cont ro l  character is t ics  G ---- 0. 063 and  by  t h a t  a decisive effect on  the  d y n a m i c  s tabi l i ty .  As 
shown in Ref. 1 t he  long i tud ina l  and  la tera l  m o t i o n  of the  S ikorsky  R-4 in hover ing  flight is 
s tabi l ised by  0~ > 0 .12  and  0~ > 0. 015 respect ively.  

(b) Control characteristics of the Hiller servo-blade.---If t he  iner t ia  forces of t he  ma in  ro tor  are 
neglected,  i.e., if we assume t h a t  t he  m o m e n t  of iner t ia  of t he  m a i n  blades abou t  the i r  long i tud ina l  
axis is negl igibly smal l  in compar i son  wi th  the  m o m e n t  of iner t ia  of t he  servo-blades a b o u t  t h e  
p ivot ,  equa t ions  (18), (19), (20) and  (21) can also be appl ied  d i rec t ly  to  the  a u t o m a t i c  cont ro l  
d i sp lacements  of t he  Hiller  sys tem.  Let  t he  cyclical p i t ch  imposed  on the  m a i n  ro to r  b lade  be 

--  G sin ~ + G cos ~ . . . . . . . . . .  (29) 

where  G ~ --  ( 0 ~  + 0~)  . . . . . . . . . . . .  (30) 

- - + . . . . . . . . . . . .  ( 3 1 )  

and  w ~ a z i m u t h  angle of the  m a i n  rotor• In  this  case the  cor responding  quan t i t i e s  are 

0~ wi th  --  a:~ 

0 9 , ,  ~ a l q  

G ,, + bl~ 

" F q  , ,  A 7 Dlq 

(32) 
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Considering the fact that  due to the small specific damping of the Hiller servo-blade 

K~ + 7~ ~ 1 , 

it follows from (32) and equations (18), (19), (20) and (21):-- 

7~ 
0~ -= KS + 72 . . . . . . . . . . . .  

K 
Oq.O - -  K ~  + ~ . . . . . . . . . . . .  

1" 5K3"~ 2 
I'~ ---- - -  ( K  s _]_ -;~)2 . . . . . . . . . .  

K ~ 
rq t2  - -  ( K  s + 7~)~ . . . . . . . . . .  

where the specific damping K of the servo-blade is given by equation (2). 

(33) 

(34) 

(35) 

(36) 

(c) C o n t r o l  charac t e r i s t i c s  o f  the  B e l l  s t a b i l i s e r . - - l f  the gyratory system is damped by viscous 
damper instead of air forces, the right-hand side of equation (17) becomes zero. Thus, considering 
(32), the equations (14), (15), (16) and (17) can be rewritten as :  

- .  2 K o ~  + 2;~OqO + 7~1~ -+ 2 K ' ; ~ r p 9  -= 0 . . . . . .  (37) 

- -  20~ - -  2 K O q O  -- 2KF~ + 7~Fq.c2 ---- -- 2 . . . . . .  (38) 

- -  72o~ - -  2K-;~Oq9 - -  2 K r ~  + 2;~Tq~9 = - -  ~ . . . . . .  (39) 

+ 2KO~ - -  72o~9 - -  2F~ - -  2 K F ~ O  = 0 . . . . . .  (40) 
where approximately :--- 

~2 

0~ - - K 2  + ~ . . . . . . . . . . . . . .  (41) 

K 
oq#2 _ K S  + .~ . . . . . . . . . . . . . .  (42) 

O. 5 K F 2 ( K  2 - -  ~ )  
/~--= - -  (K ~ + ; ~ ) ~  . . . . . . . . . .  (43) 

K27~ 
Fq.O -----}- (K ~ + ~)~ . . . . . . . . . . . . .  (44) 

I t  should be noted tha t  equations (41), (42), (43) and (44) refer to the linkage ratio n = 1 and that  
for tile case n # 1 the automatic cyclic pitch has to be multiplied by the linkage ratio n = (change 
of pitch setting of main blade)/(displacement of the bar). 

By comparison with the control characteristics of the Hiller system, see Table 1, it follows 
that  the longitudinal control displacements of the two devices are identical, The lateral control 
displacements, however, which result in a coupling between the longitudinal and lateral motion, 
are distinct. Before going into these questions more thoroughly, we shall give a physical 
interpretation of the phenomena. 

3. P h y s i c a l  I n t e r p r e t a t i o n  o f  the P h e n o m e n a . - - I t  is shown in the Appendix that  the mass forces 
due to the angular acceleration, i .e . ,  the second term on the right-hand side oi equation (1), can 
be neglected. This means tha t  the equation of motion for a gyratory system provided with 
viscous damper may be simplified to 

2K.O¢ + = - 2O&sin ,ot . . . . . . . . .  (45) 

5 
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to angular oscillations with constant  ampli tude If this system is subjected as given by  
equat ion (11), the  above equat ion of motion can be wri t ten as 

/~ + 2K~93 + f2~ := -- 259~0~0 cos ~t sin sgt 

---- --  @VO~o(sin .v~t + sin v2t) . . . . . . . .  (46) 

where the  two irequencies ~,~,. are given by  the following equations : - -  

9}1- - -  if2 ~ -  'P = . O ( ~  ~ -  7 )  . . . . . . . . . .  (47) 

v~-- ~ --  1, = ,Q(1 --  ;) . . . . . . . . . . .  (48) 

Equat ion  (46) represents the  equat ion of mot ion of a single degree of freedom s y s t e m  excited by 
beats. As the  u n d a m p e d  natural  f requency of the  system is identical with its angular velocity D, 
the  ratios (frequency of forced oscil lat ion)/(undamped natural  frequency) are equal to (1 + ?) 
and ( 1 -  7) respectively. 

I t  is known from vibrat ion analysis (see  any tex t  book on vibrations, for instance Ref. 5) tha t  
the  forced vibrations of equat ion (46) can be wri t ten  as 

fi = fl~ sin (v~t --  ¢1) + fl~ sin (~2t --  ~_~) . . . . . . .  (49) 

fl~,~ = ampli tudes of the  forced oscillations, 

#1,2 -- phase angles, 

In these equat ions 

where the  index 1 refers to the  exci tement  with the  frequency ~1 and the  index ~ to tha t  with 
the  frequency v2. It  has already been ment ioned  tha t  for the  full-scale helicopter ; < 1. This 
means  tha t  approximately  ~ = /~. The quanti t ies  #1, ~ which depend on the  specific damping 
of the  system and on the  ratio (forced f requency) / (undamped natural  frequency) can be taken  
from the well-known phase angle curves of a single degree of freedom system, see  Fig. 3. The 
curves are p lo t ted  for K--= 0, 0.03, and 0 .75 ;  t hey  correspond to (a) an u n d a m p e d  system, 
(b) a Bell or Hiller system with a following t ime of approximately  3 sec and (c) to an ordinary 
rotor blade with ), = 12. 

Wi th  /~1 = ~., = 133 equat ion (49) reads as 

= ~3{sin (~,~t --  ~ )  -t- sin (~t  --  ¢2)}. 

On the  other  hand,  the  forced oscillations of equat ion (46) can be wri t ten  as 

fl = ;?o sin (~t  --  ~01) cos (vt --  9) . . . .  

where ~/Jl is Phase angle in the plane of rota t ion 

9 is Phase angle of the  tilt of the  t ip-path  plane. 

. . . .  ( 5 o )  

. . . .  ( 5 1 )  

. . . .  ( 5 3 )  

. . . .  ( 5 4 )  -- ~----~PI+9- 
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If we consider the  t ip-path plane as a solid body  with the two degrees of freedom longitudinal  
and lateral  tilt, the  former determines the azimuth angle of the  oscillation of the  t ip-path  plane, 
and the  la t ter  its t ime lag. Equat ion  (51) can be t ransformed into 

- ½rio{sin (~lt --  ~01 --  9) + sin (~2t --  ~J1 -+- 9)}. .. (52) 

By  comparison with equat ion (50) it follows tha t  

- -  4 1  = - -  ~ 1  - -  9 . . . . . . . . . .  



This means v, = ½(q~ q- ~2) . . . . . . . . . . . .  (55) 

= 1 ( / }  . . . . . . . . . . . .  
- 

where (~, 2 can be taken from Fig. 3. For small frequency ratios ~; 

q)l + q)2 ----- 180 deg 

and by that  w, -- 90 deg, 

i.e., the t ip-path plane of the system described by equation (45) oscillates in the fore-and-aft 
direction. 

With regard to the time lag of the tilt  of the t ip-path plane, the following statements can be 
made. From equation (56) and Fig. 3 it follows that  ,p increases with 

(a) an increasing frequency ratio ?, and 

(b) a decreasing specific damping K. 

In the case of the ordinary rotor blade (K = 0"75) the phase angle ¢ is negligibly small, i.e., we 
have quasi-static conditions. For the slightly damped Hiller or Bell system (K -- 0.03), however, 
the phase angle ~ is appreciable. This means tha t  such control devices apply both control 
displacements in phase with the at t i tude and in phase with the rate of change of attitude. 

It  should be noted tha t  the above remarks on the phase angles ~/J, and ~o apply also to the other 
two excitement terms on the righthand side of equation (1). These excitements (viz., ~ cos v) 
and 2KD~ cos W) have their maxima and minima at ~p = 0 deg and 180 deg respectively and 
result therefore in a lateral oscillation of the t ip-path plane. This means they give a coupling 
of the longitudinal motion with the lateral motion where the phase angle 9 depends again on the 
specific damping of the system and the frequency ratio T. 

4. Representation of the Automatic Control Displacements of the Hiller and Bell Systems by 
Vector Loci.--Analogous to equations (7) and (8), the equations of motion for the longitudinal 
and lateral control displacements of the Hiller and Bell systems can be written as 

~, q- 2KO,~ -- 2Ob~ -- 2KO%% = -- ~ -  2KO4 . . . .  (57) 

2~2~s q- 2K£22G q2 #~ q_ 2K.C2~ = -- 2 0 4  . . . . .  (58) 

If the system is subjected to oscillations with constant amplitude as given by equation (11), 
the disturbances on the right-hand side of the above equations change sinusoidally and .any 
term in either equation (57) or equation (58) can be represented by a vector rotating with the 
angular velocity v. 

Formally, this is done by replacing 
c~ by c~ e i"* 

.~, by v%e i~* 

v% by &oe i~ 

where v% and v% are now unknown complex numbers. 
and (58) read : - -  

v%(-- 7~ + 2K'~i) -- v%(2K -q- 27i) = q- g(~2 _ 2K~i) 

,9s(2K + 2~i) q- G(--  72 + 2K7i) = -- ~ 2 7 i . . .  

In Vector representation equations (57) 

. . . .  (59) 

. . . .  (6o) 

These vector equations hold good for both the Hiller servo-blade and the Bell stabiliser, 
lat ter  case the underlined term in equation (59) has again to be omitted. 
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4.1. Hiller  Servo -B lade . - -For  the  control  displacements  ot 
f rom equat ions (59) and (60):--- 

72 - -  2 K 7 i  --  (2K + 27i) 

- -  2~i - -  72 + 2 K 7 i  
~gs 
(Z 

- -  72 + 2 K 7 i  - -  (2K + 27i) 

2K + 27i - -  72 + 2 K 7 i  

the  Hiller  servo-blade it follows 

. . . . . .  (61)  

- -  73 + 2 K 7 i  

2 K  + 27i 

-;2 __ 2 K 7 i  

- -  27i 
. . . . . . . .  (62) 
(Z 

- -  ~ + 2K'~i 

2 K  + 27i 

- -  (2K + 27i)  

- -  7 2 + 2 K ~ i  

For  the  longitudinal control  displacement  : -  

Re = C 2 + D 2 (63)  

( ~ )  B C  + A D  
I m  --= - -  C 2 + D 2 (64) 

where  Re (0,/0c) and I m  (e,/c~) denote  the  real and imaginary  parts  of (v~,/~) respectively and  the 
coefficients A,  B,  C, D are givert by  

A = 4 ~ 2 ( 1  + K  2 ) - 7 4  . . . . . . . . . . . .  (65) 

B - - 4 K 7 ( 1  --  72) . . . . . . . . . . . .  (66) 

C = 4 K  2 +  ; ~ - - 4 7 2 ( 1 + K  2) . . . . . . . .  (67) 

D = 4 K 7 ( 2 -  72) . . . . . . . . . . . . .  (68) 

The corresponding equat ions for the  lateral control  displacement  of the  Hiller servo-blade are : -  

Re -- C2 + D 2 . . . . . . . . . . . .  (69) 

( ~ )  C F  + D E  
I m  - C 2 _~_ D 2 (70) 

where C, D are again given by  equat ions (67), (68) and  

E = 2K72 . . . . . . . . . . . . . .  (71) 

F----- 4K27 . . . . . . . . . . . . . . .  (72) 

The meaning  which has to he a t t ached  to these results is t ha t  the  control  displacements  #,, #c 
consist of two components ,  one (the real part)  in phase wi th  the  a t t i tude  ~, and  another  (the 
imaginary  part) in phase wi th  the  ra te  of change of a t t i tude.  We shall deal wi th  these questions 
more  thoroughly  in connect ion wi th  the  vector  loci. 
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4.2. Bell Stabiliser.--In the same manner ,  the  Bell stabiliser is investigated.  If the  underl ined 
term in equat ion (59) is omitted,  the  following results are obtained : -  

Re = C2 + D2 . . . . . . . . . . . .  (73) 

(I- ')  CH + DG 
Im -- C2 + D2 . . . . . . . . . . . .  (74) 

ql  
R e ( ~ C )  --  C2 + D ~ . . . . . . . . . . . . . .  (75) 

D J  ' (76) 
Im ( ~ )  - C2_Jr_D. . . . . . . . . . . . .  

where G = ~ 2 ( 4 -  ~) . . . . . . . . . . . . . .  (77) 

H = 2 K ; ( 2 -  7 ~) . . . . . . . . . . . .  (78) 

j - -  2K7 ~ . . . . . . . . . . . . . . .  (79) 

The connection between tile vector representat ion and the control characterist ics 0~,, Oq, F~,, Fq 
for bo th  systems (Hiller and Bell) is given by  

. . . . . . . . . . . . .  

Im ~ = - - 0 ~ 8 9  × 7 = - -  0~v . . . . . . . . . .  (81) 

R e ( V ~ )  = --  F~ . . . . . . . . . . . . . .  (82) 

Im ~ = --  FJ2  x ~ = --/~qv . . . . . . . . . . .  (83) 

Equat ions  (63), (64), (69), (70) and (73), (74), (75), (76) represent  the  exact  solution for the  forced 
oscillations of the  two control  devices. I t  has been found, however, t ha t  the  approximate  
solutions of section 2 (see Table 1) agree very  closely wi th  the exact ones. 

4.3. Vector Loci . - -We shall deal now wi th  the  representat ion of the  above results by  vector loci. 
For  the  reader who is not  familiar  wi th  this  kind of representat ion,  some in t roduc tory  remarks 
are given. See also Ref. 4. 

The vector loci show the  output  (magnitude and phase) of a servo-mechanism for a given 
sinusoidal input  as a funct ion of the  f requency ~. In  graphical  studies, however, great  confusion 
would arise if all the  output-vectors  were plotted.  Therefore only the line joining the tips of all 
output-vectors  is drawn and individual  values of f requency are marked  along it. The direction 
in which the  output -vector  moves with  increasing frequency is indicated by  an arrow. 

Let  us take  the  case of a hypothe t ica l  auto-pilot  governing the pi tching mot ion of an aircraft  
as an example, see Fig. 4. The input  vector c~ (given b y  the  ampli tude of the  angular  oscillation 
in pitch) is plot ted hor izontal ly  in the  posit ive direction of the  real axis.. As differentiat ion of 
a vector is equivalent  to a mult ipl icat ion of the  length of the  vector by  v and a forward rota t ion 
th rough  90 deg, the  veloci ty vector 4 shows in the  positive direction of the  imaginary  axis. 
The  ou tpu t  vector 6, i.e., the  control displacement,  changes in magni tude  and phase with  the  
frequency v, where for the  f requency v~(j = 1, 2, 3 . . . )  the  magni tude  equals ~s. 
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Another, and for our purpose more convenient, interpretation is tha t  the control displacement 
may be divided into components in phase with the att i tude and in phase with the rate of 
change of attitude. If the att i tude vector is plotted horizontally as mentioned above, the former 
is identical with the real, and the latter with the imaginary part of the complex number $. 

In Figs. 5 to 7 the corresponding vector loci for the longitudinal and lateral control displacements 
of the Hiller servo-blade and Bell stabiliser are shown. The output-vector represents the 
quantities (t~s/c~) and (v~,/c<) respectively, or, in other words, the cyclical pitch imposed on the 
main blades due to a pitching oscillation with the amplitude c<0 = 1. The specific damping 
K - -  0" 03, i.e., for an angular velocity of £2 = 25 per sec the f011owing time amounts to 

2 .3  
TI -- KY2 -- 3 sec 

where T s is defined as the time in which an angular displacement of the system about its pivot 
is reduced to a tenth of the initial value. 

The figures 0, 0.01, 0.02, etc., indicated along the vector loci refer to the frequency ratio ;. 
As already mentioned, for a present-day full-scale helicopter 0 < ; < 0.02. 

Fig. 5 represents the longitudinal control displacement due to pitching motion and can be 
applied to both the Hiller and Bell system. It  will be  seen tha t  the vector loci is a semi-circle 
with the radius 0.5 about the point (-- 0.5 + 0i) as centre. For ; = 0, the control displacement 
is equal to zero ; and for ; = oo, ~s is equal to and in counterphase with the at t i tude c~. One 
can easily verify that  the shape and scale of the vector loci is independent of the quant i ty  K, 
and  tha t  for another specific damping K only the accompanying ;-figures along the semicircle 
change. I t  follows from equations (33) and (34) that,  if the ratio ; / K  is constant, a series of 
conditions are obtained resulting in the same longitudinal control displacement. For example, 
the two conditions ~ = 0.01, K = 0" 03 and ? = 0.02, K = 0-06 give the same control displace- 
ment O s, namely 

0. le0 in counterphase with the attitude, and 

0.3s<0 in counterphase with the rate of change of attitude. 

I t  should be noted tha t  this rule may only be applied to the lo~¢gitudi~al control dispiacement. 

Figs. 6 and  7 give the lateral control displacement v~c of the Hiller servo-blade and Bell stabiliser 
due to the pitching motion. I t  will be seen that  the lateral control displacements of the two control 
devices are distinct. For ; = 0" 02, for instance, #c is approximately 

± 0. 005~.0 in the case of the Bell stabiliser and 

:~ 0.015C~o in the case of the Hiller system. 

These lateral control displacements give a coupling of the longitudinal motion with the lateral 
mot ion and can therefore be used to compensate an existing coupling between these two motions. 

: 5. Conclusio~es.--A gyratory system subjected to pitching oscillations about its centre is 
excited by 

(a) the gyroscopic effect of the rotating masses, 

(b) air torces due to the angular velocity of the pitching motion (this excitement disappears 
if the system is provided with viscous damper), and 

(c) mass forces due to the angular acceleration. 

As shown in the Appendix, the latter effect can be neglected, 
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If there is no" delta three '  effect, i.e., if the undamped natural frequency of the flapping or 
see-saw motion is equal to the angular speed of the system, the phase angle in the plane of 
rotation is approximately 90 deg. This means that  excitement (a) gives predominantly a longi- 
tudinal and excitement (b) predominantly a lateral oscillation of the tip-path plane, where the 
tip-path plane may be considered as a solid body having the two degrees of freedom, longitudinal 
and lateral tilt. I t  can be seen that  the t ip-path plane follows the disturban4es with a certain 
time lag where the phase angle is given by 

t a n g = ~  1 - -  K 2 ~  . . . . . . . . . . . .  (84) 

In this equation ; = frequency ratio of the pitching motion and K = specific damping of the 
system. 

The phase angle 9 has the effect that  one component of the longitudinal or lateral tilt of the 
t ip-path plane is out of phase with the rate of change of attitude, or, in other words, in phase 
with the attitude. For the longitudinal motion of the rotary wing aircraft it means that  there 
is a kind of static stability which, as shown in Ref. 1, is an essential condition for the dynamic 
stability. 

The phase angle ~ of the rotor blade of a full-scale rotary wing aircraft is generally negligibly 
small, i.e., the flapping motion of the ordinary rotor blade is at any time proportional to the 
instantaneous rate of change of at t i tude and may therefore be considered as a sequence of steady 
conditions. However, the component in phase with the att i tude can no longer be neglected if 
higher frequency ratios ; occur. One can easily verify that  the stabilising effect credited to the 
downwash lag (see Ref. 2) is part ly due to the static stability caused by the flapping motion in 
phase with the altitude. 

For the Bell stabiliser and Hiller servo-blade the specific damping K is much smaller than 
that  of the ordinary rotor blade. This means that  even for small frequency ratios ; appreciable 
phase angles occur. Or, in other words, the said control devices apply both automatic control 
displacements in phase with the att i tude and in phase with the rate of change of attitude. 

6( 

6(0 

12 

~I~ ~2 

I 

LIST OF SYMBOLS 

Angle in pitch, positive nose-up, radn. 6( = 6(o sin vt 

Amplitude of pitching oscillation, radn 

Circular frequency of pitching oscillation, per sec 

Frequency ratio, ~ = v/~? 

Angular velocity of gyratory system, per sec 

Frequencies, per sec 

= n - = n ( 1  - ;) 
Moment of inertia of gyratory system about its pivot, It lb sec" 

Azimuth angle, radn, measured in sense of rotation from the down-wind position 

Angular displacement of the gyratory system, radn. For the ordinary rotor blade 

f l  = C~o - -  C~ 1 C O S  ~o - -  bl sin W, 
where 

al ~ al~6( @ al~& 

bi = b1~6( + bi¢~ 
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q>l 

~)~ 
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T? 

LIST OF SYMBOLS- -con t inued  

Specific damping of gyratory system (damping/critical damping), i .e . ,  tile 
damping moment  

M~ = 2KI,Q 

For the ordinary rotor blade: K = ~B,/16 

For the Hiller servo-blade: K = (~s/16)(1 -- Bs ~) 

Tip loss factor of an ordinary rotor blade, B ~ 0.98 

Beginning of the profile of Hiller servo-bl~de in fraction of Rs 

Inertia number of blade 

Inertia number of a single Hiller servo-blade, ~s = Rs~csasp/(I/2) 

Radius of Hiller servo-rotor, ft 

Chord of Hiller servo-blade, It 

Lift-curve slope of Hiller servo-blade 

Density of air, lb sec ~ ft -~ 

Cyclical pitch, radn 

= - + 

Phase angle in plane of rotation, radn 

~1 = ½(#1 + #~) ~ 90 deg 

Rate of change of attitude, radn per see, q -- 

Phase angle of the oscillation of the tip-path plane, radn 

= 

Phase angle of an ordinary single degree of freedom system with the undamped 
natural frequency f2, a specific damping K and excited by the frequency 
h = ~(1 + 7), radn 

The same if excited by tile frequency v2 = X)(1 -- ;), radn 

Damping factor of an increasing or decreasing oscillation such as 
-- c~0e ~~ sin vt, per see 

Non-dimensional damping factor, i = Z/S) 

Time, sec 

Period of oscillation, sec 

Time to half amplitude, sec 

Following time, time to reduce the angular displacement of a gyratory system 
to a tenth of its initial value, see 
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A P P E N D I X  I 

Effect of theAngular Acceleration on the Longitudinal Tilt of the Rotor Disc* 

In  the  following the effect of the  angular  acceleration (mass torces) on the longi tudinal  t i l t  of 
the  rotor disc is investigated.  If only the disturbances due to ~ are considered, equations (7), (8) 
read 

+ 2Kt?~al + 2t?~ -- 2Knb~ -- l)1 = 0 . . . . . . . .  (85) 

- -  2 K ~ 1  - -  a l  - -  2Kf2~b~ -- 2nD~ = a . . . . . . . . .  (86) 

Or, as vector equat ions : - -  
al(2K + 27i) + b~(7 ~ -- 2K';i) = 0 . . . . . . . .  (87) 

a1(7 ~ -  2K'~i) -- b~(2K + 27i) = -- ; ~  . . . . . . .  (88) 
; 

From equat ions (87), (88) i t  follows tha t  

\ + i  Ca+D  / . . . . . .  

where the  quant i t ies  C, D are given by  equations (67), (68) and the nota t ion  (a~/~)acc indicates 
t h a t  only the acceleration term on the  r igh t -hand side of equat ion (1) is considered. The physical  
in te rpre ta t ion  of equat ion (89) is t ha t  one component  (the real part) is in phase wi th  the  a t t i tude  
c~ and another  component  (the imaginary  part) in phase with  the  rate of change of a t t i tude  4. 
If higher orders of 7 t han  74 are neglected, the  following approximat ions  can be used : - -  

The component  in phase wi th  the [ 0.75K274 
a t t i tude  [ -- ( K ~ T  ~))2 ~0, 

the  component  in phase with  the  / 0-5K~73 
rate of change of a t t i tude  / --  (K 2 + 72)2 c~0. 

. .  (90)  

. .  (91)  

* I t  should be noted that  the~present report deals only with the mass forces due to angular accelekation and that  the 
still somewhat dubious effect of the downwash lag is neglected. However, at the time being some tests with oscillating 
rotors are in progress at the Royal Aircraft Establishment and it is to be hoped that  these tests give some information 
on this subject. 
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In  these equations c~o --  ampl i tude of the  oscillation in pitch. For comparison, the  tota l  tilt  
(a~/c~o),o~,~ of the  rotor disc and the  tilt (a~/C~o)=o due to the angular acceleration ~ have been 
calculated, see Table 2. 

In  these examples 7 = 12 and ; = 0.02, 0.06, and 0-10. It  is to be seen tha t  within the  
range investigated,  the  acceleration term of equat ion (1) contributes less than  2 per cent to the  
total  tilt  of the  rotor disc, i.e., the  enforced oscillations due to the  angular acceleration can be 
neglected. This result does no± agree with t ha t  of Ref. 3. I t  should be noted tha t  the physical 
in terpreta t ion for the  longitudinal  or lateral tilt  of the  rotor disc given in Ref. 3 is somewhat  
misleading:  The 'accelera t ion  de r iva t ive '  aal/a~, for instance, includes both  

(a) the  enforced longitudinal  oscillation due to the  angular acceleration, and 

(b) the  longitudinal  component  out of phase with ~ and introduced by  the  phase angle ~ in 
the  response of the  rotor disc to gyroscopic effect. 

This means the  t e rm aal/O~ is not  a t rue ' accelerat ion '  derivative. The same applies to the  
' accelera t ion '  derivat ive abl/O~ of Ref. 3. 

T A B L E  1 

Response of Gyratory Systems to Oscillations with Constant Amplitude such as ~ = Cto sin vt 

~I(X -- 

R o t o r  b l ade  

K -  yB~ ~ v 
16 ' 12 

Hi l le r  s e r v o - b l a d e  

2 - 3  v 

K - - T  f12, ; 12 

Bell s tab i l i se r  

2 - 3  v 
K - -  ~ = - -  

T f12 '  12 

~2 

0~ = + K2 + ~ 

~2 

~--- K- ~ (1 - -  K 2) 

K 

1 
K 

1 "5K3~ 2 
bl~= (K . + ~2). 

1" 57 ~ 

K 

K 4 
bl~ 12 = 

(K~ + V~)~ 
""- - -  1 

~2 

K ~ + ~ 

0~12= - - a a ~ 1 2 =  + - -  
K 

K 2 + ~2 

1" 5K3~ 2 

(K 2 + ~2)2 

K ~ 
(K 2 + ~2)2 

0 ~  = + l  

-~Ct = 

/ ',12 = + - -  

K 

K ~ + "~2 

--½K~(K" -- ~) 
(K ~ + ~)~ 

K 2 ~2 
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T A B L E  2 

Effect of the Angular Acceleration on the Longitudinal Tilt of the Rotor Disc 

y =  12 ~ = 0 " 0 2  ~ = 0 " 0 6  ~ = 0 " 1 0  

5t 1 ' 
(E ) to t a l  

Component in 
phase with 

Component in 
phase with 

Component in 
phase with 

Componentin 
phase with 

- -  0 . 4  × 1 0  - 3  

- -  2 8  × 1 0  - 8  

+ 0.2 x 10 -6 

+ 6 x 10 -6 

- -  3 . 7  × 1 0  - ~  

- -  8 6  x 1 0  - a  

+ 20 x 10 -6 

+ 152 X 10 -6 

- -  1 0 - 5  x 1 0  - ~  

- - 1 4 0  x 10 -s 

+ 150 x 10 -6 

+ 6 9 2  × 10 -6 
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