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Sumamary —The present report deals with the frequency response of pivoted gyratory systems, and in particular,
with the response of the ordinary rotor blade, the Hiller servo-blade, and the Young-Bell stabiliser to sinusoidal
disturbances caused by pitching oscillations with constant amplitude. Physically, the problem corresponds to a single
degree of freedom system excited by beats. The resulting forced oscillations are characterised by the two following
phase angles :—

(a) a phase angle in the plane of rotation
(0) a phase angle of the oscillation of the tip-path plane, where the tip-path plane may be considered as a solid
body.
The latter, which is the controlling consideration, depends on the specific damping of the system and the frequency ratio.

In general, the tip-path plane of the systems mentioned above oscillates in two directions, longitudinal and lateral,

where both modes of oscillation can be split up into components in phase with the attitude and in phase with the rate

of change of attitude. For each individual system explicit formulae are given and the effect of the frequency ratio on
the control characteristics of the Bell stabiliser and Hiller servo-blade is shown by wvector loci.

L. Imtroduction.—In the investigations of stability problems and transient motions of
rotary-wing aircraft, the flapping motion of the rotor blades is generally considered as a
sequence of steady conditions. This means the coefficients a,, &, of the flapping angle
B(B = a, — a, cos y — b; sin y) are calculated from a.state of steady rotation corresponding to
the momentary angular velocity of the helicopter.

In actual practice, however, the helicopter oscillates in pitch and/or roll. The present report
checks the ‘ quasi-static * approximations mentioned above by investigating a rotor which is
subjected tc pitching oscillations with constant amplitude. For simplicity, it has been assumed
that the rotor oscillates about its centre.

The equations of motion for the rotor blade hold good too for the Hiller servo-blade and—if a
minor term is omitted—for the Bell stabiliser. It is therefore convenient to deal with the three
systems together. The first part of the report gives the analytical solution for each case, and in
the second part the well-known vector loci method for the study of servo-mechanisms is applied
to the two centrol devices. Moreover, a physical interpretation of the results is given.

2. Discussion and Solution of the Equations of Motion.—The equation of motion for the flapping
of a rotor with plain flapping and drag hinges can be written as

[3'—}—2KQ,8'—[—Q2/3:—ZQo'csinzp—{—é'ccosw—l—ZKQdccosw... .. (1)
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In this equation
g 1is Flapping angle of the blade
Angular velocity of the rotor

Specific damping (damping/critical damping). K == y B*/16 for an ordinary rotor. .
blade :

Inertia number of the blade

Tip loss factor ,

Angle of helicopter in pitch, positive nose-up

" Azimuth angle of blade measured from rear position. in direction of rotation.

N B

& ty™

The terms on the right-hand side of equation (1) represent the excitement due to the gyroscopic
effect, the excitement due to the mass forces of the angular acceleration and (underlined) the
excitement due to the air forces caused by the rate of change of the angle in pitch. It can be
easily shown that equation (1) may also be applied to the angular displacement of the Hiller
servo-blade, and, if the underlined term is omitted, to the Bell stabiliser. In the case of the Hiller
servo-blade, the specific damping is given by

Y .
K =71 — BsH P 4]

where ys is Inertia number of the servo-blade ‘
‘ Bs Beginning of the profile of Hiller servo-blade in fraction of its radius,

see Ref. 1, Chapter 6. If, as in the case of the Bell stabiliser, the see-saw mection is provided
with viscous damping, the quantity K is defined by the equation

Damping moment = 2KQI§ .. .. .. .. e .. 3

where / = moment of inertia ot the bar about its pivot.

In the following the three gyratory systems are dealt with separately. To avoid reiterations,
we shall underline the term which does not apply to the Bell stabiliser. This means that that
term has to be omitted if the damping by the air forces is replaced by viscous damping.

(a) Flapping motion of the rotor blade.

With

f=a,— a,cosyp — b, siny .. e .. .. .. .. (4)
B = sin p(a,Q — b,) — cos p(d, + 0.2) .. . .. . .. (5)
f = sin p(— b, + 20a, + 0%0,) + cos p(— d, — 202b, + %) .. .. (8
equation (1) can be split up'into the two following differential equations with constant coefficients
+ 2K 0%, + 204, — 2K0Qb, — b, = — 206 N V)|
— 9K Q%, — 20b, — 2KQd, — dy = 2KQd + é. .. (8

For the  quasi-static ’ condition (i.c., d; = d, = b, = b, = 0), it follows

1 a .

3 ‘
b — % (10)

where K = »/16. Equations (9), (10) are the well-known formulae for the flapping motion of a
rotor with uniform angular pitching velocity «.

o
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~Let us consider now a,_rotor which is subjected to angular oscillations with constant amplitude
such as
o= o,sin vf. .. .. .. .. .. .. . . .o (1)

In this case it is convenient to divide a, and &, into components proportional to the attitude
and proportional to the rate of change of attitude :—

Ay = A0 + 25,4 .. .. .. .. .. .. .. o (12)
by = by + b0 .. .. .. .. .. .. .. .. (18)

Inserting the values ay, b;, « and of their differentials in equations (7), (8) and equating coefficients
leads to the following equations for the unknowns a,,, a,,, b,, and b,,:—

+ 2Ka,, — 2v°a,,Q + v*b,, + 2Kv*h,,2 = 0 (14)
+ 2a,, + 2Ka,, 2 — 2Kb,, + 0,2 = — 2 .. (15
+ v*a,, + 2Kv°a,, 2 — 2Kb,, + 29%0,,2 = — »° . .. (16)
— 2Ka,, + ¥ a,qu — 2by, — .,.Kbqu = 2K .. (17)
where approximately™® :— '
b= — s - (K O
. K ’
4,2 = — K I 3¢ (19)
1-5K%*?*
bloc (K2 _'_ ‘2)2 (20)
K4
blq.Q = — mg . (21)
In these equations the frequency ratio
_ y
V=15 (22)

The result is represented in Figs. 1 and 2. Fig. 1 shows the components of the longitudinal tilt
and Iig. 2 the components of the lateral tilt of the rotor disc in fraction of the amplitude a,.
The curves. are plotted against the frequency ratio 7, the full lines correspond to an inertia
number y= 12 and the broken lines toy = 8. Itisto be seen that the flapping motion depends
to a large extent on the frequency ratio ». Ior the free oscillations of a present-day full-scale
helicopter ¥ << 0-02. It follows from Figs. 1 and 2 that in this frequency range the components
in phase with the attitude are smaller than 0-001¢,, i.e., they are practically zero and can be
neglected. This means that the flapping motion of the blade is at any time proportional to the
instantaneous rate of change of attitude and that the ‘ quasi-static ’ equations (9) and (10) may
be used. It is to be seen that, if »* < K?, the equations (19) and (21) for the oscillating rotor
take the form of equations (9) and (10) corresponding to * quasi-static * conditions. For the crdinary
rotor blade this is generally the case.

This simplification, however, cannot be applied if higher frequency ratios occur. It will be
shown later that the stablhsmg effect credited to the downwash lag (see the model test described
in Ref. 2) is partly due to the static stability caused by the term a,, of the flapping motion.
Generally speaking, the quantities a,, and &, increase with

(a) an increasing frequency ratio »
(6) a decreasing inertia number y
(¢) the magnitude of the damping of the pitching motion.

* To get dimensionless terms, a,, and -b,, have been multiplied by 2.

3
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The latter effect, which is not dealt with in the present report, can be easily found if the rotor
is subjected to an increasing or decreasing oscillation, .., if equation (11) is replaced by

o = e sin vt . .. .. .. .. .. .. (23)

In this case there is another parameter, namely the non-dimensional damping

1=121/2. .. .. e .. .. o (29
In the model test discussed in Ref. 2,

y =88

7 = 0-147 .. .. .. .. .- . (25)

1= —0-0123

If these figures are applied to a full-scale helicopter with a rotor speed of = 25 per sec, we
obtain a period of oscillation of

2
Ty=g55+ 0145 <014 — 1-7 sec (26)
and a time to half-amplitude of
0-69
TH:m:Q.‘ZSEEC. . c. .. .. (27)
It is obvious that these times lie outside the normal range of a full-scale helicopter.
The calculation of the flapping motion of the model test mentioned above results in :—
Ay = — 0-063
a,2 = — 1-96
(28)
by, = — 0-061
by, 2 = — 0-89

. This means that the longitudinal tilt of the rotor disc has a component of 0-063 e*«, in counter-
phase with the attitude and a component of 1-96 X 0-147 e*a, = 0-29 e*u, in counterphase
with the rate of change of attitude. The former has the same effect as an auto-pilot with the
control characteristics 6, = 0-063 and by that a decisive effect on the dynamic stability. As
shown in Ref. 1 the longitudinal and lateral motion of the Sikorsky R-4 in hovering flight is
stabilised by 0, >0-12 and 8, >0-015 respectively.

(b) Control chavacteristics of the Hiller servo-blade.——If the inertia forces of the main rotor are
neglected, z.¢., if we assume that the moment of inertia of the main blades about their longitudinal
axis is negligibly small in comparison with the moment of inertia of the servo-blades about the
pivot, equations (18), (19), (20) and (21) can also be applied directly to the automatic control
displacements of the Hiller system. Let the cyclical pitch imposed on the main rotor blade be

# = d,sinyp 4 9, cos p .. .. .. . .. (29
where B, = — (0,00 + 0,0) .. . (30)
Y, = — (Ll + I'ya) .. .. .. .. .. .. (3D

and y == azimuth angle of the main rotor. In this case the corresponding quantities are

0, with — a,,

Bq ” — dy, (32)
Fa LR + bloc
-I’q 3 + blq



Considering the fact that due to the small specific damping of the Hiller servo-blade

K3 2
(&) <1
it follows from (32) and equations (18), (19), (20) and (21) :—

0o = gr o (33)
6,0 — Kf_i = (34)
ra:_(%{% L 3
rqsz:_(—ﬁ% N 1)

where the specific damping K of the servo-blade is given by equation (2).

(¢) Control characteristics of the Bell stabiliser.—If the gyratory system is damped by viscous
damper instead of air forces, the right-hand side of equation (17) becomes zero. Thus, considering
(32), the equations (14), (15), (18) and (17) can be rewritten as:—

— 2K9, + 29%,Q + 7°I', 4+ 2K»*I',Q2 =0 .. . .. (37

— 20, —2K6,0 —2KT, + 3,0 =—2 .. .. .. (38

— 7%, — 2K%%0,02 — 2KTI', 4 29°I",Q = — * .. . .. (39)

+ 2K0, — v*0,Q — 2I', — 2KI'Q =0 (40)

where approximately :—-

,]"/2

00‘::-—1{1—_)_3—;5 .. ’ . .. .. .. .« .o (41)
K

quzm .« ) . .. » e « .. (42)

0-5K%»}(K* — %)
Iy == — (Kz + ;2)2 (43)
K%
r,Q = + m . (44)

It should be noted that equations (41), (42), (43) and (44) refer to the linkage ratio # = 1 and that
for the case n ## 1 the automatic cyclic pitch has to be multiplied by the linkage ratio # = (change
of pitch setting of main blade)/(displacement of the bar).

By comparison with the control characteristics of the Hiller system, see Table 1, it follows
that the longitudinal control displacements of the two devices are identical, The lateral control
displacements, however, which result in a coupling between the longitudinal and lateral motion,
are distinct. Before going into these questions more thoroughly, we shall give a physical
interpretation of the phenomena.

3. Physical Interpretation of the Phenomena.—It is shown in the Appendix that the mass forces
due to the angular acceleration, 7.e., the second term on the right-hand side of equation (1), can
be neglected. This means that the equation of motion for a gyratory system provided with
viscous damper may be simplified to

B+ 2KQp 4 2°p = — 20Q¢sin Qf. .. .. .. .. (45)
5
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If this system is subjected to angular oscillations with constant amplitude as given by
equation (11), the above equation of motion can be written as

B -+2KQpB + 9 = — 202va, cos »f sin £f
= — Qua(sin »# + sin v, .. .. .. .. (46)
where the two frequencies »; , are given by the following equations :-—
vp= 0 4+ » = 02(1 + ) .. .- .. .. .. (47)
vp= 0 — v =01 — 7). . .. .. .. .. (48)

Equation (46) represents the equation of motion of a single degree of freedom system excited by
beats. As the undamped natural frequency of the system is identical with its angular velocity £,
the ratios (frequency of forced oscillation)/(undamped natural frequency) are equal to (1 -+ %)
and (1 — ¥) respectively.

Tt is known from vibration analysis (see any text book on vibrations, for instance Ref. 5) that
the forced vibrations of equation (46) can be written as

B = Bysin (vt — @;) + Bosin (v — D) . .. .. .. (49

In these equations : :
B,,. = amplitudes of the forced oscillations,

&, , = phase angles,

where the index , refers to the excitement with the frequency », and the index , to that with
the frequency »,. It has already been mentioned that for the full-scale helicopter » < 1. This
means that approximately g, = f,. The quantities @,, @, which depend on the specific damping
of the system and on the ratio (forced frequency)/(undamped natural frequency) can be taken
from the well-known phase angle curves of a single degree of freedom system, see Fig. 3. The
curves are plotted for K =: 0, 0-03, and 0-75; they correspond to (a) an undamped system,
(b) a Bell or Hiller system with a following time of approximately 3 sec and (¢) to an ordinary
rotor blade with y = 12.

With 8, = B, = fs equation (49) reads as _
B = Baisin (vt — @) + sin (vt — D)} . .. - .. (50)

On the other hand, the forced oscillations of equation (46) can be written as
B = Bosin (2t — v,) cos (vt — ¢) .. . o .. (B

where , is Phase angle in the plane of rotation

@ is Phase angle of the tilt of the tip-path plane.

1f we consider the tip-path plane as a solid body with the two degrees of freedom longitudinal
and lateral tilt, the former determines the azimuth angle of the oscillation of the tip-path plane,
and the latter its time lag. Equation (51) can be transformed into

B = LBo{sin (vt — v, — @) + sin (v — v, + @)} . .. (592)
By comparison with equation (50) it follows that
— D= —yp,— @ .. .. .. .. .. .. .. (53)

— Py = —p; . .. .. .. .. .. .. (54)



This means oy — Lo, + &,) .. .. .. .. .. .. (5%)
' 1

¢ = 3o, — B,) L 8)

where @, , can be taken from Fig. 3. For small frequency ratios »
D, + P, = 180 deg
and by that v == 90 deg,

¢.e., the tip-path plane of the system described by equation (45) oscillates in the fore-and-aft
direction.

With regard to the time lag of the tilt of the tip-path plane, the following statements can be
made. From equation (56) and Fig. 8 it follows that ¢ increases with

(a) an increasing frequency ratio 7, and
(0) a decreasing specific damping K.

In the case of the ordinary rotor blade (K = 0-75) the phase angle ¢ is negligibly small, i.e., we
have quasi-static conditions. For the slightly damped Hiller or Bell system (K == 0-03), however,
the phase angle ¢ is appreciable. This means that such control devices apply both control
displacements in phase with the attitude and in phase with the rate of change of attitude.

It should be noted that the above remarks on the phase angles y, and ¢ apply also to the other
two excitement terms on the righthand side of equation (1). These excitements (viz., & cos o
and 2K Qg cos y) have their maxima and minima at v = 0 deg and 180 deg respectively and
result therefore in a lateral oscillation of the tip-path plane. This means they give a coupling
of the longitudinal motion with the lateral motion where the phase angle ¢ depends again on the
specific damping of the system and the frequency ratio ».

4. Representation of the Automatic Control Displacements of the Hiller and Bell Systems by
Vector Loci.—Analogous to equations (7) and (8), the equations of motion for the longitudinal
and lateral control displacements of the Hiller and Bell systems can be written as

b, + 2KQH, — 209, — 2KQ%, = — 4 — 2KQa .. .. (57)
209, + 2K0%, + 4, + 2K 09, = — 204. .. .. (58)

If the system is subjected to oscillations with constant amplitude as given by equation (11),
the disturbances cn the right-hand side of the above equations change sinusoidally and any
term in either equation (57) or equation (58) can be represented by a vector rotating with the
angular velocity ».

Formally, this is done by replacing
o by ae™
4, by #,e™
9, by 9.e”
where ¢, and @, are now unknown complex numbers. In vector representation equations (57)

and (58) read :— ,
O (— ¥ + 2Kvi) — 9,(2K - 2v8) = + «(v® — 2Kwr) .. .. (99)

8,2K + 290) + 0(— 7 + 2Kwi) = — o2 . .. .. .. (60)

These vector equations hold good for both the Hiller servo-blade and the Bell stabiliser, in the
latter case the underlined term in equation (59) has again to be omitted.

7



4.1. Hiller Servo-Blade—For the control displacements of the Hlller

from equations (59) and (60) :—

servo-blade it follows

»? — 2K — (2K + 2w9)
9 — 21 — 92 4 2Kvi |
== (61)
« — % 2Kvi  — (2K + 2%i)
2K 4 2yt — 7 + 2K
— v 4 2Kyt 9* — 2K
9 2K + 2vi — 29
L= .. .. .. (62)
* — 2 4 2Kvi  — (2K + 2v1)
2K + 2v1 — ¥ 4 2K
For the longimdindl control displacemeht —
R AC — BD '
D, BC 4 4D

where Re (9,/o) and Im (9,/x) denote the real and imaginary parts of (4,

/o) respectively and the
coefﬁc1ents A, B, C, D are given by

A=41+K)—5 .. .. . . L (69)
B = 4K5(1 — ) L (e8)
C = 4K* + 7 — 45%(1 + K?) N (-7
D = 4K5(2 — 7). (68)

The corresponding equations for the lateral control displacement of the Hiller servo-blade are:—

9.\ FD — EC
?, CF + DE
m (% ~ L0

where C, D) are again given by equations (67), (68) and
E = 2K%* . .. .. . .. .. .o {71
F=4K*. .. .. . . .. . o (72)

The meaning which has to be attached to these results is that the control displacements 9, 9,
consist of two components, one (the real part) in phase with the attitude «, and another (the

imaginary part) in phase with the rate of change of attitude, We shall deal with these questions
more thoroughly in connection with the vector loci.

8



4.2. Bell Stabiliser—1In the same manner, the Bell stabiliser is investigated. If the underlined
term in equation (59) is omitted, the following results are obtained :— ‘

9N CG— DH
9N CH 4+ DG
Im(o—{ —~——‘WD—2 .. .. .. .. .. .. (74)

AN cjJ _ o
8\ DJ . | |

where G=7H4—7 .. . . .. .. .- .o (77)
H=2K32—5%) .. .. .. ... .8
- v )

The connection between the vector representation and the control characteristics 8,, 6,, I, I,
for both systems (Hiller and Bell) is given by

Re(%) = o, L s
m(%)=—sexs=—0p .. .. . . . @)
re(B)=-r L ®
w(®) e xi——re. .

'Equations (63), (64), (69), (70) and (73), (74), (75), (76) represent the exact solution for the forced
oscillations of the two control devices. It has been found, however, that the approximate
solutions of section 2 (see Table 1) agree very closely with the exact ones.

4.3. Vector Loci.—We shall deal now with the representation of the above results by vector loci.
For the reader who is not familiar with this kind of representation, some introductory remarks
are given. See also Ref. 4.

The vector loci show the output (magnitude and phase) of a servo-mechanism for a given
sinusoidal input as a function of the frequency ». In graphical studies, however, great confusion
would arise if all the output-vectors were plotted. Therefore only the line joining the tips of all
output-vectors is drawn and individual values of frequency are marked along it. The direction
in which the output-vector moves with increasing frequency is indicated by an arrow.

Let us take the case of a hypothetical auto-pilot governing the pitching motion of an aircraft
as an example, see Fig. 4. The input vector o (given by the amplitude of the angular oscillation
in pitch) is plotted horizontally in the positive direction of the real axis.. As differentiation of
a vector is equivalent to a multiplication of the length of the vector by » and a forward rotation
through 90 deg, the velocity vector & shows in the positive direction of the imaginary axis.
The output vector 4, i.e., the control displacement, changes in magnitude and phase with the
frequency », where for the frequéncy »;(j = 1, 2, 3 . . .) the magnitude equals 4;.

9



Another, and for our purpose more convenient, interpretation is that the control displacement
may be divided into components in phase with the attitude and in phase with the rate of
change of attitude. If the attitude vector is plotted horizontally as mentioned above, the former
is identical with the real, and the latter with the imaginary part of the complex number &.

In Figs. 5 to 7 the corresponding vector loci for the longitudinal and lateral control displacements
of the Hiller servo-blade and Bell stabiliser are shown. The output-vector represents the
quantities (9,/«) and (#,/x) respectively, or, in other words, the cyclical pitch imposed on the
main blades due to a pitching oscillation with the amplitude «, = 1. The specific damping
K = 0-03, 7.c., for an angular velocity of 2 = 25 per sec the following time amounts to

2-3
Tf:m:SSec

where T, is defined as the time in which an angular displacement of the system about its pivot
is reduced to a tenth of the initial value.

The figures 0, 0-01, 0-02, etc., indicated along the vector loci refer to the frequency ratio 7.
As already mentioned, for a present-day full-scale helicopter 0 < 7 < 0-02.

Fig. 5 represents the longitudinal control displacement due to pitching motion and can be
applied to both the Hiller and Bell system. It will be.seen that the vector loci is a semi-circle
with the radius 0-5 about the point (— 0-5 + 0¢) as centre. For 7 = 0, the control displacement
is equal to zero; and for ¥ = w0, ¢, is equal to and in counterphase with the attitude «. One
can easily verify that the shape and scale of the vector loci is independent of the quantity K,
and that for another specific damping K only the accompanying ¥-figures along the semicircle
change. It follows from equations (38) and (34) that, if the ratio 5/K is constant, a series of
conditions are obtained resulting in the same longitudinal control displacement. For example,
the two conditions ¥ = 0-01, K = 0-03 and » = 0-02, K = 0-06 give the same control displace-
ment 9, namely '

0-1«, in counterphase with the attitude, and
0-3a, in counterphase with the rate of change of attitude.
It should be noted that this rule may only be applied to the longitudinal control displacement.

Figs. 6.and 7 give the lateral control displacement #, of the Hiller servo-blade and Bell stabiliser
due to the pitching motion. It will be seen that the lateral control displacements of the two control
devices are distinct. For ¥ = 0-02, for instance, 9, is approximately

-+ 0-005¢, in the case of the Bell stabiliser and

4 0-0154, in the case of the Hiller system.
These lateral control displacements give a coupling of the longitudinal motion with the lateral
‘motion and can therefore be used to compensate an existing coupling between these two motions.
- 5. Conclusions.—A gyratory system subjected to pitching oscillations about its centre is
excited by ' »

(2) the gyroscopic effect of the rotating masses,

~(b) air forces due to the angular velocity of the pitching motion (this excitement disappears
if the system is provided with viscous damper), and ‘

(c) mass forces due to the angular acceleration.

As shown in the Appendix, the latter éffe(;t can be negl‘ec‘ted',
10



If there is no “ delta three’ effect, 7.e., if the undamped natural frequency of the flapping or
see-saw motion is equal to the angular speed of the system, the phase angle in the plane of
rotation is approximately 90 deg. This means that excitement (a) gives predominantly a longi-
tudinal and excitement () predominantly a lateral oscillation of the tip-path plane, where the
tip-path plane may be considered as a solid body having the two degrees of freedom, longitudinal
and lateral tilt. It can be seen that the tip-path plane follows the disturbanées with a certain
time lag where the phase angle is given by :

v KN

In this equation v = frequency ratio of the pitching motion and K = specific damping of the
system.

The phase angle ¢ has the effect that one component of the longitudinal or lateral tilt of the
tip-path plane is out of phase with the rate of change of attitude, or, in other words, in phase
with the attitude. For the longitudinal motion of the rotary wing aircraft it means that there
is a kind of static stability which, as shown in Ref. 1, is an essential condition for the dynamic
stability.

The phase angle ¢ of the rotor blade of a full-scale rotary wing aircraft is generally negligibly
small, 7.e., the flapping motion of the ordinary rotor blade is at any time proportional to the
instantaneous rate of change of attitude and may therefore be considered as a sequence of steady
conditions. However, the component in phase with the attitude can no longer be neglected if
higher frequency ratios ¥ occur. One can easily verify that the stabilising effect credited to the
downwash lag (see Ref. 2) is partly due to the static stability caused by the flapping motion in
phase with the attitude.

For the Bell stabiliser and Hiller servo-blade the specific damping K is much smaller than
that of the ordinary rotor blade. This means that even for small frequency ratios ¥ appreciable
phase angles occur. Or, in other words, the said control devices apply both automatic control
displacements in phase with the attitude and in phase with the rate of change of attitude.

LIST OF SYMBOLS

3 Angle in pitch, positive nose-up, radn. « = o, sin »¢
oo Amplitude of pitching oscillation, radn
v Circular frequency of pitching oscillation, per sec

Frequency ratio, v = »/2

=1

Q Angular velocity of gyratory system, per sec
V1, Vs Frequencies, per sec
vp= 80 4 » = 2(1 + %)
vy =8 — v = 02(1 — %)
7 Moment of inertia of gyratory system about its pivot, ft Ib sec?
Azimuth angle, radn, measured in sense of rotation from the down-wind position
I | Angular displacement of the gyratory system, radn. For the ordinary rotor blade

f=a,— a;cosy — b, sin vy ,
where
Ay == Ay O~ Ay, %

bi = b+ by,6
11



LIST OF SYMBOLS—continued
Specific damping of gyratory system (damping/critical damping), -7.e., the
damping moment
My,=2KIQp

For the ordinary rotor blade: K = yB*/16
For the Hiller servo-blade: K = (y5/16)(1 — B
Tip loss factor of an ordinary rotor blade, B = 0-98
Beginning of the profile of Hiller servo-blade in fraction of R;
Inertia number of blade
Inertia number of a single Hiller servo-blade, ys = Rg*csasp/(1/2)
Radius of Hiller servo-rotor, ft
Chord of Hiller servo-blade, ft
Lift-curve slope of Hiller servo-blade
Density of air, 1b sec® ft=*
Cyclical pitch, radn

8, = — (0,0 + 0,8)

8, = — (o + T'0)
Phase angle in plane of rotation, radn

v = MO, + 0,) = 90 deg
Rate of change of attitude, radn per sec, g = a&
Phase angle of the oscillation of the tip-path plane, radn

= %‘(@1 - @2)

Phase angle of an ordinary single degree of freedom system with the undamped
natural frequency 2, a specific damping K and excited by the frequency
v; = 2(1 + %), radn

The same if excited by the frequency », = 2(1 — %), radn

Damping factor of an increasing or decreasing oscillation such as
o = oe* sin ¢, per sec

Non-dimensional damping factor, 1 = /2
Time, sec '
Period of oscillation, sec

Time to half amplitude, sec

Following time, time to reduce the angular displacement of a gyratory system
to a tenth of its initial value, sec

T, = 2-3/KQ
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APPENDIX I

Effect of the Angular Accelevation on the Longitudinal Tilt of the Rotor Disc*

In the following the effect of the angular acceleration (mass torces) on the longitudinal tilt of
the rotor disc is investigated. If only the disturbances due to & are considered, equations (7), (8)
read

1 9K 0%, + 204, — 2KQb, — b, =0 .. .. . .. (85)
— 2K Qa, — d, — 2KQ%, — 20Qb, = é&. .. .. .. .. (86)
Or, as vector equations:—
w(2K + 2i) + by(3* — 2K5) =0 .. .. .. .. (87
a(7® — 2K%i) — b(2K + 25i) = — 0. .. .. .. (88)

From equations (87), (88).it follows that

4\ _ _,(2KD—3C _.2KC + 7D
<a>m—” LD T'T T

where the quantities C, D are given by equations (67), (68) and the notation (a,/a),. indicates
that only the acceleration term on the right-hand side of equation (1) is considered. The physical
interpretation of equation (89) is that one component (the real part) is in phase with the attitude
o and another component (the imaginary part) in phase with the rate of change of attitude a.
If higher orders of » than %* are neglected, the following approximations can be used :—

(89)

The component in phase with the } _ 0-75K%*

attitude (K % (90)
the component in phase with the |  0-5K°°

rate of change of attitude (KB %o - (91)

* It should be noted that the present report deals only with the smass forces due to angular acceleration and that the
still somewhat dubious effect of the downwash lag is neglected. However, at the time being some tests with oscillating
rotors are in progress at the Royal Aircraft Establishment and it is to be hoped that these tests give some information
on this subject.
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In these equations «, == amplitude of the oscillation in pitch. For comparison, the total tilt
(@1/oto)rora Of the rotor disc and the tilt (ay/w).. due to the angular acceleration ¢ have been
calculated, see Table 2.

In these examples y = 12 and 7 = 0:02, 0-06, and 0-10. It is to be seen that within the
range investigated, the acceleration term of equation (1) contributes less than 2 per cent to the
total tilt of the rotor disc, 7.e., the enforced oscillations due to the angular acceleration can be
neglected. This result does not agree with that of Ref. 3. It should be noted that the physical
interpretation for the longitudinal or lateral tilt of the rotor disc given in Ref. 3 is somewhat
misleading : The ‘ acceleration derivative’ 9a,/9¢, for instance, includes both

() the enforced longitudinal oscillation due to the angular acceleration, and
(0) the longitudinal component out of phase with & and introduced by the phase angle ¢ in
the response of the rotor disc to gyroscopic effect.

This means the term 94,/0¢ is not a true ‘ acceleration’ derivative. The same applies to the
“acceleration ’ derivative 2b,/9¢ of Ref, 3,

TABLE 1

Response of Gyratory Systems to Oscillations with Constant Amplitude such as o = o, sin ot

Rotor blade Hiller servo-blade Bell stabiliser
_yB"”_ - P _2-3, - v _2—_?) - ¥
I{——]Té—, 1’—!—2' K—T—fﬂ’ V—z-) K—ng, V———«Q
P2 K3 2 52 K3 2 ;2
‘lla:_Kz_*_;zl}_ K2+v2>:] oa:_“ld:+Kz+;2[1_ Kz+;2>:l 0“:+K2—|—752
;2 2
A —_ 2 —_——
_KZ (1 I{) +I{2+'2
_ K K K
“M‘Q_"_Kz—_}_,-,z 0,2 = *“1492+m OﬂQ:+K2—_i_;z
1
- K
b 1-5K%°2 I b o= 1-5K3%2 I — —3KP(K? — 72
Lo (K2 + 72)2 @ Yle ™ (K2 4 )2 & (K2 + )2
1-5%2
- K
K K* K29
= T T =0 = =t sy
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Effect of the Angular Acceleration on the Longitudinal Tilt of the Rotor Disc

TABLE 2

y =12 7 — 0-02 5006 | =010
!

. gg;;?;i?ﬁ M 04 % 10| — 87 % 10| — 105 x 100
(%) .

%0/ tota ShmponeRtIn | 28 x 100 | — 86 % 10°0 | — 140 x 10°3
. gﬁggﬁ?ﬁf +0:2 X 107 | +20 X 10-6 | + 150 x 10-9
() -

2o/ aco gﬁgré;e)oilgﬁflz 6% 1078 | 4152 x 10-5 | + 692 x 10-6
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