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Summary.--This note shows how the Hill Aero-isoclinic Principle 1 works out in practice for a swept wing, fixed 
at  the root and having straight flexural and inertia axes. The conditions assumed are readily represented in a 
wind-tunnel model and experiments by  Lambourne ~ show good agreement with theory. 

The further aft the flexural axis from the quarter-chord position, the smaller is the sacrifice of wing torsional 
stiffness entailed in making a swept wing isoclinic, and previous work has on tha t  account taken a far-aft  position as a 
reasonable basic assumption, with the result that,  to avoid aero-elastic instability, a well-forward position for the 
inertia axis is arrived at. I t  is shown here, however, tha t  by still further sacrifice of torsional stiffness (whether 
practicable or not) it is possible to reduce the gap between the two axes very considerably and so simplify one aspect 
of the constructional problem. I t  is expected that  this conclusion should still hold, qualitatively at  least, for the 
more representative conditions in which body freedoms are included, as in tile earlier work referred to above. 

1. Introduction.--A swept wing that  makes use of Hill 's 'aero-isoclinic' principle is one tha t  
bends under lift loads, not about an axis normal to tile swept-back line, but about an axis parallel 
to the flight direction: Such a wing is immune from the loss of incidence, and the consequent 
shift of the neutral point, that  inevitably accompanies bending about an axis normal to the swept- 
back direction, which, in the absence of special measures taken in the design, is the usual way in 
which a swept wing does bend. 

Hill 's notion is to arrange for tile increased lift, acting at the quarter-chord, to twist the wing 
by virtue of an aft location of the flexural axis, thus exactly compensating for tile loss of incidence 
otherwise to be expected. This requires a degree of wing torsional flexibility not conventionally 
acceptable from the point of view of flutter and aerodynamic divergence. 

I t  follows however that,  the further aft the flexural axis can be located, the less need be the 
loss of torsional stiffness, and this is the reason why, in previous discussions of the aero-elastic 
properties of an aero-isoclinic wing, a far-back position of the flexural axis  was considered a 
reasonable basic assumption to make. 

The purpose of this note is to examine the aero-elastic behaviour of an isoclinic wing under 
very simplified conditions, so as to arrive at correspondingly simple conclusions, capable of being 
verified in the wind tunnel, and of providing a basis for physical reasoning and hence a pointer 
to the likely behaviour of an isoclinic wing under more complicated conditions. With this in view 
a wing fixed at the root and having straight flexural and inertia axes is considered. A further 
simplification of the analysis is brought about by  omitting damping terms from the equations of 
motion. 

So far as verification in the wind tunnel is concerned, the results obtained by Lambourne 2 
show remarkable agreement with theory, but how far it is safe to generalise from this it is difficult 

See the Introduction for a definition of the term 'isoclinic'. 
R.A.E. Report  Structures 101, received 24th April, 1951. 
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to say. The simple solution however, should indicate qualitatively how such factors as the 
relative disposition of the various axes govern the aero-elastic behaviour, and should therefore 
provide a useful guide for subsequent quanti tat ive estimates with all the relevant degrees of 
freedom included. In particular, any such detailed quanti tat ive estimates should include the 
effect of body freedoms, which have been omitted. 

One conclusion from the present simple approach is that  although an aero-isoclinic swept wing 
has, by  definition, no divergence speed in the sense ordinarily understood for a straight w i n g  
it has instead what may be called a dynamic divergence speed. The divergence of a straight Wing 
is a quasi-static instability, in that  it occurs when the upsetting aerodynamic moment about the 
flexural axis exactly neutralises the restoring elastic moment: it is thus independent of mass and 
mass distribution. But for a swept wing, if it is isoclinic, the wing incidence is, by  definition, 
the same from root to tip, so that  torsional divergence is ruled out. The wing however is only 
isoclinic under aerodynamic and elastic forces, and, as soon as inertia forces enter, it loses its 
isoclinic property and thereby becomes liable to  divergence--hence the term 'dynamic 
divergence'% 

The simple case here treated shows that,  while there is a range of speeds over which, in the 
absence of flutter, dynamic divergence would occur, in actual fact flutter always supervenes 
before the lowest speed necessary for dynamic divergence can be reached. Moreover, if flutter 
can by any means be avoided, the same means automatically eliminates divergence. 

Another conclusion, which at first sight appears to be at variance with previous recommenda- 
tions, is that,  i f  a sufficient sacrifice of torsional stiffness can be tolerated, it is not necessary, in 
order to avoid flutter, to have a large gap between the flexural and inertia axes. The gap can 
be reduced to something like 0. lc, thus greatly simplifying the structural difficulties inseparable 
from a gap of 0.3 or 0- 4c. The reason why a large gap was previously recommended has already 
been stated above; it is that  it was then tacit ly assumed that  the lever arm between the lift force 
at the quarter-chord position and the effective fulcrum at the flexural axis should be as long as 
practicable, in order to minimise the loss of torsional stiffness necessary to make the wing 
isoclinic. Once a position of 0 .6  or 0.65c, for example, is assumed for the flexural axis in this 
way, the inertia axis position must, if flutter is to be avoided, be well forward of this position. 
What  is now pointed out is tha t  by  locating the flexural axis much nearer the quarter-chord 
position (at of course a corresponding loss of torsional stiffness), the gap between the flexural 
and inertia axes can be substantially reduced, thus overcoming the constructional difficulties 
inseparably associated with a large (negative) gap between the two axes. 

An endeavour is made to present the results in as general a form as possible. The latter aim 
is greatly facilitated by the fact that  in ' such a wing the bending and torsional stiffnesses are 
directly related, and by the further fact that  the bending stiffness is itself directly related to the 
bending s t rength,  which, for a given plan form and thickness-chord ratio, is a known quantity.  
By  these inter-relations it is possible to express the results in terms of two governing parameters 
r and n alone, where 

r is the ratio of uncoupled bending to uncoupled torsional frequency 

and n = V/Va, where 
V is the flight speed 

Vd cos/~ is the divergence speed for the same wing unswept 

/~ is the angle of sweepback. 

The general case is first considered, and then a practical numerical case to see what degree of 
wing torsional flexibility is required to make a swept wing isoclinic, and to see further how thin 
the skin has to be to satisfy that  requirement. 

~* Dynamic divergence is not peculiar to swept wings for it can, under certain conditions, occur for straight wings 
in addition to ordinary static divergence. 
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2. Elementary General Case (Product of Inertia Zero).--We replace the concept of a wing by a 
simple dynamically equivalent system, taking care however to represent faithfully the essential 
features of the wing problem. 

t 

D 

~ N  I OF FUSELAGE 

X 
FIG. 1. 

E 

D ~ 
Y 

Fig. 1 shows in plan-f0rm a strictly equivalent butsimplified version of the essential features of 
the swept-back wing. 

O is the point at which the wing flexural axis OB meets the fuselage, which lies along the direc- 
tion ON parallel to the air stream V. The chordwise sectfon DB ir / the line of flight (i.e., parallel 
to V may conveniently be regarded as a reference sectionwhere the various equivalent forces act. 
BE is the wing section at B normal to the flexural axis OB, and the angle DBE ( =  angle NOX) 
is thus the angle $ of sweepback. 

DE lies on the quarter-chord line and we take 

1 as the distance of D from the axis OX about which the flexural axis bends 

h as the distance of D (at quarter-chord) from the flexural axis. 

These arbitrary quantities have no significance per se for our purpose, as they disappear in the 
result; they are introduced only to facilitate the analysis. 

Physical Characteristics of Simplified Scheme.--A detailed description follows of the physical 
characteristics of the simplified version of the swept-back wing: 

OB is the straight flexural axis hinged at 0 to enable it to swing in a vertical plane 
about the axis OX subiect to a spring angular constraint. 

$ is the angular displacement of OB about the axis OX and is positive when B 
moves down from the plane of the paper. 

C~ is the restoring moment of the spring constraint per radian ~. 

DD'  is a rigid chordwise element which is free to rotate about the axis OY except for 
an elastic constraining moment. 

0 measures the angular displacement of DD'; about 0 Y, positive when D moves up 
from the plane of the paper. 

Co is the elastic restoring moment per radian 0. 
We assume to begin with that  there is no inertial coupling and on this basis let 

I ,  = moment of inertia of system about axis OX. 

Io = moment of inertia about axis OY. 
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The aerodynamic force is de termined by the  incidence e of the chordwise section DB in the line 
of flight V, and it is seen tha t  c¢ is defined in terms of the  two independent  variables 0 and ¢, as 

= 0 cos/3 + ¢ sin/3 . . . . . . . . . . . . . . .  (1) 

and if we take/3 = 45 deg 

= (0 + ¢ ) / ~ / 2  . . . . . . . . . . . . . . . . .  ( 2 )  

For a given forward speed V the  upward  aerodynamic  force F assumed concentra ted at D) 
may  be wri t ten  as 

F = K e  . . . . . . . . . . . . . . . . . . .  (3) 

The equat ions of mot ion  may  now be wri t ten down in the  form 
Io0 + CoO = Koch = Kh(O cos/3 -¢- ¢ sin/3) 7 

I ~  + C~¢ + --  Kod = - -  Kl(O cos/3 + ¢ sin fl) ~ . . . . . . . .  (4) 

We now introduce the isoclinic p roper ty  of the  wing, which requires tha t  a steady force F applied 
at D produces no incidence ~ of the chord DB. Which means tha t  (from (1)) 

0 cos/3 + ¢ sin/3 = 0 . . . . . . . . . . . . . . .  (5) 
and since 

F h  F l  
• 0 = -~0 and ¢ -- C~' • . . . . . . . . . . . . .  (6) 

1 
C, = -h Co tan/3 . . . . . . . . . . . . . . . . . . .  (7) 

We also int roduce the ratio r, defined, as already ment ioned,  by 

7 = 
uncoupled bending frequency of wing 
uncoupled torsional frequency of wing 

so tha t  

C~ __ 1 z26° 
I~ Io . . . . . . .  

On subst i tut ing (7) and (8) in (4), we now have 

o + C°o Kh(o 
I o  - -  Io cos/3 + ¢ s i n / 3 )  = 0  

"To ¢ + I ,  cos/3 + 6 s i n / 3 )  = 0  

. 

I 

. . . .  ( s )  

It  is now convenient  to relate the  aerodynamic  force to tha t  required to produce divergence 
under  the condit ion of a fixed flexural axis (bending preven ted - -e .g . ,  by infinite inertia). Thus if 

V 
Vd 

where Vd = divergence speed for swept wing with flexural axis fixed, we have at speed Vd 

K e h  = CoO . . . . . . . . . . . . . . . . .  (10) 

and since ¢ is now zero, this gives (by (1)) 

KhO cos/3 = CoO. 

I t  follows from the  above definition tha t  at  speed V 

KhO cos/3 = n 2Co0 

or K h  cos/3 = n2Co . . . . . . . . . . . . . . .  (11) 
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so that  we can now write (9) in the form 

0 + p~o --  n~p ~ sec/~ (0 cos// + ~ sin fl) = 0 

"d + r~p24 + n2r2p 2 cosec// (0 cos fl + 4 sin 8) = 0 

where 

p= = c o / L  = 2,,fo . . . . .  

Rearranging (12) we get 

0 + p~o(1 --  n ~) -- n2p~¢ tan/~ = 0 

+ r2p2$(1 + n ~) + rM~p~o cot/~ = 0 

Using the operator D we get 

[D ~ + p~(1 -- n2)]O -- n~p*¢ tan/~ = 0 

which, 

rM~pPO cot fi -t- [D 2 -t- rPpP(1 -/- n2)]4 = 0 

on eliminating 4, gives 

~ I I @ 

t , 

t , 
(12) 

. . . . . .  ( 1 3 )  

. . . . . .  (14) 

. . . . . .  (14a) 

[D 4 + D~{rPpP(1 + n ~) +pP(1 -- n~)) + r~pqO = 0 . . . . . . .  (15) 

I t  is of interest to note that  this equation is independent of the sweepback angle fl, which shows 
that,  so long as the wing is isoclinic, and its flexural and inertia axis are coincident, its aero-elastic 
properties are the same whatever the sweepback angle. I t  is to be realised however that,  in a wing 
with a very small amount of sweepback and a moderate distance between the quarter-chord and 
the flexural axis, the problem would be, not how to make the torsional stiffness small enough, but 
how to make it large enough to render it isoclinic. Under the conditions just described it would 
be practically impossible to make it large enough. 

Putt ing 0 = O at in (15) gives the roots of the frequency equation as 

~ _  ~ ( rP (1  + n 2) + ( 1 -  n~)} 4- ~ / {  Jr'(1 -t-n 2) 4- ( 1 -  n 2 ) 1 2 - - 4 r 2 } . .  (16) 

b 
and, for convenience of discussion, the quant i ty  inside the first curly bracket is represented by A 
and the quant i ty  under the radical by B. The salient features of the motion can now be seen. 

Divergence.--It  is seen at once that  since the absolute value of B is necessarily less than that  of 
A, divergence can only take place when A changes sign from the positive value it has at low 
speeds (i.e., low values of n) to a negative value. In other words the speed (represented by n) 
at which A becomes zero marks the speed which, unless flutter has supervened at a still lower speed 
produces divergence. Thus we have potential divergence as soon as A becomes negative, i.e., 
when 

n2 _ _ 1 + r ~ 
1 - -  r 2 '  . . . . . . . . . . . . . . . . . .  ( 1 7 )  

but, as this value of n must always lie in the flutter speed range of equation (18), the divergence 
must remain potential until  the speed is beyond that  range. There is therefore no real change in 
the character of the motion as n 2 passes through the above value. 

This confirms the original view that  an infinite divergence speed is only realised when bending 
and torsion keep in step, i.e., when the ratio r of bending to torsional frequency is equal to unity. 
As soon as the bending frequency falls below the torsional frequency (r < 1) the incidence relief 
due to bending is no longer sufficient to counter the increasing incidence due to wing twist, 
because the bending action is too slow to keep in step. 
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An important  point to notice, however, is that  once the bending frequency becomes greater 
than the torsional frequency (r > 1), tile necessary loss of incidence due to bending is always 
more t h a n  punctual enough to offset any increase of incidence due t o  wing twist, and the wing 
becomes immune from divergence at all speeds. 

F.lutter.--As it happens, the first instability to occur as the speed (i.e., n) is gradually increased 
from zero is an oscillating divergence or flutter, because A can never become negative before B, 
and a change of B from positive to negative marks the onset of flutter irrespective of the sign of 
A (for we are discussing ~ ~ not 4). While B is still negative A next changes sign as n increases, 
thereby introducing a potential divergence, which only becomes effective however when, with 
further increase of n, B changes sign a second time to  become positive. The range of n values 
over which B is negative (i.e., the flutter range)is given by 

1 - - r  l + r  
1 +-----r < n 2  < 1- - -  r ' . .  . .  . . . . . . . . . .  ( 1 8 )  

which shows that,  like divergence, flutter cannot occur for values of greater than unity. 
Before discussing the significance of this, we may summarise the above remarks concerning the 

changes in the motion with change of speed n in tabular form. 

TABLE 1 
(for r < 1) 

J~ 

Values of n ~ 

l + r  

Values of 

l + r  n 2 >  1 - - r  

Flutter 
A B 

positive positive 

positive negative 

negative negative 

negative positive 

Absent 

Divergence 

Absent n2 ~ a  

(1--~r)  < n~ < \1(1 _+ rL/r~ Present Absent 

1 + r~'~ (1 + r'~ Present Only potentially 
1 -- r~// < n2 < \1 -- r.] present 

Absent Actually present 

When r = 1 the flutter speed is theoretically zero here, where aerodynamic damping has been 
omitted. I t  is known however, that ,  even with normal damping, the flutter speed is very low 
usually when the frequencies of the interacting motions--bending and twisting--are equal, so 
that  this result is in accordance with expectations. I t  is also in accordance with the results of 
experiments recently carried out by Lambourne ~ at the National Physical Laboratory for tile 
purpose of verifying the simple theoretical approach described in the present report. 

As r becomes greater than unify both flutter and divergence speeds Suddenly iump to infinity, 
a phenomenon that  is paralleled inLambourne 's  experiments by  an almost equally abrupt change. 

Significance of Case where r > 1.--The fact that  neither flutter nor divergence can occur when 
the ratio r is greater than unity opens up a possibility of turning i t  to good account in an unex- 
pected way. I t  is k n o w n t h a t  the principal objection to the isoclinic wing is the low torsional 
stiffness it must have in order to twist enough uflder load to offset tile loss of incidence due to 
bending. The objection is not to torsional flexibility per se, but to the aero-elastic disabilities 
it entails. If, however, these disabilities can be made to disappear, the objection vanishes, for 
even the reduced torsional stiffness is quite adequate for all normal purposes. 
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Now the shorter  the chordwise distance between the  flexural axis and the quarter-chord 
position the  greater  the  torsional flexibilities required to make  tile wing isoclinic, and hence to a 
certain extent  the greater the value of r. Theoretically therefore we can make  r any th ing  we please, 
and if in this way we can increase it beyond unity,  no aero-elastic troubles need be feared even 
under  the  present  highly unfavourable  conditions of coincidence of flexural and inertial axes, 
i.e., of zero mass balance. This mat te r  will be considered again later when numerical  values for a 
concrete case are discussed. 

These inferences hold Of course only for the  case of a wing fixed at the  root and zero aerodynamic  
damping,  but  they  are likely to be a t rue pointer  to the aero-elasfic properties under  more complex 
conditions so long as the  torsional stiffness is still a major  parameter  in the  motion.  

3. Effec t of Inertial Coupling between Bending and Twisting.--In the  above t r ea tmen t  the inertial  
coupling between torsion and bending was assumed to be zero. As however  some degree of mass 
balance has proved in the  past to be a useful deterrent  to flutter it is necessary to see how it 
affects the  present problem. 

Rever t ing  to Fig. 1, let the  inert ia axis be located aft of the  fiexural axis OY so as to make  the 
product  of inert ia P ( =  Emxy) positive. 

Equat ions  (9) can now be rewri t ten  with 'product  of inertia '  terms included as follows: 

O + y o ~ + - f o O - -  (0 cos fl + ¢ sin/~) = 0 
(191 

P G KZ(o I . . . . . . .  6 + y o + ~ 4 + i ,  c o s f l + 4 s i n f l ) = O  

We put  CdC o : s 
and P = q/~ = ql/0,  where, . . . . . . . . . . . . . . .  (20) 

s I qs 
since I ,  = p 0, ql = p • 

Following equations (12), we can now write (19) in the  form 

0 + ql~ + p~o -- n2p ~ sec fi(0 cos fl + 4 sin fl) ----= 0 \ . . . .  (19a) 

g~ + qO + r~1~4 + n2p~r~ cosec fl(0 cos fl + ¢ sin fl) ---- 0 f 

or, rearranging and introducing the  operator D, 

[D 2 -~- p~(1 - -  ¢4~)10 ~- EqID ~ -- (n2p 2 t an  fl)l¢ ---- 0 "~ . . . . . .  (19b) 

[qD ~ + r~n2p ~ cot flJO + [D 2 + r2p "~ (1 -¢- n~)]4 ---- 0 J 
which as in (16) leads to tile frequency equat ion 

i~(1 -- qql) + i~P"{ (1 - -  n ~) + r"(1 + n ~) + n~(q tan/~ --  qlr 2 cot//) } + r2p ~ ---- 0 .  (21) 

The roots are given by  

A1 
; k  

r 

1 2 -  r~(1 + n  + ( 1  - - n  2) + n ~ q ( t a n f l - - s c o t f l  
- -  2(1 qql 

p2_qq)l ~ / f [  r ~ ( l ~  (1 n ~q(tan cot/~)]2 4r~(1 qql)} (21a) -4-2( 1 + n  S) + - - n  2) + f l - - s  --  --  
x 

Y 

B~ 



We note first t ha t  the quan t i t y  (1 --  qql) is necessarily positive because 

(1 - -  qql) = (1 ~qS ~ ( 1  - -  p2 
) = I o I J  

and P5/Iol ,  is necessari ly less than  uni ty .  

We call 

P /I,Io = . . . . . . . . . . . . . . . . . .  ( 2 2 )  

and use the symbols  A1 and B1 to represent  the  quant i t ies  shown in (21) marked  by  horizontal  
curly brackets .  

As in equat ion (16) it is obvious tha t  B~ becomes negative before A1 as n gradual ly  increases, 
so tha t  f lutter again intervenes before dynamic  divergence. We also see at  once t ha t  if the  
product  of iner t ia  qI,  is negat ive  (i.e., iner t ia  axes forward of the  flexural axis) a higher value of 
n t han  before is required to make  B1 negative.  For  s ( = C,/Co) will be greater  than  un i ty  (in the  
range 5 to 10 probably),  and therefore the  quan t i t y  q(tan fl - - s  cot/3) will be posit ive for all 
practical  values of/3. 

An impor tan t  point  is t ha t  in the  expression B~ the effectiveness of a given amount  of negat ive 
product  of iner t ia  (represented by  q) is enhanced by  the factor (s cot/3 -- tan/3) which increases 
rap id ly  as the  sweepback angle drops to low values. Thus, tak ing  s as 10, we obtain values of 
4.1,  9 .0  and 27.2  for the above factor, corresponding to/3 values of 60 deg, 45 deg and 20 deg 
respectively. A given mass balance therefore becomes very  much  more effective as the  sweep-  
back angle is reduced. This is no doubt  largely due to the  fact t ha t  the  torsional stiffness 
necessary to render  the wing isoclinic is proport ional  to cot/3 and becomes very  large when/3 is 
small. 

Rever t ing  to equat ion (21a), we see tha t  tile value of n at  which Bt first becomes zero p repara to ry  
to becoming negative is given by  the following quadrat ic  equat ion in n 2. 

• 2 ~ ( 1  + r ~) (1 - -  r~) 2 + 4r~e  ~ 
(n2) 2 - -  (1 r ~) q- q(s cot/3 --  tan/3) + { (1 --  r 2) q- q(s cot/3 --  tan/3) }2 = 0 . .  (24 

from which 

~¢~ = (1 - -  r 2) + q(s cot/3 = tan  fi) (1 + r 2) q- 2r%/(1 -- ~ ~) . . . . . .  (25) 

a result  in agreement  wi th  values obta ined from the  zero-product-of-inertia case if we make  
q----0. 

We are of course interested in the  smaller of the  two values of n ~ given by  (25), i.e., 

n~ = (1 + ) r  2) -- 2r%/(1 -- ~2) 
(1 - -  r _ + q(a cot/3 -- tan/3) . . . . . . . . . . . . . . .  (26) 

The net  effect of separat ing the  iner t ia  axis from the flexural axis has been to introduce the 
factor %/(1 --  s 2) in the  numera tor  of (26) and the te rm q(s cot/3 -- tan/3) in the  denominator .  
Bo th  changes, for a negat ive  value of q, m a k e  for an increased value of n. The quan t i t a t ive  
significance of in t roducing various amounts  of product  of inert ia  is probably  best  s tudied from a 
concrete example of a simplified wing and this  is done in section 4.5. 

We note however,  t ha t  since in (26) the  numera tor  is essential ly positive, there cannot  be a 
critical speed if the  denominator  is negative;  and as the  value of s in practice is not  less t han  about  
15, quite a small amount  of negat ive  product  of inert ia  q is sufficient to make  q(s cot/3 -- tan/3) > 
(1 --  r ~) numerical ly.  This point  is pursued fur ther  in section 4.5. 

4. Practical Numerical  E x a m p l e . - - T h e  following numerical  example has been worked out in 
order to determine,  for a swept wing of typical  plan-form and thickness/chord ratio, the  degree of 



torsional flexibility necessary to produce enough aerodynamic incidence by wing twist to offset 
tha t  lost due to bending of the wing. All the physical quantities involved are kept general and 
numerical values are considered only in the final formulae obtained. 

FIG. 2. 

Consider a linearly tapered wing swept back through an angle $ as shown in Fig. 2, where NN 
is the fuselage line representing the direction of flight, OB is the flexural axis, 

co is the root chord normal to OB 

bco is the tip chord normal to OB 

2y is the thickness/chord ratio 

l is the length OB of wing along sweepback 

x is the distance from wing root along OB 

c is the chord at any section x (normal to wing axis). 

The simplest approach is to assume that  the wing is designed for maximum structural efficiency 
so that  the bending stress produced by the lift forces is uniform from root to tip. Let this stress 
at full load-factor (4g say) be 

a = maximum working stress for Dural . . . . . . . . . . .  (27) 

Under lg level flight conditions (wing loading wl lb/ft 3) the uniform stress becomes 

where 

N o w  

therefore 

The curvature of the wing is then given by 

day M M z  1 ~1 

dx  ~ E I  I z E  z E  " " 

z = greatest height above the neutral axis 
)'C. 

c - -  Co{ 1 - ( 2  - b ) x / 1 }  

= 7 C o {  1 - ( 1  - b)x/l). 

(2s) 

(29) 

. . . . . . . . . . . . . .  (30) 

. . . . . . . . . . . . . .  (31) 
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From (29) therefore: 

d2y _ 1 1 - b ) x / z }  curvature ~ E ~ c o / ( - - ( 1  , . .  

slope dy ol ~ 1 
dx - -  ETc----~o o 1 -- (1 -- b)x/l dx 

(32) 

i,~xwlhc2 dx f~ ( ~ )  2 T~ = = wlhco 2 dx 

" 2 I 2 "  " ~.fJlhCO f.~,('--~(1- b)} dx 

-- 3(b -- I)[ b3 -- -- -- . .. (38) 

The torsional stiffness of the wing at x (i.e., the torque Qx to give One radian twist per unit span) 
must be such that, under the torque T~, a rate of change of twist given by (35) is obtained. 

Thus 
dO ~1 t a n f l (  1 } 

T,/O.,. --  dx --  Eyco 1 -- (1 -- b)x/1 . . . . . . . . . . . .  (39) 

I0 

V r - 1 _ _  . . . . . . . . . . .  

This represents the variation of wing slope along, x if the wing bends under uniform incidence 
from root to tip, i.e., under isoclinic conditions. 

If there is no twist of the wing about its own flexural axis, the slope just found produces a loss 
of incidence of 

dy sin/3 0~ 1 = - ~  

Wing twist produces an  increase of incidence of 

~2 -- 0 cos/3, 

so tha t  if the net effective change of incidence is to be zero 

or 0 dy tan/3 (34) ~ - ~  • • • • • • • . • • , , • ° . . , , 

. . . . . . . . . . .  and dx - -  -~" --  E),co 

Corresponding to this spanwise rate of variation of twist we can now, for any position of the 
flexural axis relative to the quarter-chord, find the necessary spanwise distribution of torsional 
stiffness. 

4.1. Torsional S t i f f  ross Required to make Wing  Isoclinic.---Let  the flexural axis be situated a 
distance hc aft of the quarter-chord, so that  

flexural axis position relative } = ( h +  1)c . . . . . . . . . . .  (36) 
to leading edge 

Torque d T  over element dx of wing span from aerodynamic lift load is given by 

d T  = wl(c dx)hc = wlhc 2 dx . . . . . . . . . . . . . . .  (37) 

Total torque at x is 



and therefore the torsional stiffness at any section x is given by 

lwlhco ~ x b) } ~l 
Tx  3 ( b -  1)[  b 3 -  {1 ~ - ( 1 -  

- -  - -  1 . . . . . . . .  ( 4 0 )  

Q~ dO/ox al tan/?Eyco ( 1 - -  (x/l)(1 -- b)} 

o r  

Q~ -- 3(b Eylwlhc°3-- 1)a~ tan/~ [ b3 -- {1 - - / ( 1  -- b)} 31{1 -- ~(1 -- b)}.  . .  (40a) 

4.2. Corresponding Wing Thickness . --But ,  in terms of the skin thickness and the effective area 
and perimeter of the torsion cell formed by the wing cross-section, we can express the torsional 
stiffness as 

4A ~Gt 
Q, = - - -  . . . . . . . . . . . . . . . . . .  (41) 

where A is the effective area enclosed by torsion cell 

---- 0.6c x 0. lc (say) approximately 

___ 0 . 0 6 c  2, 

is the perimeter o f  cell 

= 1"2c (say), 

t is the thickness of cell wall 

----- skin thickness (approx.). 

Substituting these approximate values, we get from (41) 

Q" = O'O12c3Gt = O'O12c°3Gt co . . . . . . . . . .  (42) 

which, on being equated to (40a) gives 

wl E hi_Of 1 x} b /(1 - b) ] t =  2.32 ~--~" G tan/~L] (1 - b i i _  {1 -- (x/1)(1 -- b)} ~ . . . . . .  (43) 

where t is given in inches when 

Wl = lb/ft. ~ 

~1 = lb/i n.~ 

l = ft. 

From the general formula of (43) it is noteworthy that  the skin thickness is independent of aspect 
ratio. We see also that  the skin thickness varies inversely as tan ~ which means that, as between 
sweepbacks of 45-deg and 30-deg the skin thickness required to make the wing isoclinic for a 
30-deg sweepback is 75 per cent greater than that  for 45-deg sweepback. 

We also see that,  for a wing untapered in plan, formula (43) gives 

t = 2.32W1~. EG.tanhfl(~\3 --  ix), . . . . . .  . . . . . . . .  (43a) 

which shows that  the  variation of skin thickness necessary for attaining the correct distribution 
of torsional stiffness is very different from that  necessary for bending strength. 

4.3. Numerical Values . - -We can now take some numerical values to see the kind of wing that  
formula (43) leads to. 
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Reasonable values are 

w~ = 50 lb/ft ~ 

= 7,000 lb/in. ~ 

E/G= 2.5 

2~, = 0 .13 

l = 90 ft 

h = 0 . 4  

b = 0 . 2  

(44) 

Subst i tut ing these values in (43) we obtain the  curve of Fig. 3, which shows the  variat ion of 
skin thickness from root to tip. The shape of the  curve is dependent  only on the  plan taper  of 
the  wing, so tha t  for a value of 0 .2  for b (which is qui te  typical) it gives the thickness everywhere 
along the span in terms the root skin thickness. 

troot = 2.32 wl E hrl (1 
¢ l " G ' t a n / ~ ' -  + b  + b  ~) 

= 2 . 8 8 w ~  E hyl 
a~' G ' t an /3  . . . . . . . . . . . . . . . . .  (45) 

For the  numerical  values of (44) this gives 

Got = 0 .12  in. 

(0.,2) 
I ' 0  

0 . 8  

0 '6  

t 
t (root) 

0.4 

0 ' 2  

NOTE :- FIGURES IN BRACKETS 
ARE SKIN THICKNESSES 
WHEN ROOT THICKNESS 

IS 0 ,12 IN. 

(O'O B) 

0 0"2 0 " 4  0 "6  O'B 1.0 

F R A C T I O N  OF SPAN 

Var ia t ion  of skin th ickness  along span  for t a p e r  ra t io  b = 0 . 2  in plan.  FIG. 3. 

Looking at (45) we see tha t  most  of the  quanti t ies  concerned are somewhat  rigidly circum- 
scribed; we cannot  vary wl, al, E/G, ~, or l much,  so tha t  we are left wi th  h and tan/~, and if 
further,  the  sweepback is fixed, only the  distance h between the  flexural axis and the  quarter-  
chord position is at our disposal. By reducing this distance we can, theoret ical ly make  the  
torsional stiffness as measured by  the  skin thickness tl as small as we like. The consequent  
forward shift of t h e  flexural axis reduces constructional  difficulties but  the accompanying very 
low torsional stiffness increases them. 
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Again theoretically, even for zero product of inertia, we can make h small enough to reduce 
the torsional stiffness to a degree that  would make r, the ratio of bending to torsional frequency, 
greater than unity, when the wing becomes immune from both flutter and divergence. The 
difficulty here is that  as r increases from something less than unity to unity the flutter speed 
progressively drops and only becomes infinite if r is greater than unity. In this particular case 
therefore, i.e., with zero product of inertia, the choice is either to make h as large as possible or 
as small as possible. 

4.4. Numerical  Value of Frequency Ratio r . --While on the subject of the scope for varying the 
frequency ratio r it may be useful to investigate the limits this is likely to have in practice as 
indicated by the present example. The details of the calculation are not given and only the 
results are discussed here. 

The flexural frequency is found to be 4 c.p.s, and we may reasonably assume that  this is 
independent of skin thickness and dependent on the bending strength alone. The torsional 
frequency, however, as already discussed above, is determined by the position of the flexural axis 
relative to the quarter-chord. If we keep the flexural axis at 0.65c, i.e., O. 4c aft of the quarter- 
chord, we obtain the skin thickness distribution of Fig. 3. If, further, we take a value of the 
radius of gyration of chordwise elements of the wing as 0.3c, which is a fairly high figure and not 
likely to be exceeded, we arrive at a torsional frequency of 23 c.p.s, whence 

r = 4/23 = O. 175 . . . . . . . . . . . . . . . . . . .  (52) 

With the flexural axis in the above position, the wing is at its stiffest torsionally. Suppose 
therefore the flexural axis is brought forward from 0.65c to 0.35c thus reducing its distance 
from the quarter-chord position to 0. lc and so reducing the skin thickness necessary for 
isoclinicism to ~ its previous value and the torsional frequency to ½. This represents the lowest 
practical value of the torsional frequency since we neglect the accompanying reduction in the 
radius of gyration consequent upon using a smaller skin thickness with an unchanged spanwise 
distribution. The reduced value is therefore 23/2 = 11.5 c.p.s, giving a frequency ratio of 

r = 0 .35 .  

This result points strongly to the conclusion that  there is no prospect of being able to design for 
a value of r greater than unity in the search for immunity from aero-elastic troubles. The 
alternative however, is not, as in the case of zero product of inertia, to go to the other extreme 
and make r as small as possible, but rather still to make r as large (and hence the torsional stiffness 
as small) as can be conveniently arranged.  This will be clear from the. next section in which 
numerical values are discussed. 

4.5. Inert ia Ax i s  Posit ion in  Relation to Torsional S t i f f ne s s . - -Rever t ing  to equation (26) 
which gives the critical speeds in terms of the product of inertia q, we are now in a position to 
assign numerical values to the various quantities. As the numerator is essentially positive, we 
need only consider the denominator so far as attaining complete immunity is concerned, for, 
when that  changes from positive to negative, n 2 becomes negative also and the flutter speed in 
consequence infinite. Thus we  want to make 

(1 - -  r ~) + q(s cot/~ -- tan 8) . . . . . . . . . . . . . .  (47) 

negative. It has already been shown (equation 46) that, with the flexural axis at 0.65c, or 0.4c 
after of quarter-chord 

r = O. 175 . . . . . . . . . . . . . . . . . . . .  (48) 

and the value of s = C,/Co is then calculated to be 

s = 15 . . . . . . . . . . . . . . . . . . . . .  (49) 

Taking fi = 45 deg as a first example, we see that  expression (47) becomes zero when the absolute 
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value of the negative product of inertia is 

1 - - r  ~ 1 - -  0 . 0 3  
q -- s ~  -- 14 = 0.07 . . . . . . . . . . . . . . .  (50) 

If we now halve the distance between the flexural axis and the quarter-chord, two changes take 
place, one trivial and the other important.  We find that  r changes roughly from 0. 175 to 
0. 175~/2 ( =  0.25) and so (1 -- r ~) changes from 0.97 to 0.94, but the important  change is in the 
value of s, which is doubled. 

0.94 
T h u s q - - 3 0 _ l  - -0"032  

a n d  the distance that  the inertia axis has to be placed forward of the flexural axis is about 
halved. If the flexural axis is moved to 0. lc of the quarter-chord position, the amount of mass 
balance is still further reduced to 

0.88 
q - - 6 0 - -  1 - - 0 " 0 1 5 '  

this last value being only about one-fifth of that  required when the flexural axis was in the 
original position of 0.65c. Thus, i f  a flexural axis position of 0.65c requires a gap of O. 3c between 
it and the inertia axis, that gap is reduced to O. 06c, i.e., only 20 per cent of its previous value i f  the 
flexural axis is located at O" 35c--a fact tha t  can have an important  effect on the constructional 
difficulties. 

Again it is to be pointed out that,  owing to neglect of aerodynamic damping and the fixing of the 
wing at the root (thus neglecting rigid body motions of the aircraft), the case treated is a some- 
what simplified one, but there is no reason to doubt the broad indications it suggests, particularly 
as the wind-tunnel results obtained by Lambourne ~ in his experimental check of the theory 
gave very good agreement in spite of the aerodynamic damping forces that  were present. 

5. Conclusions.--The following are the main conclusions from the above treatment:  

(a) An isoclinic swept-back wing, although immune from static divergence in virtue of the 
loss of incidence due to bending having the effect of wiping out any wing twist that  a change of 
lift force might otherwise produce, is subject to dynamic divergence. This follows from the fact 
that  the bending frequency cannot be made equal to, or greater than, the torsional frequency, 
the consequence of which is that  the wing cannot bend quickly enough to relieve the increased 
incidence due to twisting. 

(b) The disability remarked in (a) remains only a potential one, for flutter invariably inter- 
venes before the divergence can manifest itself, and any device that  eliminates flutter ipso facto 
eliminates dynamic divergence.  

(c) With the flexural and inertia axes coincident, the only way of obtaining immunity  from 
flutter is to make the bending frequency greater than the torsional frequency. An exploration 
of the possibilities in this direction based on typical data indicates, however, that  this is out of 
the question. 

(d) When the inertia axis is placed forward of the flexural axis immunity  from aero-elastic 
troubles becomes possible if the gap between the two axes is adequate. 

(e) The adequacy of the gap referred to in (d), for any given angle of sweepback, is dependent 
on the ratio r of uncoupled bending to uncoupled torsional frequency and on the ratio s of 
bending to torsional stiffness. To make this clear--for it is an important  point--one can do no 
better than quote the formula involved, namely 

( 1 - - r  2) + q(s cot fi --  tan /3) , 

which has to be negative for safety. The ratios r and s have just been defined, q is the ratio of 
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product of inertia to bending inertia of the wing (mgativewhen forward of the flexural axis) and 
# is the sweepback angle. 

The formula shows the interplay of these non-dimensional quantities clearly. What  we know 
is that  r cannot be greater than about ½ so that  (1 -- r ~) is little short of uni ty  and we may call it 
uni ty  for the purpose of this argument. We also know that  s cannot be less than about 10, so 
that  compared with s cot #, the value of tan # is negligible for any practical sweepback angle. 
We are left with 

1 + qs cot fi 

which incidentally shows the benefit of reducing #. With # = 45 deg the quant i ty  that  must be 
negative is (1 + qs), which shows at a glance the importance of the ratio s in reducing the 
absolute value of the negative product of inertia, and hence in reducing the gap between the 
flexural and inertia axes which represents one of the main structural problems of the isoclinic 
wing. 

As the flexural stiffness may be regarded as constant, the value of s varies inversely with the 
torsional stiffness, and the torsional stiffness i n  turn varies directly with the chordwise gap 
between the flexural axis and the quarter-chord position (to keep the wing isoclinic). By 
reducing this gap, therefore, from 0.4c to 0- lc, we make s four times greater, thereby reducing 
q, and hence the gap between the flexural and inertia axes, to ~ its previous value for the same 
degree of immunity. The disadvantage is the a t tendant  loss of torsional stiffness, but if aero- 
elastic troubles are thus by-passed, this loss may be acceptable, particularly as in the Hill scheme 
rotating wing tips do the work of ailerons. 

The possibility of thus reducing the gap between the inertia and flexural axes that  flutter 
avoidance makes necessary is a point not previously brought out. The fact that  the possibility 
can only be realised by further sacrifice of torsional stiffness, a l ready--wi th  the flexural axis at 
its most aft practicable location--below that  conventionally acceptable, explains why this line 
of approach was not previously investigated. In any event its feasibility in practice remains to 
be proved; the theoretical possibility alone is indicated here. 

(f) The degree of skin thickness appropriate to a flexural axis located at 0.65c is shown in 
Fig. 3 (section 4.3) and is seen to be not impractical. It  is to be noted, however, that  a reduced 
torsional stiffness associated with a more forward position of this axis is attainable by other 
means than still further reducing the thickness of the wing-cell walls. 

(g) So long as the flexural and inertia axis are concident the aero-elastic properties of an 
isoclinic swept-back wing are independent of the sweepback angle (see equation (15)). When 
however the inertia axis is forward of the flexural axis a reduction in the angle of sweepback 
greatly improves the aero-elastic behaviour (see equation (21a)). 

(h) Other factors being constant (see equation (43)), aspect ratio has no effect on the skin 
thickness required to make a swept-back wing isoclinic. 
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