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Summary.--This paper is concerned with the formation of basic differential equations for the determination of the 
stress distribution in reinforced monocoque flat-sided structures, such as rectangular or polygonal fuselages and wing 
boxes. The general scheme of the analysis is to develop the fundamental equations which govern the stresses, strains 
and displacements separately in the skin-stringer combination and rib flanges. Then, by identifying displacements 
along their intersections, the differential equations of compatibility are formed. The solution of these equations yields 
the stress distribution. It  is intended that further papers will be devoted to the detailed solution and application of 
these equations to particular problems together with experimental verification for each type of problem. 

A simple application of the theory is demonstrated in an appendix. A three-bay flat structure, containing a rectangular 
cut-out  in the centre bay, under uniformly distributed tension loading is investigated. The calculated results for the 
longitudinal direct stress resultants in the skin-stringer combination compare favourably with those of experiment. 

1. Iratroductiora.--In recent years considerable attention has been given to the estimation of 
stress distributions in the reinforced monocoque construction encountered in modern aircraft. 
It was soon realised from the flexible nature of the construction that  the stresses arising from 
discontinuities such as concentrated loads and abrupt changes in section were of primary im- 
portance and required quite comprehensive analytical and experimental investigations. Previous 
work has shown that  the analytical estimation of the stress distribution in these reinforced 
monocoque structures can be broadly considered under the following three headings, viz., 

(a) Estimation of the overall stress distribution over regions far removed from a discontinuity 
(such as a concentrated load or abrupt change of section). Here the elementary theories 
of bending and torsion are usually applicable and no account is taken of the flexibility 
of the structure. 

(b) Estimation of the stress distribution in the neighbourhood of a discontinuity (i.e., within 
a range of the order of two or three chords or fuselage diameters). Here, account is 
taken of the flexibility of the structure. 

* 

(c) Estimation of the peak stresses at the discontuity (i.e., within a range of two or three 
times a relevant stiffener cross-sectional dimension). 

* R.A.E. Report Structures 120, received 21st April, 1982. 
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This paper is concerned with the estimation of the stress distribution in the neighbourhood of 
a discontinuity (i.e., (b) above). Such estimations are usually made from the consideration of 
a ' shell model ' that  is an appropriate and convenient idealisation of the basic reinforced mono- 
coque structure. 

The most important  shell models may be distinguished as follows, viz., 
(i) Basic reinforced monocoque structure. 

(ii) Shell model with discrete stringers and ribs (frames). (Ebner and K611er 1,2, CicalaS). 
(iii) Shell model with uniformly distributed stringers but discrete ribs (frames). (Goodey 4, 

HoffS). 

(iv) Shell model with uniformly distributed stringers and closely spaced rigid diaphragms. 
(Williams 6, Goodey 7, Hadji-Argyris and DunneS). 

In this paper, a theory is given which is based upon a shell model possessing uniformly distri- 
buted stringers but discrete ribs (frames). This shell model is used because it represents a close 
approximation to the truth, it is convenient for mathematical analysis and because accoun,t 
can be taken of the flexibility of the individual rib flanges (frames). Other authors 4,5 who have 
used this shell model have confined their attention to circular cylinders possessing complete 
cyclic symmetry.  However, a theory is presented here in a form that  will serve as a basis f o r  
the practical solution of a wide range of flat-sided structures such as rectangular or polygonal 
fuselages and wing boxes. I t  is intended that  a corresponding theory of curved structures will 
be given in a further paper. 

The general scheme of the analysis is to develop fundamental equations which govern the 
stresses, strains and displacements separately in the skin-stringer combination and the rib 
flanges or frames. Then, by identifying displacements along their intersections the differential 
equations of compatibility are formed. The solution of these compatibility equations yields the 
stress distribution. It  is intended t~at further papers will be devoted to the detailed solution 
and application of these equations to particular problems together with individual experimental 
verification for each type of problem. 

2. Description of Slructure.--2.1. Basic Reinforced Monocoque Structure.--The basic structure 
is constructed from a thin flat metal sheet reinforced in the longitudinal direction by closely 
spaced stringers and in the transverse direction by a system of rib flanges (or frames). 

2.2. Derivation of the Shell Modd.--In the calculation of the stress distribution in the neigh- 
bourhood of a discontinuity, account is taken only of the most important effective work of the 
individual structural components. The resulting structure with its limited attributes is called a 
' shell model.' 

If the cross-section of the stiffeners is large in relation to the cross-section of the skin then the 
direct stresses are taken up almost exclusively by the stiffeners and a condition of almost pure 
shear exists in the individual sheet panels bounded by two stringers and two ribs. This notion 
is now applied to the ease when the cross-sections of the skin and stiffeners are of the same order 
of value. Account is taken of the contributory direct stiffnesses of the skin by corresponding 
increases in the stiffener cross-sections, which are then usually called 'effective cross-sections.' 
As this yields the ' mean ' of the actual stress conditions it affords a useful simplification for the 
calculation of the distribution of the stresses as a whole. 

In most reinforced monocoque structures the stringers are so numerous that  they may be 
considered as uniformly distributed over the surface of the skin. This skin-stringer combination 
will then have the nominal sheet thickness for resisting shear in its own plane a n d  an effective 
thickness for resisting direct loads in the longitudinal direction. 
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2.3. A s s u m p t i o n s . - - T h e  following assumptions are made in the analysis, viz., 

(a) The stress-strain relationships are linear 
(b) Buckling is excluded 
(c) The stringers can resist only direct load 
(d) The rib flanges (frames) can resist only direct load 
(e) The thin sheet covering can resist only shear, account being taken of its contributory 

direct stiffnesses by corresponding increases in the stiffener cross-sections. (This means 
that  the shear can only change at a rib or stringer.) 

( f )  The stringers are so closely spaced that  t h e y  may be considered uniformly distributed 
over the surface of the skin 

(g) The effects of the eccentricity of the neutral axes of the stringers and rib flanges (frames) 
from the skin median line are neglected. 

3. Determinat ion  o f  the Stress Di s t r ibu t ion . - -3 .1 .  F u n d a m e n t a l  Equat ions  fo r  the Ski~-Stri~¢ger 
C o m b i n a t i o n . - - I n  preparation for forming the equations of compatibility for the shell model 
it is necessary to consider the detailed equations governing the individual behaviours of the 
skin-stringer combination and the rib flanges. 

The structure and notation are shown in Fig. 1. In Fig. 2 are shown the stress resultants 
acting on an elemental portion of the skin-stringer combination taken from the j t h  bay of the 
shell model. Resolving in the longitudinal direction it is found for equilibrium of the element 
that  

8Tj O S ' j  0 . . . . . . . . . . . . . . . .  (1) 
~x + ~ y - -  

The longitudinal, and shearing strains in the skin-stringer combination can be expressed in 
terms of the displacements and the stresses. They are respectively 

~u~ Tj . . . . . . . .  (2) 
e,x j - -  Sx - -  E t*  . . . . . . . .  

and 

_ . . . . . . .  ( 3 )  
exyj--Oy + o x  ~t ' " . . . . . .  

where t* is the effective thickness of the skin-stringer combination for resisting direct loads in the 
longitudinal direction, t is the nominal thickness of the skin, E is Young's modulus and # is 
the shear modulus. 

Now, in ~he shell model the shear stress resultant S'j is independent of the longitudinal 
co-ordinate x, hence equation (1) may be written 

dS'  I dx. r , = -  

Observing that  the longitudinal direct stress resultant T must be continuous from bay to bay, 
since the rib flanges can resist only direct load along their length, this expression integrates to 

dS'~ 
T j = - - x  ~ + L _ I ,  . . . . . . . . . . . . . .  (4) 

where a new origin for x is chosen: on the left-hand side of each bay and Tj_I denotes the longi- 
tudinal direct stress resultant in the skin-stringer combination at the j -- l t h  rib. 
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The longitudinal displacement ,,,~ is, from equation (2), 

I f  ui -- Et* Tj dx 

which, on using equation (4) and integrating, becomes 

l (  x2 dS'g ) - 
~#=E-~,~, 2 @ +~7"j_ ,  + ~ , . ,  . . . . . . . . . .  (5) 

where ~7i_~ denotes the longitudinal displacement of the skin-stringer combination at the j - - l t h  rib 

From equation (3), the transverse displacement is 

vj \~ , l  ~ / d x .  

Substituting from equation (5), and integrating, this becomes 

, 1 < ~ d.s', x' d~;_l"~ de;___, _ 
v ~ = f #  s j E~*_ ~ @~ + 2  @ / - x dy + v~-~ . . . .  ( ~ )  

where g j - - 1  denotes the transverse displacement of the skin-stringer combination at the 7 - -  l th 
rib. Putt ing x = L into this equation yields 

% 
= ~-~tS" E t * _  6 dff ~- 2 dy J dy + v~_,, .. .. (7) 

which is an expression for the transverse displacement of the skin-stringer combination at the 
j th  rib. 

Equations (4), (5) and (7) which express the relationships between successive T~, u i and fj 
form the fundamental equations for the skin-stringer combination. 

3.2. Fundamental Equations for the Rib Flanges (frames).--The forces acting on an elemental 
portion of the j th  rib flange are shown in Fig. 3, where the applied force is composed of the 
shearing forces applied by the skin-stringer combination plus the external force. Thus 

Sj S' = j+~ - s ;  + s~; . . . . . . . . . . . . . .  (s). 
where 6°j is the external force. 

For equilibrium along the length of the rib flange it is necessary that 

% + ~ = o . . . . . . . . . . . . . . . . . . .  (9) 

The strain along the rib flange can be expressed in terms of the stress and displacement 
It is 

gy), j - -  - @ EA . . . . . . . . . . . . . . . .  (lO) 

where A is the effective cross-sectional area of the rib flange and E is the Young's modulus. 

From these last two equations it readily follows that  

,Equations (8) and (11), which relate the displacement 5j with the forces acting on the rib, 
form the furidamental equations for the rib flanges. The next step is to match the displacements 
77 i of the skin-stringer combination with those of the rib flanges and thus develop the com- 
patibility equations for the structure. 
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3.3. The Equations of Compatibility.--For the stress and strain to be consistent throughout 
the structure it is now only necessary to match the transverse displacement ~] along each inter- 
section of the skin-stringer combination and rib flange. 

Proceeding thus, it is found from equations (7) and (21) for the transverse displacement to 
be identical that  

1 ( 6 3  d'S' j L~ d3i'g_~'~ L d2S'g d3~j_~ 

d%_, ~ ( ,  ) s~, (12) + dy  ~ + S j + ~ - S ' j  - £ ~ r  . . . . . .  

where a substitution has been made from equation (8). The term on the right-hand side represents 
the influence of the external force acting on the rib flange. For successive values of the suffix j 
the above becomes the set of compatibility equations for the determination of the stress distri- 
bution in a flat structure undergoing a loading which is in the plane. When the terms con- 
taining the direct stress resultants T, and the displacements ~ and z5 are eliminated by using the 
known relations 

dS'y 
L =  - + T;_I, 

1 ( L 2 dS'j 
~J=-Ki~. 2 dy + LL_, 

by putting x = L in equations (4) and (5) 

(23) 

dy 2 -  ~ s j + l - s j + ~  . . . . . . . . . . . .  (25) 

which follows from the substitution of equation (8) into equation (11), and the boundary con- 
ditions at each end of the structure they form a set of simultaneous linear ordinary differential 
equations with constant coefficients. ]Each equation will be of fourth order involving only the 
even differentials and, in general, there will be one such equation for every bay. 

In Appendix I of this paper it is demonstrated that  the compatibility equation (12) and the 
displacement equations (14) and (25) are consistent with the strain energy being rendered a 
minimum. 

It  is intended that  fur ther  papers will be devoted to the detailed solution and application of 
these equations to particular problems. However, in Appendix II  a simple manipulation of the 
above equations is demonstrated by estimating the stress distribution in the three-bay reinforced 
monocoque fiat structure shown in Fig. 4. It  has a cut-out in the centre bay and is under a 
uniformly distributed tension loading. The calculated results for the longitudinal direct stress 
resultants in the skin-stringer combination compare favourably with those of experiment. 

The compatibility and subsidiary equations may be conveniently combined and expressed in 
the form of a recurrence differential relationship. After manipulation this relationship is soon 
found to be 

,) ( ) L ~ S'j+,+4S' i-4- S j_, +6Et*L2 d ~ - -  + 1  j - - 1  fit dy ~ S'  - -2S '  i + S' 

~ ( ' - - 4 '  ' ' )  + 6 Sy+~ Sy+l + 6S'L-- 4S j-1 + Sj_~ 

_-- -- 6 ~ (3~j+~ -- 3yj  4- 3~i_1 -- ~j_~) . . . . . . .  (16) 
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In Appendix I I I  it is shown how the compatibility equation appropriate to a shell model rein- 
forced with closely spaced ribs may be derived from the one just above. It  is obtained by 
considering the limit as L (the distance between the ribs) approaches zero with ,/r/L tending 
towards an effective skin thickness f in the transverse direction. 

Finally, in Appendix IV the equations of compatibility are derived for a more general shell 
model and with the inclusion of the effect of stringer bending and twisting. This shell model is 
more general because it is not necessary for the rib flanges (frames), skin-stringer combination 
and rib spacing to be constant throughout the shell model. The effect of stringer bending and 
twisting will usually be small except in such cases as a fuselage of a large aircraft under con- 
centrated loading. In these fuselages the frames are often very flexible and it is then that  the 
effect of stringer bending and twisting becomes important.  

4. Comlusions.--In this paper a theory is given for the estimation of the stress distribution 
in the neighbourhood of a discontinuity (i.e., within a range of the order of two or three chords 
or fuselage diameters) in reinforced monocoque flat-sided structures. The discontinuity may be 
considered as a concentrated load or an abrupt change of section. In Appendix IV equations are 
given in general terms so that  they form a basis for the practical solution of a wide range of 
flat-sided structures such as rectangular or polygonal fuselages and wing boxes. 

A numerical illustrative example is given in Appendix II. Here a three-bay flat structure, 
containing a rectangular cut-out in the centre bay, under a uniformly distributed tension loading 
is investigated. Comparison is favourable with the experimental results for the longitudinal 
direct stress-resultants in the skin-stringer combination. 

I t  is intended that  further papers will be devoted to tile detailed solution and application of 
the equations to particular problems together with individual experimental verification for each 
type of problem. 
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LIST OF SYMBOLS 

Structural properties 

Effective cross-sectional area of the j t h  rib flange 

Effective moment of inertia per unit run of the sldn-stringer combination 
for bending in the normal sense 

Effective moment of inertia per unit run of the skin-stringer combination 
for bending in the transverse sense 

Effective moment of inertia of the j t h  rib flange 

Effective polar moment of inertia per unit run of the skin-stringer com- 
bination for resisting twisting 

Distance between the j - -  l t h  and j t h  ribs 

Nominal thickness of the skin in the j t h  bay 

Effective thickness of the skin-stringer combination for resisting load in 
the longitudinal direction 

Effective thickness of the skin-stI:inger combination for resisting load in 
the transverse direction. 

Co-ordinate system 

Longitudinal co-ordinate, a new origin being chosen on the left-hand side 
of each bay 

Transverse co-ordinate 
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G'j 
G' i 
~f 'j 

S' i 

L 
T, 

Cxx j 
exy ] 

eyY ] 

.uj 

vj 

E, 

LIST OF SYMBOLS--cont inued 

Loads and stresses 

Tension in the j th  rib flange 
Stress couple in the j th bay of the skin-stringer combination, taken in the 

normal sense 
Stress couple in the skin-stringer combination at the j th  rib, taken in the 

normal sense 
Stress couple in the j th bay of the skin-stringer combination due to twisting 
Bending moment per unit run acting on the j th rib flange 
External bending moment per unit run applied to the j th rib flange 
Stress couple in the j th  bay of the skin-stringer combination taken in the 

transverse sense 
Bending moment in the j th rib flange 
Normal shear stress resultant in the j th  bay of the skin-stringer combination 
Normal load per unit run acting on the j th rib flange 
External normal load per unit run applied to the j th  rib flange 
Normal shear in the j th  rib flange 
Transverse shear stress resultant in the j th  bay of the skin-stringer combina- 

tion (this includes the shear carried by the distributed stringers) 
Transverse load per unit run acting along the j th  rib flange 
Transverse shear stress resultant in the j th bay of the skin-stringer conl- 

bination (this excludes the shear carried by the distributed stringers) 
External transverse load per unit run applied along the j th  rib flange 

Longitudinal direct stress resultant in the j th bay of the skin-stringer 
combination 

Longitudinal direct stress resultant in the skin-stringer combination at 
the j th  rib 

Transverse direct stress resultant in the skin-stringer combination 

Strains and displacements 
Longitudinal strain in the j th  bay of the skin-stringer combination 
Shear strain in the j th  bay of the skin-stringer combination 
Transverse strain in the j th  rib flange along the skin median line 
Longitudinal displacement in the j th  bay of the skin-stringer combination 
Longitudinal displacement of the skin-stringer combination at the j th rib. 
Transverse displacement in the j th  bay of the skin-stringer combination 
Transverse displacement of the skin-stringer combination at the j th  rib, 

this being identical to the displacement of the rib flange 
Normal displacement in the j th  bay of the skin-stringer combination 
Normal displacement of the skin-stringer combination at the j th  rib, this 

being identical to the displacement of the rib flange 

Elastic constants 
Young's modulus of elasticity for the skin-stringer combination in the 

j th  bay 
Young's modulus of elasticity for tile j th  rib flange 
Shear modulus for the skin-stringer combination in the j th  bay 

A few additional symbols are introduced in Appendix II  but these are defined as they are 
introduced. 



No. Author 
1 H. Ebner and H. K611er . . . .  

2 H. Ebner and H. K611er . . . .  

3 P. Cicala . . . . . . . . . .  

4 W.J .  Goodey . . . . . . . .  

5 N.J .  H o l : f  . . . . . . . .  

6 D. Williams, R. D. Starkey and A. H. 
Taylor. 

7 W.J .  Goodey . . . . . . . .  

8 J. Hadji-Argyris and P. C. Dunne .. 

9 L .S .D.  Morley . . . . . . . .  

10 A.E. Green . . . .  

R E F E R E N C E S  

Tit.le, etc. 
Zur Berechnung des Kraftverlaufes in versteiften Zylinderschalen. 

L.F.F., Vol. XIV, No. 12. 1937. Translated as A.R.C. 3470. 

Uber den Kraftverlauf in Langs- und querversteiften Scheiben. 
L.F.F., Vol. XV, No. 10-11. 1938. Translated as A.R.C. 3896. 

Sul calcolo delle strutture a guscio. L'Aerotecnica, Vols. XXVI 
and XXVII. 1946 to 1947. 

The stresses in a circular fuselage. J. R. A e. Soc., Vol. 50. November, 
1946. 

Thin-walled monocoques. Aeronautical Conference (London). Sep- 
tember, 1947. 

Distribution of stress between spar flanges and stringers for a wing 
under distributed loading. R. & M. 2098. June, 1939. 

Stress diffusion problems. Aircraft Engineering, Vol. XVIII. June 
to November, 1946. 

The general theory of cylindrical and conical tubes under torsion 
and bending loads. J. R. Ae. Soc., Vol. 51, February, September 
and November, 1947 ; Vol. 53, May and June, 1949. 

Load distribution and relative stiffness parameters for a reinforced 
flat plate containing a rectangular cut-out under plane loading. 
N.L.L. Report S.347. 1949. 

Stress systems in isotropic and aeolotropic plates. V. Proc. Roy. 
Soc., Vol. 184, Series A. 1945. 

A P P E N D I X  I 

That the Equations of Compatibility are Consistent 
with the Strain Energy being Rendered a M i n i m u m  

I t  can soon be shown t h a t  the  c o m p a t i b i l i t y  equa t ions  (12), t oge the r  w i th  the  d i sp l acemen t  
equa t ions  (14) a n d  (15), are cons i s ten t  w i th  the  t o t a l  s t ra in  ene rgy  s tored  in the  shell mode l  
be ing  r ende red  a m i n i m u m .  

The to t a l  s t r a in  ene rgy  is given by  

t J ~s'?+~-Zr ? + T?dx 4,' 

where, floxn equation (4) 

dS': r : =  - x -y + L_ , ,  

and  f rom equa t i ons  (8) a n d  (9) 

dp: 
- ( s ' j + ,  - s ' j  + ::). dy 

The  in tegra l  is t a k e n  over  the  w i d t h  of the  s t ruc tu r e  a n d  the  s u m m a t i o n  is t a k e n  over  all the  
b a y s  a n d  ribs. 
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Now, the strain energy is to be minimized subject to the satisfaction of the two above cofl- 
ditions. The variational problem is therefore to minimize 

- - - L . - , +  ?~ + ~ \ 4 v +  ,+,-s~+s~, @ 

where ~ and g~ are undetermined functions which cannot as yet be associated with their inter- 
pretations as displacements. The integral and summation are taken over the same region as 
previously. Subjecting this expression to an arbitrary variation, which must have a null effect 
for a minimum, it is found on completing the integral with respect to x that 

£IfL_S,jdS, @ 1 1 (IjdS'jd6S'i 
~ b,t ~rF~F;+~7; @ d~, +LL._,~L_, 

L' d~s','~ ( eas', L ~ d s ' J a L - , -  L-, + g L 
2 dy ~ @ /  \ dy 

-(d L 
+ vj k. dy + 

This easily reduces to 

1 1(  

- -  - ~L-, + ,~L) 

La d2S'J " '  F 

q ;  (}.~j--('- L ~)-1 (}i'j--1 

G:a £t L 1 N dqT~j L ~dS'jaT; -t - a S j ] - - L - - a S ' ~  
2 @  --' 2 ~  @ . 

- -  _ ( ~  / _ _  

dy 

q- terms involving only boundary conditions = 0. 

Therefore, by the usual arguments of the calculus of variations it is seen for the total strain 
energy to be rendered a minimum that 

L 1 F c~ e2s', L2 dL_,'~ dg 
~, + E~*-- \ 3 d~, ~ + 2 ~ ;  / -- L --&;- + ~j_, -- ~j = O, 

1 d~j 
E%? t~, @ - o, 

1 (  L~ds '  ) 
Et* 2 dy + L ~ j _ ,  -k "~j--, - -  14,j = O. 

It can now easily be verified that these equations are consistent with the compatibility equation 
(12) and the displacement equations (14) and (15). 
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A P P E N D I X  Ii  

Numer i ca l  I l lus trat ive  E x a m p l e  wi th  Exper imen ta l  Vere~caliot¢ 

A simple manipulation of the aforegoing equations will now be demonstrated by estimating 
the stress distribution in the three-bay reinforced monocoque flat structure shown in Fig. 4. 
I t  has a cut-out in the centre bay and is under a uniformly distributed tension loading. 

This example, involving just the three bays, is not representative of the cut-out problems 
encountered in the wings or fuselage of an aircraft - -  where a greater number of bays will certainly 
be involved in the stress redistribution. However, the example was chosen for the following 
reasons ,  viz., 

(a) It  demonstrates a simple manipulation of the equations 
(b) It  is very convenient for a laboratory test 
(c) I t  affords a severe test of the theory. 

This appendix therefore does not represent a proper investigation into the effects of cut-outs in 
aircraft structures, but, used with discretion, it will yield a first approximation to the longi- 
tudinal direct-stress resultants and the averaged shear-stress resultants between ribs in the 
skin-stringer combination of such structures. 

There is a complete symmetry  of the structure and elastic properties about the principal axes 
X and Y so the stress distribution will also be symmetrical about these axes. Furthermore, is 
is assumed that  the rib flanges possess the  same Young's modulus E as the skin-stringer com- 
bination. From considerations of symmetry  it follows that  the shear stress resultant S'1 -- S' 

- -  - -  3 

and that  S'~ = 0. There is therefore only one such compatibility equation (12). Putt ing the 
suffix j = 1 in this equation yields 

L a d~S'l L d~S'~ dace0 d~0 1 
6Et*  dy'  + #t  dy 2 L dy~ a + dy- ¢ - E A  S'~ = 0 . . . . .  (17) 

since the longitudinal direct stress resultant T0 at any point in the skin-stringer combination at 
rib 0 is a constant and there are no externally applied distribution of forces such as 5p,. 

The first step is to resolve equation (17) into terms of S'~ only. Now, from equation (13), the 
longitudinal direct-stress resultant T, in the skin-stringer combination at rib 1 is 

dS  'l 
= - L % - y  + . . . . . . . . . . . . . . .  O S )  

while from equation (14) the axial displacements of the skin-stringer combination at ribs 1 and 2 
are respectively 

~ - - E t * "  2 dy + L T ,  + C o  

and 

L T1 + ul. 
(t~ --  E t*  

But, from symmetry it follows that  ul = -- ~2 and hence 

L 2 dS ' l  3L  f~. 
uo -- E t ,  dy - -  2E t*  . . . . . . . .  

Furthermore, from equation (15) it is seen that  

d~Oo 1 
dy ~ = - -  E A  S'1 . . . . . . . .  

since there are no externally applied distribution of forces such as 5% 
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Hence, on subst i tut ing equations (19) and (20) into equat ion (17) it becomes 

5L 3 d4S'i L dzS'l 2 (21) 
6Et*  dy' - i t  dy a . . . . . . . . . .  

which is the differential equat ion of compat ibi l i ty  for the structure. A solution may  be wr i t ten  

S'1 = C1 sinh 41 (y -- b)/L + Ca sinh ~2 (Y -- b)/L 

+ C8 cosh ,~ (y - -  b)/L + C~ cosh ,~a (Y - -  b)/L . . . . . .  (22) 

where C~, Ca, Ca and C~ are arbi t rary constants  and 

Zl, ~a = 0.7746 l e t *  f('Et*"l~_2Ot*'_L'~I/a-]l/2 
Li f t - I -  ( \ i t  / 3 A J  J " 

Now, if the  co-ordinate y has the origin as shown in Fig. 4 then  equat ion (22) is val id only over 
the  range b < y < b q- B, because over the  range -- b < y < b the shear stress resul tant  S'1 
follows immedia te ly  from equat ion (18). It  is 

To , (23) f y  . . . . . . . . . . . . . . . . . .  

because the longitudinal  direct stress resul tant  T1 is zero over this interval.  

I t  only remains now to solve for the four arbi t rary constants  in equat ion 122). Along the  
sides of the  skin-stringer combination,  i.e., at y = b + B, there is no external  application of force 
and hence the shear stress resul tant  S'~ in the skin stringer combinat ion and the tension -F1 in 
the  rib flange must  be zero. The tensions in the rib flanges are found from equat ions (8), (9), 
(22) and (23) and they  are 

F0 = -- F1 = --  Fa = F3 = -- L {C~ cosh ~1 (Y -- b)/L q- C3 sinh ~ (y -- b)/L} 

_ L_ {Ca cosh t2 (y -- b)/L + C~ sinh ~a (Y -- b)/L} . . . .  (24) 
22 

over the range b < y < b + B, and 

To L L 
F o  = - -  -P~ = - -  F ~  = F~  - -  5 L  (ha - -  y~)  - -  Y, C l  - -  y~ Ca . . . .  ( 2 5 )  

over the range --  b < y < b. It  is to be noted tha t  the  rib flange tensions are continuous at y = b. 
Finally, at y = b it is known tha t  the  shear stress resul tant  S'1 in the skin-stringer combinat ion  
and the  transverse displacement  ~50 in the  rib must  be continuous. This t ransverse displacement  
is found from equations (10); (24) and (25) which eventual ly  yield 

E X g o  - -  

over the range b < y < 

T0 
Ed 0 = 2L 

over the  range --  b < y 

L--2 {C1 sinh 21 (y - - b ) / L  + C3 cosh 41 (y --  b)/L} 

L--~2 {C2 sinh ~2 (Y -- b)/L -t- C~ eosh 1a (Y --  b)/L} 
~2 a 

b + B, and 

< b ,  

L L 

11 

. . . .  (26) 

. . . . . .  (27) 



There are therefore just four conditions for the determination of the arbitrary constants. 
By simple substitution these conditions are found to be the four simultaneous equations 

4 

CI sinh I, B/L + Ca sinh ,12 B/L + Ca cosh 11 B/L d- 

C1 cosh ,tl B/L + C2 C3 ,17 < cosh ,15 B/L q- < sinh ,1~ B/L -I- 

Ca + C, 

C~ cosh ,15 B/L ----- O, 
r C~ 

sinh ,1~ B/L = O, 

T0b 
L ' 

To b~ 
3 La 

I 
I 

.(28) 

C1 b Ca b Ca C~ 
,tl L 12 L ~- 115 [- t22 - -  

F o r  a numerical example the following values of the parameters have been chosen, viz., 

Et'* t*L B b 
#t - - 4 . 6 ,  A7 - -3"15,  L - - 0 ' 7 7 '  L - - 0 . 4 6 ,  ~-~o= 1.0. 

Substituting these into the expression for 21 and t2 yields 

11=- 1.587, 12=  1.732, 

whence the solution of the four simultaneous equations (28) gives 

C 1 = 3 . 3 7 7 ,  C~-- 3.888, C3-- 3. 779, C , = 4 . 2 3 9 .  

Substitution of the values of ,11, ,12 and C1, Ca, Ca and C~ into the relevant expressions yields 
the stress distributions throughout the structure. 

The calculated and experimental longitudinal direct-stress resultants in the skin-stringer 
combination are shown in Fig. 6. In this same figure are shown the calculated results using the 
theory of Ref. 9. Fig. 7 shows a panoramic view of the calculated stress resultants using the 
theory of the present paper. 

The experimental results were obtained using the rig shown in Fig. 5. The longitudinal strains 
in the skin-stringer combination were measured at selected points and were then converted into 
direct stresses. It  was not possible to measure these strains right at a rib line so readings were 
taken at various points along each stringer and the des{red strains were estimated from these. 

The calculated shear-stress resultants are shown in Fig. 8. It  must be remembered that  these 
are the 'averaged shears '  along each bay of the structure and therefore do not indicate the 
peak concentrations that  occur immediately at the corners of the cut-out. 

The ' e x a c t '  solution involving the biharmonic equation encountered in the mathematical 
theory of elasticity yields infinite values of the stresses at the corners of the cut-out TM. In practice, 
however, plastic deformation of the material will limit these stresses to some finite value. 

APPENDIX III  

Closely Spaced Ribs 

If the basic structure is replaced bv a shell model containing a closely spaced distribution of 
ribs there are some important  simplil~cations of the compatibility equation. 
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The equation of compatibility has already been derived ~or discretely spaced ribs. 
equation 16, 

# , d "~ , , 
L 4 - -  (S j+~ + 4S '  i + S'~_~) + 6 E t *  L2 __ (S  j ~  - -  2S '  i + S i-~) dy dS 

E t * L  S '  ' - -  + 6 - - ~ -  ( j_,_~ -- 4S j+~ + 6S'j 4S'j_t + S'j_~) 

= --6-ff~Et*Z (Spg+~ _ 35pj -I- 3~j_~ - -  ~ - 2 )  

Now, using the notation of the ' Calculus of Finite Differences ', viz.,  

! t 
~-+S'~ = T~ (S ~+~ - -  2S'j + S ~_,), 

this may be re-expressed 

d[Ty , (z~d ~ + 6) + 6 Et*- d~ 
fit  d f f  

A~+ 6 ~ ? A  ~] - + S ' j = 0  

It is, from 

. I  

when all the ~ j  are zero. In the limit as L, the distance between ribs, becomes zero it is known that  

d~S' ! 

Lim A 2 __> S j - -  dx  2 
L = 0  

and so the equation of compatibility becomes 

E t *  a~S ' E t *  ~4S' . . . . . .  (29) a~S' d + - -  O, . .  . .  
ay 4 fit ~ y ~ x  2 -E[  ~x ~ 

where it has been assumed for the rib flanges that  

• / L  = f 

where [ is an effective skin thickness in the transverse direction. 

E q u a t i o n  (29) is the condition of compatibility for a shell model containing closely spaced 
ribs where the rib flanges possess a finite extensional rigidity. If it is assumed that  they are rigid, 
i.e., [ = oo, then equation (29) becomes 

h = (3o) 
aT,\~y ~ + ~t ~x~/ o . . . . . . . . . . . . .  

This equation, in slightly modified form, occurs frequently in shear lag and diffusion problems 
such as those investigated by Williams", Goode S and Hadji-Argyris and Dunne ~. 

APPENDIX IV 

D e t e r m i n a t i o n  o f  the Stress  D i s t r i b u t i o n  i n  a M o r e  General  Shel l  M o d e l  I n c l u d i n g  the Ef fec t  o f  
S t r inger  B e n d i n g  a n d  T w i s t i n g  

The reinforced monocoque structure considered in this appendix is shown in Fig. 9. The shell 
model is more general because it is not necessary for the rib flanges (frames), skin-stringer com- 
bination and rib spacing to be constant throughout the shell model. The effect of stringer 
bending and twisting will usually be small except in such cases as a fuselage of a large aircraft 
under concentrated loading. In these fuselages the frames are often very flexible and it is then 
that  the effect of stringer bending and twisting becomes of importance. 

13 



1. Fundamental Equations for the Skirt-Strlnger Comblnation.--in preparation for forming 
the equations of compatibility for the shell model it is necess.ary to consider the detailed equations 
governing the individual behaviours of the skin-stringer combination and the rib flanges. 

The stress resultants and couples acting on an elemental portion of the skin-stringer com- 
bination in the j t h  bay are shown in Fig. 10 (the position suffixes j have been omitted in the 
figure). Resolving forces in the longitudinal direction it is found for equilibrium of the element 
that  

aT,. aS'~ 

a x  ~ a y - ° '  . .  . .  . .  (31) 

while in the transverse direction, neglecting T', 

~ s ; _  0 
~x . . . .  .. .. (32) 

and in the normal direction 

~N~ 0 ' 
~x .... .. .. (33) 

Taking moments about an axial line, it follows that  

aG'~ = 0,  . .  
Ox "" ,. . .  (34) 

about a transverse line that  

a-~ - N j = O  . . . .  
. . . .  (3s) 

and, finally, taking moments about a normal 

aKj , 
a-~  - s ~ + s j = 0 .  

. . . .  (36) 
There is one more equation belonging to this category and this refers to an assmnption that the 
shear S' is independent of the axial co-ordinate, viz., 

8 ' SJ 0. 
ax . . . . . . . . . . . . . . . .  (37) 

The longitudinal and shear strains in the skin-stringer combination can be expressed in terms 
of the displacements and the stresses. They are respectively 

au~_ z; 
a~ E/*; . . . . . . . . . . . . . . . .  (38) 

e x x  j" - -  

neglecting T', and 

exy i = 

and 

au~ a v j _  S'~. 
+ a% - ~ , - ~  . . . . . . . . . . . . . . .  (39) 

Similarly, the bending couples may be expressed in terms of the displacements. They are 

~x 2 E~L,~ . . . . . . . . . . . . . . . . . .  (40) 

ax 2 Ejlc ~' 
from elementary bending theory. 

. . . . . . . . . . . . . . . .  (41) 

14 



Finally, for the twisting couple, 

~wj G'j t . . . . . . . . . . . . . . . . .  (42) 
~y~x zJj 

Now, it has been assumed in equation (37) that  the shear S'j is a function only of the transverse 
co-ordinate y, hence equation (31) may be written 

dS'j I T i = - - ~ y d X  

and, on observing that  the longitudinal direct~stress resultant must be continuous from bay to 
b a y  since the ribs are assumed to have no rigidity for bending in the plane of the sheet this 
integrates to 

dS'~ L = - x ~ + L - l ,  . . . . . . . . . . . . . .  (43)  

where a new origin for x is chosen on the left-hand side of each bay and Tj_I denotes the longi- 
tudinal direct-stress resultant in the skin-stringer combination at the j - - l t h  rib. 

The axial displacement u i is, from equation (38), 1; 
UJ--E/•  Tidx 

which on using equation (43), and integrating, becomes 

1 ( x~dS'j ) - (44) 
ui -- Ejt*~ 2 dy + x~'~_~ + u~_~, . . . . . . . . . .  

where gj_l denotes the longitudinal displacement of the skin-stringer combination at t he j  - - l t h  rib. 

From equation (39), the transverse displacement is 

,,,~t~ Vy / &" 

Substituting from equation (44), and integrating, this becomes 

_ ± , I < x '  a's', ~ dL_~'~ d~._, (45) 
v~--&t~ S i -  Ejt% 6 dy 2 + 2 dy J - -  x-~y + v%_,, .. 

where gj_~ denotes the transverse displacement of the skin-stringer combination at the j -  l th  rib. 
Putt ing x --  L~. into this equation yields 

L ! , l ( L~. dzS'j L~j dL_~"~ dq2i_~ _ 
~'--I~,t, SJ ~t*',_ 6 dy 2 + 2 dyy j - - L , - ~ - y  +v,_, . .  (46) 

which is an expression for the transverse displacement of the skin-stringer combination at the 
j th  rib. 

t Due to the construction of the skin-stringer combination, i.e., a very thin skin reinforced by uniformly distributed but 
distinct longitudinal elements, derivatives of the normal deflection w with respect to y possess no real significance 
unless they refer to the displacement of a rib flange. However, the notation ~w/~y is most convenient to express the 
rotation of the axial elements between the ribs, provided it is remembered that it is only a notation. Thus the anomaly 
presented by equations (41) and (42), viz., 

~awj 1 ~Gj 1 OG'~ 
~y ~x~ = - E,  Io, T y  - F,,~, 2 .  - o, 

from equation (34), simply does not arise, 
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From equations (40) and (45) it is found that  the stress couple Kj in the transverse sense is 

& 
t~ , ,  * dy ~ @ dy J . . . . . . . . . . .  (47) 

and then from equation (36) the shear stress resultant & is 

Sj = S'j I v  d~S'g 
~; dp  . . . . . . . . . . . . . . .  (48) 

In equation (34) it is seen that  the twisting couple G'j is independent of the longitudinal 
co-ordinate x and hence equation (42) may be integrated with respect to x to give 

~wj__ x , ~a~_1 
ay &.jj G ~ + ~ . . . . . . . . . . . . . .  (49) 

where z~.~ denotes the normal displacement of the skin-stringer combination at the j - - l t h  rib. 
Putt ing x = Lj into this equation yields 

gy = ~,J, ~ '  + ~--7- . . . . . . . . . . . . . . .  (50) 

which is an expression for the rotation of the skin-stringer combination at the j th  rib. 

From equations (33) and (35) it follows that  the bending couple G~ may be expressed 

c; = .Nj + G;_~ . . . . . . . . . . . . . .  .. (51) 

where Gj_~ denotes the bending couple in the sldn-stringer combination at the j - - l t h  rib. The ribs 
are assumed to possess no bending rigidity in this sense and hence the bending couple in the 
skin-stringer combination will be continuous from bay to bay. 

Substituting equation (51) into equation (41) and integrating, yields 

~x E~I~ ~ N~ q- xg~_~ + ~z~_~x . . . . . . .  • . .  (52) 
and 

~J = - E & , .  ~ N, + ff ~j_l + x - ~ Z  + %_~ . . . . . . . .  (53) 

Putting x = Lj into this last equation gives 

~,j = - E F ~  Nj + Gs-~ + Lj ~ + wj_~ . . . . . . .  (54) 

which is an expression for the normal displacement of the skin-stringer combination at the 
j th  rib. Substituting this into equation (50), the twisting couple is given by 

, ~;j; ( 4  ~ dN; 4d~;_~'~ ~;_~ "(55) 
G i = -- EjI~j k, 6 dy q 2 dy J -q- ~*JJ' ay ax . . . . . . .  

This completes the formulation of the fundamental equations for the skin-stringer combination. 

2. Fundamental  Equations for the Rib Flanges ( frames) . - -The forces acting on an elemental 
portion of the j t h  rib flange are shown in Fig. 11, where the applied forces are composed of those 
applied by the skin-stringer combination plus the external forces. Thus 

Nj = Nj+I -- Nj + ~ j  ] 

G ~ = G % l - - G ' j + % -  ] 

where JV), ~ and cSj are the external forces. 

16 
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The equations of equilibrium of the elemental portion of rib flange are derived in the usual 
way. Resolving forces in the normal direction 

SO'--  0 . . . . . . . . . . . . .  (57) &+@ 

and then in the transverse direction 

d ~  S; + @ = 0 . . . . . . . . . . . . . .  (58) 

and finally by taking moments 

~, d& 
@ + O, = o . . . . . . . . . . . . . . .  (sg) 

The strain in the rib flange along the skin median line can be expressed in terms of the dis- 
placements and stresses. It  is 

¢, _ d~; P ,  . . . . . . . .  (so)  ' -  dy E ; 4  . . . . . . . . . .  

For the bending of the rib flange it follows that  

~ _ d %  . . . . . . . .  ( s l )  ~ j r ; -  - dy~ . . . . . . . .  

where the shear deflection is neglected. 

Using the above equations it is possible to express the forces and displacements in the rib 
flange in terms of the applied forces. They are 

d(?~ _ & ,  . . . . . . . . . . . . . . . . .  (s2) dy 

~iv; _ S;, . . . . . . . . .  (6a) ~ y  " " . . • .. • • • 

d 2 ~ j  sC'j  
N , ,  . . . . . . . . . . . . . . . .  ( 6 4 )  

and finally 

d% 3, 
e y  ~ - E , ~  . . . . . . . . . . . . . . . . .  ( s s )  

d %  1 ( d e ' ,  ) 
dy' -- E~Ij \ dy ~Tj . . . . . . . . . . . . .  (66) 

This completes the formulation of the fundamental equations and the next step is to match 
the displacements of the skin-stringer combination and rib flanges along their various intersections 
and thus develop the compatibility equations for the structure. 

3. The Equations of Compatibility.--For the stress and strain to be consistent throughout the 
structure it is now only necessary to match the transverse and normal displacements v and w 
along each intersection of the skin-stringer combination and rib flanges, 
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Proceeding thus, it is found from equations (46) and (65) for the transverse displacement 
to be identical in the plate and rib flange along an intersection that  

1 ( ~ 3  d4S ', L,2 d3T,_I"~ L, d2S ', d3~,_~ d2g,_~ 
E/*j dy' 2 dS ) ~  #/5 dY ~ Lj dy ~ + @2 

1 (S' I±~j+~ d~S',+~ I~, d~S'i) _-- O"j 
+ ~ , .  '+' c%+, dy, s"~ + ~,< dy. . E / , '  " (67) 8 

where substitutions have been made from equations (48) and (56). The term on the right-hand 
side represents the influence of the external forces acting on the rib flange. For successive values 
of the suffix j the above becomes the set of compatibility equations for the determination of the 
stress distribution in a flat structure undergoing a loadingwhich is in the plane of the structure. 
When the terms containing the direct stress resultants T, and the displacements ~ and 75 are 
eliminated by using the known relations 

dS 'i 
L = - L; ~ + L - .  . . . . . . . . . . . . . .  (6s) 

1 ( L;'~s', ) 
as - Ej t5 2 @ + 5j L - 1  + ,~-~ . . . . . . . . . .  (69) 

by putting x = Lj in equations (43) and (44), 

d2~ 1 ( ,  tK,.+~d2S'g+~ , IK~d~S'~ ) 
dy 2 -- Ei=-~j " S ~+1- tS+~ dy ~ -- S g-~ t5 dy ~ + 5°j. . . . . .  (70) 

which follows from the substitution of equations (48) and (56) into equation (65), and the boundary 
conditions at each end of the structure they form a set of simultaneous linear ordinary differential 
equations with constant coefficients. Each equation will be of fourth order involving only the 
even differentials and there will be one such equation for every bay. 

For the normal displacement z~ to be identical in the skin-stringer combination and rib flange 
along an intersection, it is found by substituting equations (54) to (56) into equation (66) that  

E,.z~j\ 6 @' + ~- @' ) - L ;  - ~y~ ~x ~y~ 

- -  E / ,  k,, d y ~A/) . . . . . . . . . . . . . . .  (71) 

The,term on the right-hand side represents the influence of the external forces acting on the rib 
flange. For successive values of the suffix j the above becomes the set of compatibility equations 
for the determination of the stress distribution in a flat structure undergoing a loading which 
is normal to the plane of the structure. When the terms containing the stress couples G and the 
displacements @ are eliminated by using the known relations 

G, = L~N,-F C,._~ . . . . . . . . . . . . . . . . .  (72) 

(_L~ ) 8~:-~ . . . .  (73)  ~z~j _ 1 N~.+ L~- G~_~ + ~x . . . .  ~x E~I~ 
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by putting x = L i in equations (51) and (52), 

a~@~ l {tq+, ]~+~ ( L ~  2 d2Nj+~ 

- -  &+~ Jj+~ ~y2~x 

+2@27 

Ej~, @~ q 2 @2 / 

+ #i Jg Oy20x @ + Nj+I -- Ni + JVi .. . . . . . .  (74) 

by substituting equations (55) and (56) into equation (66), and the boundary conditions at 
each end of the structur e they form a set of simultaneous linear ordinary differential equations 
similar in nature to equation (67). 

In the special case when there are only twisting couples, or the effects of all the N~ are neglected, 
the compatibility equation becomes 

L, aw~ d'~,_l 1 (dG',+l d~'~'~= 1 (d~, ) 
~,J, dff q dy' ~ ~ \ @ . @ J -- Ej=-[, \ @ ~ ,_  (75) 

which is obtained by substituting equations (50) and (56) into equation (66). When the terms 
containing the displacements z~ are eliminated by using 

d'ff# 1 ('dG'j+~ dG'i d~i jr~)) . . . . . . . .  (76) 
+ ~ : -  ~ Z \  ~ - d y  + ~ -  _ . 

obtained by substituting equation (56) into (66) and the boundary conditions, the resulting set 
of differential equations is of third order involving only the odd differentials. 

Solutions to the differential equations of compatibili±y are reserved for later papers in which 
specific problems will be investigated. 
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FIG. 5. Test rig for experimental investigation of a three-bay reinforced monocoque flat structure 
with a rectangular cut-out in the centre bay under uniformly distributed tension loading. 
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Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 6os. (6is. id.) 

1938 Vol. I. Aerodynamics General, Performance, Airscrews° 5os. (5IS. id.) 
Vol. I!. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 3os. (3 is. I d.) 

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 5os. (5IS. Id.) 
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structm'es, Seaplanes, etc. 

63 s. (64 s. 2d.) 
I94oAero and Hydrod3mamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, 

Structures, and a miscellaneous section. 5os. (5IS. xd.) 
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 

63 s. (64 s. 2d.) 
i942 Vol. I. Aero and Hydrodynamics, Aerofofls, Airscrews, Engines. 75s. (76s. 3d.) 

Vol. II. l',~oise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 473. 6d. 
(483. yd.) 

1943 Vol. I. Aerodynamics, Aerofoils, Airscrews, 8os. (81s. 4d.) 
Vol. n .  Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 

9os. (9IS. 6d.) 
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84 s. (853. 8d.) 

Vol. n .  Flutter and Vibration, Materials, :Miscellaneous, Navigation, Parachutes, Performance, 
Plates, and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84 s. (85s. 8d.) 

A..NNUAL ~-~ORTS OF THE AERONAUTICAL RESEARCH COUNCIL,-- 

1933-34 IS. 6d. ( IS .  8d. )  1937 23. (2s. 2d.) 
1934-35 Is. 6d. (IS. 8d.) 1938 15. 6d. (IS. 8d.) 

April I, 1935 to Dec. 31, 1936. 4 s. (43. 4d.) 1939-48 3 s. (3 s. 2d.) 

INDEX TO ALL ][~EPO]~TS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL 
REPORTS, AND SEFARATELY-- 

April, !95o . . . .  R. & M. No. 2600. 23. 6d. (23. 7½d.) 

AUTHOR ~NDEX TO ALL ~ P O R T S  AND MEMORANDA OF THE AERONAUTICAL RESEARCH 
COUNCIL-- 

19o9-I949 . . . . .  R. & M. No. 257o. 15 s. (15s. 3d.) 

hNDEXES TO T~]~ TECHI-~CAL REPORI[~S OF THE AERONAUTICAL RESEARCH COUNCIL-- 

December I, 1936 - -  June 30, I939. 
July I, I939 - -  June 30, 1945. 
July i, 1945 - - J u n e  30, 1946. 
July i, 1946 - -  December 31, 1946. 
January z, 1 9 4 7 -  June 30, 1947. 
July, 1 9 5 I  . . . .  

R. & M. No. I85o. 
R. & M. No. 1950. 
R. & M. No. 2050. 
R. & M. No. 215o. 
R. & M. No. 2250. 
R. & M. No. 235o. 

i,. 3d. (1,. 4½d.) 
IS.  ( I$ .  I { d . )  
is. (lS. x½d.) 
IS. 3 d. ( IS.  4½d°) 
IS. 3d. (Is. 4½d.) 
IS. 9 d. (15. Io}d.) 

Prices in brackets include #ostage. 

Obtainable from 

H E R  M A J E S T Y ' S  S T A T I O N E R Y  O F F I C E  
York House, Kingsway, London W.C.2 ; 423 Oxford Street. London W.I (Post Orders : P.O. Box No. 569, London S.E.1) ; 
i3A Castlo Strcoz, Edlnbu_rBh 2;  39 King St~ec% Manchester 2 ;  2 EdmundSK-eet, Birmingham 3 :  109 St. Mary 

Street, Cardiff ; Tower Lane, B#~tol 1 ; 80 Chich~t~r Str~h Belfast OR THROUGH ANY BOOKSELLER 

R. 

S.O. Code No. 23-2879 

& M,  No,  2879  


