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Summary.—This report contains some fairly simple and economic methods for calculating the load distribution on
wings of any plan form based on the conceptions of lifting-surface theory. The computer work required is only a small
fraction of that of existing methods with comparable accuracy. This is achieved by a very careful choice of the positions
‘of pivotal points, by plotting once for all those parts of the downwash integral which occur frequently and by a
consequent application of approximate integration methods similar to those devised by the author for lifting-line
problems. '

" The basis of the method is to calculate the local lift and pitching moment at a number of chordwise sections from

a set of linear equations satisfying the downwash conditions at two pivotal points in each section. Interpolation
functions of trigonometrical form are used for spanwise integration both in setting up the downwash equations and in
getting the resultant forces on the wing from the local forces. The preliminary chordwise integrations for the downwash
are predigested in a series of charts (Figs. 1 to 6) ; it is these which make the method a practical computing proposition.

The theory is outlined in sections 2 to 5 ; section 6 deals with the solution of the linear equation and section 7 with
the resultant forces on the wing. Some examples are worked out in section 8 to compare with other methods; one
solution is given in full detail in Tables 8 to 30 as a guide for computers. Appendices I to VI discuss more carefully
some salient points of the mathematical theory, and Appendix VII is intended to instruct the computer how fo carry
out the steps of the calculation. )

1. Introduction.—The basic problem of aerofoil theory is the analysis and prediction of the
aerodynamic forces and their distribution on wings and winglike bodies such as tailplanes,
fins, etc. It seems hardly necessary to emphasize the importance of simple methods for solving
this problem ; so many questions of aircraft design depend on its solution.

From the mathematical point of view the problem appears by no means simple. Even after
some rigorous restrictions—we neglect the effects of the viscosity of the fluid and assume all
velocities produced by the action of the wing as small compared with the speed of the aircraft—
there remains a potential problem in three-space dimensions with very arbitrary boundary
conditions. In the first period of aircraft development which is now fading out the worst
difficulties could be avoided by using Prandtl’s. conception of the ‘lifting line’. Thus the inter-
ference between different parts of a wing was approximately reduced to two such problems in
two dimensions: the flow in any plane parallel to the plane of symmetry was considered as
essentially the same as that about the infinite cylindrical wing with the same cross-section;

* R.A.E. Report Aero. 2353, received 13th October, 1950.
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the interference between different wing sections was approximately represented by a local
modification of the direction of flow, the * induced angle of incidence’ to be estimated for straight
large aspect ratio wings as half the downwash angle far enough downstream at the same spanwise
station. The calculation of this downwash was again a matter of two dimensions only. One
definite advantage of this scheme is the possibility of introducing measured aerofoil section
characteristics instead of the theoretical values, thus including at least to some extent the effects
of the originally neglected friction. But even this simplification led to an integral equation with
a nuclear function so complicated as to forbid the application of all methods for integral equations
to be found in mathematical textbooks.

Among the many methods devised for the solution of this particular problem of lifting-line
aerofoil theory one suggested by the author became the routine method at least in Germany and
the U.S.A. thanks to its practical simplicity'. The appreciable reduction of computer work was
mainly achieved by a consequent application of approximate integration methods, 1.e., the down-
wash integral was replaced by sums containing the circulation values at certain stations multiplied
by constant once-for-all-calculable coefficients. This led to a linear system of equations with
the circulations at those stations as unknowns which could be solved easily by an iteration process.
No sacrifices in accuracy or limitations in the range of wing shapes to which it should be applied
were necessary because the number of control stations could be so high as to meet all requirements.

It was not the mathematical desire for absolute correctness but the fundamental failure of the
lifting-line conception in dealing with modern trends in wing design which aroused a new wave
of interest in the lifting-surface theory. An early attempt at a lifting-surface calculation by
Blenk® was mainly to show that the results of the lifting-line theory were quite good—at least
for wings of rectangular plan form and some aspect ratios. In its physical conception the lifting
surface is more simple and direct than the lifting line which by its very nature is restricted to
nearly straight wings of a fairly large aspect ratio—just the type of wing which was suitable in
the past as long as one had not to bother about compressibility and wing-elasticity problems and
the resulting limitations. With the progress of aircraft development into the sonic zone we have
. hardly any choice but to abandon both the straight wing and the large aspect ratio, the first in
order to avoid unnecessary wave drags and the second for structural reasons because of the very
thin wing sections to which we are restricted.

This is, of course, not the first attempt to find a convenient way of dealing with lifting-surface
problems.  One group of investigations concentrated on wing plan forms for which some
mathematical advantages existed. Thus, Kinner® and Krienes® calculated the special cases of
wings with circular or elliptical plan forms by developing suitable classes of Mathieu’s functions.
Similarly, Fuchs® applied von Karman’s suggestion® to use Fourier integrals for the representation
of the general solution to the special case of the rectangular wing. But it seems not very promising
to extend any of these methods to wings of arbitrary plan forms. Therefore, many attempts
have been made to use simplifying physical medels for the approach to the general problem, e.g.,
a lifting line in the quarter-chord line for calculating the downwash on the three-quarter-chord line
(Weissinger”, Mutterperl®, Schlichting and Kahlert®, Thwaites™, etc.). Indeed, these methods
are modifications and extensions of the lifting-line conception rather than real lifting-surface
solutions. Although the reduction of computer work by such simplifications should be consider-
able it always raises the doubt whether the particular physical model is really a suitable substitute
for the given wing. The distribution of the lift on more than one lifting line as in Schlichting
and Kahlert® is, of course, another step towards the lifting-surface conception, but it implies
still more arbitrary assumptions requiring justification. ‘

A further important step towards a generally suitable lifting-surface method was Falkner’s
proposal™ which stands half-way between a really continuous lifting surface and the vortex
models mentioned above. His vortex lattice is not meant as a simplifying model of the actual
wing but should be regarded as a rather crude method of approximate integration. The
differences between the results of this method, which is so far the only workable lifting-surface
approximation, and those of the second-order lifting-line methods do justify a further progress
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in that direction although the calculus is rather cumbersome. As a first notable contribution
of this kind we have to consider Garner’s calculations'* which are, apart from the present
paper, the only genuine attempt to operate with a continuous lifting surface, ¢.e., without physical
or mathematical assumptions and models whose application needs to be ]ustlﬁed The results
are a valuable basis for comparison although the length of time required for the calculation forbids
its use as a routine method for which it was indeed not intended.

The present report aims at filling the still-existing gap: a method based on lifting-surface
conceptions to calculate the lift distributions on arbitrary wings which is convenient enough
for all practical needs without using auxiliary assumptions and artificial vortex configurations
which seem not strictly necessary. For this purpose the approximate integration developed by
the author for lifting-line calculations should again be the most powerful tool.

2. The Integral Equation of the Lifting Surface—The problem of finding the wing shape for
a given load distribution is relatively easy and can be solved directly by integration. But for
the more interesting inverse problem—to find the aerodynamic load distribution for a given
aerofoil geometry, no direct solution seems possible except for very special plan forms. This is
the case with almost all such coupled problems of the potential theory: if it is easy the one way
round then it leads to an integral equation for the inverse question. It is not always the more
interesting problem which is more difficult; e.g., the pressure distribution about a wing due to
its thickness distribution may be found by integrating over sinks and sources proportional to
the slope of the local thickness only, whereas the solution of an integral equation is required in
order to determine the thickness distribution for a given pressure pattern.

As'an introduction to the mathematical problem a concise derivation of the basic equations of
lifting-surface theory does not seem out of place here, although it is not intended to indulge too
much in conceptional details for which the reader is referred to Prandtl** and Burgers®.

Let %, v, 2 be an orthogonal system of axes so that the x-axis coincides with the direction of
undisturbed flow relative to the wing in its plane of symmetry (if it has one, otherwise the origin
must be arbitrarily chosen in the wing surface) ; the z-axis points upwards almost perpendicular
to the wing area which is supposed to have zero thickness and small camber and twist. The
local velocity vector is split up into the undisturbed velocity U and the three small additional
components %, v, w in the direction of the respective axes. The assumption that #, v, w are small
compared with U is a necessary condition for a linearisation of the whole problem; as we already
know from two-dimensional aerofoil theory this is not a serious restriction except near the speed
of sound.

To the pressure field around the wing belongs a velocity field which can be found by integrating
the linearised Euler’s equations of the motion of a fluid relative to a body:

ou  lop
ox ' pox
19p

o . .. .. . .. . 1

+pay (1)
U— lap
ox p oz

These equations are derived from the complete Euler’s equations by neglecting the terms
which contain products of the #, v, w and their derivatives. In the same way we obtain the
continuity equation:

» U dp :
2
pax+ L + ~0. U
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Since no heat transfer within the fluid is assumed, and frictional effects are neglected we can
consider p = p(p) or p = p(p) the connecting relation being

7= )

where a is the speed of sound, which again comes out as constant for # << U. The differential
dp/p of the Euler’s equations can also be considered as the differential of the enthalpy I of the
flow element so that the Euler’s equations are transformed into

ou ol
ow ol o |

Uy T3y =0 !
ow ol

Uss +5 =0

while the continuity equation gives:

Udl ou v 0w
?@—l—'%"l—@"}‘gz‘:o. .. .. “ . . « o (5)

These four equations can be combined by differentiating the first three with respect to x, y and z
and the last again to x o as to give .

o] U? oI | o%] :
P 1—?>+53—’—2+5‘ZE:O . . . . .. (8
which for U/a = constant, can be transformed into the usual Laplace equation in three dimensions

by reducing e.g., ¥ and z proportional to /(1 — U?%a? (Prandtl-Glauert rule). We can concen-
trate, therefore, in the following entirely on the incompressible case Uja << 1.

Within the limits of the linearised theory 7 is given by

I—J@:pzﬁw” N V)

o©

I, Py P TEPrEsenting the undisturbed flow far enough away from the wing. Thus for all practical
purposes the enthalpy field is equivalent to the pressure field. A sufficiently thin wing, the
aerodynamic load of which is different from zero, may, therefore, be described as a discontinuity
surface in the enthalpy potential field which satisfies the Laplace equation. A discontinuity
surface in a potential field is usually built up by a sheet of doublets with their axes normal to
it; the intensity per unit area of these doublets is proportional to the enthalpy difference on
either side and, thus, to the local load density. We may call '

4p N
=g - e B

the non-dimensional load per unit area; the I-field is, then, determined by the condition that
the discontinuity of I through the wing surface is ‘

e

Since [ is a solution of the Laplace equation in three dimensions we may write down the equation
of the I(x,y,z)-field by integrating over the elementary fields of doublets: for a doublet at
% = %, ¥ = Yo, 2 =0 with its axis in the z-direction, this elementary field is known as

— 1 P
4 [(x — %) o (v — p0)° + 2P
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Thus we have

' — ZUz X0, Yo dxo‘Z o
I(ny0 = ”[x_xo)z ) S e e (10

%o, Yo being the co-ordinates in the ng plane. In using (10) for the enthalpy we are in effect
replacing the curved sheet of the wing by its projection on the plane z = Q, see sketch. To this
approximation the flow given by (10) at the point Q must be the same as the actual flow at the
point P of the wing. In particular if the local incidence — 8z/ox of the surface at P is « we
must have

o= — wU. e an

P (x,.2)

Z
: H f (;~~"“~;§
') 1 -

Q %y, 0)
Section through y = const.

The downwash velocity w is now obtained by integrating the third of the Euler’s equations (4) :

— 1
w(x,9,2) f maz x',9,2) S .. .. .. .. .o (12)
This implies the obvious assumption that w = 0 at ¥ = — w, 7.e., undisturbed flow far enough
upstream of the wing. In the wing plane, 4.e., for z = 0 we find :
ol - — 10 xo,yﬂ ) dx, Ay,
2z ( ,y, = dm 4” [x _xo (y _'}’)2]3/2' . .. .. .. (13)

The essential part in the integral (12) is then

* ax’ 1 X — %
' 7 2 T(3/2 211 2 : 2
=t e |\ Y =) (14
Thus we find the downwash integral from equations (12) and (13) as
Ux0,Yo) X — %,
) =% o S o) e 019

This integral contains a strong singularity at y —y, which makes it intractable in this form.
By a more careful approach than it was thought necessary to give in detail here, it can be shown
that a ‘ principal value * for these integrals can be defined ; thus, we are going to understand that

> f(50) dyc_ Iim Uy Efyo dyo * () @y _zf(y)}
a (¥ —Yo)® >0 (¥ — ) :v+e(y ¥o)? e

wherever integrals of this type occur in this report. Dr. Mangler was kind enough to contribute
a less objectionable derivation of these relations which is added i in Appendix I.
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Thus, equation (15) gives us the local incidence distribution of the wing for a given load distri-
bution /. If, as usual, not the load distribution but the local incidence distribution is given we
may consider equation (15) as the integral equation for determining the load distribution /(x,%).
But this is not enough. We must bear in mind that there may be many functions /(x,y) which
satisly equation (15). As in two-dimensional theory we have to add a trailing-edge (Kutta-
Joukowsky) condition stating the simple physical fact that at sufficiently high Reynolds numbers
and moderate angles of attack we do not observe any flow around the trailing edge, 7.e., the
downwash behind the wing is a continuation of the angle of incidence at the trailing edge. The

easiest way to respect this condition is to admit only such load functions which disappear towards
the trailing edge.

3. The Duistribution of Pivotal Points.—There is little hope of finding direct and complete
solutions of our integral equation (15). The best thing we can do is to choose a limited number
of independent load distributions out of which we construct linear combinations so as to satisfy
the integral at a certain number of so called ‘ pivotal points ’. The more of these points we take
into account the more independent load distributions are available, <.e., the more accurate will
be the resulting load distribution. On the other hand the computing effort is roughly proportional

to the square of the number of pivotal stations ; therefore, we have to find a reasonable
compromise.

The pivotal points should not be arbitrarily chosen because the calculation methods depend
largely on this choice. It is fairly obvious that a concentration of most or all of these pivotal
points in one part of the wing will hardly give a reliable solution in other parts of the wing.
An absolutely equi-distant distribution of them might also not produce the best results; the
kernel function of our integral equation is hardly of a type to suggest that.

As to the spanwise distribution of pivotal stations it is very unlikely that we can find a better
distribution than that which we used in the lifting-line theory, because the dominating part of
the kernel function of our integral equation is the term 1/(y — ¥,)® which occurs also in the

lifting-line theory. There we found the best distribution of pivotal points by equally dividing
the semi-circle over the wing span, Ref. 1.

This choice had some important advantages over any other distribution of the same number of
stations, namely: :

(@) half the coefficients of the sum representing the downwash integral in our approximate
integration method were zero

(0) the system of equations that replaced the integral equation could always be solved by
an iteration process instead of by elimination.

If we succeed in securing these advantages also for our lifting-surface downwash integrals

this would mean a reduction of the computer work required to a small fraction of what was
needed otherwise.

Because the aspect ratio of most of the wings under discussion is, although small, nevertheless
greater than one, the number of chordwise stations must be even more restricted than the number
~ of spanwise stations, for what counts most towards the computing effort is the total number of
pivotal points, which is the product of the number of spanwise and chordwise stations. This
means that it matters very much where the chordwise position of these pivotal stations will be.
We know already from two-dimensional aerofoil theory that with regard to forces and moments
the rear parts of the wing skeleton count much more than the front parts and this tendency is
even more pronounced with wings of small aspect ratio. Since we have a fully developed theory
only for the infinite aspect ratio we take these results to decide about the chordwise position.
of our pivotal stations, the number of which is supposed to be very small.
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For reference we begin by repeating some well-known results of the two-dimensional aerofoil
theory. The skeleton line being given by z(x) between 0 << ¥ <C ¢ we obtain the local downwash
w/U = dz/dx from the integral
w — 1 °i(x") dx’

U(x): A Jox — %’

(17)
It has been useful to introduce the angular co-ordinate

p=cost(1—-2%). .. . .. . Lo

Assessing the lift distribution as

l—aocot —I—Zcznsm%q),. S .. .. .. . (19)
we obtain for the local downwash by working out equation (17)
() ' aa—iZa”cosmp. .. .. .. .. .o (20
1
Lift and pitching moments about the quarter-chord point are given as follows
% a
cng(anJrz—l R -2
T
Co=— 1g (@ — ). . . .. . - .. (22)

These results are fairly well known from the classical analysis of the thin aerofoil in two-
dimensional flow by Birnbaum, Munk and Glauert. If we express a,, ¢, and a, by Fourier analysis
from equation (20) we obtain the well-known Munk’s integrals for lift and pitching moment.
But the problem that interests us is somewhat different : supposing we have only a limited number
of points along the chord where « can be given, how are these to be placed so as to obtain lift and
perhaps also the pitching moment as accurately as possible ?

Let us first consider the case of only one chordwise station. Since it is the curvature of the
skeleton line which determines the moment we cannot expect to obtain that from the incidence
at one station only. But we can demand that

c.-r.(2) .. . L@
should be fulfilled as best possible; comparing equations (23) and (21) we see that for

K =2z
and 2-075 (cosg = —0-5org =2x) .. .. .. (24

equation (23) holds if «(p) is given by the first two terms of equation (20).

This is the whole story of the three-quarter-chord point, which means that if we have only
one chordwise station for measuring the incidence this should be done at three-quarter chord in
order to have the most reliable value for the lift coefficient. We can interpret it also in a somewhat
different way: if we measure the downwash at three-quarter chord it does not matter how we
assess the lift distribution: whether we take only the cot p/2-term or only the sin ¢-term or any
linear combination of both to represent a certain total lift, in every case the downwash at three-
quarter chord is exactly the same. Thus, if we represent the chordwise lift d1str1but10n by the
first term only the second is implicitly taken into account.
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It is a lucky accident and should be appreciated as such that even the concentration of the
chordwise lift distribution into a single vortex at quarter-chord induces the same downwash at
three-quarter chord. This is the main justification of some second-order lifting-line theories,
e.g., those of Weissinger and Mutterperl for swept wings and the low aspect-ratio theories by the
author and Helmbold.

If we can choose two chordwise pivotal stations we may admit three terms of the series
development (19) and (20) and demand both the lift and the moment to be fully vahd within
this restriction to the first three terms; 7.e., we write

CLzKl.oc(%>—}—Kz.oc<%2> L )

and
C,,L:K3.a(%>+K4.a<?>. .. . .. .. .. (26)

The condition that these two equations are compatible with equations (21) and (22) for any
Ao, A1, and a, values gives six equations for the unknown K, . . . K, and (x,/c), (#,/c). The solution
is:

K, — +4(1 +Vl5): 145466
K2:+n(l'—~\}—5):+1-7366 L@
K3__K4=_2%=—0-7025
and
’%:5%‘/&;:0-9045 (92 = 1)
X (28)
" ‘/ — 0-3455 (s = 2a)

With this choice of the pivotal stations we have the advantage that we can assess the lift distribu-
tion with the first two terms a, cot ¢/2 -+ @, sin ¢ and the omitted third term cannot affect the
lift coefficient nor the moment coefficient, 7.e., this particular choice of two chordwise stations
is roughly as good as any arbitrary choice of three such stations.

As a rule we can regard the representation of the skeleton line by a parabola of the second or
third order as quite satisfactory. The main practical case requiring some more care are wings
with flaps or aileron. This case will be dealt with in Appendix II.

If we want to take more than two chordwise pivotal points into account in order to find out
some more details about the pressure distribution along the chord it can be shown that for
pivotal points their best distribution is given by

2mn

‘Pn:m

4. The Chordwise Integration of the Downwash.*—To do the chordwise integration first and the
spanwise part afterwards seems the most obvious way in dealing with equation (15). The main
advantage of this sequence is the fact that the spanwise integral is thus brought very close to the
downwash integral of the lifting line for which excellent numerical methods are already existing.

n=123...p.

* These influence functions have been recalculated by the Mathematics Division, N.P.L., and are now available in
the form of tables. For accurate work the use of these tables is recommended, and copies can be obtained on application
to the Aerodynamics Division, N.P.L.
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It may be worth mentioning that in supersonic aerofoil theory another possible way—to begin
with conical fields which are integrated mainly in spanwise direction—yields the better results,
owing to the fact that the downwash in any pivotal station is only affected by singularities in its

forecone.

The first thing we have to do is to choose some appropriate function for the chordwise load
distribution which may be put into the downwash integral equation (15). The most natural
choice is the load functions which occur in two-dimensional aerofoil theory, equation (19). For
the greatest part of the wing a couple of these functions should describe the chordwise pressure
distribution at least as well as any other arbitrarily chosen family of functions. The only practical
exception is the very central section of a swept-back wing where the pressure at the leading edge
does not run up into the usual suction peak ; but it seems to be better to stick to some uniformity
in the assumptions of our calculations and make some readjustments later if necessary rather

than to over-emphasise what is only a very local effect.

The integrals we have to deal with are of the type

"ot X — X
"t {1 RV T _W]} Qe . (29)

0

(%o, = leading edge, x,, = trailing edge of inducing wing section, y, = const). For our further
convenience we can introduce some auxiliary non-dimensional co-ordinates X, ¥

_ ¥ = Xa Y= % — Xu

X="gy > Y= T ) (30
The first chordwise load distribution which we are going to consider is

ly=a,cot /2 .. . .. .. - . .. .. (31
with |

p = cos™* (1 —2X,) .. .. . . . .. .. (18)
which gives the Lft

: L= . 7w[2 . .. . . . . . .. (32)

but no pitching moment about the quarter-chord point. We are relating the chordwise part of
the downwash integral with the load distribution /, equation (81), to the (C.c)-value at y,; this
integral may be called the influence function ¢: '

. 1 [re X — %
930 = G Ly oo {1+ VIl — 5 (7 — 90 [ @)

which may be transferred into the above-defined non-dimensional co-ordinates as follows:

X_l—- cos ¢

. - 3
i(X,Y) = ot singy 1+ do

JIE=1=520) ]

B 1™ (1 - cos ¢)(2X — 1 4 cos ¢) dg
_1'+nJo VI@2X — 1 +cosel® +4Y7 © 77 a - (34

This is an elliptic integral the reduction of which to tabulated standard integrals is so complicated
and lengthy that direct computation by graphical and numerical methods was indicated except

for a few special cases.
9



A second load distribution may be given by the second term of equation (19) or any com-
bination of the first two terms. A fairly convenient distribution is the one which gives a pitching
moment but no lift, namely

llzal[cot%-—.?sinqo:, e 3
with
Cri=0 Cpwr=a,.7/8. .. . . . .. (36)
For this second load distribution we define another influence function J:
, 1 0t ’ X — X,
1000 = g b (U g | e - @

which may be transformed into

: 4 ("(2cos’ ¢ +cosp — 1)(2X — 1 4-cos @) dp
XYy =7, VIEX — 1 T cos p)f +477 e (38)

which again, as the previous one, had to be calculated numerically and graphically.

For large Y-values we have calculated the i- and 7-functions by series expansions for ¥ = .
It is already obvious that for large Y the induction of a wing section loaded according to equation

(83) may approximately be represented by placing a concentrated load in the quarter-chord
point ; this gives the asymptotic value for ¢

. X—1
7/03 e 1 _[' ’\/[(X _ %)2 '—I—' Y2] . . .. . .. .. (39)
If we introduce for simplicity
X 1
A = Y"‘ .. .. . .. .. .. . .. (40

equation (87) may be written in the form

« 2cos 9 — 1
(1 +cosg) (4 +22%2 = 1)y,

1
i(X,Y)=1+- — (41)
7 \/[1—]'(1‘1 _}_2(:02%0] 1 }
This suggests a power series development
i=1, +f1({,4) +f2(‘§) +f3(‘? +... .. .. .. .. (42)
with ) :
07 1 ”(l—i—cos<p(2c05qo—1)dcp__
Hd) = [6(1/Y)L=w_ Izl (1 I A%n =0
1 0% — 34 "
fold) = 53 {a(l/;z)}y:wZWJO (1 +-cos ¢)(2cos ¢ — 1)*dp
=34
= 391 T A9
1( 1 — 44 (49)
f(4) = 1o T F 497
154 38 — 442
Fl4) = o048 (T am
—9 1 — 1242 | 84*
f5(A) = 4098 (1 —|—A2)11/2 etc.
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A similar series development for large Y-values can be made with‘ 4(X,Y) and gives:

. 1 A (A A
]<A,1—,)=g1§,) peld peld L
with '
o 1 o 154 3 — 44*
&1 = (1 A% 8= — o5 (1 + A%
34 90 1 —124® 4-84"*
& = §(I + A" & = 1096 ~ (1 I 479" (49)
—3 1— 44
. gs = ?2“ ———(1 -—I—A2)7/2 etc.

The results of these calculations are plotted in a series of diagrams, Figs. 1 to 6, in which ¢ and
7 are shown as functions of Y with X as parameter. The scales are so chosen as to suit the accuracy
requirements of the final calculation where these diagrams are widely used.

It is difficult to obtain a series development for small Y-values. The values of ¢ and j at
Y = O are easy: in equation (38) and (87) the factor in brackets is either 2 or zero:

lim 2 %, <%

X — %
1 =) = |
¥ I: T VI(E — %) + (v — ¥0)% O. Xy < X (46)
Thus, with
g, = cos™! (1 — 2X)
we obtain
. 2 (7 2 .
1X,0) = - 01 (1 4 cos ¢) dp = - (@, + sin ;)
2
=7;{COS"1 (1 — 2X) —|—2\/[X(1—X)]} . . .. (47)
and
) 8%, . 8 /sin 2¢, .
7(X,0) :a_zfo (2cos* ¢ +cosg — 1) dp :7;< 290 —|—sm<p1>
‘ 0 | |
=3;X1/2(1—X)3/2. ce .. . .. .. (48)
The derivatives of ¢ and 7 with respect to X are also a matter of course:
01 ! 4 1—X
7% (X.0) :260;:7%/(7') .. .. .. . . .. (49
07 l 16 1—-X
ﬁ(X,0)=2C—;=;(1—4X)\/(T) 0
and:
0% 2 1
X0 = - xEn—x) (51)
0% 81 +4X — 8X?
a—Xj'z (X,0) = T2 XrJ(1 — X) (52)

But the derivatives with respect to Y are more difficult. From their definitions it is obvious
that ¢ and j are symmetrical in Y because they contain only Y? in the integral; therefore, we
have 8i/0Y =0 and 9j/0Y = 0 for ¥ = 0. The difficulty begins with the next derivative
9%/3Y? which does not exist for Y = 0. Thus, we cannot develop a Taylor series for ¢(Y) from
Y = 0; this is a usual feature of some elliptical integrals with the modulus % near 1, to which our
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integrals ¢ and j are much akin. But it is still possible to develop some other series containing
also logarithmic terms; the series development of 4(X,Y) begins thus with

1 X)Y) =4X0) + Y [KyIn |YV|+K,] +... .. . .. .. (583
and it will be shown in Appendix IIT that
' — 1ladl, 1
Klz—C—Lﬁ—nXm\/(l__X) . .. .. . .. (54)

and accordingly in the Aanalogous series development for 5:

= 1ld, 41 +4X —8X? \ .
—C,dX 2 X1 —X) .. - .. .. (55)

Although not very apparent in any plotting of ¢ or j over Y, see Figs. 2 and 4, this logarithmic
term does affect the eventual downwash integral to some extent. The spanwise integration
includes a factor proportional 1/Y? in the integrand which thus contains a logarithmic singularity
for y = y, not covered by the  principal value ’ of equation (16). .

Any further terms of the chordwise load distribution can, of course, be dealt with in quite
the same manner, but there seems to be no direct need for their calculation especially with
regard to our particular choice of chordwise control stations. ’

K,

5. The Spanwise Integration of the Downwash.—5.1. The Regular Part of the Downwash
Integral.—After having concentrated the chordwise part of our downwash integral (15) into the
influence functions 7 and j we are now on fairly well-known ground with the rest of the integration
because something very similar has already been worked out in the lifting-line theory. With
the influence functions ¢ and j the downwash integral is reduced to

=17 (G awyy)dy' 1R (COy) — jryy) dy
R e N b %6)
plus further expressions of a similar pattern if we consider more than two independent chordwise

load distributions. With the restriction to only one of them we have to deal with only the first
integral. For convenience we may introduce the non-dimensional co-ordinates

¥ x
nzb/—ZandSZm .. .. .. .. .. . .. (87)
and a non-dimensional lift per unit span (circulation)
I Cge
yzm:i .. e e e .. (58
to which a corresponding expression for the pitching moment per unit span may be added
Coe

Written in these non-dimensional units the downwash integral (15) is now

_ =ty dEmam ) dn’ 1t u)  i(Emm’) dn’
05(5,77) — 2% - (/}7 _ 77/)2 - 275 1 (17 _ 17/)2 (60)

Since both integrals have very much the same shape we treat them in quite the same manner.

The following discussion of the first integral applies to the second with the substitution of wand 7
for y and 7 respectively. ‘ ~

The problem of finding a convenient method of working out integral (60) may have, and has
indeed, many possible solutions. As usual in such problems there exists no absolute criterion to
decide which 1s the best possible method. The only thing we can do is to compare the time
required for computing with the accuracy reached. The method presented here is the result of
such comparisons; in the author’s opinion it gives the most favourable correlation between

12



accuracy and computing effort for a given number of stations at which the integral equation is
to hold ‘exactly. An alternative method is described in Appendix V; it needs much more work
but might be slightly more accurate. '

The main part of our spanwise integration is based on the approximate integration method
for the ¢ induced angle of attack ’ of the lifting-line aerofoil theory as developed by the author
some time ago'. This induced angle cf attack is given by ‘

— 1 y(y') dy’ -
wn) = 5= _1(77(_)77,)2. .. .. .. .. .. .. (61)
This integral is usually written as
1p oy
2t adn’'n — '

One can easily prove the identity of both expressions by partial integration keeping in mind
the definition of the second-order principal value, equation (16). The downwash integral equation
(15) and this induced angle of attack differ only in the factor 4(n,5") which is a fairly continuous
quantity varying only within the limits 0 < ¢ < 2. It is, therefore, only natural to apply the
integration methods™ developed for «; also to our downwash integral by considering the
(y . )-distribution as roughly equivalent to another y-distribution. Due to the continuity and
finiteness of 4 this (y . ¢)-distribution has all the typical features of a y-distribution, especially
its proportionality to the square root of the distance from the wing tips near these tips.

Thus, if we introduce the usual angular co-ordinate

0 = cos™'y . - .. . . . .. (62)
we may well assume that not only y but also (y . ¢) may be represented by a sum
(y.i) = Za,sin A6 .. .. : (63)

to a fair degree of accuracy without too many terms of this development being needed. The a,
are, of course, functions of the pivotal station.

Although fairly simple for general discussions such series developments are usually not so
convenient when it comes to the actual calculation. If we consider the values of (y.z) to be
given at a limited number of stations we can find values between these stations either by working
out a series development with as many terms as stations are given or by using different
interpolation functions. The latter is the way which is successfully done in the lifting-line
theory®. Since the original report might not be available it was thought advisable to repeat the
essential theory in Appendix IV ; the principle results are quoted in the following discussion.

452

m-1I

2

n n=1
On =0

e -l 7
8= . 6

L

RO FE

The stations at which the y or (y . %) values are supposed to be known result from an equidistant
subdivision of the angular co-ordinate range 0 < 8 <<z. We always work with an odd number
m of stations, so as to include the span centre § = =/2 as one of them. The stations are numbered
positive to the right and negative to the left of the zero central station, as shown in the sketch.
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Thus # takes the m values 0, -1, + 2, ... - (m — 1)/2.

The angular interval is #/(m - 1) and so

0_73_ nw
2 m+1
and
. nwe
7711,:(:05071251nm' -t . b v ° M s (64)

This numbering of the stations is more convenient than the system used in the lifting-line theory,
since it works from the essential symmetry of the system, #, = — 5_,. :

We can now write

m—1

7 b

=2 (.90..80) .. .. .. . ... ... (5

1

N’

(y .1), being the value of (y.2) at the #u-th interpolation station and g.(0) the interpolation
function belonging to this n-th station. Its essential feature is the fact that its value is unity
at the n-th station and zero at all the others. A function which goes that way and has the
required tendency towards the wing tips is given by

‘ sin 6, _ sin (m 4 1)6
8(0) = — (m +1) cos (m +1)0, cos6 —cosB,” " t n - (66)

This function, being proportional to sin (m + 1)0, vanishes at all stations except 6,, and it can
easily be proved that

lim sin (m + 1)6 (m 4 1) cos (m +1)8,
00, Cos 6 — €03 0, — sin 0, C .. . .. (67)
Hence g,(0) = 1 at § = 0,. See Appendix IV.
By developing g,(f) into a Fourier series we can also show that
gnzmi_lélsinwnsinw. .. .. .. .. .. .. .. (68

In this form these interpolation functions are frequently used in the harmonic analysis of periodic
functions; they are usually derived by a least-square method.

Our downwash integral (60) gives now with 4 = cos 6

— 1 (" (y.4)(6") . sin 0’ do"

= 9
w(0) = 27 Jo (cos O — cos 67)2 (69)
which with equation (65) comes to
m—1
' —1 2 N (" g.(07) sin 6’ db’
— - ”
“0) = 5 w1 -2 . Jo (cos & — cos )% (70)

2

Since the integrals in the sum do not contain the (y . ¢) function any longer but in its stead the
interpolation functions g,(6) we can work out these integrals numerically for any value of 6
which seems interesting. The most practical proposal is to calculate the downwash at the
interpolation stations which are thus chosen as pivotal points; if we do so we see that only
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the integral over the interpolation term belonging to the pivotal station itself gives a positive
contribution to «, all the others give either negative contributions or zero. In agreement with
the previous paper on lifting-line theory we write for the downwash at the »th spanwise station:

m—1
2 .
o =bulr = X bulyi o (7))
where :
m+1 _ m 41
b”:4sin 6, _4 v (72)
COSm+1
sin 0, ) .
bvn: (7/” +])(COS 6, — cos ev)z 5 177/ — 'l’l— 1,8,5,....
=0 [%—v[=2,4,6....

as shown in Appendix IV. The stroke at the sum symbol is to remind us that the value for
» = n is to be left out. Bearing in mind that the influence function ¢ in the product (y . ¢) is
in fact also a function of » we may write

(7.9 =Vn-tom .. .. .. .. .. .. . .. .. (79
and obtain thus:

m—1

2
&, = 0,y Yy — 24 Dyylyn ¥ .. .. .. .. .. .. .. (74)
m—1

2

The only serious objection we can raise against this approximate method of integration concerns
the behaviour of the function i(y’,;) near the pivotal point, i.e., for " —%. Apart from the
logarithmic singularity of #/(y’ — #)® which is not covered by the interpolation polynomials we
must consider how far the representation by interpolation polynomials may be relied on. It
is quite obvious that we can not expect the interpolation functions still to work if the function
represented shows an irregular behaviour between two interpolation stations, ¢.¢., the interpolation
stations must be placed so closely together as to miss no essential feature of the function. In
this respect we have to expect more trouble from the influence functions 4(»’) than from the
circulation y; as a rule (') has a maximum in or near the pivotal point and two inflection
points on either side of it; for the usual chordwise positions of pivotal stations these inflection
points are to be found at about

Y =021t00-25

measured from the inducing section, see Fig. 2. To avoid an appreciable distortion of the
interpolated function the distance between two spanwise stations should not be wider than the
distance between the points of inflection. This rule means in practice that the distance between
two spanwise stations should be less than about 0-4 or 0-5 wing chords. Accordingly the number
of spanwise stations should be about three times the aspect ratio or more, since we apply the
_lifting-surface calculations mainly to wings with a moderate aspect ratio this is not too heavy a
condition.

5.2. Correction for a Logarithmic Singularity*—So far we have entirely neglected the influence
of the logarithmic singularity in the second derivative of i(y,3") for 4" = #. As shown above,
equation (53), near the inducing section #(X,Y) can only be developed into a series beginning
with '

I(X)Y) =4(X,0) + K(X)Y?*In |Y|+.... .. e .. e (58)

* The method of calculating the correction to 4,, and 7,, given here is a rather crude approximation, and may lead to
_appreciable error in special cases. To avoid trouble from this source the alternative method of Mangler and Spencer
(1952) is recommended (Ref. 18).
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After a change to 5 or 5’ co-ordinates there remains still this logarithmic term in a series
development of 4(5,y) for constant # near the pivotal station

ilnn’) =inm) +a@) . (0" —9) +. ..
+K1<26%5>2(77—~77')21n |9 —n'|+.... .. .. .. .. (75)

This first of the logarithmic terms is not affected by the angle between the line of pivotal points
and the direction of undisturbed flow because in a two-dimensional development of #(X,Y)
from a point on the wing section ¥ = 0 all lower derlvatlves (e.g., 0¢f0X, 0%/0X? 9% [0X 0Y)
are finite except 0%/0Y>.

The downwash integral is effected by this first loganthrmc term because the factor (n — 5’)?
Just cancels the denominator so that an integral over In |y — #’| is left. Fortunately this integral
is finite even without the principal value although the logarithm becomes infinite at ' == 4.

Since the logarithmic infinity of a second derivative is not very noticeable in any plotting
of 4(n’), (see the ¢(Y)-curves in our diagrams Figs. 1 and 2) we may reasonably assume our
interpolation functions to represent (y . ¢) fairly well with enough interpolation stations except
for the immediate neighbourhood of the pivotal station #,. Here we add to the interpolation
functions for y .7 a correction A4(y .7) containing mainly the logarithmic singularity, e.g., for
the interval #, < 9’ << 7,44: o

. b\ 7’ —7 (0 = T |

Aly 1) =y, K, 5= —p')? ~— -1 .. .. (76

1) = 7.5 <20v) o = [ <m+1 — m) 76)

and similarly for the other side of the pivotal station. The last factor and the denominator in

the logarithm are included in order to enforce an efficient fading out of A(y.7) at the next
spanwise station #,,, or 5,_,; thus, at these stations we have

82
o

without affecting the logarithmic term near 5, very much.

. 0 . .
Ay 1) =0, WA()}.%):O, Ay .2) =0

The correction for the downwash is now fairly simple :
— 1t Aly .4) dn’

. Ao, == %7 Ju_y (17 _ 77/)2 (77)
with
=t oy gy = T . .. .. . . .. (78)
. nv—l—l — Ny Ny — Ny—1
we obtain : .
— VY» b\ 1
Ao, — %IQ(QE) (12— 1s) | (1 — 98 In s . ()
. . . 184
The numerical value of the last integral can be easily worked out as — 595 = — 0-818; thus
Aa, 1S :
bV |
Aa, = 0-1302 VJQ(:E) Ohrar — 1) - s
Adding this to the integration formula equation (74) we have
b . m ’1
% =7, [bz +0-1302 Kl(z—c) (s — n,_l)} - E_lbmmn. e (81

2
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For simplicity we write
—1

oc,=bv,y,iz——mez,,,y,, .. .. . . - . .. (82

H—

2

or, with two terms for the chordwise lift distribution:

m—1
— . 2
Q(v = bvv (yv?;vv +4uvjw) - E——Il bvn (’“ zvn +Au’n jvn) . . .. . (83)
— T2
the 7,, being
' — . b\ 4sino
i =i, +0-1302K, (o mﬂil T R £

with a similar equation for 7,.

The last part in this expression
sin 0, . 2 VI 7

i 1 U = M) == T COST LT S LT

depends only on m and the station number ». 1, or j,, and K, are functions of the'chordwise

position of our pivotal points only according to equations (47, 48) and (54, 55). For the most
important positions we have the following numerical values:

(a) 0-75c¢:

cos? sin (85)

® sin 6,
=1- 8847 —I—O 510 (20 > —_ﬁ (771!-{—1 - 771/—1)

(b) 0-9045¢:
b \? sin 8§,
- 1'974:2 + 0'6234 <sz> m (nv-l—l — 7711"1)

? sin 7,

_ b
7, = 0-2958 — 4-805 (27 e A USEESE MY N £ )

(c) 0-3455¢:
—, b \* sin 6,
t,," = 1-405; + 1-008, (QC—) w1 (Myp1 — 70-1)

—, | b \* sin 6,
_7,,,, = 3'1702 +5'758 (g) m + 1 (771:-]—1 +1711 1)

The correction terms usually account for about 5 or 10 per cent of the total downwash ; this is
an effect well worth considering but small enough to be still a correction only.

The neglect of this correction usually affects more the absolute value of all results than their
spanwise distribution. But the additional work required for this correction is such a small
fraction of the total calculation that it hardly ever pays to leave it out.

5.3. The Central Section of Swept Wings—We have not yet mentioned any peculiar features of
the central section of swept wings although in some other methods of calculating the lift
distribution this point is dealt with rather carefully. Indeed the treatment of this region of the
wing depends on the basic physical meaning of the model used to represent the wing. If for
example, the lifting system is built up of kinked vortices we shall certainly have to reckon with
singularities in the downwash along the section in which these kinks occur; thus some com-
pensating functions are necessary to eliminate what is, in fact, the result of an unsuitable physical
model.

17
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What is really unusual or difficult to assess in the local distribution in the middle part of a
swept wing ?  If the local incidence is continuous across the middle section equi-potential lines
or lines of constant pressure cannot have a kink on this section as one can easily see from the
potential equations. In fact, all available pressure measurements on swept wings show. clearly
this tendency. Curves of constant pressure are curved and have no kink; if the wing is sym-
metrical they cross the middle section at right-angles. The only irregularities occur near the
leading and trailing-edge corners but these are of a very local nature.

With our method of approach to the lifting-surface problem we are luckier than perhaps we
ought to expect. Because we use our interpolation polynomials, equation (65), throughout for
the representation of the (y .7) and (z . 7)-functions no discontinuity across the middle line can
occur. Thus, for the greater part of the median section we can meet the physical reality better
than with an artificial vortex system. Because we satisfy the integral equation of the lifting
surface only at a limited number of pivotal stations and because by our interpolation polynomials
only the geometrical wing characteristics at these sections enter into our calculations, we calculate
in fact the downwash of an ¢ interpolated wing * which coincides with the real one only in these
pivotal sections. All the characteristics of this interpolated wing are accordingly continuous
functions of the spanwise co-ordinate, 7.c., are rounded off in the middle of the swept wing.

The only question worth considering is whether this rounding off through our interpolation
methods i5 done in the right way. If we represent a thoroughly continuous function, 7.e., a
function which is continuous even in its derivatives, by series development or interpolation
polynomials the approximation can be very good indeed from a certain number of matching
stations upwards. With discontinuous functions or functions with a discontinuity in the first
derivative we observe some typical defects in the representation by interpolation polynomials
near the discontinuity. If the station of a kink is one of the points at which the given and the
interpolated function coincide the agreement between the two will be poor in the two neighbouring
intervals until the next matching stations however high the number of stations and accordingly
the number of polynomials used might be. If the value of the given function has a maximum
at the kink the interpolated function will exceed it in these two neighbouring sections. The
situation is illustrated in Fig. 7, where the function to be interpolated 1s 1 — ||, having a kink
at K. The broken curve is the interpolation function when it is arranged to pass through K,
and it is clear that we shall get a better approximation to the function between the kink K
and the next matching station P if we make the interpolation function pass through some point
K’ below K, thus rounding off the kink. We want to know how to choose K.

To decide this question we are free to introduce an additional condition about the interpolation
functions. Because the interpolated function mostly differs from the given one with the kink
in one direction only it appears reasonable to demand that the area under the interpolated curve
is equal to that under the given one. With our interpolation polynomials this is the case if KK’
1s roughly 1/6 of the vertical distance between K and P. This is proved in Appendix VT.

So this seems to be the best we can do about the middle of swept wings: we round them
slightly off according to this rule. Instead of calculating with the actual geometrical data of the
middle section we substitute a central section the chordwise co-ordinates of which are to be
found by:

Eozgé:ﬂgeom_}—%gl . o © o o ©e (87)

where suffix , refers to the centre-section and suffix ; to the next interpolation station. This
applies to leading and trailing edge as well as to the chordwise pivotal stations.

The thus calculated loads of the middle section must, of course, be transferred again to the
actual geometrical section ; the natural condition is that the centre of pressure must not be shifted
and that the total lift per unit span remains unaffected.

The same 1/6-rule can be applied to other than central kinks in the wing contour if these happen
to fall upon any of our spanwise conirol stations.
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6. The Calculation of the Lift Distribution.—Instead of considering the equations (82) or (83)
as formulae for finding the downwash values «, we may just as well take them as a system of
equations to determine the y,’s, p,’s with the downwash «, being equal to the given local incidence.
Thus, the original integral equation (15) is approximately replaced by a system of linear equations
the solution of which is obviously much simpler.

Regarding the different terms of equations (82) or (83) we see that from the wing geometry

the ,,, 9,,, %y, 7o, and «, are fixed once the system of pivotal points is chosen, thus leaving as
unknowns only the y, and with two chordwise pivotal stations also the u,. The choice of the
pivotal points is again mainly a question of the wing geometry. The number of spanwise stations
m should be about three times the aspect ration or more as stated before. For low aspect ratios
and for wing plan forms differing widely from the conventional straight wing two chordwise
stations are always advisable. With respect to the computing effort one will usually reduce the
number of pivotal points to the needed minimum ; for this we can give at the moment only these
rather rough rules for want of enough experience. Fairly detailed comparative calculations
for a series of typical wings with varying numbers of stations will bring some more reliable rules.
It is clear without a mathematical proof that an increase in the number of pivotal points gives
a more accurate result. If one is in doubt whether the number of stations chosen is sufficient a
repetition of the calculation with a different number of points should show where we are. If
the difference in the results is considerable the number of pivotal points was not enough.

The first preparatory step in the actual calculation consists in the tabulation of the geometrical
wing data we need for the calculation of the 7, and j,, according to equation (86) and the
determination of the 7,, and j,, from charts, Figs. 1 to 6. As entries into these diagrams we
compute firstly for each s,, or 7,, required

o ‘yv—ynl . |7711_17n’
lvn"_ Cn ch/b « . s .. .. .0 .. . (88)
X . (pivotal point) — X  (leading edge)
Xvn = c -

24

With two chordwise stations we have two X-values for one Y-value.

Since the course of solving the system of equations differs according to whether one or two
chordwise pivotal points are used we will discuss the two solutions separately.

6.1. One Chordwise Pivotal Point at 0-75c—We can rearrange the system of equations (82)
by dividing each equation by 5,,7,, and obtain thus :

ot
o, 2 ' b Z :
— d D
Yy b 7 iy A ; Vo o .. - . . .. . - (89)
vy Yoy —_— vy

It is convenient to introduce other coefficients by writing:

m—1

. (/lw O('u z ! iwz
Yo — 1/_1”} + E_—]avni:vy’yn .. P .. .. PN .. .. (90)
with i
1 4 7
d”:ﬁ:m+151n0”:m+-lcosm+l (91)
and .
4 sin 6, sin 6, L
avn:<7% +1)2 ("7v—"7n)2 » I% 7)| o 1,3’5
o N 1 1 . 1
T (m F 1| an— ) ,nzn(% + ») . . . .. (92)
| Y om 1) M 20m 1)
a,, =0 ln—v| =24,6.
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It is easily to be seen that

By = Ay == A, _, == A, _, . .. e .. .. .. .. .. (93)

These coefficients and the factors [sin 6,/(m + 1)][n,,; — 7,_,] from equations (85) and (86)
are collected in Tables 1 to 7 for m = 3, 5, 7, 11, 15, 23, 31 to suit all practical requirements.

The solution of our system of equations is very similar to that already established for the
lifting-line problem®. If the wing is symmetrical, z.e., if

Cy==0C_, .. .. . . .. e .. .. .. .. (94)
and

O P <5

as this is usual, we may split up the lift distribution and the «-distribution into a symmetrical
and an anti-symmetrical component thus in either case reducing the number of unknowns to
about one-half. In the symmetrical case we obtain from

o, = t_, (96)
Ve =7V
the system of equations
m—1
v, = A, + %'AWM, v=o,1,2...mT"1- )
with
Ay="2 L
and " _ | .
4, = Byn Yy P, =3 ' 7w £ 0
o (99)
A, = “ﬁ_’ho
[
For the antisymmetrical cases we find sifnﬂarly from
o, = — o_,
=y (100)
the system of equations:
m—1
?’»:Aw“u“l‘zzl'ﬁmyn, v=1,2,3...”%1 Loy
with _ _
4, — Bt G caly (102)

v

Antisymmetrical load cases are usually due to unsymmetrical aircraft movements (rolling,
'yawing, etc.) or aileron action.

If the resulting system of equations (97) or (101) contains only a few unknowns (up to five)
we solve it best by elimination. Here the fact that half of the a,, are zero is an essential help.
The equations for the y, with an even suffix contain only y,-values with odd suffixes on the
right-hand side and vice versa. Thus by inserting the y, expressions for odd »’s into the equations
for y, with even »’s we have only one or two equations for the y’s with even suffixes left, the
solution of which is a matter of routine and needs no further explanation.
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With a higher number of unknowns a solution by iteration is the most convenient course.
We begin, for example, with a rough guess of the y-values with an even suffix; these first

estimated values may be called y, %7, 9,10 | 3, 197, .| Putting these valuesinto the equations for
the y, with odd suffixes v we obtam a ﬁrst approximation of these vy, 73, ¥5. ... which we call
m—1
2 =0,24,6
v[1] :Av » Z,Avn 11[0]: "3’ 5’ B °r .
v @ + X Ay y_1385 . (103)
In the same way we obtain the first approximation of the y,, s, v, . . .. with:
m—1
Z =185
v[ll == Au ¢ ZlAvnﬁn[l]J ’ T
14 «, + - v :02)4' (104)

This process must be repeated until the difference between successive approximations becomes
negligible :

m—1
z
_ , n=024..
Vv 0— Ayau + 26 Avn'yn[l]: y = 1’ 3, 5..
m=1
2
1 ' [2] n=1,3>5 105
Vo - A,,OC,, + z:l: Avnyn ) y = 2’ 4, 6 ( )
m—1
2
m o , - n=—20,24..
Yo - A,,OC,, + ? Avn Yu s p — 1, 3’ 5 .

ete.

This process is always converging to the right solution. Slide-rule accuracy should suit most
practical requirements; even more helpful would be an automatic calculating machine which
allows the store of coefficients A4,,.

We can reduce the computational effort a great deal by using only the differences of the first
successive steps, equations (103) and (104), for further calculations: after computing

AWy — g 01 __ o 0 n=20,246... .. .. (108)

at the end of the first to-and-fro calculation we continue with

m—1
2
I, N n=20,24..
4 ]'}’,,'— 20:1 AvnA ]yn: 1}:1,3,5.-
m—1 ‘
T n=1,35.. 107
A [2]%' - 20 qunA t2] yﬂ J Y = 0: 2: 4 o ( . )
n—g '
2, 7’L=O, 2,4
A4 [3]’)/,, — % ApnA 21 Yo Yy == 1, 3, 5

etc. The y, are eventually

pam pa B A Ey, ATy AWy L L L (108)

The main advantage of this modification is the fact that the Ay, are small and need to be computed
only to a few valid decimals; the products 4,,4y, can be read off at a glance on the slide rule
even when the upper pair of scalés (scales of squares) are used in order to avoid moving the
slide for all products with the same 4y,. A disadvantage of this modification is the necessity
of a check for reliable calculations; in the first scheme any errors expire automatically, whereas
with the differences scheme we have to check the final results by inserting them into the original
systems of equations.
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If the convergence of the iteration process seems too slow we may cut it short by extrapolating
the rest of the 4y, along the geometrical series

1 2 3
1_x:1+x+x + x4
x being the ratio of two consecutive 4y, ; if 4™y, be the last difference computed we write
approximately :
(am y,)?

Va :yn[l] _|_A[ZJ Y _I__A[:i] Y _l— .. '+'AM] yn_{—A[l—l],yn__A[l],yn' A (109)

6.2. Two Chordwise Pivotal Stations at 0-9045¢ and 0-3455¢.—With two chordwise pivotal
points we have for every spanwise station two equations (83); one for the 0-9045¢ point in the
following marked by a single stroke’, and one for the 0-3455¢ point marked by a double stroke ” at
all the quantities which are different. Each part of equations (83)

m—1

T T T’ ’ ! ;!
avl = bw [7/% Yy + T Iu”:l - E 1 b"”('y”z”” + B Jon )

m—

2 )

m—1

s — 2 . 7 . ;
OCD” = b’VV |j$1JV” yl’ +,7V1’” ILL’V} - 2,1 bvn('yn?’vn, —l—lLLn]’V?l ,)

. =
is better firstly transformed into two equations for y, and u, only. To do so we calculate for
every v:

”

Tow
ZV’ == : P/
,Lw . jvv - ¢w . jw
T
l "o .71”’
v T T T
zw . jw — 1y - jw
_ (110)
m r (27
v T = o o
zvv - _71)11 — Yy - _7vv
o
" o__ Ty
M, = = o

A 4 Ty
2111' ']vv '——7’1‘1) ']vv

With these figures and the coefficients @,, and «,,, equations (91) and (92) each pair of equations
(83) is transformed into :

m—1

2 . .
Ve = aw(lv,“v, — Zv”O(,,”) —l— Z, ﬂvn(zv’zvn, - Z”Zvﬂ”)yn

3
|
=

N N 5 8).

’ "y 1P
My = ﬂw(ﬁ/l,,,ot,,” - m,,,OCy’) + E, a’vn(mu Zvn” — m, ’Lnn )yv

w1

—I_ 2, “un(mv”jn” - mv,jvn,)lun

The solution of this system of equations is carried through in the same way as for one chordwise
pivotal station. We split it up into a symmetrical and an antisymmetrical part if the wing
plan form is symmetrical.
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For symmetrical load distributions:

aﬂ:a—v VV:y—V MV:M—V
we write abbreviating:

m—1 m—1

1 ", o# 2 2
Ve = a’w(lv o, — lv oy ) + ZI anyu + Z, Cvmu'n
0 0

(112)
m—1 m—1
Hy = “vv(1%v”ocv” - m,,,OC,,,) + %’ Dvnyn + %' Eumun
0 0
with
an = avn( v,,l’vn - Zl’ivn”\) _I— av —n(l ,iv —n, - l” .v —n”) }
C'm = &, v]m l jvn”) + av —n(l jv - Z _71' —n )
D,, = a,,(m,’ —m,',,) +a, _om", S —m, ) .. .. (118)
Evn = ﬂm(WL .7vn — m, _7vn ) —[— Ol,, —n(m _71; —n T jv —n )
for » = 0 we put a, _, = 0 and retain a, ,, = a, .
For antisymmetrical load cases
&, = — U, Vv = — V- lu'v:'—-fu—v
we write correspondingly
Yy — avv@v’“v, - ZV”“V”) _}" 2211 an?’n + %' Cvmun ]
0 . 0
. . (114)
" 2
My — CZW(WL,, & — ] _I_ 2’ w»yn + Z' Ewuun
1
The bold italics B,,, C,,, D,, and Em being
an = vuklv Il’vn - l Ton ) (lv Z,, —n Zv”’[’.v,v-n”)
Cvn = a,, lv i l vir ) — a4, Z v,—n Z ! .u —n”
( j ’ =0T In=s') (115)
Dvn = avn(mv 7’vn — m, zvn ) - av,—n(Wl’ 7’1} -1 m /Lv —n )
Evn = avn(’”v”jvn” - m, Ijvnl) - av,-—n(ﬁlv _71/, - M, _71:,—1; )

The iteration process for the systems of equations (112) or (114) is the same as for (97). We
substitute only the B,,, etc., for the 4,, in equation (10'%‘ . (107).

The main part of the actual computation of a lift distribution is not the solution of the system
of equations but the collection of the 7,, and j,, and the computation of the coefficients B,,,
C,, . ... Thus, if it takes about ten hours to calculate the first load case for a given wing any
other case (other «-distribution) takes not more than about two hours if the wing plan form
remains the same. This is essential with regard to calculations of the elastic wing which usually
needs a step-by-step approach : with the load of the undeformed wing one calculates the deflection
due to this load according to the stiffness distribution; the next step is the lift distribution due
to this deflection, etc.

8. 3 Wings of Infinite Aspect Ratio—A sometimes useful abstraction is the wing of infinite
aspect ratio—mnot just the trivial case of the wing in two-dimensjonal flow but a wing with the
tips so far away that they do not count any longer. This is quite a helpful conception for studying
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separately and exclusively some local effects, e.g., the central part of a swept wing, cut-outs in
the wing contour, wing-fuselage interferences, etc. In the analysis of such effects the wing span
bears no relation to any of the interesting quantities, so it is only natural that we should dispense
with it as best possible.

If we consider the central part of a wing we may approach the infinite aspect ratio state by
increasing both the span and the number of spanwise stations at the same time. Then the
control stations in that central part of the wing become more and more equidistant. In the
limiting case their distance d is given by

lim = b
d:b*“’éﬂ—l .. .. .. .. .. e .. (118)

. and we may use this distance as the reference length instead of the span. Thus we define the
circulation
I Cre  lim 2

y'=ﬁ]:”§g_'m+wﬁ(m+l)y .. .. .. . .. .. (117)
and in analogy the moment per unit span:
, C,c  lim 2

The spanwise stations y, counting from some assumed wing centre are now:
Ve =nd. .. .. .. . . . . . . .. (119)

Of course, the influence functions ¢ and 7 are not affected by changing the spanwise reference
length. Only the correction terms for the 7,, and 4,, in equation (84) contain the span as reference
length which must be replaced by 4; we thus obtain instead of equation (84):

— . 8 rd\

T =i, — 0-1802K, .~ (E) L (120)
The equations (86) are, therefore, to be modified; for (4/2c,)* we write (d/c,)* and for
[sin 0,/(m + 1)] [9,_» — 5,.1) We have always 2/x, e.g., for the 0-75¢ station: '

_ 2/ dvy:
iy = 1884, +0-510,- (%),
etc. '

The coefficients ozw; from equation (92) are degenerating into

4 v —n| =1,8,5... .. (121)

Ay = (v — n)?’
and we find instead of @, -
;8 |
@, = =2-546;. .. .. . .. e .. .. .. ..o (122)
With one chordwise pivotal point at 0-75¢ we have now the infinite system of 'equations
8 >, '
N Y 0% )
ﬂlvv - vy

instead of equation (90); in a similar manner we may modify the equations for two chordwise
pivotal points. An application of this method is given in section 8.

The solution of such infinite systems of equations needs always an iteration process and one
condition must be fulfilled: for large numbers » or # we must reach asymptotic y- or g-values,
or the y- and p-functions must be periodical, in which case the wavelength should be an integer
multiple of 4.
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8.4. The Influence of Compressibility.—As stated at the beginning the influence of the
compressibility of the air can be approximately dealt with by a simple co-ordinate reduction
(Prandtl-Glauert-rule) within the linearised theory. Equation (6) may be written

LY L)
T mrTar=0 (12

with
¥ =:u/<1 - %) = yv/(1 — M)
2" =z4/(1 — M?) .
Replacing the y, ¥, and z in equation (10) by y+/(1 — M?), ¥,4/(1 — M?) and z4/(1 — M?) we

obtain :

— Z(l —_ Mz) Z(xo;yo) dxo dyo
Iwy2) = i - f L [ — %o + (1= M)(y — o) + (1 — MO

Since equation (12) as an integration of equation (4) is still valid we have instead of equation (15)
eventually :

(125)

x_xo

—1 1(%0,%0)
O(.(x,y) = Sz J-JS(_'}) __yo)z[ 1 -+ \/[(x — xo)z T (1 — Mz)(y _yo)z]}dxo dy(] e e (126)

The compressibility factor (1 — M?) appears only in the square root but not, for example, as a
factor to the denominator (y — 3,)2. This means that only our chordwise integrals ¢ and j are
affected. Instead of the expression (29) we find integrals like

X — %
Jl(xo:%) { 1+ VIE — %)% + (1 — MH(y — 30)7] } o

so that the non-dimensional Y-co-ordinate is chosen as

Y:V(I—M2)yca)3)° R ¢ 17

in order to leave all the following relations as they are in incompressible flow

Thus the main modification necessary, in the course of our calculation, to take account of
compressibility within the linearised theory, is to use the Y-co-ordinate of equation (127) in
taking 1,, and 4,, from our diagrams. The generalised form of equation (88) is

y — JYn Ny — Yau
Y,nz\/(l_Mz)j%:\/(l-MﬂW. N 025)

In addition the correction term of equation (80) has to be multiplied by (1 — M?), so that
we have instead of equation (84): : ‘

—_ . b \*4 sin 0,

1,, = 1,, — 0-1302(1 — Mz)K1<%) P (M1 M1) »

with a similar equation in 7,, and 7, .
7. Resulting Forces and Moments—Almost a matter of course are the forces and moments
resulting from our load distributions y and g.

For the general case of a cambered and twisted wing there are four quantities to be determined.
These are,

dC,|da rate of change of overall lift coefficient with incidence
oy no-lift angle
dCy/dC, aerodynamic centre
Cuo C,, at no lift.
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This requires two calculations () with zero incidence of the root chord, when the incidence
distribution is defined by the camber and twist, and (b) with the same wing plan form at uniform
incidence. Suppose C,; is overall lift coefficient for (4), and C,, the corresponding pitching-
moment coefficient then,

- dC
CLl — _E.ZL. OCO
and
ac
CMl"‘CMo: ?Z'(}—I‘W-CLw
L

From which «, and Cj, can be determined when Cy 4, dCy/dC,, C,, and dC,/dw are known.
We shall now consider the calculation of dC,/da and dC,,/dC, in detail. The calculation of C,,
and C,;; is on similar lines.

The lift per unit span

ar
P = 3pUCrc = pU%y .. .. . . . .. .. .. (129)
gives-the total lift of the wing '
b/2 1 :
L= pwa_b/zy By =3U%[ yan .. .. . . .. .. (130)

with the usual definitions

- L S

this leads to

_ 1
Co=dAl yan. .. . .. (s
If y is represented by our interpolation formula we can apply a simple approximate integration :
m—1 m—1
- 4 TE . I an
CL:m—]—1_§jy"81n6”:77¢——{~—1_§:3y’”005m+1' . .. .. (132)
2 2

For the y-distribution belonging to « == 1 everywhere in the wing surface we obtain the dC M/d&
of the wing by this formula.

If v is symmetrical in » we have instead :

m—1

- 2rA |y, Z N
Cr= 11 §+_§_17’n005m+_1 . e P B2 )
Just as easy is the rolling moment L. From
L At
C=prm=glmd 8y
we find with sin 20 = 2sin 6 cos § == 2 sin 0
m—1
7 A Z .
_— ] .. .. .. .. .. .. .. (135
C_4(m+1)_§;1n51n2n (135)
2
or for anti-symmetrical y-values:
m—1
A N .
Clsm‘—_]_l“)%ynsnlzgn. .. .. . .. .. . .. (136)
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The pitching moment of the wing is affected by y and x. The chordwise position of the centre
of pressure of any section is given by

Xy =025 —afy .. e e el (137

For the whole wing we find the moment about the y-axis by:
b/
M:amfzmm_gm@@;.. O € : )
—b/2

3 rl
= —%-pUZ% [‘“ g—bc —v. 5;/4} an .

-1

With the non-dimensional coefficient
M Mb
. M 1pUSe LpURS?
we obtain by again applying the above mentioned approximate integration formula:

C

m—1
nA? & 2c, nw
CM p— 2—“‘““‘—‘(7/’% —l— 1) _E:E ([un 7 - ',Vnén c/4> . COS m —I—- 1 . . (139)
For symmetrical load distributions this is simpler:
zd* "5 2c, cosnmw | 1 2¢
CM = m + 1 I: Ej (;u/n T - yn£n0/4 o _I_l + Q(/u[)-TO - )"0505/4>] . .. (140)

Tt is often useful to define the centre of pressure, 1.¢., the centre of gravity of the load distri-
bution ; for the load belonging to the constant incidence case this is the ‘ aerodynamic centre .
Its &-co-ordinate is :

m—1 ’
2 2c, 1w
Z—l (yngn c/a — Hy T) Cos m + 1
Eop = — . . P ¢ 1)

2
Z 7, cos

wme-—-

2

N
m -+ 1
Tf the load distribution is not symmetrical its 5-co-ordinate is:

m—1

2 . 2mm
_3}—1 Ve Sy +1

(142)

More complicated are forces and moments resulting partly or entirely from components in the
wing area and not normal to it as induced drag, yawing moment and side force. We will deal
here only with the induced drag because those unsymmetrical moments and forces are required
mainly in connection with special unsymmetrical motions of the aircraft the investigation of
which is beyond the scope of this report.

As to the induced drag we can rely on Munk’s law that the induced drag is independent of the
chordwise position of the lift components ; this appears understandable if we consider the work
done by the induced drag as the equivalent of the energy in the velocity field behind the wing
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and normal to the direction of flight. Thus, with the monoplane wing which we are only
considering here it is the spanwise distribution of the lift, 7.e., the y(y) distribution which counts,
and we may safely go back in this special question to lifting-line conceptions. With the ¢ induced
angle of attack’ «;, equation (61), the induced drag is calculated from the integral

1
Cpi= 4 f_ly-ocldn

m—1

3

x4 ; V7T .
= 1, Ve COS oy e e e (149)

2

At the »-th station ¢, is given by

m-—1

o = by, — > by, .. .. .. . .. .. .. .. (144)
1

(i 2t

2

(equation (71) for ¢ = 1); with the a,, introduced in equation (92) we derive then from
a,, = 4b,,[(m + 1) . cos va/(m -+ 1):

m—1 m—1 m—1
2 ) B2
cD:”_A.[ny— » Zamy,,yn:l N 6 V)
? 4: 1 m—1 m—1
2 2 T2
since every product y,y, appears twice and a,, = a,, we may also write
2 2 2
Cpo ="l S 0 3 p amyvynii. L (48
* 4 L m—1 @ m—1
) T2 T2
v=+41,3,56... n=0,4+2,4,6...

With the tabulated a,,-values this summation is fairly simple. A further simplification for
symmetrical loads gives:

m—1 m—1 m—1
Cor=nd |70 L 15,0 D> 147
pi— 7% Z “l— 2 " Yo — peiss il Qm%?’n . .. .. .. ( )
=0, :E2,4,(5

The thus calculated induced drag can be compared with the difference of the component of the
lift in the direction of flow and the suction force at the leading edge which can be approximately
assessed as follows ; the suction force involves only the term in cot ¢/2 in the expression for the
chordwise load, or in other words the lift corresponding to the flat plate. We thus have,

1 dS  C.y :
LUcdy % (= Cp,a for flat plate)

where Cp, is the lift due to the cot ¢/2 term. Now from equations (31) and (35), and using
equations (32) and (36),

CL():J—ZE(CZO—!—“L)

= (y + 4Cy,

26
=y + 4u) .
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Inserting this in the equation for dS/dy we have,

2

: 1 dS 1 726\°

CS:W@:% ?) (V—I“4‘LL)2 . . .. . .. « . (148)

so that the total suction force is

S 8t (v 4u)dn |

%pUFQTJ_FT/b’ e

m—1

_ A 2 /b N

CS frmmnind m E‘I (yn —l— 4‘un)2<i?n) COS m + 1 . .. . .. .. (150)

For a flat plate it should be

CD,,;:OCCL_“C—‘S_. .« .. .. .. .. . . .. . (151)

The validity of this equation can be used for checking whether the reduction of the chordwise
load distribution to only two independent terms seems justified. If the discrepancy is appreciable
further terms are needed.

The spanwise distribution of the induced drag cannot be derived from equation (143); it may
be entirely different from the y . a-distribution. In this respect the resultant from lift per unit
span and suction force projected into the z = 0 plane is more reliable.

8. Examples—As an illustration of the methods derived here a few examples have been
calculated.” They are so chosen as to give a good comparison with other theoretical or experi-
mental results. Owing to the complexity of the problem there are only very few theoretical
solutions of a reliable degree of accuracy available and these are not very typical.

A first example of this kind is a wing of circular plan form which was worked out by Kinner®
by means of special potential functions entirely different from our load functions and suitable
only for this plan form. Kinner gives as the result of his calculations dC,/do = 1-82 and the
aerodynamic centre at 0-515 radius ahead of the wing centre. The calculation for 2 X 5 pivotal
points gave

‘—ZQL —1-799 and —— —0-528.

v

The local y- and p-values for « = 1 were:
n 0 1 2
N, 0 0-5 0-866
Y 0-907, 0-774, 0- 440,
U 0-048, 0-044, 0-045,

i.c., towards the wing tips we find the section aerodynamic centre farther forward than in the
middle of the wing and the local lift coefficient is in the wing centre slightly higher than the
mean value. This is in good agreement with Kinner’s results. But the differences in the total
lift and the moment were more than anticipated and since no mistake could be found in our
calculations we had to check Kinner’s computations. Kinner’s solution is not exact but is an
approximation by a series of functions suitable only for this special case of which he considered
3 or 4 as enough. The result of the repeated calculation with some more valid decimals was as
follows : , :
Number of functions

taken wnito account 1 2 3 4 5
aC,jda 2-286 1-883 1-832 1-811 1-804
= Koot 0-424 0-499 0-511 0-516 0-519

The convergence towards values fairly close to our results is obvious.
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A second case which appeared worth considering was a ¢ delta’ wing which was previously
calculated by Garner'®'* and Falkner®. The wing has a 45-deg swept-back leading edge and
a straight trailing edge: the aspect ratio is 8, the taper ratio 7 : 1. The lift distribution
is calculated for o = 1 with 1 X 7 and 2 x 15 pivotal points. The agreement between Garner’s
results and the author’s for 2 x 15 points in thelift distribution and the location of the sectional
aerodynamic centres is remarkedly good especially in the central part of the wing, Fig. 8. Some
agreement could be expected because the basic conception of both methods is not very different.
Garner’s distribution of pivotal points is somewhat different ; e.g., he has four such points in the
central section. The fact that here the agreement is particularly good between both methods
may be considered as some justification by results of our locafion of pivotal stations. Also
remarkable is the fairly good agreement between the 1 x 7 points solution and the much more
laborious 2 x 15 points solution for the spanwise y-distribution. Of course, the calculation
with 1 X 7 points does not give the local pitching moments and, therefore, not the sectional
aerodynamic centres which must be faute de mieux assumed at c/4, but even so the resulting
aerodynamic centre of the whole wing is not too badly estimated. What improvement is actually
achieved by our methods may be seen from the comparison with Falkner’s results, for Falkner’s
methods could be considered as the best approximate method so far available. The computer
work required for wings like this delta is less than one hour for 1 X 7 pivotal points and about
two days for 2 x 15 points.

A few numerical values are not uninteresting :

Method of calculation % Eac. tromm
Garner’s method ¢ .. . .. 3-038 0-545
Falkner’s 6-point solution .. .. 3-21 0-556
Falkner’s 8-point solution .. .. 3-19 . 0-547
This method with 2 x 15 points .. 3-057 0-542
This method with 1 X 7 points .. 3-040 (0-555)
Lifting-line, 7 points .. .. 3-68 (0-570)
R.A.E. measurements .. . 3-048 0-538

A further case which was calculated with our method for two chord-wise pivotal stations is an
infinite 45-deg swept wing of constant chord, Fig. 9. The loss in the lift distribution in the wing
centre is considerable and extends to spanwise stations far away from the middle. The local
aerodynamic chord line approaches more quickly the c/4 line. No other theoretical values for
this case are available except Schlichting’s middle function® which appears to be a rather crude
approximation. Some new more detailed calculations of this * middle function’ which are not
yet published come much nearer to our load distribution. The only experiments which are
comparable to some extent (wind-tunnel corrections are difficult to assess) show fairly good
agreement (J. Weber, Ref. 17).

A last example is added in order to show the practical course of calculation. The whole calcula-
tion is set out in Tables 8 to 30, which are used in Appendix VI to develop a detailed set of in-
structions for computers’ use. In Tables 8 to 12 we find the details of the computation for the
symmetrical load distribution of an arbitrarily chosen wing calculated with 1 % 15 pivotal
points. The arrangement shows the three stages of the calculation : in Form 1 all the geometrical
data of the wing are collected together with those coefficients which are only a function of one
station. Form 2 contains the computation of the coefficients which depend on two stations;
the X,,, Y,, are the co-ordinates of the »-th pivotal point measured in chords at the #-th section
with the leading edge of that section as origin. The 1,, are taken out of the Figs. 1to 3. In Form
3 the solution of the system of equations is demonstrated.
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Tables 13 to 22 contain the calculation for the same wing with 2 X 15 pivotal stations. In
Tables 23 to 30, the calculations have been extended to give the asymetric load distribution
produced by ailerons on the same wing (see diagram of Table 23). The results of the whole
calculation are shown in Fig. 10.

These sheets may be used as a guide for those who merely want to calculate special cases
without bothering about the underlying theory. In these examples the calculation is carried
through with about one decimal more than usually required mainly because a calculating machine
was used. As a rule the whole computation can be done with a slide rule although calculating
machines may reduce the work still further. For calculations with a slide rule only, the time
required for the first load distribution for a given wing plan form was found to be roughly one
minute times the square of the numbers of pivotal points considered, provided one knows how
the calculation is to be done.

9. Conclusion.—A general and convenient method of calculating the load distribution of
arbitrary wings based on lifting-surface conceptions is developed. The foundation is the down-
wash integral for a wing with given lift distribution as it is obtained by integrating the Euler’s
equations of the motion of a flow without friction. This downwash integral is dealt with in two
stages: firstly the chordwise integration which leads to complicated elliptical integrals is done
numerically for the whole range of interesting positions of the inducing section relative to any
pivotal points or vice versa, assuming the most important chordwise load distributions only.
The spanwise integration of the downwash is achieved by a method of approximate integration
similar to that developed by the author for lifting-line problems. Special care is taken in the
choice of the position of pivotal stations, 7.e., points in the wing surface at which the boundary
conditions of the integral equation are exactly fulfilled. The result is a linear system of equations
with the lifts and, if required, also the moments per unit span at certain spanwise stations as
unknowns. The coefficients of this system of equations can be easily calculated from the
geometrical data of the wing using tabulated factors which depend only on the arrangement
of pivotal points and the diagrams for the chordwise components of the downwash integral.
The solution of this system of equations can always be done by iteration, so that even fairly
large numbers of pivotal stations can be employed. The computing effort is fairly moderate
and compares favourably with other methods which achieve or aim at a similar degree of
accuracy.

I wish to acknowledge here the valuable help I had from my assistant M. Winter in many
parts of the numerical calculation and from S. B. Gates and K. W. Mangler in a critical review
of the general arrangement.

31



u,0,W

N R v D

S e~

Nwmsmr’xn

I

10. NOTATION

Rectangular co-ordinates system attached to the wing

In the direction of undisturbed flow in the plane of symmetry of the wing
In the starboard direction

Upwards- in the plane of symmetry

Velocity of undisturbed flow relative to the wing

Additional velocities produced by the wing in the direction of the x,y,z-axes
— 02,/0x (local) wing incidence, z,(%,y) describing the wing skeleton
Pressure '

Density )

of the flow about the wing

Speed of sound

Enthalpy of the unit volume

ide ti id . . . .
P presce s ipr === Non-dimiensional load per unit area of the wing
F

Wing span

Wing chord (usually a function of ¥)

Angle of sweep

x/%b

v/4b | Non-dimensional co-ordinates related to the semispan
z[1b

cos™'y angular spanwise co-ordinate (y = 15 cos 0)

(* — xrr)/c(yo))] Non-dimensional wing co-ordinates related to the inducing
wing section (suffix )

(v — ¥o)[e(vo) %y 1z cO-ordinate of the leading edge of the inducing wing
section

cos™ (1 — 2X) angular chordwise co-ordinate
Influence functions (chordwise downwash integrals)
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NOTATION—continued

Number of wing sections taken into account

Suffixes numerating the spanwise stations, » giving the pivotal station,
7 the inducing station

—(m—1)2< v, 7 < (m— 1)/2

2 wm—F1
6—— . v

COS ”*Sm_—m—i—l

Coefficients for approximate integration

y = C.¢/2b Non-dimensional lift per unit span
v = C,c/2b Non-dimensional moment per unit span
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APPENDIX I
Contributed by W. Mangler

On the Second-Order Principal Value for the Downwash Integral, Equations (15) and (16)
For small (y — y,) it is better to integrate the downwash first for z == 0 and to go to the
limit z — 0 later on. Thus we obtain

w — 1 ol |, ,
T (xy,2) = NiE J__w FP (x',3,2) dx

- %n_l ”sl(x"’y,") : Ux—w 8% [(x" — %)% + (JZ’ — ¥ + ZPr ax’ } o dys

x—xo

=%fﬂ?m%yé{@?fF¥?o+\4w—%f+w—%ﬁ+ﬂﬂd%@“

Now we may use the identity

0 z _ 0 Yo—Y (Yo — ) — 2°

2y =y + 2 (P2 [(Ye— ) TP

to write :

060 = gl oo {1+ s | o (e )

4 1 2% — %) A%y Ay,
™ 8n 'U.Sl(xo,yo) [y — 20" + 270 — %0)* + (v — yo)° + &P

The first of these integrals can be integrated by parts with respect to Yo

Yo=b/2

1 Y-y % — %o |
8 (yy — y)E L2 J‘Zl(yo) Ko, 30) [1 + VI — %)® -+ V — 90)F + 2] ’dx[,

w
U (x,y,z) =

Yo="—b/2

1 2 3 2,0 X — %, (30 — ) v,
 8a )i By, I:J"‘z(yo) K50, o) { 1+ V& — %0)* 4 (¥ — 30)* +27] } dxo:l (90— 5" +2*

2 « (2 — 2) doxy dyy
5 100 =

The first of these three terms is zero because the lift I(x,,y,) disappears towards the wing tips

(%o — £ 8/2). If we now consider the limit z —0 the third integral too is vanishing and the
second is given by the Cauchy’s principal value:

w _ ]‘lim[ Yy~ a [ xt(?'o) x — Xo :| dyo
0609 =5 D Uttt O+ =) o 5225

0 Lo (=g e 5
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With
xt (¥o) x — xa

f( 0) - fxl(y) xo;yo (1 + \/[ X — xo)z __I__ (y _yo)2]>dxo
we obtain by another partial integration:

fm (-0 o dn [ o)
e>0 ) _p2 0%, Y — Yo v+s 0V Y — Yo

__lim | fly — &) f( 2) f() fy+-) yafyo@o f“f%cm

>0 & & —b/2 y — yo y+e y yo

y"l‘z y_Q

Because the lift disappears towards the wing tips we have f(— 6/2) = f(8/2) = 0. If f(y,) 1is
a continuous function we have also for a small &

fy=d o+ _for_p oSO

_ 2/

+ ef" ...
The downwash integral may, therefore, be written as equation (15) if we define

b2 o . y—¢& odo
[ fyo@’_hm fyo@o Lﬂfy 9’_2ﬁ? ... (8

b2 _’y yﬂ g0 —bj2 y _’,Vo
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APPENDIX I1
Wings with Flaps

To satisfy the integral equation in a limited number of pivotal stations only seems justifiable
if the boundary conditions, 7.e., the a(x,y)-distribution, are fairly continuous. An obvious case of
practical importance where this is not true is the wing with flaps to be used as ailerons, high-lift
devices, etc. Within the area of these flaps «(x,y) has a different value from the remaining wing
area and for practical reasons there is a sudden change from one level to the other, i.e., the flap
contours are discontinuity lines. It is purely accidental whether any of our pivotal points are
just inside or outside the flap area. To increase the number of pivotal stations until the flap
contours are fixed within sufficiently close limits is hopeless if we consider the computing effort
required. Splitting off the discontinuities is at least not simple because the whole wing contour
must be taken into account. Thus the only possible way seems to be an adjustment of the
a-values at the chosen pivotal points, 7.e., we replace the discontinuous chordwise «(x,y)-

distribution by a continuous one which gives roughly the right forces and moments in two-
dimensional flow.

With only one chordwise pivotal point at each spanwise station we can only follow the
procedure of the lifting-line theory : over the span occupied by the flap we choose the value of «

which in two-dimensional flow produces the same lift as the flap deflection 6. It is usual to
define a quantity ‘

do _2C, 2C,
do 38 | oa
as the factor by which the flap angle is to be multiplied to obtain the equivalent angle of incidence.

There exists ample theoretical and experimental material about this quantity for many types
of flap. -

With two chordwise pivotal points in the standard‘p/ositions we can do rather better. We
may choose the « values («’ at the rear pivotal point and «” at the front one) so as to obtain in
two-dimensional flow the lift and pitching moment which are produced by the flap. «' and «”

are obtained from equations (25), (26) if for C, and C,, we substitute C,, and C,, ;, the values
produced by a flap angle 6 :—

CL& = K]_O(., + KzOC”
Ms — K30(., + K4OC” .
Using the values of the K’s given in equation (27) we obtain
C
o = gf—%@(\/s— 1)

, C C
o =g S W )
but C;,/2n is «, the incidence required to produce the same lift as 6.
Hence
o = a— 0-393C,,;

o = o 4 1-030C,, ;
or in differential form

do’  da aC, s
qo a5 0-393 T5
do”  da ac,s

%:%"1'1'030 75
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0C, /06 is also frequently measured. Since it is usually negative the flap deflection appears
mainly in the rear pivotal point («’) as we should expect. A few typical values are calculated
with the theoretical values of da/dé and 4C,,/66 for hinged flaps:

L 01 02 03 04 05
dar’ |

- 0-608 0-802 0-913 0-979 1-015
ao('ll

0160 —0-109 0 0143  0-303

We cannot expect to find also the whole pressure distribution of the wing with flaps by this
simplified method but the resulting forces and moments should be fairly accurate as long as we
have no flow separation, etc., since the application of the simpler lifting-line theory gave already
fairly reliable values. ’

If more than two chordwise pivotal points are used at each spanwise station we can satisfy
some more conditions about the equivalent incidences. Falkner*® who had to deal with the
analogous problem for his vortex-lattice method takes also the hinge moment into account
besides the lift and pitching moment.

It follows from this chordwise representation of incidence that if the wing is at zero incidence
with a flap angle, pivotal points inboard of the flap will have zero incidence, while those in the
part of the span occupied by the flap will have incidences «’, ”. This leaves us with the problem
of adjusting the pivotal values near the inner edge of the flap to deal as far as possible with the
spanwise discontinuity there. A simple rule to deal with this is illustrated by the diagram of
Table 23. We allocate to each spanwise station a chordwise strip bounded by the mean lines
between this point and its two neighbours, see strip 3 of the diagram. The incidence at the
pivotal station is taken as the mean value over this strip, calculated with respect to the angular
co-ordinate 6. Thus there will always be one chordwise station to be so adjusted, unless the
inner edge of the flap happens to bisect the distance between two successive chordwise stations.
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APPENDIX III

The Logarithmic Singularity of the Influence Functions ¢ and j

The influence functions ¢ and j are defined by equation (37) and (38) which may be written in
non-dimensional co-ordinates, X, Y, equation (30) as follows:

IXY) = ¢ [0 {1+ e ym | 4%,

and
. 1 X X,
AXY) = & [ ) |1+ VX =X T 7] 4%

For small distances ¥ we may consider now the difference between this valuei(X,Y), (or(X,Y)),
and the limiting value for Y = 0; it may be called
1 X

2i(X,Y) = i(X,Y) — i(X,0) = = | ux)

\/[(X - Xo)2 + Yﬂ [
1 X, —X -
+ C"L JX Z(Xo) { 1 - /\/I:(X _ X‘o)z + Yz:l dXo .

It is easily seen that for small Y the factors in brackets in these two integrals are of an appreciable

size only near X, = X. It seems, therefore, reasonable to develop 7,(X,) into a Taylor series
from the point X, = X:

aX,

1

dal, X, — X)) 4%, X, — Xy &,
WX = LX) + (X, — X) g3 (3) + Fo BV Zh oy Ee XV o )

We can try, then, to integrate 47 term by term; for convenience we introduce
X=Xy — X for X, > X
X, =X —X, for X, < X.

A7 is now given by :

2i(X,Y) = Z%Q j:X [1 — \7(”X§(1+—Yz)} iX,
v, @+ a1 - ot )

1 4% X

1-X .
+a, a0 o 21 e

w7+ e [ o o)
+ ...

All these integrals are casily evaluated. By expanding the resulting expressions in powers of ¥?
we obtain a regular series development of 44(Y) but in addition to that we see some terms with
the factor In Y which can not be developed into a series of powers of Y*; thus we obtain

Ai(X)Y) = a,Y? + a,V* +. ..

— Y? di, 4 Yyt ah, Y ad, }
C. d4X, ' 8C,dX,> 1152C,dXy T — )
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The coefficients of the regular part of this series development are not worked out because they
are no longer needed ; of the irregular part only the first term can appreciably affect the downwash
integral because the factor Y* is cancelled by the denominator in the spanwise integration.
The coefficient for this term is ‘ ‘

for the development of 7; correspondingly we find in the development of the second influence
function 5:
—1d,
C, dX,

).
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APPENDIX 1V

Development of the Approximate Integration Formulae for the Downwash

With the interpolation stations chosen at equidistant subdivisions of the 0 . . .z range of the
angular co-ordinate 6 = cos™'y

7 o . Hm . (7
7, = COS 8, = cos <§ - %m = sln m = SIn (Q — 0,
we wrote the interpolation formula for y or (y .4) as

m—1

I
.00 = 2 (.0.g00).
7
The g,(0) should be determined by the condition that
gn(e) =1, 6 =20,
gx(G)ZO) 0=10,, M’#P:O’il::{ZZ)iMLZ__I

To develop a function which satisfies these conditions we may consider the function
sin (m + 1)0 which disappears at all m stations; to make g, = 1 at 5, we divide sin (m + 1)0
by its tangent at y,:

sin (m -+ 1)6

&(0) = Zsin (m + 170
(cos & — cos 8,,) . Tcos o (0.)

Now

dsin (m -+ 1)6 (m + 1) cos (m -+ 1)6,
d cos 0 (0.) = — sin 6, :

This gives immediately :

0 sin 9, _sin (m + 1)0
8.(0) = — (m < 1) cos (m + 1)0, cos 6 — cos 6,

Ccos (WL -+ 1)9” — (__ 1){(””"'1)/2}—-7; .

This 18 not the only way to represent this interpolation function g.(0). Since sin (m + 1)6 is

equal to /(1 — %% X polynominal in % up the to m-th power we may also develop g,(6) into
a trigonometrical series :

8.(0) = 2 a,sin 10 .

©
1

Integrating both sides after a multiplication with (2/x) sin 46 we obtain the well-known Fourier
formula:

2 .
- JO 8.(0) sin A6 d6 = q,
which gives:

@l:

2 sin 0, J”Asin (m + 1)6 sin 20 d6
~ a(m + 1) cos (m + 1)0,) cos § —'cos 8,
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For A << m -+ 1 this leads to

. 1 sin 6, J”cos (m + 1+ A)0 — cos (m+ 1 — 4)0 db
4= a(m + 1) cos (m + 1)0,Jo cos 6 — cos 0, '

Now using Glauert’s formula

}J" cos p6 df _ sin p0,
nJocos® — cos B, siné,

p integer > 0

(compare H. Glauert: The Elements of Aerofoil and Adirscrew Theory, pp. 92-93)

we obtain

1 sin 6, [sin (m + 1420, sin (m+ 1 — l)@n]
% = 1 1 cos (m -+ 1)0,, sin 6, sin 6,
| = —2— in 10
= i S A0,

For 2 > m + 1 we can show similariy that

B 1 sin 6, .J"cos (A 4+ m + 1)6 — cos (A — m — 1)6 db
% " m(m + 1) cos (m+ 1)6, Jo cos § — cos 0,

1 sin 0, |:sin (A +m + 1)8, — sin (A — m — I)Oﬂ}

~ m -+ 1cos (m + 1)0, sin 6,

2 cosig, sin (m + 1)0,
T+ 1 cos (m -+ 1)6,

because sin (m + 1)8, = 0.

=0

Thus, we have

ki3

2 i i
) — ——
&a(0) PR IE‘I sin A6, sin 10

If we have any function f which can be so represented

m—1

f0) = = f.8.0)

m—1

2

it follows immediately fhat

1 = ] 12 % .
[ fmyan =] fe)sinoas = Tq = fising, = g E ficos oy
2
and :

24

1 1 4 . . .
J_lf(n) .7 dn ZQJOJC(G) sin20 d6 = 2m + 1) _ilf" sin 20,

m—1
7 22: . N7 cos nw
= sin
m+1 wa/*" w41 m 4+ 1
2



It is easily shown that these approximate integration formulae allow for something more than
just the interpolation polynominals. If we put

M| T

f(6) = J4£.(0) + sin (m + 1)6 .f] @, cos qf -

_m—1

2

which means additional terms for the function f(6) in the intervals between the 8, we see that

n—1
- _ - I
fo f(6) sin 6 d8 = 1 _mi_lfn sin 6,

2

still holds if p << m, because

rsin (m - 1)6 sin 6 cos g0 df = %ﬂ: sin (m + 1)0 [sin (g + 1)6 — sin (g — 1)6] 26

x4 g=m
= —a=n/4, g=m-+2 .
| O , g #=m, g =m-—+ 2.

Now, putting the interpolation formula for (y7)
into our downwash integral
=1 yrdy — 1, . [Fg(0)sing’ do’
“) =5, ), g —n)* 2w Z(yi). Jo (cos & — cos 67)?

we see that the factors by which the (yi), are to be multiplied are functions of # and % = cos 0
only. In particular if « is calculated for the same set of spanwise stations

Ty

m -+ 1

7 =1, = C0s 0, = sin

we may write
% = a(n,) == b,,(yi), — Z'D,,(y9),
with
=1 g(6')sino’' 46’
" 2m Jo(cos 0, — cos §')*
1 ™ g (0")sin 0" do’
" 2m Jo (cos B, — cos 07)*"

b

b

Using the above series for g,(6) we have to deal with integrals of the form

— 1 ("sin A0’ sin 6’ d6’
2r Jo(cos 8, — cos 6')®

which may be integrated in parts to give

A j“ cos 40”6’  _ Asin 49,

o 2mJ)ocos O, —cosf’  2sing,
42

sin 46’
2 (cos 8, — cos 6)




It follows that

1 1 "
b,, = mzzl Asin? A6, = = om + 1) sin 0, ? A1 — cos 210,)
—_— 1 "
bow = G T 1) sin 0, I 2sin 20, sin 46,
1
2m T+ 1)sin 0, 2 A[cos A(8, + 0,) — cos A(6, — 6,)7.

To evaluate these sums we may consider

wm

2(1—cosx)Zlcoslx—ZZ[Zcoslx-—cos(l— 1)x — cos (4 + 1)x]

= ZA[—— cos (4 — 1)x ++ 2 cos Ax — cos (2 + 1)x] .

Combining always the terms with the same angle we see that most of them cancel each other
so that only a few of the first and the last remain:

w

2(1 — cosx)Zlcos Ax = — 1 4 (m -+ 1) cos mx — m cos (m + 1)x .
This gives:
b — 1 [m(m+1)+1— (m -+ 1) cos 2mb, + m cos 2(m + 1)0vi|
» " 2m + 1) sin 0, 2 2(1 — cos 20,) :
Since cos 2(m + 1)8, =1
cos 2mb, = cos 2(m - 1)0, cos 26, — sin 2(m + 1)6, sin 20, = cos 20,
we obtain
b wm -+ 1
» " 4sinf,”

In the same way we find for the b,,:
1 {— 1+ (m + 1) cos m(0, + 6,) — m cos (m + 1)(6, + 6,)
2(m + 1) sin 0, 2[1 — cos (8, + 6,)]
— 1+ (m + 1) cos m(6, — 8,) — m cos (m —+ 1)(8, — 6,)
o -~ 2[1 — cos (8, — 0,)]

b’l/ﬂ

Since
cos (m + 1)(0, & 0.,)

cos m(f, + 6,)

(— 1y
(— 1)*~*cos (0, 4 0,)
1 — cos (8, — 6,)][1 — cos (8, 4 0,)] = (cos 8, — cos 0,,)

this reduces to two different results for [» — 2| odd or even, namely:
when v —n=4+1,+3, £ 5. '

I

and

. 1 {(m — 1) — (m~+ 1) cos (0, +6,) (m—1) — (m+1)cos (6, —0,)
" 9m+1)sin g, 2[1 — cos (6, + 6,)] o 2[1 — cos (6, — 6,)]

1 _—[1cos(8,48,)][1—cos (6,—0,)] 4 [1 -4 cos(6,—0,)][1 — cos (6,4-0.)]

2(m —+ 1) sin 6, 2(cos 6, — cos 9,)*
1 [cos (8, — 6,) — cos (6, + 0,)] _ sin 6,

2(m + 1) sin 0, (cos 6, — cos 0,)? " (m + 1)(cos 8, — cos §,)*

and when » — = + 2, +4,--6....
bvn - 0 .
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A somewhat different approach which leads to the same results goes as follows: we split the
influence function 4(y,7’) up into a constant value 4(y,7) valid for the pivotal station itself and a

residue - _ _ ‘ . ' _
i) = i) + *an') = i) + Gan’) — i) .
The downwash integral consists then of two parts

) (F v dy’ 1 (* yi¥(n,n’) dy’
“(”):“(zn)f v(n') ye¥(n,n")

A s —n) 2] (g — )
of which the first fits exactly into the approximate integration formula developed above ; apart

from the factor 4(y,7) it is identical with the ¢ induced angle of attack ’ of the lifting-line theory.
As to the second part we see at once that

N 2
UENES =
is a continuous function even at 5’ = . Towards the wing tips (y’ = 1) it behaves like v ;
we may, therefore, try to represent it also by interpolation functions: '
w1

wm—

f: = 1f71gn(6’) .

The second part of the downwash integral is then for the station 7 ’

Tm—1
1 & . ("g.(0")sino’do’
— Z n .
Ao, 2n m 1f” o €os 6, — cos 0’

2

2

From Glauert’s formula we derive

{f”sin A0 sin 6’ d9’  sin (4 4 1)0, — sin (4 — 1)6,
wJo cos 0, —cos @’ 2sin 6,

= C0S A0,

which gives
m—1

1 2 m

= % i
= 1 _M;Ef" El sin 16, cos A0,
1

B » [sin A0 + 0,) + sin A(9 — 0,)]
=m 155D 2 :

Ao

Now we have

wn

2(1 — cos x) g“sin Ax =2 [—sin (A — 1)x + 2sin Ax — sin (A + 1)x] .
1 1

Of this lengthly sum there remain only a few terms after rearranging so that the lines of equal
angles are put together: '

w

2(1 — cos x) L sin Ax = sin x + sin mx — sin (m + 1)z .
1

This gives:

sin (6, + 6,) + sin m(6, + 6,) — sin (m - 1)(6, + 6,)
41 — cos (8, + 6,)]

2 sin A6, cos A0, =
1

sin (6, — 0,) + sin m(0, — 6,) — sin (m -+ 1)(6, — 6,)
471 — cos (0, — 6,)] -
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Since
sin (m + 1)(6, =+ 6,)
sin m(0, + 0,)

I

0
(— 1)»—*+tsin (6, 4 6,)

I

we obtain
o . 1 — (— l)n—v Sin (0” —|'— 6,,) Sin (en - 01:) }
Z sin A8, cos 46, = 4 { 1T — cos (6, + 0,) T T cos (6, — 6,)
_1—(—1*"2sin b, cosb, — sin 26,
- 4 (cos 8, — cos 0,)
11— (=1 sin 6,
- 2 cos B, —cos b, °
Thus we find :
m—1
Ao, 1 2 J» 1 0, nw=v-+1,35...only.

“wm -+ 1 macos8,—cosb,’
5

If we now remember that
- ivn _ iw .
fo =7 s 6, — cos 0,
we obtain finally:

. . ; 1 ’ y1L(7:v;z - iw) Sin 04;
&, — (. |:bwyv - 2 bvnyni| - m + 1 (COS 0”' — CcOoS BV)Z

m—1

. 2
= bwiwyv "— le bwﬂ’vnyn
m—

2

as before, although the original assumptions are different.
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APPENDIX V
An Alternative Method for the Spanwise Part of the Downwash Integral

As stated before the approximate method used for the spanwise part of the downwash integral
is not the only possible one but appeared more convenient than any other tried by the author.
The only objection that might be brought against it on theoretical grounds concerns the over-
employment of the interpolation polynominals g,. A linear combination of s independent
interpolation polynominals has, of course,  degrees of freedom. If we represent y by an
interpolation formula

—1

Mo

Y = gn')’ )
m—1

Nl

we have used them up so to say; if we demand that also for any point » the product yi, be
represented in the same way :

m=1

2
'}”L,, = Z gnyn,[’vn

m—1

2
we thus fix 7, as

Z g 4 niv n

1, = ~v
Zgnyn

which gives 7,(5,) = 4,, as it should be but relates 7, in the intervals between these stations to
the y,. This is rather against the principles of interpolation but since we are not concerned in
any case about the ¢-values in these intervals it is difficult to see why the representation used
in the report should be less accurate than any other.

Every attempt to represent the influence functions independently from the y-values by
interpolation functions leads to something quite similar to the Weissinger” procedure: the
coefficients of the system of equations must be found by another approximate integration. This
may not be deterrent with only a few pivotal stations although even then the work involved is
more than with our scheme but it is definitely prohibitive at a greater number of pivotal points
since the computing effort increases roughly with the third power of that number instead of
the second.

After many trials at least one method has been found which keeps some more degrees of freedom
open for the representation of the influence function; it may, therefore, be that the downwash
integral is slightly more accurate with the same number of pivotal points. This method goes
as follows:

We split the influence function 4(y,, #) up into three parts so that the first two give the tangent
of i(n) at n = n,; .

Lo, . , di, o,
W) =t + (0" — ) 7o (0) + 4i(n") .
Accordingly the downwash integral consists of three components:
di

— 1, [~ y(n')dn’ d_nvn” toydy’ 1 y@n') 4d,(n’) dy’
“v(’?): O J_l ( -+ f ( ) .

(=" 20 Jan—n 2l (g — )
The first two integrals fit perfectly into the integration methods developed before so that we have
w1
& ) di, 1 v oy 4, ,
o, = bvv@vv’yw el bvnyn lizw + 6?77- (’}']n —-7’]1,):' - 2—% 4 W d?? .

2
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As to the third integral if we firstly ignore the logarithmic singularity of 44,/(z, — )" we may
consider its integrand _
' r(n’) 4%,(n’)

(m, —n')?
as continuous throughout the integration range. For this case we have already an approximate
integration formula; by using our interpolation functions g, we may write
m—1 .
V4 sz % ’ YVa Aivn
T o he #n 6 i . \2-
(., —n’)? _%—_ﬁg ©) @, — .y

The integral over this function is then

Jay

1 ydi, i —1 _§ v, 41, sin 0,
T2, — 02" T 2(m + 1) _w=1(cos 0, — cos 0,)°
2

For # = » this makes no sense ; we ought to put here instead of
7y 41,
(cos 8, — cos 0,)®
Vs A%,
2 apt )

if this quantity exists. The advantage of this approximate integration formula consists mainly
in the fact that as it is shown in the preceding Appendix IV it still holds if we have

m—1
_'}/A_i”_ — 22: M_ . m—1
=) e — 7 )2 8:(0) + sin (m + 1)0 2 a, cos g6

where the a, represent the m additional degrees of freedom which can be used, ¢.g., to make
the 44, function really independent from the y, . ,

As to the logarithmic singularity of 44,/(n, — n)* at # —5, we may use another trick to get
rid of this difficulty. Since the integration method applied is just a slight modification of Euler’s
formula by which the integral over a function known at the two terminal points of an interval is
given for this interval approximately by half the interval width (here represented by the factor
sin 6,) multiplied by the sum of the two border values. If we consider the integrand in the
interval 5, < % < 7,., it may be given by

y 4¢, 7' — 7,
=g+ bIn ———;
(nv — N )2 _]_ 771:-]—1 — 7

the integral gives
w41 ’
n —1n, ’
Jnv (61 —I—- bIn mﬂ) d’q = (77,,+1 —_ 771,)(61 — b) .

We may now seek an ersatz station #, so that the integral is again given by half the interval
Width multiplied by the sum of the integrands at the station #,,; and this ersatz station’; this
gives:

. Hyr1 — Ny ﬁv —

(Rypr — m)(@ — b) = — 9 [2@ 4+ bIn pp—— m]
which is valid for
11‘1 771’ - 771’ —_ 2
77#-!—1 /P
Gy =1, + s — ) . €72 = 7, + 0-1353(n,41 — 7,) -
A similar formula may be derived for the interval n,_, < <=9,.
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Now putting the bits together, we have, if we introduce the values for the b,, and b,, of
equation (72) o

m -1, et . 0[
sing,» — g S00%

7’.1/[7]11 + e_z("h+1 e 771!)] 1:7[171' _—— 6_2(771' - 771!—1]
(72 — 1)* S A ”
me=1 , ‘

1 2’ Y Sin Gn

- 20m + 1) _3_3__1 (7, — 7,) [z — (=1 <Z+ (. — m,) Zf; (n,) )} :

2

For the practical application of this formula we need a plotting of 44/Y? for the neighbourhood
of the pivotal points; di,/dy may be calculated from the di/dX value at the pivotal station and
the amount of sweep of the line connecting the pivotal points. ' K

A practical disadvantage of this formula for «, compared with our equation (83) is the
appearance of all stations 4, in the sum although those for odd #» — » are obviously predominant.
This means at least twice the work for computing the coefficients of the system of equations.
Moreover a solution of these equations might not always be achieved by iteration in which case
this part of the calculus becomes rather laborious for more than just a few pivotal points.

If we compare the different methods not on the basis of the same number of pivotal points
but as to the computing effort required we may say that with the same amount of work we can
have at least 50 per cent more pivotal points with the original method. If is then very doubtful
whether any improvement in accuracy can be gained by the alternative method described here.
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APPENDIX VI
The Rounding-off Rule for the Middle of Swept Wings

To see how a function f() with a kink in the middle (n = 0) is represented by our interpolation
polynominals we consider as a ‘typical example

f) =1—[n]=1—[cos0].

Its -represe'ntation by our interpolation polynominals is

m—1

F(5) = 2(0) + = (1 — cos 6,) [,(0) + g.(0)]
F meets f at the m stations

. nr m — 1
77n=0059n=5111%7_—|_—1, n——:O,il,j:Q...i—Q—.

The point which is open to some criticism is whether it is right to lay the interpolation F(6)
through that rather exposed peak F = 1 at g = 0. The interpolated function ¥ (y) is continuous
at » = 0 also in its derivatives it has at # = 0 a flat maximum instead of a kink. This means
that F(y) will definitely exceed f in the interval — #, <% <75, We may therefore expect a
better general coincidence between f() and an interpolated curve if we drop the condition that
both meet at # = 0; 7.e., we suggest an interpolation function F,

F(0) = (1 — 4)q(6) + 3 (1 — cos 8,)(g, +&-.) -

Instead of the condition of coincidence at # = 0 we need now another condition which defines
this correction 4, the bit clipped off the kink. Usually we would introduce a least-square
condition but in this case we may get away with something simpler because in the discrepancy
between the given function f and the interpolation F, the interval — 5, < % <7, dominates.
Thus the condition

fl_l Fi(n) dn = fl__l fn) dn

should be enough to determine the correction 4. Applying the integration formula for the g,
1

we have with j Fln) dy = 1:
-1

s

—

s 2%—2

10D+ T S (1= cos6y) sing, =1
1

or

V3 _m—i—l
wm -+ 1 T

m—1
2 ) nw
4 =1 —]—-2n§=:1<1 —Sll’le)COS

To evaluate the sums, let us consider

m—1 m—1

2(1 — cos x) i COS Mx = E?J [— cos (# — 1)x + 2 cos nx — cos (n + 1)x!
1 1

= — 1 4+ 2cosx — cos 2%
— cos % + 2 cos 2x — cos 3x

— cos 2x -+ cos 3x — cos 4x
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Most of these terms cancel each other so that there only remains

m — 1 m -+ 1
%

— 1 4 cos x - cos 5 X —C0s

With x = —— we have thus
m -} 1
n—l — 1 4 cos —— -+ sin —— 1+ cos i
z N —|— 1 m —{~ 1 7 m - 1
2 X cos =cotg— — 1= — 1.
1 m - 1~ | c 7 2m + 1) sin 7
BT | m -+ 1
Similarly we find
m—1 m—1
2 nx 2 2nm
2
anlsmm_l_ cos —I—l E m—l—l
if we consider once more
m—1 1@.
2(1 — cos %) X sin nx = 22] [—sin (n — 1)x + 2sin #wx — sin (# -+ 1)%]
1 1
most of the terms of this sum cancel each other so that there only remains
. .om—1 .om+ 1
sin x¥ -+ sin g~ X% —sin o ¥
L. 2
This gives for x = b B
s 0 sin - 21 i
) 95T . 7
% sin oy 1 5 = Ot
— cos oy
Summarising we find the correction
) T
1 4 cos coS
A—11 m—l—l oy m+1 m41
n—= sin __1”__ 7
m + 1 m -+ 1
1 m—+1
=T . T = —‘6 m—}—1+360<m—i—1)+15120 m+1>+---
in ———
m 1

It is reasonable to relate this correction to the difference of the f; and f; values which is
sinz/(m + 1) because a multiplication of # by any factor does not affect this ratio. We thus get

A4 4 o 7 1
FTE= . m =5t 30lnr1) T =6
Slnm—i—l

and in this form the result applies to a kink of any angle.

In all practical cases we need only use the first term because with too few stations we cannot
speak any longer of a decent representation of a kinked curve; since 4 is only a correction it
does not pay to have it more accurate than the assumptions on which it is based.

To illustrate the effect of this rounding off we have plotted in Fig. 7 the function 1 — ||
with the two 1nterp01at1ng curves one with and the other without the 1/6-correction. The
improvement is quite obvious.
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APPENDIX VII

Instruction for Practical Calculations

(This is meant to be a short instruction for those who want to calculate the load distribution
for a given wing without bothering about the theoretical background.)

Preliminaries—A geometrical description of the wing to be calculated must be available.
As a rule a number of load cases are to be calculated for one wing according to airworthiness
requirements, etc. A load case is determined by a specific arrangement of the local incidences
of the wing. The aerodynamic forces are represented by the non-dimensional lift and pitching-
moment values at certain spanwise stations

1 dL 1 aM
Vo= JU% dy @) En = oU%c(y,) dy )
these stations being:
b b . m=m m — 1 m — 3 m— 1
ynzﬁnn:QS].an, n = — 2 y T 2 ,..—1,0,1.._2_“,

See Tables 1 to 7.

The y, (and u,) are calculated from a linear system of equations the coefficients of which are
to be computed before, and depend only on, wing plan form and Mach number, whilst the terms
independent of y, in these equations are also dependent on the distribution of the angles of
incidence. Accordingly, the calculation splits up into two processes : the computation of the
coefficients and the solution of the system of equations.

Before beginning the calculation we must make up our mind about the number of pivotal
points (points at which the integral equation of the lifting surface is satisfied). As to the number
of spanwise stations m a reasonable choice is

m > 34+/(1 — M7 .

In Tables 1 to 7 some essential constants for m = 3, 5, 7, 11, 15, 23 and 31 are collected.
Since the work to be done is roughly proportional to the square of the number of pivotal points
each higher number represents about twice the work of the preceding one.

One chordwise pivotal point for each spanwise station is sufficient for not too small aspect
ratio wings of regular shape or if only the spanwise lift distribution is needed. Wings of low
aspect ratio (4+/(1 — M?) < 3) or irregular shape as sweepback, cut-outs, etc., need two
chordwise pivotal points at each spanwise station. Since there is much more work involved
in this case we will deal with both cases separately. As an illustration of these methods compare
the examples on Tables 8 to 30.

Computation of coefficients with one chordwise pivotal point (compare Tables 8-10).—Firstly we
tabulate the quantities needed in the course of this calculation which depend only on one spanwise
station, namely:

(1) The number of the spanwise station; for Symmetrical wing plan forms we need only
v=0,1,2...(m — 1)/2, the values of all quantities listed here being either identical or different
only in their signs for negative »’s.

(2) The non-dimensional #,-co-ordinate from Tables 1 to 7.

(3) The actual spanwise co-ordinate v, = (5/2),.
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(4) The chordwise co-ordinate x,, of the leading edge of the wing section at v,. The origin
from which it is measured can be arbitrarily chosen. At the middle section of sharply kinked
swept wings we take instead of the geometrical co-ordinate %, ; yeom

Ko1 = & %o 1 geom + € %11
(5) The local wing chord ¢, ; again for the middle section of swept wings we take
Co = & Cy goom T & C1 -
(6) The x-co-ordinate of the pivotal station at 0-75¢:
x, =%,, +0-75¢,
(7) The reciprocal of the non-dimensional chord 5/2c, .

) Nyp1 — Ny v b \? I v,

(8) The correction factors ;L 1 * cos S (2—0, ) .- The term hl cos mi s
tabulated in Tables 1 to 7. If we calculate for a Mach number other than zero, these factors
are still to be multiplied by (1 — M?), thus being

Mot1 = Mo el i :
m—+ 1 Cosm—|~1<2c,,> (1 — 7).

(9) The induction factors

-~ Norr — Moa (44 b 2
T, = 1-8847 + 0-510, L= cos 27 1(%> (1— M)

(10) The coefficients
@y
a, = ==
ii’l’
with a,, from Tables 1 to 7.
Next we collect the data which depend on two stations, namely, the inducing section (number #)

and the pivotal point (number »). v is an even number when % is odd and vice versa. We provide
a table for every # in which we tabulate:

(11) The number » of the pivotal stations required, ¢.e., odd » for even # and wice versa, » both
positive and negative.

(12) The spanwise distances |7, — 7,|, absolute values readily obtained from Tables 1 to 7.
(13) The chordwise distances (x, — x,,), the %, and #,, being tabulated under (6) and (4).

(14) Non-dimensional spanwise distances Y,, = b/2c,. |5, — #,| from (12) and (7); at Mach
numbers other than zero we have to multiply this by /(1 — M?*):

b
Yvn = '\/(1 - MZ) 2_—-07;[771: ——7?n['

(15) Non-dimensional chordwise distances

Xy — Xy
Cy

XV’VL =
from (18) and (5).

(16) The influence factors ¢,, taken from Figs. 1, 2 and 3 with the Y,, and X,, (15) and (186)
as entries.

(17) The terms Do, - Ty

with the a,, from Tables 1 to 7 and the 4,, from (9).
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(18) The coefficients

Ayl @yl ;
A,, = ron Yy n # 0 for symmetrical load cases

21’1’ ZV'V
avoiwﬂ
A’V[) = =
zvv
a,,t @yl . : '
A, = 2= — TPt for anti-symmetrical load cases.

ZVV ZVV
These coefficients may be collected in a new form the values for constant » in columns those

for constant » in horizontal lines to suit the solution of the system of equations. Prepare one
form for odd » and one for even ».

Solution of the system of equations with one chordwise pivotal point (compare Tables 11 and 12).—
(19) For a given load case we collect first the «, values, 7.e., the local incidences at 0-75¢ of the
considered spanwise station #,. For wings with flaps we take :

de

%, == &, without flaps —]— G_ZS 6"

5, being the flap deflection and da/dé = (dC./d8)[(dC;jdx). If 5, is the station next to the
beginning of the flap #* = cos 6* we take as a more reasonable value

C oo g 2 e gy

8* being the flap deflection at #* + 0. If the flap does not extend to the wing tips we use |
a similar fairing at the station nearest to the other end of the flap and having ¢* = d(»* — 0)

(0, — 0*)].

(20) Next we estimate very roughly what the y, with an even suffix might be. It will not
matter very much whether this guess is fairly good or not. Values can be taken, e.g., from a
previous calculation with fewer pivotal points or just estimated so as to produce roughly the
C,-value to be expected. These guessed y, are marked by the annexed number 0 in square
brackets* '

1 m—1

8, = 0% [Q—F

0 0 0
Y(l[]: '}’2”; 74[]; etC.

The first approximation y,™ of the y,, ys, ¥5 . . . is to be found from:

m—1
po 0 = a4 3 A, v=1,85....
0 -
To work this out we prepare (m — 1)/2 columns headed by the numbers 1, 3,5 ... Here we {ill

in line after line:
(21) The products a, . «, with the a, from (10).

(22) The products 4,,y, ™ with the 4,, from (18); ¢.e., we multiply y, by Ay, Ase 45,0 etc.
‘ then y, by Ai,, Az As s etc., etc. Slide-rule accuracy is usually sufficient.

(23) By adding up these columns we obtain the y,™ .

Now we calculate the first approximation y,™ of the yo, ys, ¥4 . . . Which are found from:
: m=1
2
Vu[l]:“v“v+ Z,Avn'yn[l].! v :OJ 2:4° L
0

* Tn the tables shown as circles.
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This is done in quite the same way as for the y, with odd suffixes, 7.e., in columns headed by the
number » =0, 2, 4 . . . we enter

(24) The products a,x,.
(25) The products 4,,y,™ in the way described before.
(26) Adding up these columns we obtain the y,™, p, 1, 5, M
(27) We compute the first differences
AWy =y 01 _ o 100 v=20,2,4....

We calculate further corrections alternatively for the y with odd suffixes and with even
suffixes according to the formulae: ‘

m—3

AV, = 34,4070y, y=1,35...
’ n=20,2,4...
and .
Ay, = ZT’AMA Ty, »=0,2,4,6...
| n=1,35...

Begin by filling into columns headed by the numbers » — 1, 3, 5 . . . the products

A],OA [1]7,0’ As,oA [1]7,0’ AS,OA [1]'}’0 .

in the next line
A1,2A My, A3,2A My, As,zA Moy, ..

and so on; the sums of these columns give 4®y, A®y.  A® . which are used to fill into
columns headed by » =0, 2, 4. .

. . AD,IA [2]71; AZ,IA [2]'}’1, A4,1A [2]?’1 ..
in the next line

Ao 54 By, Ay oA Bly,, Ay 4By, . .. ete.
to sum up for

47 Yo, 4 [2]7"2, A4 [2]'}’4 .

This process is continued until the 4y are small enough to be ignored.

If we break off earlier we roughly assess the rest omitted after the #-th difference AVly, as

(A [r],yv)z
A [7—1],),’] — A [r]yv :

‘The y, solving the system of equations are eventually

3] (2 i8] ] (47,
Vo = VY —!—A?,—}-A yr+‘+A yu_}_A[r—-Uy_A[r]y’

A check of these results is always strongly recommended. To do this we do as described under
(21) to (26) but with the final y-values. ~Within the accuracy tolerances of the whole calculus
we must obtain the final y,, y;, ;5 by inserting the final y,, Y2, Va - - . in the respective products
and vice versa. With appreciable discrepancies the differences calculation must be repeated.

Resulting forces are computed with the formulae from section 7. The procedure is obvious,
and coefficients are to be found in Tables 1 to 7.
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Computation of coefficients with two chordwise pivotal points (compare Tables 13 to 17).—Again
we begin by tabulating those quantities which depend on one spanwise station only. Some of
them are the same for one and two pivotal stations ; they are repeated here to avoid a muddle.

(1) The number of the spanwise station » or »; for symmetrical wings we need only
=0,1,2...(m—1)/2

v
(2) The non-dimensional #, co-ordinate from Tables 1 to 7.
(3) The actual spanwise co-ordinate y, = (b/2)y,.

(4) The x-co-ordinate #,, of the leading edge of the wing section at y,; the origin from which
it is measured can be chosen as it is most convenient. At the middle section of sharply kinked
swept wings we take instead of the geometrical co-ordinate %o;geom the modified value

Tor = § Fogeom + § %11 -

(5) The local wing chord ¢, ; again for the middle section of swept wings we prefer
Co = 2 Cogeom + £C1-

(6) The x-co-ordinate of the rear pivotal point

%, = x,; + 0-9045¢, .
(7) The x-co-ordinate of the frontal pivotal point

%, =%, + 0-3455¢, .
(8) The non-dimensional reciprocal chord b/2c, .
(9) The correction factors

2
e s 2 (Y 0 a0

The first part of this expression is found in Tables 1 to 7.

(10) The corrected induction factors:
7, = 1-974, + 0-623,. (9)
%, = 1-405; -+ 1-009 . (9)

7, = 0-285, — 4-805. (9)

I = 3170, + 5-758 . (9) .
(11) The determinant 7,,” 7,,” — 4,,” 7" -

(12) The factors:

— 0

ll .71' ’ z”
v

— ({1 "D
l” —_ ]Z, ’WL " __ %,,_,
v (1) v (1)

Next we calculate the coefficients which are dependent on two stations; we prepare a form
for each inducing station (marked by the number #) where we tabulate:
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(13) The number » of the pivotal stations required, 4.e., odd »’s only for even » and vice versa,
v both positive and negative. TFor every quantity f,, collected here f_, _, = f,, if the wing
planform is symmetrical.

(14) The spanwise distances between pivotal and inducing stations, absolute values only as
tabulated in Tables 1 to 7.
|1, — .|

(15) The chordwise distances between the rear or frontal pivotal points and the leading edge
of the inducing wing section

’

X%y — Xl
”

Xy — X

%', x,” and x,,; from (6), (7) and (4).

(16) Spanwise distances measured in chords of the inducing section

Y, = '—y%ﬂ V(1 — M) = 2% | 1V (1 — M)

from (8) and (14).

(17) Non-dimensional chordwise distances:

’
X, — X
’ v nl
Xvn = c
n

from (15) and (5).
X’Un” -

(18) Read from Figs. 1 to 6 with the Y,, and X, as entries:

the induction factors:

b’ = UV, X.)

bon' = UV, X))

Jon' = J(Yoms Xo')

Jon” = (¥, X,,")

(19) Products of these induction factors with the d,n from Tables 1 to 7.

A,b,
Ayl
Byaon”
% I

(20) With the 7, and m, factors from (12) we calculate the determinants:
Ol b’ — 1" 0" =0 () — 1) (@ 5,")
Wlls" o' — 5" J0a") =1 (@ F) — L (@nFon”)
WM 1" — m, 4,,") = m,"(@,,0,,") — m,"(@,,,,")
WM Jon” — 1, Jou”) = 0, (@00 F0s") — 0, (@0 o)
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(21) For symmetrical load cases we calculate the coefficients

B,, = a1t — L"0") + an, (b0, " — L, ) v 0,7 %0
By = @yo(l,/200" — 1,"%0") By = 2a0,(l" %" — 4"%0,")

Co = @l Fon’ — L'70") + @0, a7 - — 150, 2") v, n #0

Coo = @0l 700" — L") Con = 200,00 70n" — b"Jon")

D,, = a,,(m/1,) — m, 3, + a, _,(m, 1, " — m,'i, "), v, % =0

D,, = ﬂvﬂ(mvl’ivoﬂ — m,,'i,,g') Dy, = 2“0»(7%0"7:01/’ — mo,'impl)

E,, = a,(m/j,, — m,1,))) + @, (50 " — w5, ") v, n #0

E, = “vo(mu”jvo” - mu,jv(l,) Eg, = Z%n('mo”jnn” — mn’jon’) .

We should collect these coefficients in new forms so as best to suit the solution of the system of
equations, 7.¢., the values for » = constant in columns, those for # = constant in horizontal
lines ; coefficients for odd and even »’s should be tabulated separately.

(22) For anti-symmetrical load cases [¢_, = — a,] the coefficients are written in bold italics:
an == avn(lv,im, - lv”im”) - av, —1L(lv’7:v,,—n - Zv”iv, -—n”)

e nyon I ’ " ”
Cvn = avn(lv VN lv e ) - av,—-n(lv _71!, - T Zv v, —n )

neon 1y " " I ’
Dvn - avn(mw by — Wy Oy ) - 61,,, —n(mv 7’11, —_ T Wy 1’1!, ——n)

neon 1yt " ” ’e '
Evn = am m, .7vn — M, ]wn ) - av, —n(mv jv, — e, _71:, —n )

Solution of the system of equations for 2 chordwise pivotal points at each station—(compare Tables
18 to 22 for symmetrical load cases, Tables 23 to 27 for anti-symmetrical load cases).—(23) For the
load case under consideration we collect the «,” and «,”-values which are for wings with continuous
camber and twist

a,” = (0-9045¢,, y,)

o," = «(0-3455¢,, v,) .

For a plane wing «, is constant. For wings with flaps, ailerons, etc., we take

daot

&*, = dv without flaps _{— % -0

v

8, being the flap deflection at the station #,; if this station is next to the beginning of the flap
we take as better value :
8, = 0*[} 4= (6% — 6.)]

&* being the flap deflection at the beginning or end of the flap 6* = 8(»* 4- 0). de,/dé must be
calculated from the flap characteristics in two-dimensional flow:

da’ do 2C,,

‘;lg - a_a _ 0'3934 (86)0.25
With _d_“ . (aCL/aa)a=const

as (aCL/aOC)6=const

do”  de oC,,

Ts T ds + 1'030m
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(24) We guess roughly what y, and 4, with an even suffix might be. These estimates need not
be very near to the final results, we may take them from previous calculations with a smaller

number of pivotal stations or so that an estimated dC 1/de results, etc. These values are marked
by the number 0 in square brackets* :

Yol v ™, v o ™,
If in doubt 4 = 0 will usually be enough for the beginning.

The system of equations to be solved is

m—1 m—1
2 2
' ", on ’
Ve = avv(lv ® — lv o, ) + 2 an Yu + ZI Cvnlu/n
0 0
m—1 m—1

= 5
Hy = a,,,,(m,,”(x,,” - m,,,OC,,”) + 2’ Dvn Va + E’ Evmun,
0 Q
The same with the B, C, D, E, in bold italics is to be used for anti-symmetrical load cases.

(25) We calculate the absolute terms
avu(lvldpl . lv//avll)
a,,,,(m,,”OC,,” . m,'oc,,")

with the data from (23), (12) and the a,, from Tables 1 to 7.

(26) For every » = 1, 3, 5. . . we add to these absolute terms the sums of the products B,,y,, ™

and C,,p, or D,y,™ and E,, ,™; this gives the first approximation of the y, and u, with odd
suffixes:

m—1 m—1

2 2
1 't ”
yv[] _ ﬂ,,,,(l,, 611, - lv”ocv ) —'l_ E, anyn o + 2, Cvn xun o
' 0,2,4. 0,2,4...

m—1 m—1
= e
ILLH 1 = a’vv(mv”ocv” - 7%1)’“1’ ’) + EI DV?I’Y?L[O] + Z' Evnﬂn [0]’
0,2,4... 0,2,4... 7
The collection of the terms of these sums in columns headed by » = 1,3, 5. . . once for y and

once for p is recommended so that we have in the first horizontal line the absolute terms from
(25) in the next y, ™ multiplied by By, By, By, - . . and Dy, Dy, Dy, . . ., then the p, multiplied
by B, Bs . . . and Dy, Dy, . . ., etc., followed by a line for u, ™ multiplied by Cy, Cg, - . . and
Ey, Ey . .. and so forth.

(27) In the same way the first approximation of the y,, s, y4 . . . and o, fs, e - . . are calculated
from the y,™ and g,™ with odd suffixes:

'zz_—_l m—1
2 2
1 r., n.on 7 1 1
yv[] :aw(lv &, _—lv O(v)+ 2 an’}}n[] + Z Cvn‘un[]J 1!—-0’2,4.,,
1,8,5... 1,8,6...

m—1 m—1 . ®

—5— 5=
’ ’ 1
Yy 0= “w(mv”ocv” - mv’cxv,) —I— 2 Dvn?n (1 + 2 Evmun[ ! .
1,3,5... 1,3,5

(28) The first differences 4 My, and 4 ™My, between these values and the initial estimates are
calculated:

AMy, =9, M — 0 AMp, = p," —p,™, v=0,2,4...

* In the tables shown as circles.
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(29) Second differences of the y’s and p’s with odd suffixes are computed from:
m—1 m—1
=z =
4 [2]% = 2 anA [1]yn + Z CvnA [1]#”
0,2,4... 0,2,4...
r=1,3,5 ...

m=—1 m—1

2 2
4 [2]/"1: = X DvnA [I]yn + pX EvnA [l]Mn .
2,4...

0,2 4... 0,

The arrangement is as under (26) but without the absolute terms in the first line.

(30) And from these the second differences of the even y’s and p's:

m—1 m—1
4 2] == é Bv 4 (2] n —{— % CvnA [z "
Yy ” 4 u
1,38,5... 1,35...
y=0,2,4...
m—1 m—1
A =§DVA[21 +§EA[2]‘,¢
ll'('l} 1385 [ lyﬂ 158 Vi I'L
Arrangement as before. - h
(31) Third differences of the odd y’s and u’s:
m=1 m=1
2 2
A [3] yv = Z BV"LA [2] Yn —I— 2 CVHA [2]/1'71
0,2,4... 0,2,4...
v=1,35...
m—1 m—1
2 2
A [3]M’V - 2 ‘DP%A [2[ yﬂ + 2 EV?LA [2] l"ﬂ *
0,2,4... 0,2,4...

(32) This to-and-fro calculation is continued until the differences disappear. If one wants to
break off after the #-th difference the rest may be estimated as
(4 "y, (4"p,)
A tr=1] Yy — A 7] Yy A [7—1]1“11 — 4 [,]:uv )

or

(83) The solutions of our system of equations are then the y, and g, as summed up from the
differences:
(4™y,)?

yvzyv[1]+A[2]Vv+A[3]yv+ LR _l_A[y]Vw—I—_A[r—l]y’___A[r]yy

o = pMN AP, + AP, + L

A check of these results by inserting them into the system of equations is very useful. It is
mainly a repetition of the process described under (26) and (27) but with the final y,- and s~ values.

Resulting forces, moments, etc., are calculated according to the formulae in section 7;
coefficients required are found in the Tables 1 to 7.

Example.—As an illustration of the calculus all the details for a simple swept wing are written
down on Tables 8 to 30. The number of pivotal points are 1 X 15 and 2 x 15 for the plane
wing of incidence 1, and 2 X 15 for an aileron case. The work has indeed been overdone a bit
in order not to miss any details and in footnotes the main formulae are given.
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TABLE 1

m =3
v Or # —1 0 +1 Bon
707: = cos 6, —0-7071 0900 +04- ggm - . 41
sin 6, 0-7071 | 1 0-7071 0 | 0-3536 | 0-3536
sin 20 —1 0 1
Ayy 0-7071 1 0-7071 Ay, n : An, v
e S U o 0-1763 | 0-3535 0-1763 " =a.
m + 1 m + 1 - a_"’ "
= G—pn, —y
TABLE 2
m =5
¥ O % —2 —1 0 +1 +2
7y = COS 0, —0-8860 | —0-5 0 0-5 0-8660
8, 150° 1200 90° 60° 30°
sin 6, 05 0-8660 1 0-8660 0-5
sin 26, —0-8660 | —0-8660 0 0-8660 0-8660
"y 0-3333 0-5774 06667 0-5774 0-3333
N1 — No—1 i , . . . .
i 0-04167 0-125 0-1667 0-125 0-04167
ai‘ﬂ
v, N —1 41
—9 0-3591 0-0258
0 0-3849 0-3849
2 0-0258 0-3591
|1, — .|
v, N —1 +1
—2 0-3660 1-3660
0 0-5 0-5
42 1-3660 03660
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TABLE 3

m =17
vorn —3 —2 —1 0 1 2 3
fy = COS By —0-9239 | —0-7071 | —0-3827 0 0-3827 0-7071 | 0-9239
6, 157-5° 185° 112-5° 90° 67-5° 45° 29.5°
sin 6, 0-3827 0-7071 0-9239 1 0-9239 0-7071 | 0-3827
sin 26, —0-7071 | —1 —0-7071 0 0-7071 1 0-7071
Ay 0-1913 0-3536 0-4619 05 0-4619 0-353 | 0-1913
””t;bjr‘”l"—‘cosm:”_l 0-0140, 0-0478, 0-0816, 0-0956, 0-0816, 0-0478, | 0-0140,
a’l’?l
v 1 —3 —1 +1 +3
. 4
—2 0-3599 0-3879 0-0344 0-0064
0 0-0280 0-3943 0-3943 0-0280
42 0-0064 0-0344 0-3879 0-3599
|7, — 74|
_— -3 —1 +1 +3
—2 0-2168 0-3244 1-0898 1-6310
0 0-9239 0-3827 0-3827 0-9239
49 1-6310 1-0898 0-3244 0-2168
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TABILE 4

m = 11
» OT % 0 1 2 3 4 5
1y = €0S 6, 0 0-2588 0-5 0-7071 0-8660 0-9659
9, 90° 75° 60° 45° 30° 15°
sin 6, 1 0-9859 0-8660 0-7071 0-5 0-2588
sin 26, 0. 0-5 0-8660 1 0-8660 0-5
. 0-3333 0-3220 0-2887 0-2357 0-1667 0-0863
Mol T Tl g 2T 0-04314 0-04025 0-03235 0-02157 0-01078 0-00289
m -+ 1 m —+ 1
a‘l’ﬂ
l—-—-—)
1 3 5
—4 0-0106 0-0040 0-0011 4
-2 0-0404 .|  0-0117 0-0029 2
0-4005 0-0393 0-0077 0
0-3995 0-3966 0-0287 9
0-0364 0-3889 0-3602 —4
-1 —3 —5 v, N ’
l'r]v"— Na I
}
1 3 5
1-1249 1-5731 1-8320 4
—2 0-7588 1-2071 1-4659 2
0-2588 0-7071 0-9659 0
0-2412 0-2071 0-4659 —9
0-6072 0-1589 0-0999 —4
—1 -3 -5 v, T
e
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TABLE 5

m =15
v OT % 0 1 2 3 4 5 6 7
7 = €0s 0, 0 0-1951 | 0-3827 | 0-5556 | 0-7071 | 0-8315 | 0-9239 | 0-9808
0, 90° 78-75° 67-5° 56-25° 45° 33-75° 22-5° | 11.25°
sin 0, 1 0-9808 | 0-9239 | 0-8315 | 0-7071 | 0-5556 | 0-3827 | 0-1951
sin 26, 0 0-3827 | 0-7071 | 0-9239 | 1 09239 | 0-7071 | 0-3827
Aoy 0-25 0-2452 | 0-2310 | 0-2079 | 0-1768 | 0-1389 | 0-0957 | 0-0488
Dokl 7 ol g T 0-02439 | 0-02346 | 0-02082 | 0-01686 | 0-01219 | 0-00753 | 0-00357,| 0-000928
m 4+ 1 |
avn
!
v, % 1 3 5
—6 0-0047 0-0023 0-0011 0-0003 6
—4 0-0133 0-0058 0-0026 0-0008 4
—2 0-0424 0-0136 00054 0-0015 2
0 0-4026 0-0421 0-0126 0-0032 0
2 0-4023 0-4016 0-0398 0-0079 —2
4 0-0413 0-4001 0-3969 0-0288 —4
6 0-0110 0-0367 0-3890 0-3602 —6
—1 —3 —5 v, #
|7, — 7]
}
v, % 1 3 5
—6 1-1190 1-4795 1-7554 1-9047 6
—4 0-9022 1-2627 1-5386 1-6879 4
—2 0-5778 0-9383 1-2142 1-3635 2
0, 0-1951 0-5556 0-8315 0-9808 0
2 0-1876 0-1729 0-4488 0-5981 —2
4 0-5120 0-1515 0-1243, 0-2737 —4
6 0-7288 0-3683 0-0924, 00569, —6
—1 —3 —5 —7 \
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TABLE 6

m = 23
v Or' % 0 1 2 3 4 5
Ny = cos 0, 0 0-1305 0-2588 0-3827 0-5 0-6088
0, 90° 82:5° 75° 67-5° 60° 52-5°
sin 0, 1 0-9914 0-9659 0-9239 0-8660 0-7934
sin 26, 0 0-2588 05 0-7071 0-8660 0-9659
oy 0-1667 0-1653 0-1610 0-1540 0-1443 0-1322
JLER Rl 0-01088 0-01069 0-01015 0-00928 0-00816 000684
m 4 1 w1
6 7 8 9 10 11
2y = o8 0, 0-7071 0-7934 0-8660 0-9239 0-9659 0-9914
8, 45° 37-5° 30° 22-5° 15° 7-5°
sin 6, 0-7071 0-6088 0-5 0-3827 0-2588 0-1305
sin 26, 1 0-9659 0-8660 0-7071 0-5 0-2588
oy 0-11785 0-1014, 0-08333 006378 0-04314 0-02176
o1 — -1 il . . Vi . . . .
T G 000543, 0-00403, 000271, 0-001593 0-000728 0-000185
[li‘n
—
v, 1 1 3 5 7 9 11
—10 0-0015 0-0009 0-0006 0-0004 0-0002 0-0001 10
— 8 0-0035 0-0021 0-0013 0-0008 0-0004 0-0001 8
— 6 0-0069 0-0038 0-0022 0-0013 0-0007 0-0002 6
— 4 0-0150 0-0071 0-0039 0-0022 0-0011 0-0004 4
—2 0-0439 0-0151 0-0071 0-0037 0-0018 0-0006 2
0 0-4041 0-0438 0-0149 0-0067 0-0031 0-0009 0
2 0-4041 0-4039 0-0435 0-0143 0-0058 0-0016 — 2
4 0-0437 0-4037 0-4034 0-0425 0-0128 0-0033 — 4
6 0-0146 0-0431 0-4028 0-4019 0-0400 0-0079 — 6
8 0-0064 0-0137 0-0416 0-4002 0-3970 0-0288 — 8
10 0-0026 0-0049 0-0112 0-0367 0-3891 0-3603 —10
—1 -3 —5 —7 —9 —11 v, 7 T
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TABLE 6—continued

m = 23
[, — 7]
i v, % 1 3 5 7 9 11
—10 1-0965 1-3486 1-5747 1-7593 1-8898 1-9574 10
— 8 0-9966 1-2487 1-4748 1-6594 1-7899 1-8575 8
— 6 0-8376 1-0898 1-3159 1-5005 1-8310 1-6986 S
— 4 0-6305 0-8827 1-1088 1-2934 1-4239 1-4914 4
— 2 0-3894 0-6415 0-8676 1-0522 1-1827 1-2503 2
0 0-1305 0-3827 0-6088 0-7934 0-9239 0-9914 0
2 0-1283 0-1239 0-3499 0-5345 0-6651 0-7326 — 2
4 0-3695 0-1173 0-1087, 0-2934 0-4239 0-4914 — 4
6 0-5766 0-3244 0-0983, 0-08624 0-2168 0-2843 — 6
8 0-7355 0-4834 0-2573 0-07264 0-0578; 0-1254, — 8
10 0-8354 0-5833 0-3572 0-1726 0-0420; 0-0255, -—10
—1 —3 —5 -7 —9 —11 v, T
<l
TABLE 7
m = 31
»OT % 0 1 2 3 4 5 6 7
%y = €OS 0, 0 0-0980 0-1951 0-2903 0-3827 0-4714 0-5556 0-6344
0, 90° 84-375° 78-75° 73-125° 67-5° 61-875° 56-25° 50-625°
sin 0, 1 0-9952 0-9808 0-9569 0:9239 0-8819 0-8315 0-7730
sin 26, 0 0-1951 0-3827 0-5556 | 0-7071 0-8315 0-9239 0-9808
Ay 0-125 0-1244 0-1226 0-1196 0-11548 | 0-11024 | 0-1039, 0-0966;
Ny — fp— v ;
*;i _]_Z lr:osm 1 0-006124 | 0-00606, | 0-00589; | 0-00561, | 0-00522, | 0-00476; | 0-00423, | 0-003686,
v Or % 8 9 10 11 12 13 14 15
By 0-7071 0-7730 0-8315 0-8819 0-9239 0-9569 0-9808 0-9952
16, _45° 39-375° 33-75° | 28-125° 22-5° 16-875° 11-25° 5-6825°
sin 0, 0-7071 0-6344 0-5556 0-4714 0-3827 0-2903 0-1951 0-0980
sin 20, 1 0-9808 0-9239 0-8315 0-7071 0-5556 0-3827 0-1951
Ay ] 0-0883, 0-0793, 0-0694, 0-0589, 0-0478, 0-03629 | 0-02439 | 0-01225
ﬂv+ﬂ;1’i”"1cosmzl 0-003063 | 0-002465 | 0-001891 | 0-001361 | 0-000897 | 0-005182 | 0-0002332| 00000588
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TABLE 7—continued

m = 31
avn
l—-——%‘

Yo o 1 3 5 7 9 1 13 15
—14 | 0-0007 | 0-0005 | 0-0003 | 0-0002 | 0-0002 | 0-0001 | 0-0001 — 14
—12 | 0-0014 | 0-0010 | 0-0007 | 0-0005 | 0-0003 | 0-0002 | 0-0001 — 12
—10 | 0-0025 | 0-0017 | 0-0011 | 0-0008 | 0-0005 | 0-0003 | 0-0002 | 0-0001 10
— 8 | 0-0042 | 0-0027 | 0-0018 | 0-0012 | 0-0008 | 0-0005 | 0:0003 | 0-0001 8
— 6 | 0-0076 | 0-0043 | 0-0027 | 0-0018 | 0-0012 | ©0-0007 | 0-0004 | 0-0001 6
— 4 | 0-0155 | 0-0076 | 0-0044 | 0-0027 | 0-0017 | 0-0011 | 0-0006 | 0-0002 4
— 2 | 00444 | 0-0156 | 0-0076 | 0-0043 | 0-0026 | 0-0016 | 0-0008 | 0-0003 2
0 | 0-4046 | 0-0444 | 0-0155 | 0-0075 | 0-0041 | 0-0024 | 0-0012 | 0-0004 0
2 | 0-4046 | 0-4046 | 0-0443 | 0-0153 | 0-0073 | 0-0038 | 0-0019 | 0-0006 — 2
4 | 0-0443 | 0-4045 | 0-4044 | 0-0440 | 0-0150 | 0-0068 | 0-0032 | 0-0009 4
6 | 0-0154 | 0-0442 | 0-4043 | 0-4041 | 0-0436 | 0-0144 | 0-0059 | 0-0016 — 8
8 | 0-0074 | 0.0152 | 0-0438 | 0-4038 | 0-4034 | 0.0426 | 0-0128 | 0-0033 -8
10 | 0-0040 | 0-0071 | 0-0148 | 0-0482 | 0-4029 | 0-4019 | 0-0400 | 0-0079 —10
12 0-0022 | 0-0036 | 0-0064 | 0-0138 | 0-0417 | 0-4003 | 0-3970 | 0-0288 —12
14 0-0010 | 0-0015 | 0-0026 | 0-0049 | 0-0112 | 0-0368 | 0-3891 | 0-3603 14

1 _3 _5 —7 _9 11 —13 —15 nn o,
— |
|T]v — Na l

i v, 1 3 5 7 9 11 13 15
— 14 1-0788 | 1-2711 | 1-4522 | 1-6152 | 1-7538 | 1-8627 | 1-9377 | 1-9760 14
—12 1-0219 | 1-2142 | 1-3953 | 1-5583 | 1-6969 | 1-8058 | 1-8808 | 1-9191 12
—10 | 0-9205 | 1-1218 | 1-3029 | 1-4659 | 1-6045 | 1-7184 | 1-7884 | 1-8267 10
— 8 | 0-8051 | 09974 | 1-1785 | 1-3415 | 1-4801 | 1-5890 | 1-6640 | 1-7023 8
— 6 | 06536 | 0-8459 | 1-0270 | 1-1900 | 1-3986 | 1-4875 | 1-5125 | 1-5508 6
— 4 | 04807 | 0-6730 | 0-8541 | 1-0171 | 1-1557 | 1.2646 | 1-3396 | 1-3779 4
— 9 0-2931 | 0-4854 | 0-6665 | 0-8295 | 0-9681 | 1-0770 | 1-1520 | 1-1903 9
0 | 0-0980, | 0-2003 | 0-4714 | 0-6344 | 0-7730 | 0-8819 | 0-9569 | 0-9952 0
2 | 0-0970, | 0-0952, | 0-2757 | 0-4393 | 0-5779 | 0-6868 | 0-7618 | 0-8001 — 9
4 | 0-2847 | 0-0924, | 0-0887, | 0-2517 | 0-3903 | 0-4992 | 0-5742 | 0-6125 — 4
6 | 0-4576 | 0-2653 | 0-0841, | 0-0788, | 0-2174 | 0-3264 | 0-4013 | 0-4396 — 6
8 | 0-6091 | 0-4168 | 0-2357 | 0-0727, | 0-0859 | 0-1748 | 0-2498 | 0-2881 — 8
10 | 0-7335 | 0-5412 | 0-3601 | 0-1971 | 0-0584, | 0-05045 | 0-1254, | 0-1637 —10
12 0-8259 | 0-6336 | 0-4525 | 0-2895 | 0-1500 | 0-0419, | 0-0330, | 0-0718, | —12
14 | 0-8828 | 0-6905 | 0-5094 | 0-3464 | 0-2078 | 0-0088, | 0-0238, | 0-0144, | —14
1 —3 —5 7 _9 —11 —13 —15 _—
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TABLE 8.

EXaMPLE I.

| CHORDWISE
15 SPANW!SE} PIVOTAL POINTS

%
> N =Y  SYMMETRICAL SwePT Back WinG
4
3 SPan b =20ft
S ASPECT RATIO A = 4
> RooOT CHORD S = 7R
-y Tie CHORD c, = 3f
' A LE.SWEEP BACK A, = 45°
0,,"»’. TAPER RATIO Stfc,m 429
L Low MacH NUMBERS

P -
S Vi-+ ~ |
Y 1 U#
X
= Y '
R
FormM |,
in| or v 0 { 2 3 4 5 6 7
Mn Y 0 1951 | 3827 <5556 | 7071 ‘8315 | 9239 |-9808
Ya 0 1951 3827 | 5556 | 7oy 8315 | 9-239 | 9-808
Xt 2) 325, /951 3.827 5556 7071 8:315 | 9239 | 9.808
Cn 3 68699 | 62190 | 54692 | 47776 | 41716 3:6740 | 3-3044 | 30768
Ry Y 54776 | 60157 | 7.9289 | 91392 | 10.1997 | 11-0705 t7izs liz- 1156
-2 1-4556 | 1-6078 | 18284 | 2.6931 | 2:3972 | 2.7218 | 30263 32501
T, Y 1:91105 .| 19156 | 19202 | 19224 | 19204 | 19132 | 19014 | 18897
A, 4 /308 | /280 | 1203 | - /081 0921 |-0726 |-0503 | 0258

Y q, for mei5 sec TABLE §
Y In the plane of symmetry (n=Q) the kink is rounded off according to the following rules:
Xer™ £ %o Cgm c,-—’-%(c,.—c,) Xom Ko+ 78€q = -628c + L x,

3) T'Vv o ‘8847 + 5|03 %‘_’}EL cos%%‘(‘%v)z

Dot~ My P -
T CosL for mel5 see TABLE 5
4 A= Ly, a,, for m=15 see TABLE 5

lw
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Form 2. TABLE 9 %15

STATIONS

n=0 ¥y -7 -5 ) -3 | t, 3 S 7
15— 1l ‘9808 |+ 8315 | 5556 | 195/ |-1951 | 5556 |-83/5 |-9808
Hy= Xy 7904 1107453 |8-8140 | 62905 | 6-2905 |8;8140 |I07453 | 117904
Yl " ltsare |ra2io |-8087 |-2840 | 2840 |'8087 | 1210 |r14276
Kyn 76 |1564 |1283 | 9156 |95, |/283 |1564 |1716

ln * |t708 (1726 |1769 |18628 18628 |1769 |+726 |/708
Sgnl @ |.00289 {01137 |-0387, | 395 |- 3915 |-0387, |-0113; |-00284

M= 2 v -7 ~| -5 -3 -1 i 3 5 7

N=~2 | 14 7 5 3 § -1 -3 -5 -7
|- 1,,) 13635 | 12142 | 9385 | <5778 | 1876 | "I1729 | 4488 | 598/
Xy~ Xas 82886 | 72435 | 53122 |2-7887 (27887 |53122 | 72435 [8-2886
o 2492 | 222 |l714 | 1056 | 3427 | 316 | ‘820 |[/-092
Kon 1515|1325 | <970 | ‘510 | 570 | 970 |1323 |rs5YSE

Lyn %50 |14z | 1381 |1228 |14760 |1-8692 1777 |1.744
Syt 001l 5 |-0040; |-00978 |-0272 | 3100 |-3898 |-0370 |-00724

N= 4 b4 -7 -5 -3 - | ] 3 5 7

n=—4 P 7 5 3 ! -1 -3 -5 o =7
1720 = 7 16879 |1-5286 | 1:2627 | 9022 |+ 5/20 |- I5t5 | 1244 |-2737
®,= Ry 5044439995 12:0682 |~ 4553 |- 4853 12.0682 | 39995 | 50446
Yol Loty | 369 |3o027 |26 | l227 |'3633 |-2985 | 656
.o 1-209 |-958 | 496 |~-/091 |~Jo9s | 496 |-958 |/-209

iyn 1232 |l18g | /o8 | 841 | T3t |l44bo | 1874 |18o2
ﬁﬁi& 0005, |-00/6, |-0032, {0058, |-0157, | 3011 | 3892 |02744

Th= 6 v -7 -5 -3 =1 ] 3 5 | 7
gna-é ¥y 7 5 3 ‘ - -3 | -5 ~7
]"Zv* ol 19047 | 07554 | 14795 | #0190 | 7288 | 5688 | 0924 |'0569
Ry= Xy 28766 | /8375 |~-099g |~26253|~2-6233|~0998 | 18315 |2-8766
1Yol 576 534 | 4oty |3385 |2.207 | 108 |-2797 | 1723

b 870 <584 |-0302 |~ 7935 |—~.T7G35 |--0362| 554 | 870

iyn rio7 1059 | 936 | -708 | 580 |-773 |15705|18982
Senln 1000/ | -0006, |-0011; | 0017, | -00335| 0147, | 3i825| 36(5

b
Yol = 2 [l

2
! Ky ?:Ln (x,~ Xn)

Y ivn‘”f(xuanm) take frem CHARTS |3

“ a,, for m=15 see TABLE §
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Form 2, ctd. TABLE 10 i% 15
STATIONS
N= | ¥ -6 ~& -2 0 2 4 (@)
Mz Y é % 2 Q -2 -4 -6
179 7 1490 | 902z | 5778 | 1951 | 1876 | §120 | 7288
Xy~ ¥nt 97663 | 82487 | 59779 | 35266 | 59779 | 8.2487 | 97663
1) /800 | 1451 | 930 | ‘34 |-3018 | 824 | 1173
Koon 1871 | 1327 | 962 | -s675 | 962 | 1327 | 1571
{yn 1687 | 1688 |i578 |15655 |18733 | 17765 | 1737
S 100392 | 0110, |-0349 | -3300 | 3925 | 0382 | -0/00,
ne 3F ¥ -6 -4 -2 0 2 A &
ne=3 4 ¥ ) A 2 o -2 -4 -6
[7,=n,| 14795 | 12627 | +9383 | <5556 | /1729 | /5/5 |-3683
Xp—Xng 64613 | 4643723729 |~-0784 |2:3729 | 4-6437|6716/3
¥l 310 |2:645 |7.966 |/1/63 | -3620 | 3173 | 775
p. o 10289 | 972 | 497 |--0164 | 497 | 972 | /289
ivn /32 126 | 1122 79t | 14473 | 18692 | /785
St 0016 | <0038 |-0079, |-01745 | ‘3025 | 3893 | 0345
ns 5 v -6 | -4 -2 0 2 % )
n=-5 y 6 4 2 0 -2 —& -6
,P?p"an 1:7554 | 15386 | /'2142 | 8315 | -L4LBE | 1244 | 0924
X, = Xp 3:3923 |/ 8847 |=-386/ [-2-8374|~-386/ | /8847 33923
1Y 4778 | L1856 | 8308 |2-263 | 1222 | -3387 | 2575
Kon + 923 <513 - —-105‘ -772 |=-108 573 ‘923
tyn 1140 | /063 898 ‘592z 733 | /4823 |/-5832
-Gt 00060 | 1001k, |-0025, |-0039, | 01518 | -3063 | 3852
v | -6 | -4 | -2 0 2 4 é
Y 6 4 2 0 -2 -4 -6
[0~ 7] 19047 | 16879 | 13635 | -9808 | 1598/ | 2737 |-0569
Hy= Ky 19093 | 3917 |=1-879s |~4-3304|~-/ 8791 | 3917 ! 9093
RN 619 | 5485 | 443 |3/68 | /944 | 890 |-i185
. b2t | 1274 |61t |=tdo7 |= 61 | 1274 | 621
Lun lobz | 977 | ‘8lo | -542 | -602 |-882 |/7007
%:L:“’L '000ly | 0004 |c000by | 0009, | 00248 | 01325 | "3232
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TABLE 11

FORM 3 QDb v 1 <15
X, = 0, STATIONS
o= | SYMMETRICAL LOAD| -y
b4
a) VaLues A, . v ! 3 5 7
Byp dyn |, Gy i, M= O | '39/5 |'03874 {013, {-0028q
Apn= T, T, n#o 2 |-3372 |-3996 | 04105 | 0084,
A o G o 4 |-02155 |3044 |-3908 | 0280
e for n=0 6 || -00507 | 0158,| 3189 | 3617
1) R
b) SoLUTION ~ BY ITERATION.: Tn o Ay, see FORM3 Even v, except initial values,
INIT 1AL GUESS: %@ = 47 INITIAL DlFFERENCES
’%@zx A6 Aa'o = fo = = 0062
®=. Cy .
Je2 =40 ANy, = +: 0056
70 =23 A@Jr‘u --0110
2Ky, = +: 0094
FIRsT APPROXIMATION: FURTHER DIFFERENCES: .
y | 3 5 7 v f 3 5 7
Ayt, || 1280|081 | 0726 | -0258 AWA % | ~"00243|~00024~-00007 [--00002
5,@2‘3@ <1840 0182 0053, 0013, ZA 3’2 +00189 [+ 00224 |+.00023 |+ 00005

vefz 1551 1839 ‘018845 | 10038, M,A,;-A ~-00024 |~.00335|~.00430|~- 0003
AM% <0086y, | 4217 1563 (0112 A,,e,Ay,, 4. 00005 |+-00015 |+.00300|+-00340
Pivg P *00lty | -003bs | -0734 |-0832 &, |--00073]~00120]-. 00110 |+.00313

1Y 1 4769 | %356 | 3205 | 1254

A%, |~ 00020]--0000z]- 00001 =
Ay Y, [|-+00023 |- 00022 |--00003 |- 00001

SUMMARY : Aw %y, ||~+00002|--00025 =100032 |-:00002
Fo e 2,(9{, A® +A® O A,.f,A@fb — +.00001 |+.00017 |+.00020
v & v Ay, ||-100045|~-00054 |--000 19 [+00017

Y i 3 | 5 1 7

22 4769 | 4356 [- 2205 | 1254 Ay &85, [~-00013 [~-0000] - -
A% 00075 |-0002 |~ 9017 (<0081, 2»&2%2 ~+00012 |-.000/4 |~ g000( -
A

8%, |l~ocoks|-0005, |-~.000lq |+ 0001, vloAéa’z. — 60001 |- 00009 |-. 0001 |~ 0000]
A@)yy = 00024 |- 00024 |~ 0005 |- 0000, YAy - - ~- 0000/ |-.0000!
L@yy ~000/3 1~ 0004, |- 0000 |~00005 @v =~ 00020 |- 00024 |~ 00013 |--00002
—A@J’v ~:0000,|- 0008 |~ 00094 |~ D000, o
& 4752 | 4334 | 3249 ) 1286 AvoA@% ~'09907 |~ 0000/ - -
A8, [1-00006 |--00007 |~ 00001 -
CHECK oF RESULTS: Auly | - |o000s|-0000s| -~
Aye;A@y., - - -:00002 |-+00003
L4 ! 3 5 7 Ay, |-00013 |-00012 |--00008]--00003
Ayee, || 1280 |i081 |.0726 |-025a
Ao ll 18105101792 | 0052|0013, AW% -00003 - - -
Aprgn || 1565 | 1864501905 |+0039, A,,,ZA@y,_ ~ 00003 |--00004 - -
Ay Po <0083, | 11804 | 15151 [ 0108, A,,,,A& —_ - 0000 2 |--0000 3 -
Aveys || (0012, | 0038, | 076%4 |- 08670 A;,;,A,gg — - -.0000 1 |~0000!
», 4752 | 4333 | 3249 |.1286 A, |=00006 |--00006 |- 00004 |-.00001

Y Solution for the symmetrical case:

yx»:AvO‘vd"%lAvn?n Avn=o for f”“"l“ 24,00

70



TABLE 12

FORM3  EVEN » 1% 15
o, = o STATIONS
[ec=1 SymmeTRICAL LOAD | Py
a) VALUES A, Vv [7) 2 4 6
a,, i a,, i N= | | <6600 |-4274 | <0492 |-0/395g
e "';vi"" v #0 3 | 0348|3104 [-3931 |-036!
a1 5| -0078,| 0177 |-3077 |-3859
A, =251 for p=0 7 | -00i8,| 0031, | 0i363| 3234
Tyy 2 t 3
b) SoLUTION BY I[TERATION: 7 or Ap, see Form3, 0DD v,
FIRST APPRORIMATION ! DIFFERENCES
vV 0 2 L & 1% Y 2 £ 6
A, | 11308 |-1203 | -0921 |-0503 AV.A%;'. ~00048 | —-00031 |--00004% |--00001
Aup® 3150 | 2040 | -02347] 0066, |Anlky (--00004 |~00037 |--00047 |--00004
Appl 01515 | 135151 1712 | c0157, A,,_r,[%s --00001 [--00002 |- 00034 [--00042
Apsy2 || -00255 | 100575 | <1005 | -120605| [Aw Ay, 400001 [+-00001 |+:00004 |+00(01
Ayl ||0002, | 00039 | 0017, | -04os &y, |=00052 |--00069 |--00q8] |+-0005%
2° | 4038 | 4656 3890 2394 5
A, A, l~00030 |--00019 |~-00002|~-00001
A, d» 700002 |—:00017 |=-00021 |~-00002
AsAY: - - -+00006(~.00007
SUMMARY : o D B . . 8| - - —~  |+-00006
Y Y O _A@y,. ~00032 |--00036 |~-00029 |~"00004
v 0 2 L 6 :
20 | 4638 | 4656 | 3890 | 2394 A,‘A';;y‘ ~00017 |--00011 |—00001] —
A®,}’v ~000 5, [—000 64 |--0008; [+0005, A,;A@a’s —0000! [~ 00047 |- 00009 [--0000C !
A, 120003, |-00038, |--0002¢ 00004 | "wsysi = ~ |~'00004|-00005
A%, |~0001g|-00014 |- 0001, ]|--0000, _éﬂ@@&’v - - —_ |r-0000i
_Z@J’v -.0000¢ [~ 00009 |~-0000a |- 00004 Ny, [[—00018 |--00018 [--00014 |--00007
A%, |--00004 |-00005 |--00005 |-0000, -
Jr | 4626|4642 | -3676 | 2397 | |Aalyn |00009 |=00006 \—0000! | —
g Aﬁ%ys - --00004 |~00005| —
ANy, - -~  |=-00002 |~-00003
CHECK oF REsuLTS: A,7A®;'7 _ - —  |-.00001
4 Y 2 4 6 A%, |--00009 |--00009 |--00008 |--co004
A,oc, || .1308 | 1203 | -0921 | 0503
A, 7 || 31386 | 2030, | 02336 0006, (A, A%, [-00004|--00003 - -
Apgs | 01510 | 13487 17030 0156, |A, 0y, —  |-00002|--0000Z | —
Ays Fs || 00254 | -00575 | -0999+ | 1253, /’\,5&93;5 - - --0000! |--00002
Aty |00023 | -0004s | 00175 | 04155 | |A8, - - - -
L) 4622 | 4640 | -3876 | 12395 A@’y,, ~.00004 |--00005 [-.00003 {~- 00002
=
ac T N T 4
c) d—u‘- = %['5yo+27"c°5;ll] = 2:4, [:95608::2525
+9239 x4640
8315 %4333
Jo7i X-3876
<5556 x+3249
3827 x 2395
1951 %x+1286 ]
=2y 20575
dc, 2
da = 3232
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TABLE 13

2-CHORDWISE
ExampLE I. IS SPAN WISE }PIVOTAL STATIONS

. _

x e
- 4 Ty
. Ay i SYMMETRICAL SWEPT BACK WiNG

X %
o - SPAN b =20
! g ASPECT Ratio A = 4
X Y RooT CHORD c. = Tft
Tip CHORD e, = 3
a , LE SWEEP Back A, = 45°
\\\ 0 TaPER RaATIO a#/cw-‘-' 429
PIVSTAL Low MactH NUMBER
T
: STAT‘:ZQNS; . Yi-M2 9 |
¥ ¢
VX
. B >
%
Form I,

[v] or Inl 0 I 2 3 4 S ) 7
Ty Y 0 1951 | -3827 | 5556 | To7yr | -8315 | 9239 | .980g
Yo P) 1951 13827 | 5556 | 7071 |8315 |9.239 |ogog
¥ns 2) |l 325, 195 3.827 | 5556 | 7omt 8315 |9.239 |9-808
ch B 168699 (62196 | 54692 |4.7776 | 4706 | 36740 | 3-3044 | 30768
Xy 21165390 |7-5706 | 87739 | 98773 |{10-8442| 11-638/ | 122278 | 12-5910
%y ) 126987 [4.0999 | 57166 |7.2067 | 85123 | 9.5844 | 103807 | 10.-6770
. 1455¢ | 1608 | 1827 |2093 |2397 |2722 | 3027 |3250

"”—;;,',%ws%(%j *05168 |-06066 | 06950 |- 07386 |-07004 |-05579 08272 |-00980

&)

Ty 20064 |2.0120 |2:0175 20205 |2.0179 |2.009¢ |1-994¢ | 1-9805
Tov Y| 0376 |-<0056 |--0480 |~-0690 |—-0506 |-0178 | 1287 | 2888
1, YN r4sTs (14667 14756 |14800 (14761 |14ets |143as | 14154
}5» VN 34e7s {35195 3-5704 35955 |3:5735 |3-49/5 |3358, | 32264

LT = Tondor 6903, | 70894 | 7274, |73657 | 7285, | 69884 | 6-5134 | 6051,
£, 7 |-50236 | 49644 |- 4908, | 4881, |-4904q | 4996, | 5156, |-53318
L, " 1100545 |--00079 |--00660 |-00937 -00695 |.00255 |.0197¢ |.0394¢
my 12906, |-2838 |-2773% 27425 |-27697 |-2874 g |13062, | 3272,
m, g

21l |20689 |-2028¢ |'20095 |'2026, |-2091g 122084 |°'2338¢

N Tn. for m=18 see TaBLE 5. )

2 1n the plane of symmetry (n=0) the kink is rounded off according to the following rules:

Hox Py ; Com Cu= wler-<)) Xom Xog+:9045€, | X,'= Xog+ 13455 ¢,
3 -
)ﬂ%:?:*_:l"'lcosﬁ for mois see TABLE 5.
4y 5t o c623, o™ Mumt. y_c_(_g_a ot 0087 Mrst=uey. ﬂ_‘L)‘
‘vu“'9742+ 6234 mel <:gsm-"l ZC,;) Ly I4055 + o087 el mm"‘l 2¢,
' —- s - 2
' — pogas Tes e LTRG-S . Noarm Ryt g ¥ B (B
Jov= 2859~ 4805 mal COS -vl(ZC,) dvv 31702 +5758 m+ et ch)
- 1
5) 21 . aw " LTy
T m, ® =
v Ivav lvva v l;vavv" Iwaw
t il
£ n_,;\v___ m! ='-7:“1L_‘.'_*
v 1‘wdw:_T|l:»J\:u v 1’vval’;—1‘:'(]""'
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2% 1S

FORM 2 TABLE 14 STATIONS
n=0 1 v -7 | -5 |'-3 | -1 I 3 5 7
-7l Q808 |-8315 |-5556|.195¢1 1951 5556|8315 | 9808
Xy = %ni 122658 | it-3129 |9.5521 |7286i14 72614 |9-5521 | #3129 | /2:2658
X'~ iy 105458 | 9.2592 | 68815 37747 |39747 | 68815 |9-259z |/0-5458
| onl 9 %28 | 7200 | 8087 |-2840 |-2840 |-8087 |r2/0 |+428
Kon ) |1 1786 | /646 | A390 |ro56 tose /390 |rehe 1786
o 1535 | 1347 | looz -5405 154985 | trooz | 1347 |/535
i, 3 vz |t747 |seco0 (19037 |1+9037 | 11800 | 1747 | 1725
i%n 7659 | 765G i 648 1/656/7 |1-5617 | 1648 | 1-6459 (16568
RN YY) c281 -328 | 341 Y 328 281 | ‘260
n 337 ko2 | 635 | 1846 | 1846 635 | 4oz | +337
Cloiitn W |.00552 |-02202 |-0758 | 7465 | -7665 | 0758 |-02202| 00552
Sy Lo, 00531 |.02088 | 06937 | 6285 | <6285 | 06937 02988 | -0053/
Oy fun 00083 |-00354 |.0/380 | 1374 | 1374 | 0138G | 00354 |-00083
Qynjom 00108 | 00507 |- 02673 |-7430 | 7430 | 02673 00507 |.00/08
Ay, i, 80295 |-0/099 |-0370 |-3807 | 3807 | ‘0370 |.0/099 |-00295
A yndviin 00027 |100005 1-00065 |- 0005,|-0005, |--00065|.00005 {0002/
Oy (i~ Lhiv, 00274 |+ 0109, | -03765| -38i2 | 3812 | -03765|-0/094 |- 00274
Qyn Ly fra 00044 |00r77 | 00674 | 06827 | 06827 00674 | 00177 | 00044
Qyndbivm 00004 100001 - |~00026 |~.00059 |-.00059 |-- 00025 | 0000/ | -p0004
Ay (dydvm = Lijvm ) - 0004 <0017, | <0070 | -0688¢| 0608|0070 |-00/7, |- 0004
Qg MYy ion 00174 100601 | 01903 | 1785 |1785 |-0rG03 {0060/ |-00/74
oy MYy ivn L 00124 |100ker | 07524 |58y | 1687 |.01524 (100461 | 00124
Oy (M1 —myi,) L0005 |.0014 | 0038 |-0/98 |.0/198 | -0038 |-00i4 | 0005
Clun My jyn 100035 00/4¢& |'00733 |-2/18 ‘20 |<00733 |-00/4¢5 |-000386
Ay, MYy j'om L0001 |00074 |r08278 |02847 | 02847].00278 {00074 |'000/9
ay"(m’.’,jzu—r‘f*'—jbn) 0001 | 00072 | 00455 | 1825 |-1825 |.0045¢5|:0007: |[-000/¢
Nn= 2 v -7 -5 -3 -1 ] 3 5 7
Nu—2 4 7 5 3 ! -~ -3 -5 -7
=] “Nra635 |12142 | -9383 |'5778 |1876 |-1729 |-4488.|:598/
o= X 8764 | 7.8111 |6-0503 |3-7496 | 37496 | 60503 | 7811 | 8764
Ky~ Xpg 7044 | 57574 | 3.3797 | 2729 | 2729 | 3.3797 | 57574 | 7044
| ol 2492 | 2220 | 17/ | 7056 |<3427 | ‘3/6 | -820 | 1092
Xn l6or |1426 |1705 ‘688 655 |rlios |F4h2e | s sor
P 1287 lost 6475 | 0499 |-0499 | r617S | oS] | /287
i, 7471 |46z |r4sg | 13625 |1 6688 | 19127 | 808 | 10768
n 1:382 | /1.334 | r206 | 830 | ¢538 | /6095 {re7s | 1673
dva 2490 *33¢0 4 52 804k 1343 ‘303 1 282
e 326 © 349/ 559 802 | 1-409Q |1585 588 429
Qynlvn 00221 |-007g0 (101957 | 0578 | 67s5 | -Te7 |-07/8 |-0/397
Qynivn 00207 Yoo72zr |-0/63G 03522 | 2630 ‘650 -0665 |+0r3z22
Qynjim 00043 | 00/78 | 006i§ |-03418 |-5405 | -/2/6 |'01237 |'00223
Qo) ym .0004qg | 0021 |-00760 | 03404 |-5670 | ‘636 |-02340 |-00339
Qyndilyn 00118 |.00395 |- 00956 |-02870 | <3333 | 3747 | 03588 | ‘00745
Gy dyiin 00008 | 00002 |~00015 |-. 00003 |~-0002:|~ 00609| 00017 |- 00052
Ay (Litin= L3010, “00!1 | 0039s | 0097, | 0287, 3335 | -3808 | -0357, | 00695
Ayndojon 100023 |-00089 | -0030) | -01694 | ‘2¢85 | 10594 | 00648 |° 00119
Cundy jn .00002 | 00007 |--00007 |~-00003 |~.00045|--00598] -00006|:000/3
Ay (Lodvn= L) ‘0002, | .0008s| 0030|0169, | 2689 | - 06535 - 00612| 00104
Gya My tsy, 00062 | 00207 | ‘00450 |-0/000 | 0747 | 1784 |-0/913 |:00433
Gynmliyn 00052 | -00/65 | 00394 |-01197 | 1391 | /543 |-0/503 |-00327
Qya (Myign— myin) <000/ | <0004z 0005, |~ 00195 |~ 0044 | 0241 |- 0041 |-0010¢
Oy M dun 0006 | -Oo0bi | 00209 | 100Gt | 611 U746 100673 |00/t
Qynmijin . 000/0 |-00037 | 100/24 |-00706 } <1119 102545| 00259 | 00052
Gn(Myfon = Mujin) <0000, | 00024 | -0008¢| 0026 | <0492 | . 1482 | 00414 | 0005,

h |.Y)"'|I = EEC:‘ ,'Zv-qn‘
3)

2
) Xvnné_n (Xv- xnl)

iy, and j,, es functions’ of (X Yo

A%

“ a,. for m=15 see TABLE 5.

) take from CHARTS |6,
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FORM 2  ictd.

2x15
TABLE 15 STATIZ)NS
=4 v -7 -5 -3 -1 ! 3 5 7
=—Lo v 7 5 3 / — -3 -5 -7
- aal 16879 {15336 | 112627 | - Gozz | 5120 |- 1515 | 124k |2737
Xy ™ Xnd G520 145671 |2:8065 | 5056 | -505¢ (28063 |46671 | 5520
il g 3:800 |2-5134 | 11357 |~2.97u |~2971u | <1357 |2.5134 | 3.800
[ 4047 | 369 |3027 | 2/6 1227 ['3633 (<2983 | 656
o 1:323 11095 [ -6726 |+1z212 | 1212 | 6725 | 1095 | /323
P G 1 ‘60z6 |-0328 |_.7i2 |~712 |-0325 | -boz5 | Qnt
_ Lyn 1257 | 1224 | 1140 .| ‘G4o | Gaz |/-6445 /9173 | 1-836
inn 1i6 10943 | tozs | ‘boo | 395 | 630 |/6/45 | 1666
Jon +228 | -25¢ 320 | -446 | -7ho | /1363 | «3oo ‘320
Jun 242 269 <322 ‘330 | <350 | /321 |le55 | 757
Cyn bym _lrootor |.063/0 |-0066s | -0125 |.0373 |-¢577 | 78¢ | . @Sz85
Ay il 100093 | 100285 |-00595 | 100758 |'0/633 | 2522 b4t ‘0480
€y Jyn 100078 | 100067 |-00/85 |-0059z | 0304 ‘545 1190 | 00922
Cyndvn 100019 |-00070 |:00/87 |:00439 |-0/45 | 528 | 6567 |-02/®
Gy Ay o 00054 | -00/69 | 00323 | -gobas| +0/853 | 3272 | 3802 |.02817
" P 00004 |- 0000/ |-00004 |- covof |- 000as |- 00236| 08163 00189
Ay Ay it~ A0in ‘0005 |.00i5g |-00329 | - 00622| 0185|3235 | <3785,| 02624
Qyndydon 000/0 1:00033 | 00090 | -00294| 01520 | ‘2662 | 05947 | 00492
At N egeer |TS ~<00o0z | — ~100001 |~.0049%| -00/6y | 00086
Dy (Brdon— £y iun) 100009 | 00035 | 0009, | 00294 |-0152, | 2714|0578 |- 00404
Clyn My igy 100030 100082 | -00/63 | 00227 | ‘00464 | -06925 | 18435 |-0i§70
Oy, My iy, (00024 100067 | -00/33 100259 | 00773 | 132256 | .159z5 -012?5'-
Cyn My iyn-miiyn)  |110000, |- 00045 | 0003 |-0003; |~ 0031 |--0630 | -025¢ |-0033s
' Ly T2y fom 100008 | 00020 {0005 |-00125 | 0041z | 1448 | /839 |.007/3
Sy i ‘00004 |00k 00037 |06123 | 00634 | 1096 | 02488 00216
Qyn (M) jon~myiln) || 100005 |- 0000 |- 00014 |-0000, |--0022,] 0352 | - 1640 |-004%,
= 6 1 -7 -5 -3 -/ / 3 5 7
N=—& V 7 5 3 ? -1 -3 -5 -7
[2s= 1) 149047 |1-7654 /14795 | 11190 | 7288 | 3683 | 0924 | 0569
¥y~ %ng _ 13352 |2.3991 | 6383 |-16624 |-/ 6624|6383 |2-3997 | 3.362
Hy - Rnd 1432 | 3454 1~20323 |~5-/391 |~5./39) |—20323| 3454 | 1632
VYo nl 576 531 | L4y | 3385 (2207 [ rl1h (2797 | 1723
o 1ok 1726 | 1193 |-:503 |~ 503 | /93 Tl | lot4h
Kon 404 | dJohs |~ 6i5 |t554 |wr 558 |~ 0618 | ok s | 404
iba fi30 | f089 | 988 | 782 | 1683 | 986 |/7423 | 19482
i loks ‘930 <870 530 *372 "4oZ, ‘7854 | 1557
i vn_ 170 491 1 c223 | 268 | -36¢ V826 124 | 253
i 174 nr ‘207 | 194 G4 | 388 | 1743 |2.286
Ay oy 100034 | 00120 |:00227 | 00368 | -00752 |-035 673 “Jers
iy Ly 100031 1:00/02 |.0018¢ |-00249 |-O0%o9 |-01475 | 292, | .56/
Ay dum 00005 |- 0002t |.00061 |.00726 |-00397 |-03032 | - 482 0729
Gy Jon 00005 |-0002) |-00043 | 00090 {00213 (01425 | €78 «823
Qui Ay iy 900i8 100062 | 00/is | 00/g3 | 100574 | 0:7:3 | 3386 | 3742
T wa.,,,l’,’,i’(,,. -r-r e — —100002 - — -~ 00014 | 0007, | ORI/
Qunl Ly irn— 2515, 0001y |-00Qbs | - 00tis |-00¢8s |- 0037, | 0172|3379 | 35214
a4y Jru. 09003 |- 0001l | 00025 00063 | 00197 | -O1480|- L0 | -04%8
o £ [ n = - - = = __|zooors | oarzs] 0325
Syl Lifin = Lojvn) 100093 | - 0004, |-00025| 00065 | -00197| -0/493| 2397 | 0174
QM iy, 00010 | 100029 | -0005! ] - 00071 | 00214 |+ 004os | -08%s | 1834
YT 00008 | 00026 | 00046 |- 00076 | 00156 |~00706 | 1418 | 1643
O yn{my i = miie,) 0099, |- 86004, | 00005 = 0000 5|-- 6004, |- 0030~ 0578 | -019¢
 Qyymy i, 00002 |'00006 |-000i3 |+00026 |-00060 | 0039/ | /950 | 2693
o Qe 11y f o goaoy |-00004 |-00070 [+00026]| 00082 r00609 | 7008 | 10217
Ay (mijon—mjL) 0000, |- 00003 |- 0600; - 1=00025|--002¢y |- 0942 | 2475
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2% 15

FORM 2  cid. TABLE 16 o
= | Y ) -4 -2 o 2 L [5)
fn=—1i v 6 A 2 ] -2 ~ 4 —-&
| o= 2] 11190 Q022 | 5778 | 1954 .7876 | 5120 |-7288
X} -~ Xng 102768 | 88932 | 68229 | 4598 | 68229 |88932 |10-2768
Xl ~¥nt | 8-4297 | 65613 | 37656 7477 | 3.7656 | &-5613 | 84297
e /-800 1451 -G 30 314 ‘30/8 | 824 1173
- 1654 | 1430 11098 738 ro9g /430 | 1654
e 1356 1055 ‘606 1203 " 606 /1065 /356
i, /608 1623 /- 650 /7313 | 1947 /) 805 | 1759
e /576 1478 | 4336 -y 1616 1670 r672
Jn 308 368 549 118% <300 <308 275
dvn ~377 <51 ‘928 /7314 ! Guo S8y ©399
Ly Lvn <00757 {82157 8700 6967 “ 7717 0746 .01935
Oyntlin ‘00713 |-01966 ‘05665 | +3185 <6500 c06%0 - 1.01839
Qundvn .00/43 |.oo4qo |-02330 | 4775 1207 |r01272 |<c0303
Qynjn 00177 |.60620 |-03937 | 6967 |- 6595 |-02412 |-00439
a,, i, 00391 | 07058 -03435 | <3502 <3787 |- 03640 | 00998
Qondlin 00014 |--0001s |-100037 | 00174 |-.00429 |--00048 |*0003b
Qn (Lyia=dyisn) L0037, | 0107 | 0347: | ‘2485 | 3830 | -037gg |+ 0096s
Ay Lvjin 00074 200240 | 01043 ‘2400 05925 | 00624 | 00156
O A'yfvn L0000s |-00005 |—-00026 | 0033 |--00435 |--000/7 |00009
Qo (L) o= L] n) L0007 | 0034 | -0ilbg | 23562 | <0636 | - 0064, |-00/4%7
Q,, M1, ~00218 C005 4l -0i570 | 10926 /803 01§13 | 00563
Ry My iye c00l67 | 00437 oi2z | 1472 4566 01512 00428
QM= mlis) || -0005, | 00/0, | 0014 |- 0546 | 0237 | 0040, |-00/3s
Coon M3 fun 00054 |-o0r88 | -0t09) | 2025 1828 | -00667 | -00/34
Qyn Myfun 00033 |- 00099 | 00473 | <1008 ‘0245 | 00257 | 00067
a,. (mijh—mijm) 00022 |-00089 | -006ig | /017 | -{583 [ 004/ | 00067
he 3 v - & ~4 -2 o 2 A b
ne—3 14 % Ly 2 o -2 -4 -6
L6~ Il 14796 | 12627 | Q383 | 5566 |-1729 | -/515 |-36873
Xy = tnd 6. 6718 | 52062 |3-2¢79 | ‘Go3sa | 32179 | 52852 | 6-67/8
Xy Mg 4.0247 | 28563 | l6oe6 |—2-2573| ‘feoe |29563 | 48247
1%al 30 2645 | /966 E 362 3173 77/5
Hon /1-397 |r/908 675 69 675 /-to8 1-397
o 1.0t ) <0336 | ~-599 -0336 ‘&t1g 100
i, 1346 1 306 1210 937 |rbhrg | 4190 | 1-8i5
1on 1237 1138 -8%e Xy 634 16203 16569
Jva * 274 ©333 482, ‘786 (356 <303 34
’n ‘304 *369 479 .399 |rs.325 |to078 616
Qyn T .00309 |.o0p0757 |-0166s5 |-03945 | - 66t 7645 c0666
Qyp L5 ‘00285 | -0966! 01218 Q1785 2932 6483 abres
Qyn Jun 00063 |00i95 |-00666 | 93307 | ‘544 04318 XY
Gua §on 00070 |-00214 |.006852 |-0/680 | 532 .1208 | 02297
Cundbitn ‘99169 | -00372 00808 | -01986 | - 3245 | 3750 | 03433
Qi Lo ity 06006 |--00005 |-+00008 | 00012 |-+ 80067 |- 0045 | 0012/
Copn (Evipn=Loiv,) 00164 |- 0057, | -0081e | - 01974 | - 3262 - 3795 6334,
Ay 4 jin -00032 | -00095 | 00322 | -01666 | 2672 | ‘2173 00589
EE . 0006! |~-000GI |~ o000k | @0011 |--0035,|~-0008« |.0004S
Qo (Lojon— £ijin) 0603, | 0009, | 10033, | -0/05s5 | 2707 <2121 00544
Qyn g i, 0087 | 00183 L 00%33L [.005i8 |-070¢5 | 4794 01875
Qg Wl iy 00068 | c00/53 | -00334% | 00833 |-1342 1547 01475
Qo (Myite= miibn) <0004g | -0003 |-0900s [—003ls |~-0640 |-0247 0040
Qe M5 34 goaz: | 0005 |-00¢81 | 0048g |-t474 | 03347 |-00703
Qo 1, 5n -000i% | -00039 |-00133 | 00698 |-110%5 -00874 | -00252
(i~ miji.) [-0000y | 0002 |.Q004g |--0021 | -0369 |:0247, |-0045,
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2% 15
FQRM 2 - ctd, TABLE 17 STATIONS
n=5 v -6 -4 2 o " 2 | 4 &
Ne—~5 Y b 2y 2 (] -2 —~ & -6
175~ a1 17554 | /15386 | 12142 | -83/5 | 4488 |. 1244 | 0924
My Hng 3Qrza |2-5202 455G |~1-776 ‘4589 | 25292 |3%1z8
Xy = Xnd 20657 | <1978 |~25984 |-56/653 |-25984 | 1973 |2.0657
1,nl 4775 | 4.485 3305 | 2263 | 1222 3387 | 12545
n 1064 o NELS — 483 125 628 ro6d
o <562 0537 | =707 |-1527 | -v07 | 0537 562
Tin 1767 4103 - 698 Go4 | tev43 19297
i lase @50 <722 +388 - 395 660 15965
jon 202 ‘238 298 ‘356 ‘746 1336 2917
i%n ) 1238 ‘260 199 ‘3851 (427 | 1869
[ S U <00/28 )-002@7 (90519 | -00880 | 03597 | 665 <754
Qyn ton 00117 |-00247 |-00390 | -ookpg | 01572 | ‘2620 <621
Con Fon ‘00022 | 0006z |-valet | o0es4y | 02068 | 530 1132
Svnfun ‘00025 |-00068 |-00/40 |-00257 | -0/396 | 5668 ‘727
Cyndyiin 100066 | 200141 | 00255 00443 | 01706 | 3262 13873
Qyn Ly Ui 00002 |--0000z | 00003 |:00003 |--000t0 |--0018 0123
Qun (L' Lyn- L5012, 0006, 00145 | -00255 | 0044 Q177 « 5280 3750
Gondidon 100011 | 00030 (00077 | 00226 | 01456 | 12600 | - 0584
Qyn £y i'm - — ~:0000! | 100002 [-00009 |~ 00394 | Olkk
Ao (Lfun— Lojun) <000/, | 0005 | 0008 | 00224 | ‘0lhts| 2639, | 0440
Ay M iy <0003 | -00068 | -00i0g | 00143 | 00436 | 0726 | 7900
Qyn Ml il 00028 | -00048 | -00/08 | Q0187 | 00731 | <134¢ | 1657
a, (miily=miily) 00003 | -00017 00003 |~ 00044 |- 00295 |--0620 | 0243
Qun M jon 00007 | 00019 |.00039 Q0073 QD388 | 1568 2227
Qoun 111, fon 00005 |+00013 00033 ‘00085 | Q0603 /073 0250
Ay (M on =M on ) 10000z | - 0000¢ | 10000, |-100022 |— 0021 | <0495 | 1977
h= 7 ¥ -5 -4 -2 0 2 £ [2)
ne-7 v 2] Ay 2 o -2 -4 -6
[%s = 7l I Go&7 | 16879 | 13635 | 9808 |-5981 | 2737 | 0569
Xy = Hng 24198 | 0362 10341 |-3269 |-40341 | 10362 |2.4198
%)= Xnt ‘8727 |~12957 |~ 40014 |-71093 |~409:4 |~t.2g57 | 5727
1Y 619 5485 | 443 |zr88 |1944 890 /86
o 786 +33568 |~'3565 |~/ 063 |-3363 *3368 786
e 186 |=-42/3 |-1.330 |-2.308 |~-1330 |--42/3 | 746
Ton 1088 018 ‘§69 ‘624 <718 /10955 | +842
iy Q89 878 666 ‘37§ 373 Y -
Jon /60 182 207 ‘237 423 /1037 ‘G99
Jm 160 77 185 /4o ‘222 490 |24s6
Ay lun 00033 |.0008¢ - 00130 00zoo | ‘00565 | 03155 | 6633
Ay ivn 00030 |-00070 ‘00/00 ‘00120 | 100295 | 01224 | -3ubz
Cin jom 00005 |000/4 00033 ‘00076 | -003%4 | 02987 + 3600
Qi 100005 |-00014 | 00028 | -0004s | 00175 | 0744y 8700
A £, 1, 00017 | -0004%0 | Occhd | Qotet 0p278 | 01547 | 3420
Qun £y L - - ~ 0800/ | 00001 |- 00002 |~-00009 | 00684
ay, (i, ~ £ i0,) 0004, | 0004 | 0006y |- 00l0 |-0028 | -0155, | 3351,
Covn &y i 00002 |:0000F | ‘000/6 | ‘00a3g | 00tes | 01464 | 1850
Qw45 i, - - - - -.006al |~ coola |- 0172
Ao (Lofon ~ B jon ) 10000, |-0000y | 00045 | 00033 | 60/6s|- 01474 1684
Qyn My ivn 100009 | 00019 00028 | 00035 | 00082 00339 | 1040
Qi "0oo007 | 006t 00886 (00042 | 00115 00639 | 1465
Gy (ML~ )b ) c00003 |- 00083 |- 0000, |~-0000y |~ 00033 |- 0030 |--0405
Ry MY fom 100001 |-0pook | ‘00008 |-000/3 | 00049 | 00391 | 2665
Qyn My Jin ‘00001 |‘06003 |-00907 |1000/¢ |100068 | -00605 | 079
Qon (MY jin= Miiin) — 100040, |-0000, |- 00005 [~-0001q [~-002/), | 1869
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T 1
ForRM3 ©OBDp ABLE 18

GL,= 0,
[eeodi =| SymMETRICAL Loap] & T 2x15
& <ty STATIONS.

&) VALUES an v th 3 Dvn ] Evn °

. ' e URY 1.t . o
=avn(‘£vl’un— ‘lvt‘ﬂn) +av'-n éLwl;,-.n_ ‘L:t;.n) n’#o B = a'Vn (m Vlvn— mv"yn) + a‘:_n(m'lv.-n— mllz.n) n¢0
: : o.u o
‘avn(l:""vn' ‘E:I:n) n=0 vy = q,"(m, bon~ m-”"vn) n=90
§ 3 S5 7 .Y [ 3 5 7

n= 0 3812 03765 |01094 |"0027, e O 0198 | . 0038 |-00t4 |-0005
2 3622 |-3905 |'0396, | 00803 2 l—-0664 | 102486 0045, 002,
4 0247 | 3268 | 3802 |:0267a 4 |~ 0034y~ 00627 | r02525| 0034
6 0085, | 0184 © 3385 | 3523 6 ||—-00045|— 0029|0577, )-0/F/>
C MQ”"(I:j:n_’e:J:n) +°"‘.-ﬂ('£:jl’l-x71:j:-n) n#O E aGVn(m:j:n—m;j:‘ﬂ)*a"r"(m:jz-ﬂ— m;j;-n) h’FD
yat . ! ! i IR
ya "avn(fwdwrfﬁdin) n=0 1] ra»'n(m'v'lvn—md:'") n=0
1 ] 3 5 -7 Y { 3 5 7
= O 0688, | 0070 |- 00174 ] 10004 ne O 1825 | -0045s5]|-0007: |-000d,
2 |-2859 |.0684 |.0070 |r00i27|| 2 05718 | 1600 |-00438 | 00065
4 0181527204 105815 |'0041s L l~-0022 | 03534\ -16404|'0050
6 liroo2e |-or518 |°2392 |'017/3 6 l-r0002;|- 002/5|° 0042 |' 2478

b) SoLUTION ) BY ITERATION: g, or A, 8u, see FoRM3, Even v, except initial values.
INITIAL GUESS:  y-values taken from examplel,

72= 4b22 78 3876 uC= - 05
7= 4640 7= :2395 pPe U0
FIRST APPROXIMATION:

4 1. 3 5 7 v 4 3 5 7
a,, (Bt 1219 1034 ‘0090 | 024/ almi-m)| ‘0r88¢e |-0i525 |-01088 |-00456
B, gZ | 1762 | -0i74 |-0a5/ | -00r3 | [D,, 32 | 100915 | 00175 [-00065 | 00023
B,. &@ 681 1812 0184 | ~0037 Dy, 32 [-r03081 |-0s/44 |002(0 |.00057
Boy® || 10096 | 1267 | 1473 | -0tk | |Dyp® |--00133 |--02430|-00979 |-00/31
B, 7@ | r00or3 | ‘0044 | .08l <0843 D, 7@ |-r000tt |- 0007 |--0:1383 | 00458
C,. @ [[- 0034 |- 0004 |-.000/ — Evo :.“? -.009¢3 |--00023 |~ 00004 |--0000/

yo I -47a7 | 4327 3208 | 1238 @ l-.00337 | c00320 | 00955 | 01124
|NI'EJIAL gI'FgERENCES: o o o
%%-%-%,4..0062 Ay, = =+ 0002 Ago*’ﬂa— O, +: 01240 %b,,«.aoeel
Viy AR = 40008 A‘rb--oabé A, = - 00163 t“a"""'o”“
FURTHER DIFFERENCES:

v \ 3 5 7 v 1 3 5 7
B,DAQ}, +0023s | +00023 | r0b00y | 00002 D“AD% 00012 |+ 00002 |+ 00001 -
sz?’?: 00017 | -00018 | - Ogde2 - D,zlﬁ% - 00003 |-+ 000aqi - -
B, 4y, [|-0000r |- 00008 |- 00009 |- 000014 D,z‘f’y,, - <. 0000 |—-00001 ~
B.,.,Zf% ..00004 |~000/2 |~ 00216 |~.00225 | | Dy B - +00992 |+ 00037 |- 80012
C, &k || 00085 | 00009 | 00002 - Eyo KU, |[+:00226 |+00006 |+ 0000¢ | ~—
C,af\;’@, «00047 |~-00011 |- 00001 - E,» &84, |--00008 |~00024 |~ 00001 |~
c""Af“ 00012 | 00180 | ‘00038 00003 EW,A@“ —- 00001 [+ 00023 |+.00/08 |+-000083
C..8u, || ‘00005 | -00027 | ‘0042200030 | | Eve B, — — 00004 |+.00166 |+ 00437
%, |[-0030z |+.00226 |+ 00245 |- 00191 | B, |[+00226 |+-00005 [+:00311 [+ 00428
B”A@,, 00125 | 00012 | 00004 | 0000/ D,?% + 0000y |+.0000¢ - -
B, &, || 00083 |.00090 | .00009 | <0000z | | D, Ay, |- 0005 |+:00006 |+ 0000/ -
B,, A%, -00007 | 00088 | -00/03 | -00007 D, J" - 00001 |- 00817 |+ 00007 |+.0000/
B, &, |l'cocor | vocoz | 00043 | . 00044 | | DAY, - - 00007 |-+.00002
C”If’ . || 900017 - - - E,aéo 00002 —_ - -
Co Aé:l 00008 [-00002 - — E,.8u, (+-00002 |+ 00po4 - -
C.. &%, —  |-e0002 - - E,,,Sél4 - ~  |+o0000¢ -

Cy B, ~ 00002 | 00038 |-00003 E,‘,ﬁﬁl - <= +.0001 5|+ 00039
Ly, |-00225 |-00198 |-00197 |-00057 £u, |--00005]--00006 |+-000:7 |+00042
1) Solution for the ey o m

° met =1
] VLN 1 VL g g’ s ot ‘ %‘,
symmetrical case: A (‘tvmv lu“’»)"'“‘o Bondh "E Condtn { & aw(’".“‘v mu“.):'é; Q,,,r,.* E,.Mn .
(etd. next page) mo
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FoRM3  EVEN p

TABLE 19

Cly= G,

locy=cty =1 SyMMETRICAL Loap] &

a) VaLues B, , Cyns Dy sy E

&

b 4 T

w 3{7
&y

2xI5

STaTiONS,

B, | bl ke i L) w0 [oTT meanmilenlin)ra, e onli,,) v
1) & 2,1 A0 £015) ve0  [Pyn| =Z0,,(mii,~m, i) »=0
v [} 2 4 & v [3] 2 £ 6

e | 6970 | 5177 | 0470 |-0¢33¢ = | - 109z |-02575 | .0os0s |-00/ag
3 ||-0494a | 3344 |-3938 | 0346, 3 |- 0063 |- 0640 | 0250 00419
5 ll-on88 |- 02034 3594 |-3756 5 |- 0008]--0029,|--06r9 |- 02434
7 o020 |.00345] 0159, | 3353 7 ||~ 00014 |- 0003, |- 00297|- 0bodg

c w ool b L) ey Bjt,) vie E Rk Mk M LW L ML VI BRI
U = 26 (L “in) v 0 [Zyn|= 20, (m 5 -mij, ) v=0
Yy I o 2 £ 6 ¥ 0 2 4 )

n= § W4724 [-0vs5y |-0038¢ | 0021, e { *2034 | /648 |-oof0 | 00089
3 ll-o33r (2740 |-21304 | 00575 3 |--o0042 |.03738 | 0249, | cos4se
5 |-00440 0054 5| 26434 | -0hsy 5 |-+ 00044|~ 00209 0495, | 1977
T 0007, | -00¢ |-0148, | 1084 7 ||~00004 |~ 000/g |~ 00215869

B) SoLuTion BY ITERATION: Fnitty or By, By, sea FORMB, 0ODD v,

FIRST APPROYIMATION :

v | 0 | 2 4 6 v || © 2 4 6
b)) 1242 |- nsg |.0879 |-0474 | |alricrillvorong [+ 0721 |.01818 <0087
Bm J’,U <8302 |-1979 | 0536 | 0063 b, 5’59 = OFEFE [ OHGE [+ 00241 |+ 0008

w80 || 0170 | 1447 | 1659 | cor60 | |D, 70 00273 |-.02769 |+ 01082 [+.0018;

Bs 70|l 00z | ooss 1067 | <1206 | |Ds j®@ l--00029 |- 00004 |-.0198¢ |+.c0702

Bugs® || rog0s | -0004 | 0920 | 0415 | Dy #° ll-.00002 |- 00004 |~ 00037 |- 005a

Cor .2 —0063 |- 0010 |- 0001 - E,ig0Y I-00272 |--00220 |--00007 |- 0000/

Copl || 000t | 0009 | 0007 - E,s 4@ |l-.0000: +1006/2 |+ 00008 |+-0600/

Cos g2 - 0002 | 0085 |.0004 ||E,5pu© = |~00002 [+.00047 |+ 00/ 89

Cuy 4y - = 0682 8019 Evr pt,° = - -00002 |+ 00210

B | 4oss | 4645 | 3874 |-233¢ @4 l-03760]-00/63 [«00661 |+0i760
DirFERENCES !

v | o 2 4 & v 0 2 4 | e
B, 47 0020 | 00726 | 00014 | 00004 Dv,gg): ~ 000853 [+ 00008 <0000z |+ 0000¢
Bvaﬁg 100009 | 100076 | *00487 |- 0008 | | DAY, |- 00001 |~ 00814 |+ 00008 |+ 0a0e s
Bvszf‘is 100002 | 00005 | 0008t | 00092 | | D&Y, - - 0000 |~ 00045 |+ 00808
B,y }z, - — 09001 |~ 00003 |~ 00664 DWA&, - ~ 480001 |4, 00008
C,, [5“"% <00(0F | -00017 | 00002 - E,, &%, 4 0004 |4 00037 |+ 00001 —-
C,s M3 - c00001 | 0000/ -~ E.,n&%b - - - -
Cug iy || 00001 | :00005 | 00062 | 00014 E,,gfgng - - 08081 |+ 00015 |+ 0006+
Corli, - 00901 | 00006 | 00072 | | Bty — ~  |~-0008¢ 4. 000680
_@, ],‘4-00329 4 092 30 |+.00270 |+00/26 &’y,, 400072, [+ 00029 |+ 00009 [+ 0057
,,'A‘;”", O0IST |60094 | 00511 | 00003 D, &y 00025 |+ 00806 |« 0060/ -
B L) |r00008 {00366 | 00076 | 000sy ||, D j- 00001 = 00043 | 00806 |+.00001
B,g%& 100002 |-00004 | 60005 | 00074 | |0 By - ~ 00891 [~. 00012 |+. 00005
By |~ - 00004 | 068019 D,.,A%:, - - - |--00002
Cvlgéﬂ, - 00007 - - ot Evl ﬁjl 1 D000 |~ 00007 — -
C.. 8u, - -00002 |~ 90001 - Evé[fﬁuﬂ - - - -
Cos B, - - -00004 | 0000y | | E,; Buy - - 00001 |+ 00003
Cor [y -~ - 08¢a/ |- 04007 | | By Bu, - -~ - 200008

Ay |+00165 |«00162 [noots7 |+00i14 &, |- 00027 |- 00809 |- 00005 |+ v00t5

Detd, B, =CrDrE, "0  for |n-v| =246
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ForM 3 opD v efd. TABLE 20 215

- STATIONS
DIFFERENCES CTD.

» \ 3 5 7 % ! 3 5 7
Bvo Aw 5 | (00063 ‘00006 | 00002 - D, A; o ||+ 00003 |+ 000ar | | — -
B,ZA& 00059 | 00063 | ‘00006 | Q000! D, &89z |- 00011 |+. 00004 |+ 00001 -
v‘.Aa',, ‘00004 | 0005t | 00060 | ‘00COL D,,,Ay,, ~ 0goot |~-000l0 |+.00004 |+ 0000]

[f,, ‘0000l | 00002 | 00038 | -00039 D,«,Ayb - - ~.00006 |+.00002
C,,oAy,, ~:00002 - - - E,o 2 A o 00005 - - -
C,szz ~-00003 |-0000¢ - - Evayz - - 00001 - -
Culu, - ~.0000¢ - - E.. > - - ~.0000/ -
C,(,Aye - - - 00004 - E»:,Ay‘, - - +-0000( |+.00004

A@J’, 100422 |00120 |001(Q |[-00044 Ay, ~.000/4 |~+0000b |~-0000/ |+ 00007

B,, (%, | 00032 | <00003 | ‘02001 - D,, &%, [|+-00002 - - -
B, d’z ‘00033 | -00035 | -00004 |[-00001¢ szA Yo [~ 000086 |+00002 - -
B,,,A Yo || 100002 |r00029 | -00033 [|-.-00002 D,, A%, - —00006 |+-00002 -
Bye,A Y - <000 | 000t |-00022 D, 8%, - - -00004 |+.00001
CvaA é‘o ~-00001 - - - ELo N W i~ 0000 3 - - -
C,IA& ~.00002 - - - E,,ZA@)tu2 - --0000 ! - -
Cv,,Ay,, - - 0000 - - E.Nu, - - - -
Ce Y e - - <0000 ! - E, o Nu, - - - +0000 1
A@a’v 100064 |-00067 | 00060 |-00025 2% v -00007 (--00005 |-0p002 |+-00002
BVDA”&, ‘00017 | 00002 - - DWAC"’3 y || oo0a ! - - -
B, 8%, | 00017 | -00019 | 00002 - D,, 2%}, [l--00003 |+.00001 - -
B,,AS7, 1 100001 | .00015 |.00018 | -00001 D, A%, - .00003 |+.00001 -
BoA Yo - 00001 | .000lt |:00012 D, A, - - -.00002 -
Co 9%, ||~ 00001 - - - E,0 2%, |I--00001 - - -
cvﬁAgé‘z ~0004¢ - - - Eva@é'z - - - -
Culg, | - - 0000/ - - B, 4 - - - -
Y T - - | Bl - - S
A@,}’V «00033 |00036 |.0003] .00013 A‘y,, ~+00003 |-'00002 |-00001 -
) @ @ ©
SuMMARY: 2 u}{,®+z@j{,+A®ﬁ+---- pow 0 B+ £, e
v l 3 g 7 v { 3 5 7
20 4737 | 4327 |+3208 |-/1238 &9 |=01337 [+-00320 |+ 00955 [+-01124
A@,y, 0030z |.0022¢ | 00245 |~0019, A8, |+00226 [+-00005 |+.00311 |+.00428
Adv, 00225 |-00195 [-00/97 | 00805, A@)g,, - 00005 |- 00006 |+-006i7 [+ 00042
28 0012, |00120 |-0011o | 00044 29, |-000i4 |--00006 |--00001 [+00007
;, 0006, |-00067 | 0006y |-00025 28, |--00007 |~00005 |- 00002 |+00002
29, | 0oz, |-0ecs, |-6005, |-000is 28, I--00003 |~0000z |~ 00001 -
Rest V [|.00035 |-0004: | 00033 |-000/4 REST |--00003 [-.00002 |- 000a/ -
o 4815 | 4396 [-3276 | 1234 Ho |~ OH4L3 |+00304 |+-0i278 |+0l603

CHECK oF RESULTS:

v 1 3 5 7 v i 3 5 7
a - 1219 1034 | 0690 | 0241 a,fmym,)] 01886 1101525 [-0/088 |00456
Bopy, | /811 | 0179 |-00862 |- 0013 Do 7, | 109941 | Golg1 | 00066 |-00024
B,2 7, 1704 -1837 ‘0186 | <0039 D. 2 ~03123% | -0l160 | 00213 [-00057
Bus J. <0097 | 1286 | 1497 | -0/06 D, g |-'00135 |~02468 | 00994 | 00133
Bus 7, .00/3 004& | 6802 | 0834 Dve 3. [~ 0001t |~ 00070 |-01368 | .00455
Cpo pt ||~ 0026 |—0003 |-0001/ - Evo i, |~ 00695 |- 00017 |- 00003 |-00001
CYL Ha -.0005 |--0001 - - Bz & -.00008 |-.00024 |~-0000] -
Coy g, #0001 10018 doos - Ey,‘h ~.00001 | 00023 | ‘00108 | 00003
Coo p, ||+ 0001 | 0003 0046 | 0003 E.o u, — - 00004 | 00183 | 00480
P 4L8i5 | 4397 | -3276 |- 1235 My ~ 04k |+-00306 |+01280 |+.0/605
@ 2
')ESTIMATION oF REST: REST——(C;_SA—J% or in é.(:s respect,
VAY /Ay S
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ForM3 EvENy etd.  TABLE 2 _—
DIFFERENCES  cTo. SrtaTions
v 0 2 y/ & Y 0 2 s 6
B, @3’. 00085 | <p0051 | -00006 | -0000Z D,,Z@y. = 00013 |+.00003 |+0000! -
B,,SA(D, 100005 | 100040 | 00046 | 00004 B, &%, [--00001 |-:00008 |+ 00003 [+6000¢
B,5A®ys r00c0! | -08002 (00036 | 00044 D"QAZ;}" - - ~- 00007 |4:00003
B,ZA@}, - -  |.ov00t | -0o00ls D,.,%], - - - ..00002
Cp1 L8, ~+00007 |--00001 - - E, &%, II--00003 |- 00002 N
Cos A©,145 - -. 00002 |--0000/ - E,, 2, - - - -
cvsA:;é‘s - - - - EvsAQ 5 - = - -
\RTAY' - - - 060! E,s Akty - -~ - +.0000 |

A@J’, 00084 |:00090 |-00088 |.000¢3 A@y., =+ 00017 |--00007 |-:00003 [+-00003
B,,A@’r, 00045 | -00027 | 00003 | 0000/ D"A(Dy, - 0ppo7 [+ 00002 - -
B,y A%, | 00008 | 00022 | 00026 | -00002 DvssA@J'a - =60004 |+-00002 -

5 A‘Sys - ‘P0od! | 00020 | 00023 D,,,.AE - - -00004 |+.0000|
By A - - ~ | -00008 | |0, || - - ~ _ |--000ai
C,, A@u. - 00003 |- p006¢ - - E, Nu, f|-00001 |~ 0006t - -
C,,,Aéu, - ~0000! |- 0000/ - E, A@’% - - - -
o) - | - | - - e - | - ] - | -

& ot
Ci Dy - - - - EnNu il = - - -

L9, |'00045 |-00048 | 00048 | 00034 Ny, |-00008 |- 00003 |- 00002 -
BV,AJ, ‘00023 ool | «0oo02 - D,, A%, - 00004 [« gosoi - -
B, &8, | c0000t |-00612 | -00014 | 00001 D,,ABp, - ~ 00002 |+ D000 -
B,; /%y, - 0000 |.00010 |.00012 | | D29y, - - -~ 00002 |++0000(
B, A® 2 - - - <00004 Dv7A@J’7 - - - -~ 0000l
C,. 8, |~00001 - - - o L8, --00001 |--00001 - -
€,y 2%, - - 00001 - - E,,Ag& - - - -

vs &%, - - - b EﬁA@y, - - - -
Cv1A©Mv - - = - EV7AP7 = - - -

&%, |-00023 [-00026 |-00026 |-00017 D2u, 1-00005 |--00002 |-.00001 | —

SUMMARY 6;{.=j{,®+ £, + &5, 4 o= s+ v B+
4 0 2 s &6 ¥ 0 2 4 &
w4684 |-4645 |- 3874 |-2531 &y |l-037¢0 |- 00/63 |+-00661 |+ 01760

29, «00329 |:002% 0027 0012¢ %, l+o0012 [+ 00029 +:0000G |+ 00157

/Sy, ‘00ibs |00l |-00157 |-0001, A®yv -00027 |- 00009 |~.00005 |+ 00015
L9 ' <0008, 2009 0008 | 00063 A@p,. --00017 |~ 00007 |~ 00003 |+:00003

D%y, | -0004s | 00040 | 00045 | 00034 L8, |~-00008 |- 00003 |- 00002 -
-—Aé)’, 00023 0002 ¢ 0002, | 00017 A(‘)é‘v ~0000% |~ 00002 [~ 0000/ -

ResT < 00024 |:0003, 00031 |-000!7 REST }~-00007F |-<00002 |-.0000¢ -

P 4751 | 4704 | -3936 | 2368 #0391z |~00157 |+:00658 |+ 01941
CHECK oF ResuLts

v 0 2 4 6 v 0 2 4 6
a,, (e r1242 149 | 0879 | 10474 | ladmim)|+0/988 |F01721 |+.01315 |+.00817
B, -335¢ 2ot 0230 | 00 65 O, ¢, ||08258 [+-01212 |+ 00245 1400090
B, PN OITL ye/ f685 |.0t62 D,s s |~o0z77 |--02814 +'o(097 +. 00184
B, 7e 0029 0067 1079 | -1230 Dys pg |j--00029 |- 000F¢ [--02028 [+.00799
B, s 0002 ‘0004 0020 | 0414 Oyrpty [l 00002 |-.00004 |-.00037 |-.-00500
Chthy ||-r0054 |-.0008 |--000/ — E, gy [[--00233 |--00188 [-.00006 [--00001
C.,Hug L0001 0008 <000y — £ Us j~-0000l j+.000ll [+.00808 [+ 00001
Cosps <0001 - 0002 - 003% ‘0006 Evs pig [|--00001 |- 00003 [+.00063 [+.00253
C,7 Uy - — 000z | 0027 Evr pg -~ - .00003 |+.00300

I 4751 | 4703 3935 |-23¢68 ¢, |--03813|--00161 [+ 00650 |+ 01943

80




(63370)

TABLE 22

Y 0t - 2x215
RESULTS |o=a’=! SYMMETRICAL LoAD| s
A LocaL LIFT, MOMENT & a.c.
¢ » .
3.::?%; X“.=-25-% for ne 0
CmcC | L o
H4=5p e [X°_¢+(-25--§,;)c°;] for n=20
n 0 i 2 3 4 5 & 7
Pn 4751 L8115 L7003 4397 {3935 3276 | "2368 | - 1235
HMn — 03813 [~ 0N&LE |-:00106! < 0030600656 | 01280 | 01943 | - 01605
Kae. <3705 | 12737 | -2533 | 2431 '2333 | -2110 1680 | 1201
b)dc A e
_\-=§_L_[.53!°+ ’"cos-r;“%] - E‘-[.s . %4751
dee m=+1 T ‘Q8og % ' 4815
-9239 x - 4703
.8315 x 4397
7071 x - 3935
ac <5556 x « 3276
Ll 3. <3827 % 2368
) =3-275 1951 x . 1235 ] = -’g-xz-oss
. m=1
c) n A 2c. 2 2¢, ne | "
CM=_+I {-5[[40 B Lo §o</4}+ l [n 5 -a’"énc,L}cosm
=T 45  [~03813x-687 — 4761 x-2063 ] =T {-5 x —232
<9808 [~ 01146 % 1622 = 4818 x- 3506 ] -9808x —<1759
9239 [~ 0016l x + 547 — 4703 x-5194 ] 9239 x - 245]
<8315 [ 100306 478 — 4397 %-6750 | -8315% ~-2953
<TOTl [ . 00656x - 417 — - 3935 %-3114 | 7070 x ~ 316k
(5556 [ +0(280 x 4367 — +3276 %9233 ] ‘5556x —2978
-3827 [ - 01943 x 330 — -2368 x1-0065 ] +3827 x —-2319
1951 [ - 01605 x <3077~ +1235 x1-0577 ] (951 x =126} = — 12087 ©
Ciy= —380

d A 2 & z § iy
) Cm"T{J’o*ZZJ’" - 4L é L 1’..}

» odd n,cven

Cp; = (2257 + 22980 — 4 x.4775) = T x.2755

CD& = 8655

(25 €+ KXo

1) -
En A v/z

81

L 2% BTS2V

a,, lasinTaBLE ) a,. P Y;Z:Q.,n P DI
v [ 3 5 7 1 3 5 7 n = const,
n= 6 L0HQ 0367 |-3390 |:3602 [.0053 |-0161 274 | 0445 <1933 0458
4 l.o41s | 4oor {3969 (0288 |.0199 }1759 |-I301 |0036 + 3295 297
2 4023 | Loiw |-0398 |-0079 {1937 |'1763% [«0130 |-0010 +3840 {807
0 026 |-0&421 |.012¢6 {-0032 | 1938 |-0185 [-0041 |-0004 <2168 Gon
-2 ll.o&zzs 10136 |.0084 |0015 ||-0204 |'0060 [-0QI8 |-0002 ‘0284 Q1%
-4 l.0133 lioo58 |-0026 {0008 ||-.0064 |.0025 [-0009 |-000! <0099 <003%
-6 ||l.o047 |o023 001 |.0003 [|-0023 |-0910 [-0004 - (0037 ‘000G &
7 &
Z Z Cyadedn = 4775 "




TABLE 2

3

| & =1 ANMTISYMMETRICAL LOAD |

AILERONS:
OVER 5 oF HALF-SPAN
‘2¢c DEEP

'

2=15

STATIONS

B Y

Yo 7 -6 -5 -4 -2
L I

x

-3
! |
T i I [

&8 -DISTRIBUTION

Q

At station3 which is next to the beginning of the aileron @ mean wvalue of &
over the strip coordinated to this station is taken according to

&= 8*[—; + 2 (8™ ;)] = 8333

With the theoretical value of %— and £m

for a 2¢ hinged flap we obtain

, 84
—%‘;’—_- =.802 ; —aa—gc;‘=_.|oq,
Y () 1 2 3 Ao 5 & 7
o, 0 0 0 6685 | 802 ‘802 <802 ‘8o2
oty 0 0 0 |-0909 |—109 [~109 |—-iog |-'i09
A, e, 0 0 0 ‘3260 3934 | 4oo7 | 4135 |4276
. Ao, 0 0 0 10008, | 0007¢|-00028|-002!5 |--004%3
a,, (Lo, - Lyee)) 0 0 0 0676 | 0694 |-0557 l0398 |-0z11
m, o, 0 (4] 0 -0249 |-0302 |--03133 |~ 0334 {~0356~
m, oy 0 0 4 1343 | 1625 | 16770 | 1770 | 1878
A, {mjoc—m, ) ¢ 0 0 |—033/3 |--03407|-02765 |- 02014 |~ 01089

o0
o




(63370)

FormM 3@ ODD »

TABLE 24

0&,,:—-0(_",
[3-1 ANTISYMMETRICAL LoAD] & 272~ 2x15
Hy =ty STATIONS
a) VALUES BW'I ? an bl vn 7£vn *
.0 ’ e #t (X} el at
Binlzavn(’zvlm—"z}vn) (‘t‘vlv -0 lv"v-n) Qn =avn(mv yn mvlvn) *‘,-n(mzll’.-; m"l’ﬂ'")

v \ 3 5 7 v i 3 5 7
n= 2 +3048 | -3711 | 03178 1-00583 n= 2 ||-06243].0235, | 0036a |-0009

. 4 H.01232 [-3202 |-3770 |-0257s8 4 ||=00278 |~ 0633 | 02495 00327

6 |-o0019: {01614 |-3373 |+35:9 & ||--00035 |—~0030¢6|-05784|'01908

. [ ot tay N (Y1 tet LET ] bt

C’n =a,, (VJVn vavn)_avl-n(‘ivaq-n—'!’:‘]:-n) E,,,, =a’vn(mv3vn_ vavn)—uv,-n[vav,-n- “"dv,-n)

» [} 3 5 7 hd \ 3 5 7
he 2 || 2519 |-06227; |[[00524 |00085 n= 2 ‘Ohtpt | 1484 | 0039 ‘000853 |

4 1-01227 |-2702 |0574+ {0039+ 4 fl-0022,)-0350 |11639 |'0049¢
6 ||0013, |0l468]|2390 | 01707 & ||—000221--0022,|0942 2475

b} SoLuTiON BY lTERATION

lNlTlAL@GUESS: 3:" H(?VMUES S

Fo =02 y@— m
FIRST APPROXIMATION:

v i 3 5 7 v | 3 5 7
aw(im-l'a") o 0676 | -0557 |02 | |a,flmpt m‘«' o |--03313|--02765|~01089

yz 3’: ‘00blo |«00TH2 |-00064 | 00012 sz 3’; — 00125 |+:00047 |+:00007 |+ 00002
B, Ji .00/48 | 03845 |-04525 |- 00309 D,, J'}. ~. 00033 |-.00760 |+ 00299 [+.c0039
B,. ,r& v000/q |-00161 {+03373 1.03520 || D, ,;'6 —00004 {~-00031 |~.00578|+-00191
,;v‘; <0078 | 1151 |-1353 |.0595 yv --00{62|--04057|--03037|~00857
INITIAL D!FFERENCES A0, = 0212 o A%, =—-04231
%= 30-78=+-o104 A% a0ty DU a0 =m00927 L9y, =—02660
FURTHER DIFFERENCES:

v t 3 5 7 v 1 3 5 7
B,;Am,;’z +00309 |+.00375 [+:00032 |+-00004 D,zAmd’, ~ 00063 |+ 00024 |+ 00004 |+ 00001 |
B,, A“)% ++00026 |+:00 680 |+ 00800 [+ 00065 D‘,,,A@,yk ~10000b|-:00/34 |+ 00053 |+. 00007
.B,,(,A@ . (|l+ 60002 |+ 00018 [+ 00374 [+ 0039¢C D,;,AQ% - -1 00003 |~ 000b4|+.00021
c’va U, [|-+00233 |~ 00058|~.00005 |-~ 0000( f.,;A@[x, ~ 00043 |-:00137 |~+00004| ~—*
C’vl,Ay,. -1 00052 |- 01143 {~.00243 |~ 0o0t] E,,,'Etu,‘ +.00009 |~ 00148 |--00694 |~ 00021
C,,GA U li--00604 |- 00039 |--00636|--00045] | £y Am,u‘ +-00001 |+00006 |- 00251 |-.00659

/By, |+ 00048|--00167 [+00322 |+ c0368] | A, [--00102 |--p0392|--0095¢ |--0065!
szA®d’z 100047 |=-C005F|~-00005|—00001 D“A@) L [|~r-00010 |~-00004|—-00001 -~
V4A®J:, ~60004 |--00095 |-.00112Z |--00008 .D.,AA@J{,‘ +.0000 1 |+:60019 [--00007 |~-D000!
B AJ — +-00001 |-00031 {+- 00032 .D.,‘,AQ‘;'(, - - — 00005 |+ 00002
C:,,_AXO‘_Mg =:00004 |~ 0OCOL - - E',,ZA@,}', ~:00001 |~*00003 - -
C“,,,,Aé:,, - g000| |~-0002% |~ 00005} fv,,A@,;;, —~ |~ 00003|~00013 | —
: C'%Ay‘ - ~- 00005 |~ 00077 |- 00005 fv‘,zf’g,, - -+10000( |~ 8003a|{-00080
79y, ~00056|<00179|~ 00168 |+ 00018 /3, l+ 00010]+00010 [~00056|-00079
B,,,_AQJ’z ~ 00024 |-100029 |~ 00002 - szA®3'z +.00005 |~ 00002 - —
sz.A?a’:. — 00002 |- 00044 |-- 00052 |~ 00c04 DM.A@&. - +.00009 |~ 00003 | -
BVGA@,}'G - —0000/ |~-00026 [-- 00027 D,‘,A®y‘ - - +:00005| - 0000/
€, Pu |l+-00003 |+-00001| - — E,, A@& +.0000! |+ 00002| -~ -
0 Ru,| - [rocoer| - = BB - - | - -
C‘,‘,A@gﬁ - - ~:00008{-10000] E‘,‘,A@ye - - ~00003% |-+00008
Ag,y, ~00023 |- 00072 |- 000881--00032 A@tuy +00006 |+:00009 |~ 0000( |- 00009
83



FORM3a EVEN w

TABLE 25

ocvu-—oc_v
| 6 =1 ANTISYMMETRICAL LOAD | P =" g 2
PAEEY s ® 15
v - TATIONS
Q’) VALUES\ Bun ? *yn ? Dvn 7£
B =a, (L -1 )-a (j,:,z: A iv’_") n =a,, (myi,-mii m)- Oy m;’i;’ "—m:,i,','_n)
v
v 2 4 & e v 2 4 6
= | 3483 | 0263, |-00585 n= | 1.0222, |-0029, |'10008,
3 §-3180 |-3757 |-03i5¢ 2 [|~-0640 | -0244 [0038,
5 ) -015tg | <3266 |- -5744 5 l—-002%9al-062/ |.0242>
7 || c00zt5 | 0i516 | -3360 7 ||—0003s |-00303 |--0405
'=q (v&vn vavn) -n(‘evb-r?‘eu’: :n) E ‘Tavn(m‘:j‘,’l"-_m'l'j:’")—a*’rﬂ( :'IJ: J‘l"‘")
ki v 2 4 & L ¥ 2 4 6
n- i 0519, |:00394 |00077 ne | 521 |0032, |-0004 s
3 26TLH | 2117 ‘00513 3 ‘0364|0245, | 00444
5 *0/585 ‘2636 | 0439 5 ~ 0022 | 04944 |- 1977
7 ll.00/8 0lhby | 1684 7 ||--0002 |-0021; | 1869
b)SoLUTION BY [TERATION:
FIRST APPROXIMATION :
v 2 4 6 y |2 A 6
(x,a,m) 0 <0694 |-0398 a, (m'zx" m, 0 ~03407 {02014
B,,, J1 00271 |:000z0 |-00008 J’. +:000J7 |+.00002 {|-+.00007
B, J"b 03660 |.04323 |.00364 ,3 3'3 ~ 00736 |+00281 |+.00044
B 3’5@) 00205 | 04420 |05065 Dos yg ~ 00040 |--00840 |+.00328
7 ,y, ‘000!3 [-00090 |-0/993 D,,7 J’, ~00002 |--00018 |--00241
%'v, ‘u, 00008 |--06001 - £, [u, ~. 00025 |-.0000; _
,54-«3 -- 01086 |--00857 |--00021 Ewg -00{48 |-.00i00 |-000i8
C’vﬁ l‘ts - 00042 |--0080] - 00133 vﬁ 545 +.00007 |~ 00150 —--00_600
Cr 11,8 |--00001 |--00013 |-.00144 £, 4.4, - +.00002 }--00160
ZO 0300 | 1d4e2 {1111 22 Jl=00927 |- 04231 [~.02660
DIFFERENCES:

v 2 A & V 2 2 &
.B,,.A@y. -+ 000!7 |+-0000/ — Q,A@y. +0060! - -
Bl |-00093 |-:00063 |-100005 2,382, |l 4-000t1 |--00004 [~-00001
B, Ny [|+-00005 |+.00105 |+-00120 D.:09%;|~.00001 |~-00020 |+00008
B, 8p l|+-0000 1 |+ 00006 |+ 00130 D 1%y, _— —.0000] |-00016
Cy L8y 00005 — — E Pu, -0001¢ — —

Coy LPu,l~-00r05 |--00083 |- 00002 £, A®y, -.000l% |-00010 |~-6000 2.
Cs Pl 000/3 |-.00252 |~ 00042 £,51_\. y5 +:00002 |--00047 |--00/89
C,Nu)--00001 |--00010 |--a0t10 Eor P — +.00001 {=00l22
LB ~00154 |--60296 [+ 0009 A@’y, = 00017 |~ 0008/ |--00322
B, 2y N- 00020 |--0000: - D, 258, [--cooo s - —
BvsA@)% - 00057 |-.00067 |~00006 A% L 0001t |- 00004 |- 0000t
B,,sAGDJ’s 00003 |-.00055 _‘.oooés D,5A®J’s — +. 00010 |- c0004
B,.,/®y, — — +-00006 D, 0%, - - - 00007
C',.A@y. - _ - f,,,A@,y. -+ 0000 | ~ -
VQA@Hz, 4100003 |+ 00002 - v3A®é‘3 - - -
CelPuUs |-.00001 |--00075 |~+00002 Es u, - ~:00003% |~ 000 I
C, %, - —.00001 |-+ 00013 £, 9, - — ~ 00015
¥y, |--00078 |~-60137 |--00078 P, |[+-00011 |+00003 [~00032
B, ;% [--00008 [--00001 | — ‘Q,A"gf, ~. 00001 | — -
Bv3A®J’a . 00023 |~.00027 |-+0C002 D, 55, |+ 00905 |- 60002 =
-BvsAgi’g . 00001 |-00029 |-00033 s 0%, - + 00005 |~-00002
B8, - - -~ 000/ D,, 0%y, -~ ~ -~ 00001
Cvl A ' - - - LIA%"I + 0000 § - -
C:«SA®5“3 +-00002 |+-00002 - £vzsA@("s - - -
Ce &Nus - - - L% - - -
Cy 2®u, - - - 00002 £y L8y - - —00002
MN», |- 00030 |~00055]|--00048 A@lu, 400005 |+-00003 [~-00c05

84




FORM3a ODDY eted.  TABLE 26

225
STATIONS
DifFERENCES cTD.

v { 3 g 7 14 f 3 5 7
3‘,,43@ 2 [[=r0000Qi~. 000611 |~ 0008} — .D,,z ‘[@J’z +.00002 |- 00001 - -

B, N° 28

L A"y, -00001|--00018 |- 00021 |~-00001| | D,, @ﬁ - +:00003 |- -0000¢ -
BN = |-0000r|--00016 |--00017| | D Ay - —  |e.00003 |~ 0000/
"va@é‘;. +.0000 1 - - - .E‘,lA@'pl - +1 00001 - -
¢, A@(y(, - +qooo - - EvaA@t‘“ - - - -

Coo A@)y‘ - - -+ 00001 - £u¢,ll@“4s - - - -.00001

APy, |- 00009)-00029 |- 00039]--00018 A%, [|+.00002.]+00003]+ 00002 |~ 00002
B”A@ 2 J|- 00004 |- 00004 - - DyxA® y |[+-08001 - - —
B‘,,-,A©6 - —:00007 |~00008 - JDMAA%/“ - +:0000]) [~'0002] -
B, AN, - —~ |-00007|--00008| | D, A, - - |+-o0001 -~

® —_
Coo S gy |+ 00001 - - fva%‘! - - - -
® |- - @ -
C’V“A & - - - Eva@é‘q - - -
Co DN, - - - -~ £ Nu, - - _ -
A9, J[--00003]--00011 |-00015 [~ 00008 2y, [~00001 ]|+ 00001 ~— -
Z “
@ ©) ] @ &
SUMMARY: 7, = gl A+ B My Bt B+ Dyt
v t ‘3 5 7 14 ! 3 g 7
Y o078 1151 <1353 1.0595 Y |-00i63 |--04057]|~ 03037 |- 00857

A%, |+-0o04s |~ 00167 [+00322 [+.00388 L%, ll--00102 |- 00392 |- 00956 |-. 00651

Oy |--00056|--00179 |- 00168 |+.00018 L9y, l+-00010]+06010 |--0005¢ |--0607g

AP, |- 00023 |--00072 |- 00088 |--00032 /9y, I+ 00006]|+00009 |--00001 |--00009

A@y, - 96069 |-00029 |~-00039 |-00018 A@,u, + 00002 [+09003 |+.00002 |-- 80002

L%, |--00003 |- 00011 |--000i5 [--00008 POu, [+ 0000 |+ 08001 - -
ResT |[o00002]- 00007 |-.0000¢ |-.00006 ] | ResT 40000 | |+ 00041 ~ -

Py 0073 |- 1104 |-1353 |-0630 My J|=100244 |~ 04425 |-0L04E |--0/1598
CHECK oF RESULTS :

v [ 3 3 7 v I 3 s 7
aw(l.",cz';l",a',}ﬂ Vs 8676 [-685F 0211 a,,m:o(,"—m',o(',ﬂ ) -033/3 |--027¢5]|--0/089 |
Bu J’z 00835 01015 |-00087 |00016 D, }’z -~ 00171 {+0006L |+ 00010 |4+.60002
B, f. |-00te7 |-04355 |-08127 0035t | |, P --00038 |-.0086( |+:00339 |+ 00044
B, Pe ‘goozt |.00178 |-03722 (03885 | |2, Yo ~00004 |~-00034 {~.00639 |+ 00211
C,, p, ||—00233 |--00058 |- 00005 |--0000i £,y pn ||~100043 |- 00137 |-00004 | —
Cot M4 |--00053 |--01163 |~ 00247 |~.00017 £, ¢, ||+.00010|--00180 |..00705 |- 0001t
Co, Mo ||-:00004|--00644 |~ 00722 |- 00052 | | £,u Me fl+-00001 |+ 00007 |--00285 |-00747

P <0073 |- 1104 |-1353 |.0629 M - 00245 |- 04425~ 04049 |~-01600
RESULTS :
a)LocaL LIFT, MomenT & a.c.

v © | 2 E) A 5 6 7

P 0 <0073 [-0273 0L | 1360 [1353 |-1103 0629

M 0 -~ 00245 |-00923 |- 0kt25 (~-04301 |--04049 |-03020 |--0lb00

Xae. - 586 588 | 657 566 | 549 | 524 | 505

85




FORM 3a EvENy cld. TaBLE 27
2 61
DIFFERENCES  CTD. STATIONS
v 2 4 6 v 2 4 (2
B, A% |-.00003 - - D, A@,}’. - - -
B, 8%, ||-.00009 |--00011 |- 0000/ 2,8y 400002 |- 00001 —-
B,,5A® 5 [[--00001 |—~-000t3 |-.00015 ‘DvSA s — ++ 00002 |~ 0000
B,,7A©}’7 - - ~. 00006 D,y &J;’, - - - 00001}
C:HA®LUI - - e Eyl A@ ] J— ~— —
C’ﬂAg(“‘s +.00001 |+00004 - £, Sy, - - -
CzsAe_Dng - +.0000] - e N8 - -~ -
C'v7§ Mz - el = Loy DNy = - =
2%, --000tz |~00022 |--00022 L9, |+ 0000z |+ 00001 |~-00002
BV,L\.(;J’, 0000 | - - D, 0%, _ _ —
yz.A@J’a ~ 00003 |~:00004% - D,,;A@ y ||+ @091 - -
B NP5 - -.00005 | ~ 00004 D,s £y, - +0000 | -
Bv-/A ,}’7 - - -~ 00003 D”. A"',V., - — —
c;,zgg . - - - 13.1%3 . - - -
g"ﬂg©&'3 - - head év&A s - - -
vs Hs - - o~ L“5 - - —
Cor Oy ||~ - - £y L%, |~ - -
AG") v 00004 |—00009 |~-00009 Alu, 00001 |+.00001 —
D, D ©) ® @ ®
SUMMARY: e e B s AT ooty D Bty o
v 2 L &6 v 2 . 4 &
é@ 0301 |14tz | . itll M7 |I-100927 |-04231 |~02660
A@ Y _Ji~00151 |-00296 [+ 00091 A@y, - 00017 |--00681 |~-00322
Ay, ||--00078 [--00t37 |--00078 AP, ll+000tt |+00063 |--00032
A@y, ~ 09030 |- 00055 |~.0004L8B A@y, +. 00005 |4.00003 [~ 00005
6(9,)’» ~-0a912 |~ 00622 |~ 00022 A@y» +- 00002 |+-00001 |~.00002
L8y, [-00004 |--00a09 [~ v000q 29, |« 06001 |+w0000; —
REST - 00062 |-000606 |~ 00006 REST +.0000| [+ 00001 —
¥or 0273 1360 [ 1104 v [|-:00924 |--04303 |--03021
CHECK oF REsULTS:
24 2 4 [4] Vv 2 4 &
a,, [ty e ) [ <0694 | 0398 a,, [ma-rig) o —03407 |-02014
B, e 100255 00019 | ‘00004 .D,,, pd +.000 1 |+00002 |+ 00001
By |1035/5 | 0ki153 | .00349 Dy s |--00707 |+.00270 |+ 00042
Bys ps | 00205 |.04420 |.05063 Dis ys ||--00040 100840 (00328
BV7 Y1 00014 00095 {-02108 Du7,77 - 00002 [~.00019 |-.00255
C, o |--000135 |- 0000/ —_ Ey gy ||--00037 [--00001 —
Cos fy ||--01184 -:00954 |~ 00023 fvs Hs J~00161 |-.00109 |~r00020
Cos s ||~ 00056 [-01067 |- 00178 E,5 Ms 400009 |- 00200 |-+ 00801
Cvy pMq7 |-+ 00002 |- 00023 |~ 00270 _Ew M7 — + 00003 |~ 00299
P 10273 | 1360 | 1103 My |m00922 [-04301 |-03019
RESULTS €TO.

b) ROLLING MOMENT DUE To FLAP DEFLECTION.

[e3)}=3]
o,ﬁ

Z,(mﬂ)

Z Fn Sin ==

2nT
m+

[ 3827
<7071
+9239

l.o

-9239
<7071

X
%
X
x®

X .
X -

-0073
.0273
04
S 1360

1353
o3

<3827 % -0629 = .g.x.4az7
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L8

30

Q\\\\\zo
— ————————

|
|
|

i

v

|

|

///

////
Ll

0-5

] 1 __,_———————?_’— ~20
= _Zg—f =20 : 30

SPANWISE DISTANCE OF CONTROL POINT: Y

Fic. 1. Influence function #(X,Y).

X

CHORDWISE POSITION OF CONTROL POINT:



INIOd TTOHLNOD 40O NOILISOd 3ISIMAYOHD

w Y m o

ARV,
L
T ARG
T RN
TR N
AR
&&E%;%%%%%
IR AN
oI TN

\\x§§;2//

TN \
I AN

WAL YLINN

7

-2

i-O
SPANWISE DISTANCE OF CONTROL POINT: Y.

c2 03 04 O35 06 07 OB 09

Q-

O]

Influence function #(X,Y).

Fi1c. 2.
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I ]
CHORDWISE POSITION
?(F CONTROL. POINT

06 ~02
e S
0-4 06— = =
e
O“Z—‘—_ﬂ_—_—h%i\ﬂ )f
.2 = S —
=2 B T s e . o
% pem—— g
O b= E ; =20,
[ ' 2 3 4 5 6 7 8 9 1C
SPANWISE DISTANCE OF CONTROL POINT : Y.
1-O

[ T
‘CHORDWISE ~ POSITION
\, _/OF CONTROL. POINT
AL

— 4\\\
//f;\\%l ——
- "B/—_&R\N X
0'4 2 e 2.
=————— N~
Og//ﬂ 5— l ;g
[ —p——————— |
| 3 3 4 5 6 7 8 9 10

SPANWISE DISTANCE OFf CONTROL POINT : V.

Fic. 4. TInfluence function j(X,Y).
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o—— 2‘°”°R°W'SE} PIVOTAL POINTS.

AUTHOR'S <I5 SPANWISE
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+—-— GARNER'S SOLUTION (c).

——-—— FALKNER'S SOLUTION 34,
a—— LIFTING-LINE THEORY m=7 -

“ac.
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\IJ
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Fi16. 8. Delta wing. 4 = 3.
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b) SPANWISE LOAD DISTRIBUTION.

Fic. 9. Swept constant-chord wing of infinite aspect ratio. 4 = 45 deg.
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DIAGRAMS oF RESULTS.

a) POSITION OF SECTIONAL a.c.
b) SPANWISE LOAD DISTRIBUTION,

See CALCULATIONS of TABLES §-30.
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F1c. 10. Results for example worked in Tables 8 to 30.
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