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Summary.--This report develops an approximate theory of longitudinal response which applies to the slow mode of 
motion after a disturbance. This theory is complementary to that for the quick-period motion given by Gates and 
Lyon 5 (1944). I t  predicts the slow motions which occur after the quick-period motions ha-~e died out. 

The approximate equations given are of second order only and can therefore be solved algebraically. This has 
been done and the general solutions are given in Tables 1 and 2. 

Some numerical examples have been computed to indicate the accuracy which can be expected. The agreement 
with the first approximation is quite good and in some components it can be improved by the use of a further 
correction term. 

,1. Introductio~.--Recent flight and wind-tunnel tests have shown that  aircraft flying in the 
transonic range are likely to have manoeuvre and static margins well outside the ranges which 
have been usual in the past and in particular that  large negative static margins may occur, 
accompanied by moderately large positive manoeuvre margins. This condition must lead to 
instability of the long-period motion and it is desirable that  some method should be available 
which enables the seriousness of this effect on the aircraft response to control movements and 
outside disturbances to be assessed easily. 

The motion of an aeroplane after a longitudinal disturbance is a mixture of two modes of 
motion. Usually these two modes are both damped oscillations, one with a period of the order 
of one second (the short-period oscillation) and one with a period of the order of 100 seconds 
(the long-period oscillation or phugoid). Occasionally however, either of these modes can consist 
of a pair of exponential motions in which the time of decay corresponds roughly to the period 9f 
the oscillation. The period or time of decay is called the time constant of the motion. Because 
the time constants of the two types of motion differ so much it is possible to find approximate 
methods to treat each separately. A theory has already been developed which enables the rapid 
response to be calculated and this report aims at producing a comparable theory for the slow 
response. 

2. Complete Li~tear Theory.--The equations of motion of an aircraft for small symmetrical 
displacements from a steady flight condition are well known and have been given by Bryant and 
Gates ~ (1937) and in a modified form by Whatham and Priestley 4 (1946). They may be written: 
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In these equations ~ is the measure of time in dimensionless units, the unit of time being 
t = m/pSV and 

V 
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. . . .  ( 2 )  
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The remaining symbols are the standard ones of R. & M. 18013 (1937). 

These differential equations are of fourth order so that  the characteristic equation is of fourth 
degree. The roots of this equation usually occur as one large pa~r and one small pair which may 
be real or complex. These correspond to motions with time constants of the order of 1 second and 
100 seconds respectively. 

The difference between these time constants suggests tha t  the motion for a few seconds after a 
disturbance will be governed almost entirely by the large roots and the motion after a long time 
by the small roots. We should therefore expect that  approximate theories for these two conditions 
should be possible. The approximate theory of manoeuvrabil i ty 5 which neglects the effect of 
changes of speed provides this for the few seconds after a disturbance. The present aim is to 
produce a corresponding theory which will predict the motion a long time after the disturbance. 

3. Previous Approx imat ions . - -As  early as 1908 a theory of the slow-period motions was given 
by Lanchester 1. In this theory he did not assume tha t  the displacement of the aircraft from the 
equilibrium condition was small, so tha t  the theory does not compare with any of our usual 
theories. Jones ~ (1936) has however reduced this theory to one corresponding to small 
disturbances. 

The assumptions of this theory may be written: 

(a) The inertia in pitch is negligible, i.e., we may neglect the term in d~/d, in the third of 
equations (1). 

(b) The aircraft is statically stable, i.e., o~ > 0. 

(c) There is no damping in pitch and no damping due to downwash delay, i.e., the terms 
v~ and z(&~/d*) may be omitted from the pitching moment equation. 

(d) The variation of pitching moment with speed may be neglected, i.e., the term ~ may b.e 
omitted. 

(e) The thrust  and drag are equal at all times, i.e., x,, = 0. 

I t  can be seen that  the effect of these assumptions is to reduce the pitching moment equation to 
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so that  @ is simply proportional to ~,,  and in the absence of a pitching moment z~ is zero. We 
may therefore ignore ~ in the other equations and these then become 

+ ko = 0 

-z~,¢t - -4  = 0  

dO I" = o  
O 

These reduce to 

(a) 

d20 
dT ~ 
- -  - k z , , o  = 0 . . . . . . . . . . . . . . . . .  ( 4 )  

Now since z, is negative, this is the equation of a steady oscillation. The complete theory 
predicts a damped oscillation but in this approximation all the damping terms such as v have 
been omitted.. Also assumption (d) that  there is no pitching moment due to change of speed 
makes the theory inapplicable at high subsonic speeds where this term may be an important  one. 

4. The Present Theory.--For the purpose for which this theory is needed we can no longer 
omit the damping terms and we must also include the change of pitching moment with speed. 
The omission of the damping term and the term in mu from the pitching-moment equation led 
in Lanchester's theory to the result that  the incidence was constant. Instead of making the same 
assumptions as Lanchester we shall assume that  the incidence is not constant but varies only 
slowly with time so that  its time differential may be neglected. Our assumptions may be 
summarized as follows: 

(a) The inertia in pitch may be neglected. 

(b) Terms in rate of change of incidence may be neglected. 

With these assumptions the equations of motion become: 

- -  z , ,~  - z . ~  - - 4  

~ + ~ + ~ 

+ko =0=0 ] 

= ~ "  F " " 
dO ] = 0  

. . . .  (G) 

f 

] 

(s) 

These equations are of second order and the characteristic equation is 

A ~ (o~ - -  z j ) ~  ~ + { - -  x,,(co - -  & v )  + x~(~ - -  &~,)} ~. + k ( z ~  - -  z.co)  = 0 . . . . .  (7) 

We have now to find the initial conditions to be applied to these equations and in order to do this 
we must consider the general nature of the complete motion. We know that  this motion consists 
of a rapid motion which, if it is stable, decays quickly, leaving much slower motions to persist. 
If our equations are to represent just the slower motions, our assumptions must be equivalent to 
assuming that  the rapid motion occurs infinitely quickly. I t  has been shown that  these rapid 
motions are represented with good accuracy by the equations: 



These equations are derived on the assumption tha t  the  forward speed is unchanged  during the  
rapid mot ion and in writ ing them it has been assumed tha t  there is no dis turbance in forward 
speed. If there were a disturbance in ~ these equations would become 

) l --z,,~; + ~ - - z ~  z~ - 4 = 0  

J 
here being assumed constant  for the  rapid motion.  

Now let us suppose tha t  the given initial conditions are 

d = u 0 ,  z ~ = w 0 ,  ~----q0, 0 = 0 0  at T = 0  

and tha t  the  intial  conditions we have to impose on our approximate  equations are 

= u l ,  ~ = w l ,  4 = q l ,  0 = 0 1  at ~ = 0 .  

Since we assume tha t  ~ is constant  in the  rapid mot ion it follows tha t  ul = u0. Since z~ and 4 
are the  variables involved in the  rapid mot ion  wl =/= Wo and ql =/= q0 but  since 0 does not  occur 
explicitly in these equations but  only its differential 4 and the t ime for which the rapid mot ion 
persists is small we ma y  assume as a first approximat ion tha t  0 ~ = 00. 

If we assume the  initial value ul then  w, and ql must  satisfy the  second and th i rd  of equations 
(6), namely:  

- -  z , A  - -  z ~ z ~  - -  4 = 0 

where g~,,, has its value a t ,  = 0. 

(lO) 

Now if we assume tha t  the  short-period mot ion  is stable then the mot ion will die out so tha t  
the differential terms disappear, and the  final conditions are given by  the  equations (9) with the  
differential 'terms deleted. I t  can be seen tha t  these are precisely the  same as equat ion  (10). 
This means tha t  the  initial conditions we assume for z~ and 4 in the  long period mot ion  are the  
final conditions for the short period motion.  

We Call ex tend  this principle to obtain equivalent  initial conditions for the  l ongpe r iod  mot ion  
corresponding to disturbances in z~ and q, as follows. We may  solve equations (10) for wl and ql 
giving 

__ 1 z,,v)ul) 

1 
l 
I 

(11) 

These equat ions apply at the end of the rapid motion. Now during the  rapid mot ion we have 
from (9) 

- z , , u  + 

Whence,  el iminat ing ~ 

dz~ 
+  d4_ _ - z . , ) 4  - 

d~ 
. . . . . .  ( 1 2 )  



Now integrating with respect to r, 

(z~,~. - -  z~,)f~ dr + (~ + Zz~)~ + z ~  - -  (o~ - -  z~)O 

= z~f(£,,~ dr + (~o + xz~)Wo + Z~qo - -  (~ - -  z~v)Oo . . . . . . .  (13) 

Now we may substitute for w~ and q~ in terms of u~ from (11) and obtain 

- -  (o> - z,,v)o~ = z,~fc£,,, dr  + (~  -5  xz,o)Wo -5 Zwqo - -  (~o - -  z,y)Oo . . . . .  (14) 
Now if we write u~ ---= Uo we may solve this equation for .0~ and obtain 

(~ - z.~)~ (~ _ ~.~) y~ - -  ~ j ~ o  dr. (15) 

Now 0 ~ is the equivalent initial value of 0 for the long-period motion and since we are assuming 
that the rapid motion takes place infinitely quickly we may take the upper limit of the last two 
integrals zero so that  they vanish. 

This equation achieves what we set out to do in that  we have obtained equivalent initial 
conditions 0~ for a disturbance Wo or q0. The physical interpretation is that  during the short- 
period motion the disturbances w0 and qo die away and during this motion an angle of pitch 0~ 
is developed which excites the long-period motion. 

In equation (15) however we have also terms in cg,, and uo. These terms mean that  u0 and ~,,, 
disturbances produce an angle of pitch during the short-period motion even if we assume it 
takes place very quickly, so that  even if at the beginning of a disturbance only u is non-zero 
when we come to the beginning of the long-period motion 0 has assumed a finite value. It will be 
shown later that these terms are usually a small correction to the calculated response. 

5. D a m p i n g  and  F r e q u e n c y . - - I f  the characteristic equation (7) has complex roots r 4- is the 
motion is oscillatory and its frequency is 

s 
2-£ cycles per unit of aerodynamic time. 

The damping coefficient~ the logarithm of the factor by which the amplitude is multiplied in 
one unit of time, is r. From equation (7) we have 

2 r = - - x , , +  (~o --z~v) I 

. . . . . . . . . . . . .  (16) 
r 

r 2 + s~ k ( z ~  - zu~o) ] 
= ( o ~  - ~) 

Approximate formulae have been given previously by Lyon and others 6 (1942) for these 
quantities. These are: 
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where B = N + v + Z  

D = Q ~ o  + P~, + R z - - S ~  

E = Rco - -  T~.  

] (18) 

Here N ~--  - -  X u - -  Z w - ' ' -  - -  Zw 

P --= x . z ~ v  - -  x w z ~  

Q ~ _  _ _  X u 

R ----- - -  kz,, 

S = k  - - z ~  

T = - -  kz~. 

(19) 

If we consider only the first term of the damping we have 

D 
2r = ~- 

1 
(20) 

so that  the present theory (16) produces the first two of the three terms in the bracket and neglects 
the third. This may lead to some error in the damping but since the damping is usually small the 
effect on the response of using a slightly inaccurate value of this small quant i ty  should not be 
serious. 

The expression for the constant term of the quadratic is, from (17), 

E - -  

r ~ + s ~ = - C =  (~--z~v) . . . . . . . . . . . . . .  (21) 

which agrees with the value predicted by the present theory (16). 

Since t h e  expression obtained by this method for the damping is not very accurate it is not 
recommended for use if only the damping and not the response is required. If a good approxima- 
tion to the damping is needed the formula of R. & M. 20756 (1942) should be used. The values of 
the stabili ty roots calculated for four examples are given in the following table• ,The values of 
the derivatives assumed are given in Table 3. 

Compar i son  of  E x a c t  and  A p p r o x i m a t e  S tab i l i t y  Roots  

Example Exact Method of Ref. 6 Method of this theory 

- - 0 . 0 0 7 0 2 ~ 0 . 1 8 4 3 i  
+ 0.1745, - 0 . 1 7 4 0  
- 0 . 0 3 5 8  ±0 .1301i  
- 0 . 0 2 5 o  ±0 .5408i  

-0 :00702=k0.1842i  
+ 0.1746, - 0 -1741  
- 0-0346 ±0-1276i  
- 0 . 0 2 4 7  :=k0.5395i 

- - 0 -00760±0 .1846 i  
+ 0-1734, --0-1753 
--0-0322 ±0 .1292i  
--0-0656 :E0"5424i 
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6. Solut ion of  Equat ions of  M o t i o n . - - T h e  a p p r o x i m a t e  equa t ions  of m o t i o n  are  f rom (6) 

- -  x,~ ¢~ - -  x , ~  + kO = 0  

- -  z , f i  - -  z w ~  - -  ~ = 0 . . .  . . . .  ( 2 2 )  

J dO 
- ~  + ~ = o  

A s s u m i n g  ~ = Uo, 0 = 0o at  t = 0 a n d  app ly ing  t h e  Lap lace  t r a n s f o r m  these  equa t ions  b e c o m e  

(p - x~)~ - x ~  + k~ = Uo 
r 

- -  z , f i  - -  z ~ #  - -  ~ ---- 0 _ L . . . . .  . ( 2 3 )  

J - ~ + p ~  = 0o 

where 5, z~, ~, 0 a n d  ~, ,  d e n o t e  t h e  Lap lace  t r a n s f o r m s  of d, ~, ~, 0 a n d  ~,~ respec t ive ly .  T h e  
~olution of these equations is 

= 

O= 

vhere Z = 

Uo - -  x~ 0 k 

0 - - z ~  - - 1  0 

%,~ co v 0 

00 0 - -  1 p 

p - -  x,, Uo 0 k 

--z,~ 0 - - 1  0 

0 Oo - - 1  ~b 

p - -  X~ - -  X~ Uo k 

- -  z~  - -  z .  0 0 

~ ~ . ~  0 

0 0 0o p 

p - x ,  - x ~  0 Uo 

0 0 - - 1  Oo 

p - -x , ,  - - x ~  0 k 

- -  z~  - -  z ~  - -  1 0 

X: 09 7) 0 

o o - 2  p 

+ A . . . . . .  (24) 

+ ~ . . . . . .  (25) 

+ A . . . . . .  (26) 

+ ~ . . . . . .  (27) 

= (~  - zo~)p 2 + { - x~(~ - z ~ )  + x~(~ - z ~ ) ) p  + k ( z ~  - z , , ~ ) .  

7 

(7) 



We shall write these expressions in the form 
- 

={ F , , , , U o + Y  .... % , + F , , o O o } +  

z~ =:{ F ~ , , u o + F  ..... % , + F , , o O o  } + A 

and similarly for ~ and 0. 

(2s) 

The expressions F ..... F ...... F ...... etc., are polynomials in p and a complete list of them is given 
in Appendix I. 

The complete solutions for all components have been written down in this analysis but since 
the second and third equations are purely algebraic they can be solved for zD and ~ in terms of ,2 
as follows: ' 

1 

L [ 1 
q = (o~ - -  z~,~) ( - z~ ~ ' '  + ( z ~  - z''c°)Ft} 

(29) 

I t  may be more convenient in computation to use these relations than to use the expressions 
for z~ and ~ in terms of the stabili ty roots. 

We can consider any component of the motion as the sum of three parts due to t he  initial 
speed error, the initial disturbance in pitch and the applied pitching moment. These parts may 
be evaluated by inverting the Laplace transform by the method of partial fractions. The 
analysis differs according as the characteristic equation (7) has real or complex roots. 

where 

For example we have for an initial forward speed error u0 

# F .... _ sgp 
~o A x2p 2 + ( - -  x . f2  + x ~ Y  }p + h Z  

r2 = (o) - z,,,,,) 
I 

Y 
I 

(3o) 

. . . . . . . . . . . . .  ( 3 1 )  

If A = 0 has complex roots r ± is we may write 

~ _  ~ p 2  + { _ ~, ,~ + , ~ y  ) t + l~z ~_ ~ { p 2  _ 2rp  + (r 2 + s~)} 

so that  # p 
~0 ( p _  ~,)2 + s  ~ 

273 " f f S 

( p  - r) 2 + s ~ + ~ - . ( p  _ r) ~ + s 2 

and hence ~ { ) 
- - - =  e ~ c o s s z  @ 1 ' s i n  sT  
q/t, o s 

If A = 0 has two real roots 21 and 22 we may write 

_= .o(p  - 21)(p - x2) 

then g p l / 21 
~,o = .  (p - 21) (p - 2 2) - ~,  - ~ ( p  - -  2;  

and therefore ¢,0~---2 __ 2, --1 ( 2' eal* - 2' e ' ' ~ ) 2 2  

22 
p - ~ )  
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Similarly we m a y  obtain the responses in all components  to init ial  d is turbances  in speed or 
angle of pitch. 

The calculat ion of response to an a rb i t ra ry  pi tching m o m e n t  ~,,, = ~,,~(,) is more compl ica ted  
and  will depend  on the  actual  form of the funct ion <F,,,(,). We shall take  as a s imple example  
the funct ion 

Z',,~(~) =: 0 ~ < 0 \ 

J ~o,,&) == 1 ~ > 0 

• This represents  a sudden  displacement  of the elevator  at t ime ~ = 0. 
We have  then c~,,,(p) = 1/p . 

The Laplace t ransform can be inver ted  by  the use of part ial  fractions as before. 

We  have  for the  response in forward speed 

- -  F,,,,, % / ~  - (x~p + z~k) /p~  . 

If the  roots of A = 0 are complex and equal to r -4- is we have as before 

~ p {  (p  - ~) '  + s ' }  

= - Z  p z (p . , + s 2 + k Z s  ( p - r )  2 + s ~ 

d = Z~Z (t --  e'" cos s~) + x~(r2 + k Z s  s2) + kz,or e" sin s~. 

A similar me thod  m a y  be used when the  roots are real. 

Solutions m a y  be obta ined  in the  same w a y  when~,,,(T) is a polynomial ,  exponent ia l  or sinn- 
soidal funct ion of ~, or any  combinat ion  of these. 

" Ful l  solutions in terms of initial d is turbanceg u0 and 0 o and of ins tan taneous ly  applied pi tching 
m o m e n t  ~,,, are given in Tables 1 and  2. 

Solutions for initial dis turbances w0 and  qo are ob ta ined  by  using the equivalent  angle of p i tch  0 
g i v e n  b y  equat ion  (15) wi th  the  integral  terms omit ted.  Thus if K is any  component  of the  

mot ion  

W o co - -  Z~v  / O o 

and 
K - - z ~ ,  K 
qo (~o --  z~,) Oo 

K/O o being given in the  tables. 

Equa t ion  (15) also gives the  correct ion terms for the u0 and ~,,, solutions as 

~ ( K ' ~  = z~(~ . .  - z~,~) - (~  + zz~)  (,~ - z,~,,) K 

+ - K 

7. Numerical  E x a m p l e s . - - T o  obtain some idea of the magn i tude  of the errors involved in this 
approximate  theory  the response of four aeroplanes, calculated by  the  exact  theory  as described 
by  W h a t h a m  and Priestley* (1946), has been compared  wi th  the response calculated by  the  
me thod  of this report .  The examples have  been t aken  from calculations per formed for o ther  
reasons, so tha t  calculations of the same components  were not  available in all the  examples.  

9 



The aeroplane of the first example has a large static margin and a large manoeuvre margin. 
In the second example the manoeuvre margin is the same but the static margin is large and 
negative so that  the motion we are considering is unstable. In the third and fourth examples 
both stabil i ty margins are small. The third and fourth examples are taken from Refs. 4 and 7. 

The solutions for examples 1, 3 and 4 are all oscillatorg. The oscillatory nature can be seen 
clear!y in example 4 but in examples 1 and 3 only about one quarter of a cycle has been plotted. 

The agreement is fairly good for the curves calculated of response to initial speed error, instan- 
taneously applied pitching moment and initial angle of pitch. The larger errors occur in the 
curves of angle of pitch. In an at tempt to improve the accuracy the equivalent initial angle of 
pitch as derived in section 4 was calculated and the response to this term included. The correction 
term obtained from this is small in all cases but produces a substantially better agreement in the 
values of 0 and also in the other components which arise from the application of pitching moment. 
The values of z~ and ~ arising from an initial error in ~ do not seem to be improved by this correction 
term. In example 1 the correction term is negligible and in examples 2 and 3 the agreement 
between the approximate and the exact theory is worse when this extra term is included. No 
explanation has been found for this anomaly. 

I t  has been mentioned Jn section 5 that  the value given by this method for the damping of 
the oscillation may not be very accurate. The effect of an error in obtaining the damping is 
shown in example 4. The agreement over the early part of the oscillation is quite good but 
deteriorates as the time increases. 

The curves for change of incidence (Figs. 2, 5, 8, 11, 14, 17a and 20b) show clearly the short- 
period motion which has been neglected. The values obtained by the present theory differ 
considerably from the exact values over the first second but after that  the difference becomes 
quite small. 

8. Discussioe~ asd Co~cI,wsio~s.--The method described seems to predict the long-period 
longitudinal motion with an accuracy which should be sufficient for most purposes. 

When taken in conjunction with the approximate theory of the short-period motion it gives a 
simple representation of the response to elevator application. From the theory of the quick 
oscillation we see that  an application of a positive pitching moment (up elevator) causes a rapid 
increase of incidence and a positive rate of pitch which are usually accompanied by considerable 
oscillation. During this stage of the motion the forward speed and the at t i tude change very 
little. This theory shows tha t  in the subsequent motion (if it is stable) the speed falls slowly 
and the aircraft pitches nose-up while the incidence remains almost constant. 

10 
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LIST OF SYMBOLS 

Coefficient in the analytical formulae for response (Tables 1 and 2) 

Approximation to the coefficient of the cubic term in the stability quartic 
(section 5) 

Coefficient in the analytical formulae for response (Tables 1 and 2) 

Approximation to the coefficient of the quadratic term in the stability 
quartic (section 5) 

Pitching-moment coefficient due to disturbing moment 

Coefficient in the analytical formulae for response (Tables 1 and 2) ' 

Approximation to the coefficient of the linear term in the stability quartic 
(section 5) 

Constant term in the stability quartic (section 5) 

Co-factors of the determinant A (section 6) 

Inertia coefficient of the aircraft in p i tch ,  

~CL 
Reference length for stability derivatives 

Dimensionless derivative of pitching moment with respect to forward velocity 

Dimensionless derivative of pitching moment with respect to normal velocity 

Dimensionless derivative of pitching moment with respect to rate of change of 
normal velocity 

m, Dimensionless derivative of pitching moment with respect to rate of pitch 

N = - -  X u - -  Z w 

p The variable of tile Laplace transform 

q Rate of pitch (radn/sec) 

Dimensionless rate of pitch/~ql/V 

q0 Initial value of 

~7 The Laplace transform of ~] 

R - -  kz,~ 

r Real part  of a complex root of the stability equation 

S = k --  z~ 

s Imaginary part  of a complex root of the stability equation 

T - -  kz~ 

u Change in forward velocity of aircraft (ft/sec) 
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LIST OF SYMBOLS--continued 

Dimensionless change in forward velocity u/V 

Initial value of Ct 

Laplace transform of 

Forward velocity of aircraft (ft/sec) 

Normal velocity of aircraft 

Dimensionless normal velocity w/V 

Initial value of z~ 

Laplace transform of zb 

Dimensionless derivative of forward force with respect to forward velocity 

Dimensionless derivative of forward force with respect to normal velocity 

The characteristic equation of the approximate equations of motion (section 4) 

Angle of pitch of aircraft 

Initial value of 0 

Laplace transform of 0 

Equivalent initial value of 0 (section 4) 

- -  f fm, , / i=  

Relative density parameter of the aircraft 
- 

Dimensionless measure of time 

z - -  

sQ --- co - -  Z~v 

= - -  f fm,° l i=  
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F .... = (co - -  z~v)p 

F ..... =x~op + z , ° k  

F,,o = - k ( .  - z ~ )  

F~,, = --(~. - -  ~z,,)p 

APPENDIX 

Li s t  o f  F o r m u l a e  f o r  Co-factors 

• ° 

• ° 

° ° 

1 { ) 
F ..... = p '  - -  . , , p  - -  ~ z , ,  - -  (oo - -  z ~ , )  ~ - -  ( ~  - -  z , . ) ( x ~ p  + z ~ k )  

f ~ , o  = ~ (~ .  - ~ , ,~)  . . . . . . . . . . . .  

G, , .  = ( ~  - o.~,,)p . . . . . . . . . . . .  

G , , ,  = - z ~ P  ~ + (x , ,~  - x~z, , )p . . . . . . . . . .  

G o  = - k(z~,~ - z,,~,) . . . . . . . . . . . .  

F o , ,  = (~ z~  - -  o,z, ,)  . . . . . . . . . . . . . .  

Fo, , ,  = - -  z ~ p '  + (x , , z~  - x~z , , )  . . . . . . . . . .  

F o o = ( O ~ - - z ~ v ) p  + ( - - & ( ~ - - z . , ~ ) +  x~(~ -- z,,~)) 

These expressions may be simplified by writing 
¢ u ' - -  Z~V ~ f 2  

Y.Zw - -  ~oZ~ - -  Z 

x,,z. - -  x~z. = P 

- -  v Z  u ~ Y .  

Then 
F,,,, = o p  

F .... - - x ~ p + z ~ k  

F,,Ü ---- - -  kO.. 

. . . .  ( a . 1 )  

. . . .  (a .2)  

. . . .  ( a . a )  

. . . .  (A.4) 

. . . .  ( a . s )  

. . . .  (A.6) 

. . . .  (A.7) 

. . . .  (A.8) 

. . . .  (A.9) 

. . . .  ( A . I O )  

. . . .  ( A . 1 1 )  

1 
- k ( ~  - ~,,~)~. (A.12) = } t  ) 

F w z t  
= -  Y p  

= p 2 _  x,,p _ k ~ , , - - - ~  { d  - Y~ ,op  - Y z o k }  

- - k Y  

Fqu ~ l ib  

Fq,.  = - -  z~p  ~ + P p  

F q Ü  = - -  k Z  

Fo,~ = Z 

Fo., - -  - - z ~ p  + P 

l{A - - k Z } .  Foo = o p  + ( x ~ Y  - -  x , , o )  = 7~ 

With the same notation 
A = P.p~ + { - -  x,,O + x . Y } p  + k Z .  
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T A B L E  1 

Solutions of the Equations of Motion when the Stability Equation has Real Roots 4~, 4~ 

The solution is for each component  of the  form 

a + bea~ + ce~o. ~ 

where a, b and c are given in the following table. 

Dis turbance  

Ini t ia l  speed error (Uo) 

Ini t ia l  p i tch error (0o) 

Ins tan taneous  pi tching m o m e n t  (c6~m) 

I Component 

U 0 

~0 

U0 

0 

~0 

Oo 
¢v 
Oo 

Oo 

0 
Oo 

(6~m 

~m 

Wm 

0 

(6~m 

Zw 

Z 

1 Yz~ 
t9 - ~92 

P 
kZ 

4i 
4 i -- 42 

Y 4~ 
[2 4i -- 42 

Z 4~ 

D Zi -- 42 

Z 1 

D 4i -- 42 
k 

41 - -  4 2 

Y k 
[2 4i - -  22 

4i42 
41 -- 42 

42 
41 -- 42 

x~4i + kz,~ 
194~(4i - 42) 
Y x~4 i + kzw 
9 2 41(4 i - -  42) 

Z(x,Ai + kzw) 
~24i(4 i - -  42) 

- -  zw4i + P 
D41(4i - 42) 

42 

42 -- 41 

Y 42 
I} 4 2  -- 4i 

Z 42 

9 22 -- 4i 
Z I 
[~ 42 -- 4i 

k 
-- 42 -- 4i 

Y k 

[2 42 -- 2i 

4142 

2 2 - -  41 

41 
42 -- 41 

xw22 + kz,~ 
E242(42 - 41) 

Y xw42 + kz,~ 
~22 42(42 - 41) 

Z(xw42 + kzw) 
D~4~(;h - 4z) 

- -  z,A2 + P 
942(4~ - 41) 

Note:  Al though the complete  expressions for @ and ~ are given it m a y  be more  convenient  to calculate t h e m  
from the formulae  

d~ = Z ¢ ¢  __ z 2 ~ , ,  ~ 
~2 

1 4  



T A B L E  2 

Solutions of the Equations of Motion when the Stability Equation has Complex Roots (r 4- is) 

T h e  so lu t ion  is for  each  c o m p o n e n t  of t h e  fo rm  

a -}- b e ~ cos s~ + c e ~ sin s~ 

w h e r e  a, b and  c are  g iven in t he  fo l lowing table .  

Disturbance Component c 

Initial speed error (u0) 

Initial pitch error (0o) 

Instantaneously applied pitching moment (c6~., 

U o 

UO 

U o 

0 

U o 

a b 

- -  1 

Y 
fJ 

Z 

- -  1 

Zw Zw 

Z Z 

1 Yz~ Yzw 
f2 .QZ .QZ 

_ _  g w  

P 
k Z  

0o 

Oo 

0o 

0 

0o 

~ 2  m 

(g= 

~ m  

0 P 
kZ 

~p 

S 

Y r  
~ s  

Zr 

Z 
~s 

k 
S 

Y k  

Zk  

S 

xw(r" + s 2) + kz~r 
kZs  

Y xw(r 2 + s 2) +kz,vr 
kZs  

x,,(r 2 + so-) + kzwr 
kKJs 

- -  z,~(ro- + s °') + Pr  
kZs  

Note: Although the complete expressions for @ and ~ are given it may be more convenient to calculate them 
from the formulae 

O - 4 - ~  ,~ 

Z ~ z w 

£2 Y2 
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TABLE 3 

Values used in Numerical Examples 

E x a m p l e  1 E x a m p l e  2 E x a m p l e  3 E x a m p l e  4 

CL 0 . 3  0 . 3  0 . 5  1 . 0  

Xu 
Zu 

Xw 
Zw 

O) 

Z 

- -  0 . 0 1 5  
- -  0 . 2 4  

0 . 0 6 5  
- - 2 . 2  

0 
138 

1 . 0  
3 . 6 8  

- -  0"015  
- -  0 . 2 4  

0"065  
- - 2 . 2  

28"5 
138 

1"0 
3 "68 

- -  O" 0325 
- - 0 " 5  

0"15 
- -  2 "016 

0 
1 

1 .2  
3 

- -  0 - 0 9  
- - 1 . 0  

0 . 2 3  
- -  2 . 2 5  

0 
10 

1 .0  
3 
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