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Summary.--This report describes an investigation in to  the effects of Reynolds number on the flow through two 
dimensional cascades of the diffusing type. Particular emphasis has been. placed on the causes ofhigh loss especially 
at very low Reynolds numbers. Separation of both the laminar and turbulent boundary layers are verified as sources 
of low efficiency in this particular type of flow and these phenomena have, consequently, been studied in considerable 
detail. 

The main work consists of approximate mathematical' analysis of representative flows but  this theoretical work has 
been carried out in conjunction with, and is supported by, results drawn from an extensive programme of tests made in 
the low-speed wind tunnel at the Cambridge University Engineering Laboratory. These tests are fully described in 
Ref. 1. Mach number effects were specifically avoided in the experimental work although a wide range of Reynolds 
number (3.0 × 10 ~ to 5.0 × l0 s) was covered; tile effects of'compressibility have not, therefore, been considered in 
the main analysis. 

The transition to turbulent flow in the boundary layer is shown to be of vital importance in determining the pattern 
of flow, especially at low Reynolds numbers where laminar breakaway is likely to occur, and the need for a theoretical 
or semi-empirical method of predicting transition is stressed. 

In the theoretical work tile generally accepted approach has been followed in ttlat the potential flow pattern has been 
used as a basis for further calculation. The close agreement of the analysis with the experimental results has justified 
the use of the approximate methods of boundaw-layer calculation which were selected, i.e., Thwaites' method (Ref. 2) 
for the laminar layer and Hewson's method (Ref. 3) for the turbulent layer. 

In conclusion it is shown that design methods can be modified to ensure improved performance at a specified Reynolds 
number or over a range of Reynolds number. 

In the course of the report tile importance of assessing wind-tunnel results in relation to secondary effects such as 
the contraction of the air stream in tile plane perpendicular to that  considered is well illustrated, and methods of 
correction to enable more universal application of particular results are outlined. 

1. Introduction.--To allow for the effect of increases of pressure loss occurring in flow through 
aerofoil cascades at low Reynolds numbers (especially in the case of diffusing flow through 
compressor-type cascades) present design methods specify in general terms minimum Reynolds 
numbers below which these high losses are likely to occur and which are, therefore, suggested 
as giving a lower limit in terms of Reynolds number for the working range. The high losses 
are usually accompanied by reductions in air deflection and this latter effect lowers further 
the efficiency of the cascade. Howell's report 'The  present basis of axial compressor design'  
(Ref. 4) which has become, in this country, the standard basis for further work expresses these 
effects (increased loss and reduced deflection) purely as functions of Reynolds number though 
the wide scatter of the points from which the appropriate curves are derived suggest that only 
average values are represented. 



The extensive programme of cascade tests, described in Ref. 1, carried out at the Cambridge 
University Engineering Laboratory over a range of Reynolds number from 3.0 × 104 to 5.0 × 105 
has supplied much useful data in this respect. This report represents an at tempt to assess 
results and to produce, in conjunction with theoretical analysis, more accurate means of estimating 
and predicting the onset and magnitude of high losses at low Reynolds numbers. 

2. Experimental.--2.1. Al~paratus.--The low-speed wind tunnel which is fully described 
in Refs. 1 and 5 and is shown diagrammatically in Fig. 1 is of the open pressure-type, arranged 
to exhaust to atmosphere on the outlet side of the cascade under test. Three cascades, all of 
the compressor type, were tested. In each case the individual blade sections were the C.4., 
profile of the National Gas Turbine Establishment having a ]thickness/chord ratio of 10 per cent 
and based on circular-arc camber-lines. The three cascades had camber angles of 20 deg, 
30 deg, and 40 deg respectively and the corresponding stagger angles of - -34  deg, -- 36 deg, 
and - -38  deg were chosen to give an outlet angle of approximately 30 deg in each case. The 
pitch/chord ratio was 1-0 and the actual chord length of the blades was 6 in. To reduce three- 
dimensional effects as far as possible an aspect ratio of 3.0 was used and in order to simulate 
the effect of an infinite cascade nine blades were set in each cascade with the end blades merging 
into the top and bottom walls of the tunnel. To reduce further wM1 effects a limited "amount 
of boundary layer suction was applied immediately prior to the cascade in the wall leading to 
the top blade of the cascade (this blade having its suction surface exposed to the flow). 

From traverses taken upstream and downstream of the cascade, typical plots of which are 
shown in Fig. 2, values of mean air deflection, pressure rise, and total-head loss were obtained. 
The air intake of the wind tunnel was subjected to various degrees of throttling to ensure that  
conditions of air velocity, etc., remained constant during each test. A static-pressure tapping 

i n  the settling chamber of the tunnel was used as a datum for these adjustments and the reading 
were corrected for any slight variations which did occur in spite of the adjustment obtained 
by throttling the intake. The close agreement of the total-head pressure values for inlet and  
outlet traverses outside the wakes, as shown in Fig. 2, confirm the accuracy of the tests. It 
is worthy of note that no difficulty was experienced in repeating results obtained previously. 
Forty-four pressure tappings located round the centre-section of the middle blade of each cascade 
enabled normal-pressure distributions to be plotted. The large number of tappings available, 
though all forty-four were not used in every test, permitted detailed distributions to be plotted. 

In addition to these tests some work was carried out on visual methods Of observing the general 
pattern of the flow. An oil smoke generator of the National Physical Laboratory pattern 
producing a mist of heated paraffin vapour (Ref. 6) was constructed and observations were made 
on a thin filament of this smoke introduced into the main stream through a narrow slot in the 
surface of one of the blades, this slot being located slightly downstream of the leading edge on 
the suction surface. 

A set of model blades corresponding to t he  40-deg camber blades was set up in an equivalent 
cascade and was tested in the electric potential tank at the National Gas Turbine Establishment 
(Pyestock). The pressure distributions obtained by this method, in comparison with the wind- 
tunnel distributions, were used as the basis for further calculation and to enable corrections 
to be made for three-dimensional flows in the tunnel. 

2.2. Presentation of the Results.--Mention has already been made of the mean values which 
were calculated and used as the basis for assessing and comparing the results, namely air de- 
flection, pressure rise, and totM-head loss. From this data the value of efficiency was calculated 
as defined by Howell : 

mean total-head loss 
Efficiency = 1 -- 

theoretical pressure rise 

2 j  



Plots of efficiency, and air deflection over the full range of Reynolds number for the 40-deg 
camber cascade at inlet angles of 50 deg and 60 deg are shown in Fig. 3. The calculation of 
mean values from the traverse figures is discussed in Appendix I. 

The use of lift and drag coefficients in presenting the results has been avoided because of 
errors arising in their estimation from the standard expressions due to varying amounts of 
three-dimensional flow encountered during the tests. 

The theoretical pressure rise is defined as the pressure rise which would be achieved if there 
were no pressure losses and the same air angles were maintained. The expression is : 

= ~ p y ? , - - ½ p y ~  . . . . . . . . . . . . . . .  (1) 

The normal-pressure distributions have been plotted relative to the prevailing conditions at 
outlet and on a non-dimensional basis (see Figs. 4 and 5). The expression for the ordinate 
is thus : 

local normal pressure -- outlet static pressure _ p -- p= . . . .  (2) 
outlet velocity head ½p V2 2 . . . . .  

The abscissa is : 

distance along chord from leading edge- x 
total chord length C 

This form of non-dimensional plotting enables direct comparison of pressure distributions 
to be made as, on this scale, the pressure at the leading-edge stagnation point approximates 
to the value 1.0 (actual value 1.0 in the case of potential flow) and the pressure approaching 
the trailing edge tends to zero. 

3. Discussion of Results and Comparison With Theory.--3.1. Three-dimensional E f f e c t s . -  
Despite the comparatively large span of the blades of the cascades the effect of the wall boundary 
layers was very marked when deflections were high. In these cases a noticeable discrepancy 
was noted in the two-dimensional continuity of the flow at the centre of the cascade span, this 
being attributed to the thickening of the wall boundary layers accelerated by the pressure rise 
across the cascade. The increase in displacement thickness of these boundary layers causes 
the effective area of flow to be reduced and a measure of this effect is given,by the contraction 
coefficient : 

= fp lV1  cos  d y  . . . . . . . .  (3) 

Ip2V= cos ~2 dy . . . . . . . . .  

Representative values of ~ for various cases are g iven  in Table 1, Appendix II, the corres- 
ponding cascade, Reynolds number, and deflection being quoted in each case. It  is seen that  
at small deflections ~ is close to unity and the contraction effect is not serious. As the deflection 
increases ~ falls rapidly, but is not less than 0.9 until deflections of over 20 deg are reached. 

The detailed modifications imposed by this effect on the two-dimensional flow are of a complex 
nature but it is clear that  the contraction of the flow in a plane perpendicular to those of the 
cascade and of the vertical centre-section of the {unnel will cause acceleration of the flow in 
opposition to the normal diffusing effect of the cascade. The measured pressure distributions 
do not correspond to those associated with the measured deflections under conditions of true 
two-dimensional flow; in particular, adverse pressure gradients a re  lessened and breakaway 
tends to be suppressed. Furthermore, the effective Reynolds numbers at positions near the 
trailing edge are increased above their proper two-dimensional values. 

Although the actual planes of traverse are three chord lengths apart the entire pressure rise 
effectively takes place over the cascade itself. It is clear that  most of the increase in the thick- 
ness of the wall boundary layers must also occur within the cascade. This has been confirmed 
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by traverses taken over the whole area of flow within half-a-chord length of the cascade. A 
simple correction has been devised to the two-dimensional potential flow pressure distributions. 
This assumes that all the contraction does take place across the cascade itself and that the 
increase of boundary-layer displacement thickness along the wall can be expressed as a simple 
:function of the distance along the chord line from the leading edg e . 

The derivation of this correction is given in Appendix III  and the result only is quoted here. 
If the suffix [ ;*=1 refers to conditions which would obtain with true two-dimensional flow, 
then : 

½p[V212__ 1 - -  ~ 1 - -  (1 - -  6:) ~_½pV22 - -  1 . . . . . . . .  (4 )  

where p is the local normal pressure at a point on the surface of one of the aerofoils, and the 
di~?!:'.cement thickness of the wall boundary layer through the cascade is assumed to increase 
as the function (x/C)t 

It is to be expected that such a simple assumed form for the wall boundary-layer growth 
produces a certain amount of distortion in the corrected distribution, but it should be realised 
that  the correction is only important when the contraction is considerable (2 < 0.9). Large  
contractions occur only when high deflections are involved and, in turn, these arise at high 
positive incidences. Under these conditions the pressure distributions for all three cascades 
are of similar form. The form of the pressure distribution must determine the growth of the 
wall boundary layers. From the above argument it would seem reasonable that, when the 
contraction is large and the correction in pressure considerable, the value of the power in the 
above expression which gives the closest approximation for one cascade would also give a good 
approximation for the other cascades. T h e  value n = 3.0 was found to give the best results 
for these tests. The potential-flow pressure distributions in their original form and also when 
corrected to three-dimensional flow using the experimental values for $ have been compared 
with the tunnel distributions in Figs. 4 and 5. In each case the wind-tunnel distribution at 
the highest inlet Reynolds number has been shown, since under these conditions boundary- 
layer thicknesses on the blade surface are small and will only cause slight modification to the 
potential-flow distribution. Agreement is good, the discrepancy towards the trailing edge on 
the suction surface in the case of the 40-deg camber cascade at ~ = 60 deg being largely the 
result of turbulent  separation affecting the wind-tunnel distributions. 

The wind-tunnel distributions could have been corrected to two-dimensional conditions 
but this would be misleading in that the observed boundary-layer characteristics would no 
1.onger correspond to the higher pressure gradients of the modified distribution. 

The contraction effect reduces the stattic-pressure rise from that  corresponding to the measured 
deflections and the extent of this discrepancy is indicated in Figs. 6 and 7. The expressions 
from which these curves have been derived are obtained in Appendix IV. In some cases the 
pressure rise is reduced by as much as 40 per cent. Therefore in any general interpretation 
of results the contraction ratio should be specifically stated together with the presentation of 
relationships between efficiency and deflection though this difficulty does not arise if pressure 
distributions themselves are taken as the basis for comparison. 

The increased thickness of the boundary layers on the walls of the tunnel leads to a loss of 
lift round the sections of each blade adjacent to tile walls and this effect ir~ turn gives rise to 
secondary flows which can be represented as a series of vortices. These effects greatly increase 
the losses but do not modify the flow at the centre-section to the same extent as the contraction 
effect mentioned above. Secondary flows in this cascade tunnel have been the subject of a 
separate investigation (Ref. 7). At the highest incidences, appreciable secondary flows were 
detected and in the case of the 40-deg camber cascade at cq = 60 deg, traverses were taken over 
the entire outlet area. These traverses were taken half-a-chord length downstream of the 
cascade. Tile variation of outlet angle and mean total-head loss across the section are shown 
in Fig. 8. 
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Although it is clear that  the flow near the walls is seriously affected, only the effect on the 
two-dimensional flow at the centre-section need be considered in this report. The value of the 
mean total-head loss at the centre-section is virtually unaltered but the effective incidence 
angle i s  reduced. Using the relations given in Ref. 8, the reduction of incidence in the case 
considered above is slightly less than 2 deg~ The secondary flows in this case were the most 
extensive encountered in the whole series of tests so that  it may safely be assumed that  induced 
effects were correspondingly less in the other cases. As with the pure contraction effect this 
secondary flow does not materially affect the interpretation of results in this work as pressure 
distributions are used as the basis for comparison. 

3.2. Potential Flow.- - In  the case where the actual cascade is given and it is required to predict 
the potential flow, the electric potential tank method is probably the most satisfactory since 
it is much more rapid than computational methods and can give the same degree of accuracy. 
Pressure distributions obtained from tests in the electric tank are compared with the  corres- 
ponding wind-tunnel distributions for the 40-deg camber cascade in Figs. 4 and 5. As men- 
tioned in the previous section, the use of the three-dimensional correction is also illustrated. 
The Joukowski condition, i.e., location of the rear stagnation point on the trailing edge, was 
used to determine the value of the circulation and thus the outlet angles in the electric tank. 
Since the wind-tunnel distributions are modified by the existence of boundary layers on the 
surfaces of the individual blades, it would clearly be more correct to calculate the potential 
flow past a series of aerofoils based on the original sections but with the displacement thickness 
of the boundary layer added on all the way round. However, this would involve complete 
recalculation of the potential flow for each Reynolds number and the arithmetical work would 
have been increased enormously. At high Reynolds numbers, where the displacement thick- 
ness of the boundary layer is small, agreement is good, even when the contraction ratio is com- 
parat ively large, provided that  the correction is applied. 

3.3. The Laminar Layer. - - In  virtually all cases in the wind-tunnel tests, as the Reyl)olds 
number is reduced, rising pressure gradients on the pressure distributions are interrc~ ..d. 
This effect which is the primary cause of the rapid falling-off in efficiency is due to the onset 
of laminar breakaway. 

Comparison of the three cascades at varying incidences shows that  the Reynolds number 
at which the efficiency is seriously affected varies considerably, thus suggesting that  certain 
types of pressure distributions give rise to better low-speed characteristics than others. In 
the laminar layer only a very limited rise in pressure can be achieved before the separation 
point is reached and the large pressure rises occurring on the suction surfaces of the aerofoils 
take place mainly in the regions where the boundary layer is in the turbulent form, i.e., after 
transition. If transition to turbulent flow takes place before the laminar separation point is 
reached, separation of the laminar layer will not occur and the local pressure rise will be main- 
tained. If the transition point moves back towards the trailing edge, as would result from a 
reduction of the inlet Reynolds number, separation will begin but will. be arrested soon after 
the transition point when the boundary layer returns to the surface in the turbulent form. 
Further  movement of the transition point in a rearward direction allows separation to develop 
before the subsequent recovery in the turbulent layer and, finally, a stage is reached at  which 
breakaway is complete before transition resulting in no .further rise of static pressure. The 
nature of the return to the surface of a separated layer is not fully understood but it is certainly 
affected by the curvature of the surface of the aerofoil and hence the curvature of the air stream 
adjacent to the surface. With a convex surface, as is encountered on the suction side of the aero- 
foil, there must be a rising static pressure away from the surface to balance the centrifugal 
forces caused by the curvature of the stream. This rising pressure will clearly help to force a 
separated layer back to the surface. However, the return of the flow to the surface will not 
take place until transition has occurred and the curvature as such does not affect the value of 

t h e  Reynolds number at which local breakaway first occurs. 
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This i s  the explanation of the hump in the pressure-distribution curves at the lower Reynolds 
number. This hump represents the ' bubble of turbulence ', which is separation of the laminar 
layer followed by transition and the return of the turbulent layer to the surface, enclosing a 
' dead '  region adjacent to the surface. The above explanation shows why this hump grows 
larger as the Reynolds number is decreased until  ul t imately the breakaway is complete and no 
further rise of pressure is observed. Examples of separation are seen in the pressure distri- 

bu t ions  shown in Figs. 10 and 11, the corresponding cascade, incidence, and Reynolds number 
,being indicated on the curves. Qualitative observations using the smoke technique as des- 
cribed previously have confirmed these deductions showing distinctly three phases of change 
with increasing Reynolds number, i.e., complete breakaway, local breakaway enclosing a~bubble 
of turbulence and, at the higher air speeds, smooth uninterrupted flow in the turbulent boundary 
layer adjacent to the surface. 

A fuil description of Thwaites' approximate method of laminar boundary-layer calculation 
is given in Ref. 2, but  a brief outline will be given here. The method is developed from the 
yon KArmAn momentum equation and the final equations are thus given in terms of the 
displacement and momentum thicknesses of the boundary layer. Thwaites uses the known 
solutions of a number of particular cases and, from a mathematical  approach, derives a general 
solution which fits all these cases and is of relatively simple form. In the final approximate 
form Thwaites gives : 

0. 45,, f l  VoS ds 
o . . . . . . . . . .  (S) 

rd 
6 . . . . . . . .  

where 0 
S 

Va 

02 dV~ 
~ / ~  : - - - -  _ _ _ _  ° .  . . . . . .  o °  , .  . .  

v ds  

is the boundary-layer momentum thickness 
is the distance along the surface from the forward stagnation point 
is the local velocity in the main stream at the edge of the boundary layer 
is the kinematic viscosity 
is the form parameter of the velocity distribution across the boundary layer. 

The suffix 0 refers to conditions at the forward stagnation point. 
m = 0-082 at separation. 

Thwaites also gives: 

From the above it is seen that  

(6) 

fs 0"45 o V~ ~ ds dV~ 

r~ = -- V~ o ds . . . . . . . . . . . . . .  (7) 

and is dimensionless. The value of m at each point of the surface for a pressure distribution 
plotted non-dimensionally as in this report, is unique and independent of the absolute magni- 
rude of the velocity. This implies that  the point at which m reaches the value 0.082, i.e., 
the separation point, is determinedonly by the form of the non-dimensional pressure distribution 
and is independent of the  Reynolds number. This deduction appears to agree with the experi- 
men ta l  evidence, in that  the laminar-separation point does not move appreciably with changing 
Reynolds number as long as the experimental velocity distribution remains close to the potential- 
flow distribution. 

Values of m along the suction (convex) surfaces of the blades have been calculated in a number 
.of,cases; examples of the calculated values are shown graphically in Fig. 12. The velocity 
distributions used to supply the numerical data were those .obtained in the wind tunnel at 
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Reynolds numbers of approximately 5.0 × 10 ~ and 2.1 × 10 ~ respectively, though the potential 
flow distributions were also used in the case of the 40-deg camber cascade. The predicted 
laminar separation points (where m = 0.082) agreed well with the separation points obtained 
in the tests, either by estimation from the hump in the pressure distribution or by  visual observa- 
tion using smoke filaments. 

As was mentioned earlier, t he  laminar-separation points only remain unaffected by changes 
of Reynolds number so long as the pressure distributions remain sensibly unaltered but it is 
clear that  this is no longer the case when the Reynolds number becomes verysmal l .  The actual 
change in the pressure distribution is exaggerated by the method of non-dimensional plotting, 
in which pressures are represented as proportions of the outlet velocity head since reduced 

" suciion pressures at low Reynolds numbers give rise to reduced deflections and cause relative 
increases in the outlet velocity and hence in the velocity head;  thus the ratio (p --p~)/½pV2 ~ 
is reduced in an exaggerated proportion. A truer picture of the actual changes in the pressure 
distribution is obtained if the pressures are plotted as proportions of the inlet velocity head 
and an example of this method of plotting is shown in Fig. 13. As will be seen the changes in 
the shape of the curves up to and after the separation point due to changes of Reynolds number 
are still considerable. These changes are due to the actual breakaway of the laminar layer 
and also to the increase of displacement thickness all over the surface. From the potential 
flow aspect these effects correspond to a general increase in the thickness of the basic aerofoil 
shape which is particularly marked after the separation point, and a decrease in the magnitude 
of the circulation. The forward movement of the forward stagnation point due to loss of circu- 
lation is very small and is certainly insufficient to justify alteration of the datum point for the 
calculation of m. 

Equation (5) indicates that  for similar pressure distributions the momentum thickness is 
inversely proportional to the square root of the velocity (inlet Reynolds number). The ratio 
~/(W,~x/V1) is equal to the corresponding ratio 00atat maximumt/~eyn°Ids numbergeynoldscOnsidcrednumber (where maximum Reynolds 
number is in this case 5.0 x 105) and is plotted against Reynolds number in Fig. 14. It  is 
seen that,  for similar pressure distributions, when the Reynolds number falls to 2.2 × 105 the 
momentum thickness is only 1.5 times as large, whereas the corresponding magnification for 
Reynolds numbers of 1.0 x 105 and 0.3 X 105 are 2.2 and 4.0 respectively. Since increases 
of momentum thickness and hence of displacement thickness will modify the potential-flow 
distribution, the accurate calculation of 0 would involve a step-by-step process giving finally 
values of 0 somewhat less than those indicated above. However this further read] us maent 
of 0 is not likely to be large and will certainly not affect the general form of the curve, which 
shows that  rapid changes in the displacement thickness can be expected at the lower Reynolds 
numbers. The proportionate increase in 0 will affect the pressure in a somewhat similar way 
to the three-dimensional contraction of the flow. In particular, pressure gradients will be 
reduced especially as the separation point is approached. The value of m, which is a linear 
function of the velocity gradient, will therefore be reduced and the separation value (0.082) 
will occur at a point further downstream than the original separation point. 

The other factor causing the pressure distribution to alter with changing Reynolds number, 
the loss in circulation, is fundamentally a result and not a cause of laminar breakaway and cannot 
therefore play any part in determining whether or where laminar separation will occur. I t  is 
sufficient therefore to consider only the original pressure distribution together with the correction 
for the change of 0. 

What  actually causes the experimental distributions to assume their final form can best be 
understood by imagining in the first place that  the circulation is maintained and that  the pressure 
distribution is that  corresponding to potential flow with tile displacement thickness added 
on to the basic shapes. Laminar separation will then take place at the point at which m reaches 
the value O. 082 and further changes in the distribution will result from the decrease in circulation 
and the  existence of a region of reverse flow adjacent to the surface and inlmediately following 
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the separation point. The estimation of such large - changes in the pressure distribution (i.e., 
where extensive laminar separation occurs) from the potential, flow figures would be extrernely 
complicated, if at all possible, and would be, in any case, of only academic interest since 
efficiencies would have reached impracticably low values. 

I t  will be appreciated that  tile performance of cascades at low Reynolds numbers is almost 
entirely determined by the relative positions of the laminar separation and transition points. 
For this reason further discussion of laminar separation would be futile without previous con- 
sideration of the factors affecting transition. 

3:4. T r a n s i l i o ~ . - - T h a t  transition does not, in  fact, occur suddenly at a def ini tepoint  but 
develops through a region may appear to render reference to a transition point meaningless but 
it is nevertheless convenient to consider transition as occurring suddenly at a point. This 
somewha~ artificial conception can be justified if the point is regarded as tile effective centre 
of the region. A definition of the mean transition point is given in Ref. 9. 

The mathematical approach to the. problem of transition has so far been limited to a study 
of tile amplification of small disturbances in the laminar layer. The work of Schlichting in 
this connection (Ref. 10) has had notable success in i ts  agreement with experiment (Ref. 11) 
b u t  this approach has not yet reached the stage at which prediction of actual transition points 
in flows where pressure gradients are present may be under taken .  However; this  theory and 
the fact that  tile change to turbulent flow appears to be gradual rather than a sudden occurrence 
do suggest that  transition is not merely a function of velocities and boundary-layer thicknesses 
at a particular point but is determined by the development of the boundary layer over a con- 
siderable part of the surface. 

Transition measurements made by Preston, Sweeting and Brown {Ref. 9 ) o n  single aerofoils 
in a low-speed wind tunnel at the National Physical Laboratory together with other miscel- 
laneous transition data were studied in great detail with a view to obtaining a better under- 
standing of the factors promoting transition. The forward movement of tile transition point 
along tile surface with increasing inlet velocity (Reynolds number) is Well known but it is also 
evident from the results considered, that  the pressure gradient is itself an important  factor in 
determining transition. In particular large positive pressure gradients accelerate the process 
of transition whilst negative pressure gradients extend the region of laminar flow and cause 
the transition to turbulent flow to be more gradual when it eventually does take place. These 
very general deductions give no practical assistance in the matter  of determining actual transi- 
tion points but are nevertheless of great help to qualitative analysis of the results especially 
in conjunction with the work on the laminar layer. 

I t  is now possible to consider in greater detail the relationship between laminar breakaway 
and transition at low Reynolds numbers. A t  high positive incidences (but still below the cr i t ical  
value) the pressure distributions have, on the convex suction surface, a sharp suction peak 
located close behind the leading edge. As the incidence is reduced this peak becomes more 
rounded and moves back towards tile trailing edge (see Fig. 9). If the peak is too sharp and is 
followed by an excessively steep pressure gradient, i.e., above the critical incidence, efficiencies 
fall rapidly. Thus it appears that  pressure distributions with a moderately sharp suction peak 
near the leading edge on the convex surface are likely to give the best overall performance at 
low Reynolds numbers. 

This conclusion can also be reached from theoretical considerations. In the expression 
given for m in equation (7) the velocity gradient corresponding to the separation value of 0. 082 
increases as the fV~ 5 ds term grows smaller. Separation will not occur until  the pressure 
begins to rise (i.e., after the suction peak} so that  as this peak moves back along the surface the 
value of the integral fVo 5 ds up to this position increases and separation will subsequently occur 
in  correspondingly smaller pressure gradients, and tile actual rise in pressure from, tile point of 
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maximmn velocity (suction peak) will be reduced. At the other end of the scale it is Clearthat  
when the pressure gradient becomes very large, as with excessively high incidences, separation 
will occur even though the fV~ 5 ds term is still relatively small. From the conclusions reached 
in respect of transition it will be realised that  an appreciable pressure rise before the separation 
point will be beneficial in that  it will promote early transition and so tend to create a turbulent 
layer before the theoretical laminar-separation point is reached. The type of pressure dis- 
tribution which permits an appreciable pressure rise before the laminar-separation point is, in 
fact, of the form suggested.earlier, i.e., having a sharp suction peak close to the leading edge 
and it is significant tha t  this type of distribution offers a further advantage in respect of low- 
speed performance. This advantage arises from the considerable rearward movement of the 
separation point due to the increase of displacement thickness at low speeds, a factor which 
tends to reduce pressure gradients over the front portion of the aerofoil but  has considerably 
less effect on the fV~5 ds term. This latter point is illustrated in Fig. 15 in Which the positions 
of the laminar separation points over the range of Reynolds numbers for representative peaked 
and rounded distributions are p lo t t ed .  These are for the 20-deg camber cascade at ~1 = 50 deg 
and 40-deg camber cascade at al = 50 deg respectively. 

No mention has so far been made of the effects on the concave (pressure i surfaces of the blades. 
Large pressure rises do not normally occur on these surfaces and thus laminar breakaway will 
not take place except at high negative incidences. However, {n the case of tile 40-deg camber 
cascade at ~1 = 35 deg there was evidence of local separation taking place shortly' after the suction 
peak on the concave surface at the maximum Reynolds number but the effect disappeared as 
the Reynolds number was reduced. The disappearance of laminar separation at lower Reynolds 
numbers does not, in fact, contradict previous conclusions since it was found to be caused by 
increases in boundary-layer thickness and loss it~ circulation causing general reduction of pres- 
sure gradients. 

3.5. The Turbulent Boundary Layer.--It. is in the region of the turbnlen~ boundary layer 
that  most of the pressure recovery along the surface from the suction peak must take place 
and, since the diffusing cascade fs inevitably associated with high pressure gradients, it is obvious 
that  the turbulent layer represents an important  factor in the performance of the separate 
aerofoils of the cascade and thus of the cascade as a whole. 

Two particular features of the turbulent boundary layer are of significance in :[his type of 
flow, namely : 

(a) Turbulent layers can remain in contact with the surface against considerable rises in 
static pressure, though not !ndefinitely. 

(b) The skin-friction coefficients in the turbulent layer are much higher" than those in the 
laminar layer. 

That  there is a definite limit to the total  pressure rise which can be obtained in the turbulent 
layer is shown by certain of the experimental results in which there is evidence of turbulent 
separation occurring near the trailing edge. One such case is the-30-deg camber cascade at 
~1-----60 deg in which the pressure distribution (Fig. 10) is noticeably affected at the higher  
speeds, the  separation effect being shown up by a flattening out of the pressure rise on the suction 
surface towards the trailing edge. The associated efficiency curve has a definite peak  at a 
Reynolds number of 3.0 × 105 and thereafter turbulent separation causes increased losses in 
addition to the gradual increase of skin-friction loss which is discussed la ter  in  the report.: I t  
may be imagined that  turbulent  separation; which is commonly referred to as stalling, is purely 
a high Reynolds number phenomenon for a given incidence but  it will be shown subsequently 
that  under certain conditions turbulent separation can reappear at low Reynolds numbers. 

Whereas a few exact solutions have been obtained for flow in the laminar layer and reasonably 
accurate and workable methods have been devised for the general case,  the mathematical 
approach to the more complex flow in the turbulent layer has reached a less advanced stage. 
Some of tile approxfmate theories for the turbulent boundary layer are discussed in Appendix 
V and reasons are given for the choice of Hewson's method in this work. 
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The two forms of Hewson's approximate equation are : 

1 +  3Vo 1 , . .  . .  
(9) 

the first equation being an approximate form of the second. These equations apply up to a 
critical point which is defined as the point at which dO/ds reaches the value 0.01 and which 
indicates the beginning of the region in which the pressure difference across the boundary layer 
itself becomes significant. The critical point is reached before separation proper but it is clear 
that  any appreciable pressure difference across the boundary layer will reduce the normal 
pressure at the surface and cause increases in the form drag. 

OoTo = (~/½pV~)o is calculated from the Squire and Young friction law for turbulent layers 
(the suffix 0 referring to conditions at the beginning of the turbulent layer, i.e., immediately 
after transition), 

1 
i.e., OoTo = (5.89 log10 4.075R0) 2 "" . ,  . . . . . . . . . .  (11) 

where RO is based on the momentum thickness and local velocity at the edge of the boundary 
layer. 

From these equations it can be seen that  the development of the turbulent layer is greatly 
affected by conditions immediately after transition. If 00 increases, the turbulent layer develops 
more rapidly, the critical point is reached sooner and the point of breakaway also moves forward. 
The variation of RO likely to be encountered is summarised in Appendix VI. It  is clear tha t  
extension of the laminar layer by delayed transition will have an adverse effect on the turbulent 
layer since the value of 00 is increased and,--for the same pressure rise from the suction peak, 
pressure gradients in the turbulent layer must be increased to compensate for reduced gradients 
in the laminar layer. 

These effects act not only as the result of changes in the basic pressure distribution but are 
also influenced by varying Reynolds number. Whereas, at reduced Reynolds numbers, the 
starting point of the turbulent layer is moved towards the trailing edge, the value o£ 0 at transi- 
tion increases and the distance between the commencement of the turbulent layer and  the 
critical point is smaller. These two factors act in opposition and although a decrease in Reynolds 
number from the maximum value will cause the critical point to move rearwards along the 
surface as the speed continues to fall the increase in the value of 00 will overcome this effect and 
cause the critical point to move forwards again. This latter condition is usually obscured by 
the onset of laminar separation but is of importance in cases where the laminar-layer charac- 
teristics are favourable. 

Detailed calculations on the turbulent layer have been made and some of the results are shown 
graphically in Figs. 16 and 17. Fig. 16 shows the growth of the momentum thickness along 
the surface for the 30-deg camber cascade at ~1 : 60 deg and at Reynolds numbers of 5.1 × 105 
and 0.95 × 105 and the critical gradient dO/ds is also indicated. Both the Hewson formulae 
were used in a number of the calculations but the differences in the resulting values of RO were 
slight. 

The modified Hewson equations covering the region after the critical point and up to separa- 
tion have been described briefly in Appendix V and have been applied where possible to these 
results. On Fig. 17 the relative positions of the critical and separation points, as calculated by  
this method, are compared. T h e  considerable distance between the critical point and separa- 
tion should be noted. I t  is significant t h a t  the experimental pressure distributions show 
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first signs of irregularity at positions roughly midway between these two points. Unfortunately 
neither the position of the critical point nor that  of the separation point presents a direct Criterion 
for the beginning of a region of high loss but it would appear that  adverse effects are negligible 
if the critical point is fairly near to the trailing edge (say within 0.2 chord length) provided 
that  pressure gradients in that  region are not excessive. If the calculated positions of turbulent  
separation, shown in Fig. 17, are marked on the pressure distributions in Figs. 9 and 10, it will 
be seen that  at the highest Reynolds number fairly good agreement was obtained between the 
calculated and actual separation points. 

3.6. Skin Friction in the Laminar a~d Turbulent Layers.--Accurate estimation of the form 
drag from integration of the normal-pressure distribution projected along the vector mean 
direction is difficult at the higher Reynolds numbers when the form-drag coefficient becomes 
extremely small. Furthermore, the difficulty mentioned in section 2.2 in connection wi th  
three-dimensional flow effects prohibits the use of the standard expressions when these effects 
are present. However, consistent values for both the total-drag and form-drag coefficients 
were obtained in a number of cases and the difference of these two coefficients gives a reasonable. 
indication of the magnitude of the component due to skin friction. Typical values of the 
coefficients plotted against Reynolds number are shown in Fig. 18. 

Since transition points move forward along the surface as the Reynolds number is increased, 
the total  extent of the turbulent layer increases. In addition to this, since skin friction in tile 
turbulent  region is invariably greater than in the laminar layer, the skin-friction coefficient 
may be expected to increase with Reynolds number. This effect is apparent on Fig. 18 in which 
the skin-friction coefficient is equal to the difference in the ordinates of the two curves at a 
given Reynolds number. I t  is interesting also to compare the relative magnitudes of this  
component of the drag for different types of pressure distribution. The type of distribution 
occurring at high positive incidences is associated with large skin-friction coefficients because 
transition occurs nearer the leading edge and also because mean square velocities on the suction 
surface are higher. 

Although the skin-friction drag has little significance at low Reynolds numbers it is of as 
much importance as the form drag at higher air speeds where the efficiency reaches its maximum. 
Once the Reynolds number is high enough to prevent the occurrence of laminar breakaway the 
advantage of high incidence and the resulting position of the suction peak near the leading 
edge is largely offset by the relatively large value of the friction drag, although the form drag 
can become very small as in the case of the 20-deg camber cascade at ~1 = 50 deg (Fig. 18). 

3.7. Pressure Distrgbution and Performame.--Whilst the skin-friction drag in the laminar 
layer is a definite source of loss in this type of flow it, nevertheless, forms only a small proportion 
of the total  loss. The experimental values show that  in all cases when transition occurs late 
(at the lowest Reynolds number) and the laminar layer is maintained over a large part  of the 
surface the friction drag is extremely small. Thus the increase of friction drag as transition 
moves forward must all occur in the turbulent layer since the extent of the laminar layer is 
actually decreasing. This is in agreement with well-established data on friction drag in laminar 
and turbulent layers. The skin-friction coefficients for the laminar layer represent optimum 
values and, since this analysis is mainly concerned with reduction of losses, laminar skin friction 
will not be considered in further detail and cascade performance will be assessed in relation to 
three main factors namely:  laminar separation, turbulent separation and skin friction in the 
turbulent layer. 

Laminar breakaway occurs in all the cases covered by these tests provided the Reynolds 
number is low enough. I t  will only occur in positive pressure gradients, but since these are 
unavoidable in diffusing cascades it may be assumed that  separation of the laminar layer must 
take place at some low value of the inlet Reynolds number with cascades of this type. The 
experimentalresults have shown that  the development of laminar separation causes very large 
increases in the total loss and the efficiency fails to values well below practical limits of 
usefulness. 
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Turbulent breakaway can have similar serious effects on cascade performance. Although 
extensive turbulent breakaway did not occur during the tests on which this report is based, 
at even higher incidences very extensive turbulent breakaway takes place, this phenomenon 
being commonly referred to as ' s ta l l ing '. It  is significant, however, that  in such extreme 
cases, where turbulent separation occurs at a considerable distance from the trailing edge, large 
changes of Reynolds number do not effect any material change (i.e., the movement of the turbu- 
lent separation point along the surface is not large)-. This effect agrees With the theoretical 
calculations, the results of which are plotted on Fig. 17. Severe turbulent breakaway may 
therefore be regarded as limiting the incidence rather than the Reynolds number, though it will 
be shown later tha t  improved blade shapes can delay the effect. 

In cases where turbulent separation is just beginning .near the trailing edge the resulting 
loss is less serious and may only cause a drop of 1 or 2 per cent in efficiency. -Under such circum- 
stances the movement of the turbulent separation point over the Reynolds number  range, 
though small, will be significant and will be responsible for limiting the max imum efficiency 
and determining at what Reynolds number it occurs. 

The effect of turbulent skin friction in limiting the performance can be regarded as of some- 
what similar order to that  of partial turbulent separation. 

I t  has been shown in section 3.4 that  the moderately peaked pressure distributions resulting 
from positive incidence angles give better characteristics at low Reynolds numbers by  inducing 
transition to occur before the laminar separation point has been" reached (compare pressure 
distributions and efficiencies for the 40-deg camber cascade at ~1 = 50 deg and ~1 = 60 deg, 
Figs. 3 and 9). I t  should be noted that  there is a definite limit to improvement by this means 
as above a certain critical incidence laminar breakaway is again encountered, occurring very 
suddenly near the leading edge even at the higher Reynolds numbers, as With the 20-deg camber 
cascade at c~1 = 60 deg. 

In cases where the negative pressure at the suction peak is appreciable, the total pressure 
rise from the suction peak to the trailing edge is considerable and the majori ty of this pressure 
rise must still take place in the turbulent part  of the boundary layer. For this reason and because 
tile turbulent layer covers a larger proportion of the surface, due to earlier transition, losses 
in the turbulent region are increased. In cases where the maximum suction pressure is exces- 
sive, turbulent breakaway either occurs or is closely approached near the trailing edge at high 
Reynolds numbers (40-deg camber, cq = 60 deg ; 30-deg camber, ~1 = 60 deg ; 20-deg camber, 
cq = 55 deg). Under these circumstances the form drag again begins to increase and although 
this increase is only marked in the case of the 30-deg camber cascade at ~, = 60 deg considerable 
increases of  drag would occur in the other cases quoted above if the Reynolds number were 
increased still further or if a higher degree of turbulence were present in the inlet stream. I t  
is clear therefore that  in most cases there is an optimum Reynolds number at which the maximum 
effidency is obtained. This is clearly indicated with the 30-deg camber cascade at cq = 60 deg 
and 55 deg, the optimum Reynolds numbers for these cases being 2.8 × 105 and 4.1 X 105 
respectively. In the cq = 60 deg case for this cascade the efficiency drops from 95.4 per cent 
to "92.4 per cent as the Reynolds number is increased from the optimum value of 2.8 × 105 
to the maximum test value of 5 × 105, the form drag rises sharply. This is anticipated by the 
theory, which predicts that  turbulent separation will occur at 0.15-chord from the trailing 
edge. The effect of separation on the pressure distribution is well defined. 

It  has been suggested previously that,  if separation of the turbulent layer is to be avoided, 
the total pressure rise from the suction peak must not exceed a certain value, and since the 
positioning of this peak near the leading edge is essential for good low Reynolds number charac- 
teristics, this implies a limitation on the maximum lift possible if reasonable efficiencies are to 
be maintained over a wide range of Reynolds number. It  is interesting to note, however, that  
small differences in the pressure distribution can have an appreciable effect on performance 
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and may lead to increases in the maximum permissible lift. This is well i l lustrated by comparison 
Of the pressure distributions at the highest Reynolds number for the 20-deg camber cascade 
at ~1 = 50 deg, the 30-deg camber at ~1 ---- 55 deg, and the 40-deg camber at ~1 = 60 deg. The 
actual pressure rises expressed as a proportion of the inlet velocity head (Ap/lp V~ ~) for the three 
cases are 0. 415, 0. 348 and 0" 336 respectively, the corresponding efficiencies being 96.5 per cent, 
95.6 per cent and 95.9 per cent respectively. The pressure rise from the suction peak to the 
trailing edge as a proportion of ½pV1 ~ is practically the same in each case, the actual values 
being 1.72, 1.58 and 1.69, but it i s  seen that  the development of the turbulent layer is far 
from identical. In the above three cases there is no indication of turbulent separation with 
the 20-deg camber cascade (see Fig. 11), nor on the 30-deg cascade, but  it has occurred in the 
40-deg cascade. I t  is also clear from the pressure distributions that  laminar breakaway is less 
serious at low Reynolds numbers in the 20-deg camber case and this is reflected in the efficiency 
curves. The superior performance of the 20-deg camber cascade apparent at both ends of 
the Reynolds number range (efficiency at ~1 = 50 deg is 94 per cent at a Reynolds number of 
0 .8 × 105 rising to 96.5 per cent at 5 × 105) is caused by the steep pressure gradient immedi- 
ately after the suction peak (Fig. 11) permitting more of the total pressure rise to take place 
in the laminar layer and allowing the pressure gradient to be gradually reduced as the t ra i l ing  
edge is approached. The full significance of this detail in the form of the pressure distribution 
will be made clear later in this section when the optimum form is considered. 

Turbulent  skin friction is more difficult to assess and there is no ready me thod  of estimating 
its value in any particular case. The advantage of the suction peak near the leading edge in 
promoting early transition and delaying the onset of laminar breakaway will be partially offset 
at higher Reynolds numbers on account of the increased loss due to skin friction in the turbulent 
layer. To a certain extent this effect seems unavoidable but some improvement is possible 
if high local ,velocities are not reached after the ,transition point. The possibility of reducing 
the actual skin-friction coefficients as given by the Squire and Young law (equation (11)) offers 
further opportunity for reduction of this loss but the value of RnO at transition for the different 
cascades at a particular inlet Reynolds number does not show a very wide variation. It  seems 
likely that  an a t tempt  to increase its value, and thereby reduce the skin friction at the beginning 
of the turbulent layer might ult imately increase the possibility of turbulent breakaway. 
Appreciable reduction of skin-friction loss appears feasible only in cases where performance 
at low Reynolds numbers is. not important  and the transition point need not occur near to the 
leading edge. 

4. Velocity Distributions.--4.1. Derivation of Optimum Velocity Distributions.--To sup- 
plement the conclusions reached earlier on a qualitative basis regarding the most favourable 
form of velocity distribution for particular and specified working conditions it is clearly desirable 
that  quanti tat ive relations should be established. Unfortunately the previous analysis of 
both-laminar and turbulent flows cannot be applied to enable estimates to be made of theoretical 
distributions unless transition points can also be predicted with some degree of accuracy. The 
necessary mathematical  data for predicting transition is not, at present, available so tha t  in 
the general case the qualitative conclusions cannot be improved upon, 

However there are two special forms of velocity distribution which are worthy of special 
s tudy and which being themselves determined precisely by  mathematical  relationships may be 
of considerable assistance in providing exact datum lines for the synthesis of practical 
distributions. These two special cases are referred to as the ' Idea l '  forms for the velocity 
distributions in the regions of the laminar and turbulent layers respectively and represent the 
distributions which permit the maximum pressure rise from the suction peak to the trailing- 
edge stagnation point without the possibility of breakaway occurring at any Reynolds number. 

4.2. Ideal Form for the Velocity Distribution in the Laminar iLayer.--According to the 
approximate theory of Thwaites laminar separation will not occur until  the parameter m reaches 
the value 0. 082 so that  separation can be avoided altogether, if m never attains this value. If 
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a dis t r ibut ion is derived in which m is ma in ta ined  at a cons tant  safe value (slightly less t han  
0.082) th roughout ,  separat ion will not  occur and, fur thermore ,  the  m a x i m u m  pressure rise 
will be obtained.  This la t te r  condit ion can be verified if a short  section of length  ds is con- 
sidered, at  some position on th6 surface over which the pressure gradient  can be assumed constant .  

The value of ~ V 5 ds and of V at this section will be de te rmined  by  the previous form o f  the  

dis t r ibut ion and the m a x i m u m  pressure gradient  (a u n i q u e  funct ion of the veloci ty  gradient)  
will be a t t a ined  if m has its m a x i m u m  permi t t ed  value. Thus the m a x i m u m  pressure rise 
over the  short  section is achieved if m is ma in ta ined  at its highest pe rmi t t ed  value ; this same 
a rgumen t  applies at every  point  along the surface so tha t  the sum of the pressure rises over 
a large number  of short  sections (the total  pressure rise) will be a m a x i m u m  if m is kept  constant  
at  the  chosen safe value. 

I t  is interest ing to find the m a x i m u m  pressure rise which can be obta ined  under  these con-  
dit ions and thus to invest igate  the possible l imit  of improvemen t  in low-speed characterist ics 
which  can be achieved by  inducing early t ransi t ion wi thout  any  corresponding forward m o v e m e n t  
of the separa t ion point.  

These condi t ions are l ikely to be fulfilled in the case in which m remains cons tant  at  some 
safe value sl ightly less than  0.082. The der ivat ion of ma thema t i ca l  expressions for this 
par t icu lar  form of veloci ty  dis t r ibut ion is given below. 

Then  

[; ] d V  b V5 ds + X1 

0"45 d-~ V6 = --  m' . . . . . . . . . . . .  ( 1 2 )  

where  X1 = f b 
0 

V 5 ds and m' is the constant  value for m, so tha t  

f s _ _  q/]4 t V 6 
V ~ ds + xl - -  

d V  
O. 4 5 - -  

ds 

Different iat ing wi th  respect  to s 

_ _  6m'  V 5 

0" 45 

m ' V  6 d2V 

O' 45 ds 2 

s /  

or 1 - -  
- -  6 m '  

O" 45 

m ' V  d~V 
d s  ~ 

( d v , ?  . 
0.4s \ / 

Thus 
0 . 4 5 + 6 m ' ( ' d V ' ~  2 - -  

\ d s /  
d*V 

V - - 0  
d s  2 

so t ha t  d V d V  
----0, where r = 

0 . 4 5  -¢- 6m' 
m r 
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d V  
- - A  and, on in tegrat ion V . . . . .  

where A is a constant .  

d V  
Thus - -  A ds 

V' 
1 

In tegra t ing  

ds 

(r  - 1) 

where  B is another  constant .  

V -I'-~l = A . s  + B 

Thus V -/~-1) = --  (r --  1)(A.s + B) . . . . . . . . . . . .  

and the general  solution is 

1 
g : , , . . . , . o . , o ° . , 

(Ds + E )  ~/l'-~l 

the  two constants  D and E being de te rmined  by  the b o u n d a r y  conditions. 

, . a ° °  (13) 

(14) 

F rom equat ion  (14) above 

d V  - -  D ( D s  + E )  -'/('-~) 

d s  (r  - -  1) 

- -  D V  "~:: 
° ° • • ° • • • • , 

(r --  1)(Ds + E) 

Assuming tha t  V = Vma~ (s/b) ~/4 from s ---- 0 to the suction peak where  s = b, 

then  

But ,  since 

then,  at s -= b, ds 

f b V 5 xl  = ds -~ O" 4444Vma.%. 
0 

d V  - -  m'V,,a~ 6 

0" 45 × 0" 4444Vm~x 5b 

¢4/~ I V max 

0.20b 

. .  ( i s )  

- - D V m a x  

( r - -  1 ) ( D b + E )  
from equat ion  (15). 

This condit ion does not  imply  con t inu i ty  of d V / d s  at s = b and  there  is, in fact, a definite suct ion 
peak at this point.  

Thus  D _ _ 5m' 
(r --  1)(Db + E) b 

1 
But  (Db + E) 1/('-11 ---= vmax from equat ion  (14). 

Therefore D - -  5 m ' ( r  - -  1) 
bVma. "-1 
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1 
and E -- Vmj_ ~ [1 -- 5m'(r -- 1)! 

Ds+E--1 I-5m'(r-- 1)s ] 
VmJ - ~  b + 1 - - 5 m ' ( r -  1) 

and the final form of the solution is : 

g Z VE~X 
+ • 

Expressed in non-dimensional terms this equation reduces to: 

V k 

V2-  [5~/~q/(~v ,--1)( b -- 1)-j--,11 l/(r-l, °" 

where k -  Vm~x 
V2 

at the trailing edge s = S and V = V2. 

I I (16) 

Thus 1 = 
k 

1/0"-1) 

and k = I 5 m ' ( r - - 1 ) ( S  1 ) - t - l l  1/(~-1) . ." . . . . . . . . .  (17) 

In this case and in that  considered in the next section the velocities considered are those a t  
the edge of the boundary layer, but, as has been explained previously, these velocities correspond 
to those on the surface in the potential-flow case, so that  the velocity distributions obtained 
should be considered as potential-flow distributions. 

The general form for this distribution is shown in Fig. 19 in which a value of 0.01 is taken 
for b/S amd m' is kept constant at 0.080. 

It is of interest to deduce the reduction in velocity from the suction peak to the trailing edge 
which is possible with this special form of distribution. The following table gives the relation- 
ship between k and b for the cases of m constant at 0. 080 and 0. 070 respectively. 

m ' = O . 0 8 0  

b 
0.001 0.01 0.05 0.10 0.15 0-20 

k 2-19 1.77 1.51 1-40 1.34 1-30 

m ' = 0 . 0 7 0  

b 
0-001 0"01 0"05 0"10 0"15 0.20 

k 2.06 1.69 1.46 1.36 1.31 1-27 
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k =- Vr,~IV~ is a measure of the maximum velocity reduction which can be achieved if m' 
is not to exceed the given constant value. , 

I t  does not follow that  this form of distribution gives the highest possible lift while adhering 
to the ilo-breakaway condition and further mathematical  work may provide distributions which 
do, in fact, give rise to greater lift coefficients. It  is likely, howevero that  with such a distri- 
bution it will be necessary to obtain the max imum pressure rise over at least a length of the 
surface approaching the trailing edge and for this part a curve of the form derived above would 
be used, modified values for X~ being required to determine the constants in the equation. 

4.3. Ideal Form for the Velocity Distr~b~ution in fhe Turbulent L a y e r . ~ I t  h a s b e e n  noted, in 
the earlier discussion, tha t  losses other than those due to skin friction in the turbulent layer  
do not become appreciable until  after the critical point. Thus, if the critical point can be delayed 
sufficiently these losses will never occur. The critical po in t  is defined as the point at which 
dO/ds reaches the value 0.01 and it is clear that,  if this value is not reached, the critical point 
will be eliminated. I t  can also be  shown that  the maximum pressure rise under these conditions 
will be obtained if dO/ds is maintained at its maximum permissible value throughout. 

The form of the distribution for dO/ds = cons(ant = ¢ is beet derived from the von K~rm~n 
momentum equation with an assumed form for the skin-fricti0n coefficient. Hewson has shown 
(Ref. 3) that  the normal equation without the extra term allowing for pressure difference across 
the boundary layer may be used up to the critical point. 

With  the usual nomenclature the momentum equation for the boundary layer is : 

dO 0 dV~ " ~ --  OT . . . . . . .  (18) 
ds + ( H + 2 )  V~ ds - - p V ?  " " 

where Vo is the local velocity in the main stream af the edge of the boundary layer. 

finds that  log (R~0,) -,,- 0.8 log (~-0). . . . . . . . . . . . .  (19) Hewson 

The values for OoTo are given by  the Squire and Young Friction Law assuming Tetervin 's  
relation for 7:/pV ~ (Ref. 3), 

T T " 

i . e . ,  p ~ 2  - -  ,=s0 " 

where the suffix 0 refers to conditions at the beginning of the turbulent layer, 

(o0)°.., 
- O o T o  . . . . . . . . . . . . . . . .  (20) i.e., pV ~ 

OoTo being given by the Squire and Young-Friction Law if 

dO 

ds 

Then 0 = 0 0 + ¢ s  

and equation (18) becomes 

. ¢ + ( H  + 2)  

o r  

- -  constant --- ¢ . .............................................. 

• 

(00 + Cs) dVo_ ooTo 
V~ ds 

¢ ds dVd 
0o + ¢s + (H + 2) V,~ 

~-0o(1"°8OT0 d~ .......... 
(0o + Cs) ~1+°8'~ " 
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Integrating, log (0o + ¢s) + (H + 2) log V~ = -- 0o c1+°'=° To 
o.8t¢(00 + Cs) o.=, + K 

(H + 2) log Ve = - -  OoTo 

F SX~°'8t 
o.st¢ ~1 + 

\ 

- - l o g ( 0 0 + ¢ s )  + K  . 

When s = 0, Vo = V~o and (H + 2)log Voo ----- 

Substituting for K 

- -  OoTo 
0.8¢t- - - log oo + K . 

log ~ --(H+2) t 

Tetervin gives a value of { for t, 

so that  

' ( log ~ (H+2) 0.1336. 

¢S'~ °'st 



1 
For OoTo = 300 

(v/~)o 

0-0002 
0.0004 
0.0006 
0.0008 

(slS)o 

0 O. 10 O. 30 O. 50 O" 70 O' 90 

2 .42 
2.06 
1.87 
1.76 

2.36 
2-00 
1.83 
1-72 

2.22 
1 "89 
1 "74 
1 "63 

2"06 
1 "76 
1 "62 
1.52 

1 "83 
1 "58 
1 "46 
1 "40 

1 "46 
1 '30 
1 "23 
1"18 

1 
For OoTo -- 350 

(O/S)o 

0.0002 2 . 5 2  
0.0004 .' 2.14 
0 . 0 0 0 6 . ,  1.94 
0.0008 1.82 

(s/S)o 

0-10 0.30 

2.46 2.32 
2.08 1.96 
1-89 1.79 
1.78 1-68 

0.50 

2"14 
1.82 
1 '66 
1.57 

0"70 

1.90 
1.62 
1.50 
1.42 

0"90 

1 "50 
1"32 
1 "24 
1 "20  

From these tables the importance of the value of o/S at transition can be appreciated. I t  is 
also seen that  large pressure rises can be accommodated in the turbulent layer provided the form 
of the distribution is satisfactory. The general form for this special distribution (Fig. 20) shows 
that  the pressure gradient is large immediately after transition and gradually falls off towards 
the trailing edge. I t  is interesting to note that  this form is in many ways similar to the ideal 
form for the laminar layer though pressure gradients in the turbulent case tend to be somewhat 
larger. , 

5. Application of Results.--5.1. Applications to Two-dimensional Design.--I t  has been 
made clear from the previous work that,  to obtain the most satisfactory pressure distribution 
for a particular case, all the special features of the case must be considered. The total  pressure 
rise which is a function of the lift is the fundamental  item. In addition to this the 
design Reynolds number and not less important  th  e likely range of Reynolds number must be 
taken into account. 

The results so far have been expressed in terms of velocity and pressure distributions and nb 
direct relations have been established with actual profile shapes. However, it seems apparent 
tha t  a rational design method mus t  start with the velocity distribution and that  the corres- 
ponding profile shape and incidence angle must then be derived. A number of mathematical  
solutions of the inverse potential-flow problem (deriving the aerofoil shape from the velocity 
distribution) have been devised (see Ref. 12). Furthermore the  accumulating series of results 
obtained in electric potential tank measurements should provide a comprehensive fund of data. 
The potential-flow distribution provides a very sound basis for design although the distribution 
obtained in the wind tunnel will be modified by boundary-layer effects. I t  should be appre- 
ciated that  the boundary layer tends to thicken rapidly, where pressure gradients are high and 
thus tends to reduce these adverse gradients. Designing on the basis of the potential-flow 
distribution in which pressure gradients are likely to be higher than those actually encountered 
will thus introduce a certain margin of safety and will render unnecessary long and tedious 
calculations on boundary-layer developments at several different Reynolds numbers. 
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5.2. The Effect of Turbulence.--The effect of varying degrees of turbulence in the main 
stream was not investigated in the experimental work. The degree of turbulence actually 
present was extremely small whereas in compressor practice tile flow will be highly turbulent 
especially at the high-pressure end. 

I t  is widely supposed that  increased turbulence merely has the effect of increasing the equiva- 
lent Reynolds number. There is some justification for this assumption and it may be considered 
that  the laminar breakaway characteristics will be improved on this account. A more detailed 
study of turbulence carried out by Martlew (Ref. 13) in this cascade wind tunnel indicates that  
the assumption of a turbulence factor which increases approximately uniformly with turbulence 
is an over-simplification. I t  should be noted that  increased turbulence will accelerate the 
onset of turbulent breakaway thus increasing the importance of that  effect as a limiting factor 
in design considerations. 

6. Conclusions.--The conclusions of the report are briefly summarised below: 

The pattern of flow through diffusing cascades undergoes considerable change with variation 
of Reynolds number. At low Reynolds number laminar separation occurs causing rapid falling 
off in the efficiency whilst at higher speeds turbulent separation is a source of increased loss. 

The Reynolds numbers at which these effects occur are not even approximately constant 
but  are determined by tile form of the potential-flow pressure distribution. 

The onset of both laminar and turbulent breakaway can be determined by approximate 
mathematical boundary-layer theory provided that  the transition point is known. 

Tile detailed form of the pressure distribution is ilflportant in determining the overall cascade 
performance especially in relation to Reynolds number. Theoretical methods can be used to 
derive the most suitable form for the distribution for given conditions of lift and Reynolds 
number. The most satisfactory general form has, on the suction surface, a well-defined suction 
peak close to the leading edge with a gradually decreasing pressure gradient towards the trailing 
edge. 

These forms of pressure distribution are sensitive to changes of incidence and the more precise 
methods of design outlined ~ will result in considerable reduction in the allowed working range 
of incidence, so that  large changes in the pressure distribution due to change of incidence need 
not be anticipated. 

Three-dimensional effects in most low-speed wind tunnels and in compressors are considerable 
but good correlation with the true two-dimensional case can be obtained by the use of the 
c.orrections given in this report. 

If a normally small trailing-edge radius is used the circulation may  be estimated accurately 
from the Joukowski condition, unless boundary-layer calculations indicate that  separation of 
either the laminar or turbulent layer is imminent. 

The problem of transition is of vital  importance in determining cascade performance over 
the whole speed range and some method of transition prediction is necessary if full use is to be 
made of theoretical methods in design. 
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8. Nomenclature.--The nomenclature used in this report is based on that given in Ref. 4. 
The use of detailed boundary-layer equations leads to duplication of certain of these symbols 
and some alterations have been made from the list of symbols in Ref. 4. A full list of the notation 
used is given below : 

Symbols 

h 

k 

l 
m 

# 
S 

X 

Y 
Y~ 

C 

C~ 

C, 

H 

L 

S 

V 

0 

P 

T 

O) 

r5 

Ap~t~ 

Distance of suction peak from leading edge measured along surface 
of aerofoil 

Total-head pressure 

Ratio of velocity at suction peak to outlet velocity 

Width of stream tube flowing through cascade 
Thwaites' form parameter for laminar boundary layer 

Static pressure 

Distance along sflrface of aerofoil from leading edge 

Projected distance along chord line from leading edge 

Distance measured along plane of cascade 

Blade pitch 

Chord length 

Drag coefficient 

Lift coefficient 

Ratio of displacement-thickness to m0mentum-thickness in boundary 
layer 

Lift 
Distance from leading edge to trailing edge, measured along suction 

surface of aerofoil 

Velocity 
Air angle relative to normal to plane of cascade 

Boundary-layer displacement thickness 

Air deflection 

Boundary-layer momentum thickness 

Contraction ratio 

-Density 

Kinematic viscosity 

Skin-friction coefficient in boundary layer 

Value of dO/ds in boundary layer 

Loss of total head 

Mean loss of total head 

Pressure rise across cascade 

Theoretical pressure rise 
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Suffixes 

2 

3 
! 

C o m m e n c e m e n t  of  t u r b u l e n t  b o u n d a r y  l a y e r  

I n l e t  t o  c a s c a d e  

O u t l e t  f r o m  c a s c a d e  

L a r g e  d i s t a n c e  f r o m  c a s c a d e  o n  o u t l e t  s ide  

A t  t r a v e r s e  p o s i t i o n  

V a l u e s  w h i c h  w o u l d  o c c u r  w i t h  t r u e  t w o - d i m e n s i o n a l  f l ow  

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
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A P P E N D I X  i 

Calculation of M e a n  Values . - -Calcula t ion  of mean values for total  head, etc., from the outlet 
traverse readings can present a number of anomalies unless the exact method of obtaining a 
particular mean and the significance of the mean so derived are specified. At the position 
where the outlet traverses were taken (i.e., a chord length downstream) variations of static pres- 
sure across the wake had been virtually damped out and, for the purpose of calculation, this 
pressure could safely be assumed to be constant over the entire length of the traverse. However, 
despite the considerable simplification resulting from this, difficulty still existed in computing 
the correct mean values. 

From energy considerations it is clear tha t  the mass flow through the region of high loss (the 
wake) is proportionally less than tha t  outside the wake and this fact must be allowed for in a 
computation of the mean energy of the flow. Thus • 

g t h  ~ Energy transmitted per second through a section of length dy and unit  width = p2' 2 ~ dy 
where the index ' refers to local conditions at the traverse position. Also total  flow through 

cy+yp , , 
a length corresponding to one blade pitch = jy p= v= dy. 

Mean energy transmit ted per unit mass flowing 

fY-% ." V 'h ' y p2 ~ 2 @  

£Y+YP I t j, p V dy 
and mean loss of energy 

~Y+Yg) t TT" t l ~  / 

f yY+YP , p2 V (  dy 

where the suffix 1 refers to conditions at inlet to the cascade. 

The resulting loss of energy is a small quant i ty  compared with the energy transmit ted and thus 
a slight error in the calculation of either integral will give a greatly magnified proportionate 
error in the value of the energy loss. This source of error can be overcome by rearranging the 
above equation, i.e., 

' v " h  

mean energy loss = '  . . . . . . . . . . . .  (23) [ Y+YP ' V  ' 
P~ 2 d y  

o y  

and, since it follows from Bernoulli's equation that  the total  head remains the same outside 
the region of viscous effects, the integral in the numerator of the above expression is equal to 
zero outside the wake. Since the static pressure along the traverse is virtually constant P( 
can be assumed to be constant and will cancel out in the above expression. The mean outlet 
velocity is given by 

mean l?( = V~ = 1 [~+Y~ V( dy 
y p o y  

Energy per unit  mass is equal to total-head pressure expressed in absolute units so tha t  equation 
(23) gives, in effect a total-head loss.. This will be represented by  ~,, the suffix e indicating 
that  it has been derived from energy considerations. 
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The outlet velocity head is thus : 

• ½p~ lP= '2 = h ,  - - ~  - -  p='  

and a Value for the efficiency dan now be obtained. 

It  can be seen at once that  the mean outlet velocity head at the traverse posftion ( =  ½-p~lT(~) 
is not equal to ½p(12()= which must give the true Value when the wake has eventuaUy been 
smoothed out into the main stream, since continuity demands that  V',. shall remain the same. 
V~ and 12( are, in fact, identical but the symbol ~7( is used at this stage to emp.hasise tha t  it is 
a mean value. 

This new value for tlie outlet velocity head [½p~ I?(~ t leads to a slightly different value for the 
total-head loss and the derivation of the corresponding expressions from tile momentum equa- 
tions i s  described below. The apparent anomaly arising from the differences between these 
expressions for total-head loss, etc., and those derived previously indicate a l imitation of the 
usefulness of t h e  energy method. 

The energy method implies that  no further energy is lost after the plane of the outlet traverse 
and this is, clearly, not the case since further mixing losses must occur. I t  gives, in fact, the 
efficiency of the cascade between the two planes considered (the positions for the inlet and 
outlet traverses). The value of &, depends on' the rate of decay of the wake and it is likety 
that  at lower speeds the wake will have spread further by the time the outlet traverse plane 
has been reached. However, provided that  the traverse positions are specified, the va lues  
for efficiency, etc., given by the above expressions are quite satisfactory for purposes of com- 
parison and have been used where stated in this report. 

The expression for total-head loss resulting from considerations of momentum is derived 
in a similar fashion. The corresponding outlet pressure eventually reaches a slightly different 
value. 

The final expressions are : 

_ __ 1 fY+*P 
tom j p  ,.jy 

I Y+'P ~' + P ( d y  . . . . . . . . . .  (25) and P'~" = P(  2h, yp 
y 

where ~'  = h~ --/a~' 

The second term in each of these expressions is usually very small and can be neglected so 
tha t  ~5~ is derived from direct integration of the total-head traverse. The value for (Sin is larger 
than c5~ and the resulting figure for efficiency is smaller. 

A P P E N D I X  II 

TABLE 1: Contraction Coel~cients (~) 

C a s c a d e  R .  5 . 0  × 105 R ,  2 . 0  × 10 ~ R~ 0 . 9  × 105 
c a m b e r  ..~ 

(deg) (deg) ~ cq - -  c~ ~ ~ ~.1 - -  c~2 ~ ~ ~1 - -  ~2 

40  
30 
20 

- 4 0  

5O 
5 0  

60  

28°35  ' 21o25 , 0 . 9 3 5  
30015 , 19°45 ' 0 . 9 4 0  
30023 , 19037 , 0 . 9 3 6  
30000 , 30 ° 0 " 7 8 0  

28°50  ' 21°10  , 0 . 9 2 4  
30°04  ' 19°54 ' 0 . 9 3 5  
30031 ' 19°29 ' " 0 . 9 2 9  
29o49 ' 30o11 , 0 . 8 1 1  

35°41 , 14°19 ' 0 . 9 6 3  
30054 , 19006 , 0 . 9 4 2  
30037 , 19023 , 0 " 9 4 3  
30°15  ' 29045 ̀  0 . 7 9 6  
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A P P E N D I X  I I I  

C o r r e c t i o n  o f  P r e s s u r e  D i s t r i b u t i o n s  f o r  S ~ r e a m  C o n t r a c t i o n  

The figure below shows diagrammatical ly  a plan view of the cascade and tunnel.  

of ~ . . . . . .  t l  " "  l 2 • 

flow . . . .  J ~ "  . . . . . . . . . . . .  _ . - t _ _ .  

l~ is the  wid th  of a narrow s t ream tube at the centre of the tunnel  (in the  plane of traverse) 
on the  inlet side of the cascade and 12 is the  width  of the same tube on the  outlet  side (after 
contraction), p~ and Ve are the  local pressure and veloci ty just  outside the boundary  layer on 
the  surface of a blade of the  cascade. The suffix [ ],=~ refers to conditions which would obta in  
wi th  two-dimensional  flow. 

The form of the  contract ion is defined by the  width  of the tube at a distance x along the chord 
line of the  blade and this has been taken  as • Ii - -  (l~ - -  12 ) ( x /C)"  

so tha t  for this position [V~] ~=i = tl - -  

11 
I t  is also assumed tha t  --  

l= 

a n d t h e n  [ V ~ ] ~ = I = I - - ( 1 - - ~ ) ( C ) "  
V~ 

and [V~]t=~ = t.V~ . 

F rom Bernoulli  the  total  head  outside the  boundary  layer 
2 V 2 = hl = ~  + ½ p v 2 =  [p~]~=~ + ~p[v~]~=~ =p2 + ½oF~2 = [p~]~:~ + ½o[ d~:~ 

O being taken as constant throughout. 

Then po -- p,  = ½p(V, 2 --  Ve2) 

and [Pal,=1 --EP2],=~ - -  ½ p ( [ V d , = ?  - IVy],=?) . 

- - E ~]~=~ + [  ~]~=~ v ? )  Subtracting,  ([ibo]~=, [P~.]e=l) (Pa -- ibm) = ½p(V~ ~ - -  V 2 V ~ - -  

and [p~]~=l -- [P2]~=~ P~ -- f12 1 _ - -  [ ~]~=~ + [  ~ ]~:~-  v~")  ½~EVJ~=? ½p[v~]~=~' + [v~]~:? (Y°2-  ~ ~ v ~ . 

[V~]~=land V2 , Subst i tu t ing for 

But v ?  = ½P v :  - (po - p ~ ) .  
½p 
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Therefore " / x  \~ 'q  
- e ~  ½pvZ L[G],=, ½ , o [ ~ , U  - -e)~(,.g') ] 

1 
-t- 1 - - - -  = [ [ -. , ,  1 (p~ - 2 , )  i 2(1 1 

~ {pV2 l - - (1  - - * )  +~-~ -- ~ ) (~ . )  -- (I__ Q2LC ) J +  1 _ _  

x p~ - p ~  [P~]*=~, --[P~]*=~, = 1 -b- 1 - -  (1 --  ,) . 1 

I t  is assumed tha t  the normal  pressure on the surface of a blade is equal to the pressure at 
the corresponding point  at the edge of the boundary  layer, 

i.e., P n o r m a l  = P 6  = Pn 
where bnor,,~ denotes the pressure at the surface. ,_ 

Then . [P,,o,,,,,,~],=~ -- [P~],=~ = 1 + ~ 1 -- (1 -- ~) ~ )  J L }p V:  1 . }e [ G ] ~ = /  

A P P E N D I X  IV 

Reduction of Pressure Rise due to Co~traction Effect 

Assuming p to be constant  

cos cq for two-dimensional  flow 
COS O~ 2 

[G ] ,=~  

EVIl,=1 
V~ 
VI  

cos gl with con t rac t ion .  
COS cte 

Value of Theoretical Pressure Rise. 

(i) Using t he  actual  velocities 
~P~,, = ½p(W - v : )  

= ½pv?(~ c°s~ ~'~ ~2) 
COS 20~ 2 

(ii) Assuming cont inui ty,  and 

(a) basing calculations on V~ 

(b) basing calculations on V~ 

1 - 2[-/ 'c°s ° q )  ' ~1 ] 

\ c o s  0 ~ 2 / J  
• ° 

(26) 

(27) 

. (2s) 
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APPENDIX V 

Calculations ir~ the Turbulent  Bou~¢dary Layer 

Available approximate methods and reasons for the choice of Hewson's method. 

Though much workis  now being carried out in the investigation of the nature of turbulence 
and the derivation of mathematical theories there is still no exact solution in the case of the 
turbulent boundary laYer. 

However, a number of approximate solutions based on the yon K~rm~n momentum equation 
have been devised, notably those of Doenho~ and Tetervin (Ref. 14) and Garner (Ref. 15). 
The merits and limitations of both these theories are discussed in detail in a report by Fage 
and Raymer (Ref. 16). The yon Kgrm~n momentum equation, used here in a shortened form, 

i.e., dO + (H -t- 2) O dV___~ q_ ~ _ 0 
ds V~ ds p V~ ~ 

does not give a solution in itself but  requires the use of further relations between the variables 
involved. These further relations are usually obtained from experimental results and take 
the form of empirical laws relating the local skin-friction coefficient to the local Reynolds number 
VoO/~, of the turbulent layer and expressing H (the turbulent-layer form parameter) in terms of 
O, s, V~O/v, and V~. 

These extra equations are, at present, purely empirical and are not yet standardised either 
in form or in the values of the constants used. .  The von Doenhoff and Tetervin, and Garner 
methods use different basic equations to supply the extra relations needed. Both these methods 
are lengthy and tedious though they claim to predict turbulent layer development up to the 
separation point. 

Hewson (Ref. 3) has made a considerable advance by considering the turbulent-layer develop- 
ment in two distinct stages. He has taken account of the pressur~gradient across the boundary 
layer itself, the existence of this pressure gradient being verified:by his experiments. Hewson 
also shows that  this pressure gradient inevitably occurs before the separation point is reached 
but  that  it is unimportant  in the earlier stages of the turbulent layer. The stage at which this 
pressure gradient across becomes significant is called the Critical Point and is defined as the 
point at which dO}ds reaches the value of 0.01. This definition cannot be regarded as entirely 
satisfactory but  it certainly represents a good approximation to results of Hewson's experiments. 
I t  is important  to appreciate that  these experiments cover many cases in which the turbulent 
layer is developing against  an adverse pressure gradient. 

For the purpose of calculation Hewson deals with each stage of the turbulent layer separately. 
His results make it clear that  the difficulties and errors of calculation arise after this critical 
point. For the first phase he has derived a simple and rapid approximate method using the 
Squire and Young law for the skin friction (see equation 11) and assuming a constant value of 
H. This approximation gives extremely good results up to the critical point after which the 
error increases rapidly. 

From the critical point up to separation Hewson introduces an extra term into the momentum 
equation in order to allow for the pressure gradient across the layer. 

The extra term is shown to be equal to : 

1 . d  ~ " 

wherey~ is the dis tancefrom the surface measured along the normal at a point. 
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The m o m e n t u m  equat ion becomes : 

& + (H + 2) V-; ; p V? ds __0 --  dye) 

Hewson's  solution for the phase from the critical point  to separat ion is obta ined by replacing 
the extra te rm in the  above equat ion by  an approximate ly  equivalent  te rm expressed as a 
function of the known quantities.  A value of 2.65 is assumed for H at separationl 

The l imitat ions of the Hewson me thod  are indicated by the large number  of approximat ions  
involved but  it was, nevertheless, considered preferable to the other methods  ment ioned  for the 
calculations of turbulent- layer  development  along the blades of the cascade. The reasons 
for this choice follow from the discussion above and are s ta ted separately below : 

(a) The location of a critical point  which, as is indicated in section 3 of the report, is of im- 
portance in itself 

(b) Ease of calculation up to the critical point  

(c) The predict ion of a separation point  is given, by a me thod  derived from exper iments  
carried out in adverse pressure gradients 

(d) The calculation from the critical point  to separation is based on a logical correction for 
the pressure gradient  across the boundary  layer i t se l f - -a  phenomenon  whose existence 
has been verified experimentally.  

The full details, work and method  ate given in the original thesis (Ref. 3). 

A P P E N D I X  VI 

Values of  RO at Trans i t ion  

RO is the Reynolds  number  based on the m o m e n t u m  thickness and the velocity at the edge 
of the boundary  layer, 

so tha t  

RO - -  V~ . 0 

The values of RO at t ransi t ion for a number  of cases are shown in the  table below : 

Cascade RO corresponding to 
camber 
(deg) Inlet R = 5.0 × 105 Inlet R = 2.0 × 105 Inlet R = 0.9 × 105 

30 
40 
40 

(deg) 

6O 
60 
50 

250 
280 
330 

220 
251 
261 

193 
208 
223 

These figures are representat ive of the whole series of tests and it is seen tha t  there is con- 
siderable variat ion in the value of RO at transition. It  appears tha t  RO at t ransi t ion increases 
as the  actual inlet Reynolds  number  is increased and tends to be larger with the less peaky  
types of pressure distribution. 
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