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Summary.—A~ method is developed for the calculation of the pressure distribution and the aerodynamic forces and
moments on a wing performing harmonic pitching and heaving oscillatioris. The calculation is based on the assumption
of inviscid potential flow without shock waves and is restricted to small incidence, so that thelinearized theory is valid.

In contrast to other work in the field the theory applies to all Mach numbers. It is restricted to small values of the
reduced frequency and should be valid for the usual range of short periods occurring at present in flight. The formal
solution yields two integral equations for the parts of the load, which are in phase and go out of phase with the oscilla-
tion ; these are of the same form as the corresponding equation in steady flow.

The way is thus opened for solutions over the whole Mach number range at small frequencies, if the corresponding
_ steady solutions can be found. The calculation is in fact easiest for M = 1 and has been done here for Delta wings to

supplement a previous supersonic calculation®, made on different frequency assumptions, which broke down near
M = 1. It appears from the two sets of results that the short-period oscillation will be unstable near M = 1, if the
apex angle of the Delta wing is greater than about 60 deg. This confirms a now generally recognised trend.

Such results near M = 1 must of course be invalidated to an unknown extent by thickness viscosity and shock waves
at their maximum effect. Nevertheless it is unlikely that these factors will remove the critical nature of the transonic
damping as calculated by this method. With all its obvious limitations this method, when extended to other plan-
forms, should provide a useful tool in studying the effect of geometrical parameters on the stability of an aircraft at

transonic speeds.

NOTATION
14 Undisturbed velocity
X, Y, 8 Cartesian co-ordinates
u, v, W Perturbation velocities, caused by the wing
7 Time
p Air density
M = V/a,, Mach number
P Static pressure

1 R.A.E. Report Aero. 2468, received 4th November, 1952,
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NOTATION—continued

I = (p— p.)/p, Enthalpy (acceleration potential)
& Velocity potential
7
w

Il

27 f, Frequency

né[V, Reduced frequency

hH,7 o See equations (11) and (18)

b Wing span

A Aspect ratio o

S Wing area .

S# Part of wing area in forward Mach cone of pivotal point (x, v)
¢ Mean chord
s = s(x), Equation of leading edge (local half span)

A4, Sweep angle of leading edge
h = x/¢, Axis position, measured from apex in terms of mean chord (positive,

if pointing backwards) ' '

q Angular velocity about y-axis

9% Amplitude of rotary oscillation

w* ), of heaving oscillation
I = 24p/pV? Load coefficient

Suffixes , ; real and imaginary part
Aerodynamic coefficients (Fig. 1b) :
Heaving oscillation : w_wr

VoV

w*

eq’ nt

Rotary oscillation : l—; = — z?-'*(l + i~ _5 x“)e“’"
p?/f? = — 9*(z; | fwzs)e™
— M . .
ST T D¥(my + tomy;)e™ .
tch: Y _IF—%) _ ¢ 2%
Steady pitch : V= % =7 Z
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1. Introduction.—Experience with modern aircraft has shown that there may be a marked
decrease of the damping of the so-called short-period longitudinal oscillation at transonic speeds™?.
This may be so serious that an aircraft, which behaves quite well at subsonic or even supersonic
speeds, becomes dynamically unstable at transonic speeds. Having regard to the importance of
this problem for the design of high-speed aircrait and the difficulties involved in experimental
research in the sonic range, both in wind tunnels and in free flight, it seems worthwhile to supple-
ment the knowledge on this subject by theoretical calculations although these are necessarily
based on certain restricting assumptions. The theory can help to show the important parameters
which influence the problem and underline at least general trends.

The theory presented in this paper is based on the assumption of a compressible flow without
friction or shock waves. All disturbances, caused by the oscillating wing, are assumed to be so
small that quadratic terms can be neglected and the usual linearized theory can be adopted.
The results of a sonic theory which neglects shock waves and friction must clearly be used with
some care. It will be seen later that for Delta wings the theory predicts for some cases a severe
instability near M = 1. It is unlikely that the neglected factors will change the critical nature
of the transonic results and so it is suggested that those plan-forms which show up badly on this
theory should be avoided in design and those which seem better should be tested. The theory,
incomplete as it is, should be a useful tool in sorting out geometrical wing parameters in the
transonic region.

Stability calculations for aircraft at subsonic speeds were usually based on stability derivatives
derived from a quasi-steady calculation or steady experiments. Recently the importance of the
“ unsteady ’ derivatives, based on the calculation of the pressure distribution over an oscillating
wing, has been stressed”2. In flutter work, where the reduced frequency o is high, derivatives
have always been calculated from a simple harmonic motion of the wing, usually only for sectional
properties, where the two-dimensional solution is assumed to be sufficient. In a recent paper
Neumark® has summarized the results of the two-dimensional theory for subsonic speeds, as far
as smaller frequencies are concerned, as they occur in the so-called ‘ short-period oscillations °.
The same two-dimensional stability derivatives have been used by Pinsker* and by Statler®
to calculate the longitudinal stability of an aircraft. The finite aspect ratio of the wing has been
allowed for in these calculations by a simple conversion formula, derived from the steady case,
whereas Reissner® treated this problem in a more elaborate way. He succeeded in separating
the problem into two parts, one of them being the problem of two-dimensional oscillatory flow,
the other being the problem of the spanwise circulation distribution. W. P Jones’ reduced the
calculation of the load of an oscillating wing, at least for smaller frequencies, to a similar problem
for a related plan-form in an incompressible flow and solved the latter by the vortex-lattice
method®® introducing the two-dimensional oscillatory solution for each chordwise section.

However, it seems by no means certain, that this approach leads to the correct answer for small
w’s, since the term log @, which occurs in the two-dimensional calculation, becomes more and
more unimportant as the aspect ratio decreases (compare Reissner and Stevens', Miles").
Without resorting to two-dimensional results Multhopp in an unpublished paper succeeded in
reducing the problem, for small values of w, to the solution of two integral equations of the same
form as occurs in the load calculation for a lifting surface in steady flow, the unsteadiness being
allowed for by additional downwash terms. As in most other papers, where the numerical work
has been kept within reasonable bounds, he introduced the parameter w/(1 — M?), which is
assumed to be small. Thus the results become invalid as the sonic range (M ~ 1) is approached.

On the supersonic side a number of papers exist which deal with the oscillatory flow problem
in two dimensions or with wings with a ‘supersonic’ leading edge only (Garrick and Rubinov'®*
or the flutter report™, W. P. Jones'). From the point of view of sonic flight the case of * subsonic ’
leading edges is more interesting. Only a few trends from the large output in this field can be
mentioned here,’ . ' o
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Robinson® outlined a method, valid for all frequencies o, without preducing numerical results.
The numerical work is considerably simplified by restricting the calculation to small frequencies,
so that w/(M? — 1) is small or equivalent assumptions (Robinson', W. P. Jones', Ribner and
Malvestuto®®, Miles”, Acum®, Watkins*, Moeckel®, Mangler® or Temple®). Again by virtue of
these assumptions the results become invalid near the sonic speed.

Furthermore an attempt has been made to extend the conception of the wing of a very small
aspect ratio which was so successful in steady flight conditions®®**"** to unsteady flight
(Ribner”, Garrick (App. B of Ref. 14)). Unfortunately the range of validity of these unsteady
results becomes more and more restricted as the sonic speed is approached. As we shall see
later on, a small increase of the aspect ratio at sonic speeds has a great effect on the results.

Under these circumstances it seems only natural to try another attack on this problem of
oscillatory flight by going back to the beginning and devising a method which is valid for the
whole Mach number range. The differential equation, which governs this problem, is related
to the general wave equation for acoustic waves (section 2.1). By using the fundamental solutions
of this equation, which correspond to oscillatory sources and doublets, the problem can be shown
to require the solution of an integral equation for the doublet strength (section 2.3). In section
2.4 this equation is given. in a more convenient form valid for any Mach number and
any frequency.

Since for stability calculations we are only interested in small values of w, this equation can
be reduced for subsonic and supersonic flow to two integral equations for the real and i imaginary
part of the load distribution (section 2.5). These equations are of the same type as the corres-
ponding steady flow problem of a lifting surface, the unsteadiness being allowed for by an
additional downwash term in the equation for the imaginary part. Since this procedure restricts
the frequency but not the Mach number, we may go to the limit of sonic flow (section 3). Here
the corresponding problem for steady flow becomes particularly simple®. . In subsonic flow the
steady problem has not yet found a satisfactory solution valid for any aspect ratio, although
Multhopp’s method™ seems to meet most of the requirements for such a calculation.

As an application results for a Delta wing at sonic speeds are obtained in section 4. All stability
derivatives, required for the calculation of the short period longitudinal oscillation of a Delta
wing, are compﬂed in Table 1. Strictly speaking these derivatives are based on a sustained
harmonic oscillation and thus are valid only near the stability boundary. But it is felt that
these derivatives can be employed in connection with the usual equations of motion even for
damped oscillations or near M = 1, where some of the derivatives cannot be regarded as con-
stants, but are functions of the reduced frequency.

The two-dimensional case of an oscillating wing at sonic speed which has been dealt with by
Rott® and Jordan (unpublished paper), has been left outside the scope of this report. It is
remarkable that the limiting case of steady flow does not produce finite derivatives in two-
dimensional flow, whereas the three-dimensional case contains the steady flow as a limit (o — 0).
An extension of the theory to higher frequenc1es (flutter calculations) is not attempted, although
it may be feasible.

2. Princuples of the Theory of an Oscillating Wing.—2.1. The Equations of Motion.—We consider
a thin wing at a small incidence in a parallel flow and assume that all perturbations caused by
the presence of the (oscillating) wing are so small that the linearised potential theory can be
applied. Then a velocity potential 4 exists so that the perturbation velocities #, v, w are given by1:

0 0 o
(ﬁ,v:i),w:%. .. .. . . .- .. (1)

1 We use a Cartesian system of co-ordinates with x in the direction of the undisturbed velocity ¥ and z directed
upwards (Fig. 1a)
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The linearized Euler equations, which connect the velocities with the pressure p or enthalpy I, are

-~

9 5 ol
5T Vo) T o
. 5, o ol
0 ) ol
wt V%)Y "o

J

where V is the velocity of undisturbed flow and

'
I:Lf%[%sz+ﬂi&i. Tt (3)

o0

since the density p in the denominator can be replaced by its value p,, in the undisturbed flow.
The continuity equation can be linearised as

ou  ov Jw  M*E/O 0
a_x+§§+a-z+'f/_2 -a—t—|—V@>I:0 .. .. .. .. (4)

where M = V/a., is the Mach number of the undisturbed flow. By differentiating this equation
again along a streamline (v = const, z = const) (using the operator 9/of 4 V' 9 /ox) and introducing
the derivatives of #, v, w from (2) we find :

ot 9t 0 1o ey

This is the general wave equation which must be satisfied by the enthalpy /. By using Bernoulli’s
equation

: N . |
%+Va>®+l_lw.. e (6)

which is a consequence of (1) and (2), and by inserting (1) into (4), we can prove that the velocity
potential ¢ also satisfies the wave equation (5). o

2.2. Boundary Conditions.—We consider a thin flat wing performing heaving or rotary oscilla-
tions in a steady flow . Then all perturbations must vanish at a great distance from the wing
(M < 1) or along the Mach cone extending from the foremost point (apex) of the wing (M > 1).
The motion of the wing surface may be described (in the usual complex notation) by

int
2

7=4,=12% (X, ¥).€

i.c., we consider a wing performing harmonic oscillations of the frequency h(: 2z f). The
downwash inside the wing surface S is prescribed by the wing motion

_ . 7 0 0
ol ,0,4 =5,9,0) . =( 5, +V 5 )

— V eint (%EO + %%) = V<w7 + 1’_;1’6 wi> ef‘ﬂi.
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Here #é/V = (¢ = mean chord) denotes the reduced frequency. (Letters with bars denote
amplitudes ; suffix , refers to real part, suffix ; to imaginary part of a complex function.) Thus
we have for a heaving oscillation

*
Gy = 2,% = const = — %
the boundary condition
%(x,y,()):—%*zconst,w,=—l%*,w¢=0.. . .. . (7a)
and for a rotary oscillation 2, = — 9*(x — x,) about the axis x = x, :
Z5,(% v, 0 ( 4 — il )> w, = — 9% = const,
w, = — 0% X (7b)

c

These conditions have to be satisfied for all points inside the area S of the wing.

In order to transform the conditions (7) for the downwash w into conditions for the enthalpy
I=1I(x1y,2.e"

we integrate the first equation (2), which reads for a harmonic oscillation :

. 0 ol
<m + Vg;)ﬂv + 7

along a streamline (y = const, z = const) and obtain
@(x,y,2) = w(x,Y,2t). e

1 (" ol ,
— il —in(x—&) )V
VJ_ az(«f,y,z)e aé . .. .. . . . (8)
The amplitude I of the enthalpy must satisfy the differential equation
82 2
a—x2_|_ 2—|— > = M* —>f .. . e 9)

as follows by inserting I(x, y, z, £) into (5).

2.8. Solution of the Wave Equation—We try to solve the wave equation (5) or (9) for the
functions I or [ respectively by a distribution of pressure doublets over the wing area. In
accordance with the assumptions of the linearized theory these singularities will be placed in
the plane z = O instead of the actual wing surface. They produce a pressure discontinuity
between both faces of the wing and therefore a load distribution. The strength / of this load
will be chosen in such a way that the resultant downwash according to equatlon (8) satisfies the
boundary conditions (7), prescribed by the motion of the wing.

We obtain a pressure doublet by superposing a source and a sink of a harmonically oscﬂlatlng
strength. The source is given by (see Refs. 7, 13, 16, 24, 32, 33 and Fig. 10) :

— ein(t — MR/V)
v
with v={l =2+ (= M)y — )+ =)},
)_—~M(x—x/)—]—e7’l —
R = T =20 (e=41).
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R is the radius of the sphere of influence (Fig. 11), affected by a disturbance, which was originated
in the point (x', ¥, 2') a certain time MR/V ago. Since the centre of this sphere travels with the
velocity V' and the disturbance with the velocity V/M, every pomt (%, ¥, 2) enters this sphere
of influence but never leaves it in subsonic flow. Thus we havee = + 1for M < 1. Insupersonic
flow every point (x, v, 2) inside the after-cone (' = 0, " < x) experiences this disturbance twice,
once when entering and once when leaving this sphere of influence. Thus we have ¢ = + 1
for M > 1 and both solutions have to be added. We have to remember that every source afiects
only points inside its after-cone (¥ << x,#" = 0) and every point (x,y, z) is affected only by
singularities inside its fore-cone.

For convenience we shall retain the solution given above with &, but we have to remember
the meaning of &, which is e = 4- 1 for M < 1 and e = 4 1 for M > 1 with both solutions
added. Later on we shall see that there is only one solution for M = 1, which can be obtained
by a suitable limit M — 1, taken either from the subsonic or the supersonic side.

From the solution for a source or sink, we obtain the solution for a doublet in the point
(x', 9, 0) by differentiating (3/0z") and putting 2z’ = 0 afterwards:

___a_ (1_ ein(t — MR/V)> —_ E l ein(i — MR/V))
’ ’
02" \7» =0 FANA o =0

__ Z(l - Mz) 7'1/”/ M im"— ih
= 3 < —l—aVl_Mze R . .. .. (10)
with
r={x—2)+ 1 - M)} "= (y =)+
nM nMR . S . (11)
kZm{ (X“K)M—i—é‘?’}‘——v*
A distribution of doublets of the strength
Lz, v, 8) = Uz, y). e™ .. . .. - . .. . - (12)
over the plan-form S of the Wing results in an enthalpy function
= 2 o Mz ) ’ ’
Ity 2) = — ¥ (18 ” (&', 5) < g M )> e ‘iﬁﬁﬂ ... u3)

The strength / must be chosen in such a way that equations (7) and (8) are satisfied inside the
plan-form of the wing.

It can be shown that for points inside the plan-form

Ix,y, +0;8) =I(x,y, £+ 0) ™

Ve, .
?ZZ( ,y)er L. .. - .. .. .. . . (14)

so that the pressure is discontinuous along the wing surface. The local pressure coefficient ¢,
or the local load is obtained from
Ap A 4I(x,y, — 0; 1)

cj):%ﬁ—?_:_gfz: : 7 2 =1 (x,y) . ™ .. .. . (15)




When introducing (13) into (8) we obtain the following integral equation for the unknown
load coefficient / :

2 Xy, 0) = }i_f,“o{a% A=) J {fsf i, y’)a-m@ e (1”’_MM—2)> d”y@} dx} (16)
where
e s [1 j‘VIM<X_x)+<x—x')—’”—"{—fZQ”} (17)
or .
aM 1+ M , (14 M)o?

This last form for H is most important, since it will enable us to consider the case of sonic flow
M = 1. This would not be possible if the usual procedure of introducing a ‘modified’
velocity potential or acceleration potential (see App. II and I1I) had been followed. When we
approach M = 1 from the subsonic side (¢ = + 1) and remember that a point « is only influenced

by singularities x” in the fore-cone (x' < x), we find that » — |x — x'| for M — 1 and H tends to
a finite limit. This will be explained in more detail later on.

It may be pointed out, that for supersonic flow (M > 1) the integral in (18) and (16) is to be
extended only over that part S* of the wing area S, which is inside the fore-cone X — %’ >
v/ (M* — 1) |o| extending from the point (X, y). Since 7 tends to zero along this fore-cone, the
integral does not converge in the usual sense. As has been shown previously (compare Refs.
34, 35, 36), the ‘ principal value ’ of the integral or its ‘ finite part ’ has to be taken in this case

(Hadamard)t. In the next section we shall derive another form for the integral equation (16),
which will be more convenient for all Mach numbers.

2.4. Sumplification of the Integral Equation for [.—In order to simplify the complicated integral

equation (16) for /, we make use of the following two relations which can be proved for any
integer number m and ¢* = 1 :

. {e( T x>7J e 7{7 <m<1 — M) 4 e 14_%?)
R S
(=" (= Wﬁw}} )

The proof of these relations follows by differentiation of the left-hand side. Their difference is

9 .9 —iH %' XN am| Z’Z‘ —iH %' — XN
(ax+ax, {e (8_ ), ]_Ve ) L@

1 It has been shown in Ref. 37 that Green’s method for subsonic flow can be extended to supersonic flow and leads
to the same results as Hadamard’s approach.
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From (19) we have form = 1 :

—iH , MY Kl M ; [e
s\ M ey >_<_ax’+V(l—|—M) {

—iH< x/ - x)]

2 & — ’

o ¥

which enables us to express the influence function in equation (16) in a simpler form. Thus we
have instead of (16) ;

: ol X — a2\ |dx dy
(X, 5, 0)—}5130;{2%[ fj 1, )<_aix’+V—(im—|—LM) [e—m o x)] v dy dx}.(ZZ)

We 1ntegrate by parts (with respect to ') the first term of the integral and obtain (x" = x,(y’)
and #’ = x,(y') are the equations of the leading edge and the trailing edge, b = wing span) :

' o 2 (7" X —x ¥ gy
— .= Tl ’ —iH ’—d
(X.9,0) =lim az{ S,EJJ <l(x, e < )) .

€

<&

<&

b/2

+8%Ju<a% 1, ) + g ) ) ( o d} (222)

In order to perform the integration with respect to x in the last term by means of equation (21),
we define now a new quantity L(x, y) by the relation :

g Ly P
L(x,y) : Iz, v) — —17(1%]\7) Lle" L&, y) dE. .. .. .. - (23)

L agrees with [ in case of a steady flow. Its relation to the velocity potential is explained in
Appendix I. We differentiate equation (23) with respect to x and obtain the important relation :

% mL__ﬁ m M

T et A S T (@4
and finally, by solving this equation for 7 :
l,3) = Lt y) + | emirn“ L,y de. . (25)
’ ’ V(l _l_ M) . » « .

Inserting this into equation (23) leads to an identity as required.

Now we apply equation (24) in the last term of equation (22a), introducing L instead of /,
and find after another integration by parts (with respect to x') :

(x5, 0>=3gnoj—z{~—J s ({ie,y) =ty (s = ‘x))dy &

z : . 0 wm i x’—k ax’ dy’
+8ﬂj_ ey (= o+ 7 { (-7, >] 4 dv}




In the second of these two integrals we apply equation (21) for m = 1, which shows that the
influence function is the derivative with respect to x of the bracket. Thus the integration over
x can be performed. In the first integral we remember that L = /for x” = x,. We obtain finally :

@ LN P O e N B2
V(X,y,O)_hm {&zjsfl,(x,y)e <e >J 5

2—>0 aZ V4 o
x=X

b/2

X r
z N X — x ay’ dx
4§JJ Liy)|e(s =55 )} } - @)

—b/2

where L(y') = L(x,, ¥') — (%, ») can easily be obtained from (25).

This integral equation for L(x’, ¥’) holds for any frequency # and any Mach number M. We
have to remember that ¢ = + 1 for M << 1 and e = 4+ 1 or ¢ = — 1 for M > 1, where both
terms have to be added. For supersonic flow the area S has to be replaced by the part S* of S,
which is inside the Mach fore-cone originating in the point (X, y). The second integral in (26)
represents the wake effects as can be seen by introducing the new variable ¢ = X — x + x,
in the chordwise integral, which is then extended over the wake. Strictly speaking the integration
by parts, which lead to equation (26), should have been performed for this area S* instead of
S, L.e., the values along this fore-cone #» = 0 should have been used instead of the values along
the trailing edge. But this contribution is zero since the ‘finite part ’ of the integral must be
taken as explained before (Hadamard). For subsonic flow the Kutta-Joukowsky condition
(I = 0) must be satisfied along the trailing edge.

2.5. Small Values of the Reduced Frequency—The solution of equation (26) in its general
form for any value of » and any Mach number M presents considerable mathematical difficulties.
Fortunately the frequencies, occurring in stability calculations, are usually small so that terms
of higher order in the reduced frequency o can be neglected. However, an expansion of the
solution in powers of w is not feasible near M = 1, as we shall see later on. We shall be forced
to introduce terms of the order log w there. Neverthless terms of the order w? and w?®log o will
be neglected in this paper. :

For the actual calculation we have to split equation (26) into its real and imaginary parts.
We introduce (¢ = mean chord, o = reduced frequency) :

P +dow, |, L=l & dwl,
4 (27)

L=1 +iol, , L=L(x,y) =L, + oL, J

and find from (23) and (25), if terms of the order w? are neglected :

~

L,(x, y) = Zr(x: y)

1 ¥ d

L&, ) =

i4
¥

Lz, y) = Lix, y) ﬁj

Thus /, and L, become equal and /; and L, differ by a term which can easily be calculated.
10
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‘The expression
| Le# = (L,cosH 4 wL;sin H) + tw(L;cos H — L, %sin H)
can be simplified by putting '

. H:H1_|'H2¢
with
oM (14+MX—x x — x
\H1_1+M[ M é - 5} (29)

oo wM e — (x — ) ey +x — %)
*T14M (1 —M) wMd?

Since sin H; and cos H, can be expanded, we have for small values of w :

cos H = cos H,, — H, sin H,,

sin H = H, cos H,, + sin H,,.

As will be shown in section 3 (for sonic flow) and in Appendix IT (subsonic) and III (supersonic
flow), we are entitled to simplify this further and to write

cosH =1
, ~1~sinH=E—1—}—lsinH2£. .. Ve .. .. .. (30)
wsinH =0 @ © o

Thus we obtain from equation (28) the following two conditions for L, and L; :

1 , 2 — x ax’ dy’
w, (X, y) = & js Lr(x,y)<a ” ){;{,‘ =) . .. . (31a)
1 , , x —x ax’ ay’
wlX,0) =g L =)o =5 ) e —FE) @)
where '
v o) — L poon| (Hr 1 X =% dx'ay’
FE) = g 1A ’y)[ o o SmH“XS 4 ﬂisz(y — )
1 [ / dy d
o v A _ay ax :
8z J - J_sz”(y )<8 4 >"LZ§‘ (y — o) e (Bl
depends only on L,, since L, follows immediately from the third equation (28). We have to
remember the meaning of ¢, whichis ¢ = + 1for M < lande =+ lor e = —1for M > 1

with both solutions added. In supersonic flow any point is affected only by points (doublets)
in its fore-cone, so that the area of integration S must be replaced by the part S* of S which is
inside the fore-cone originating from (X, ).

Thus the problem of an oscillating wing is reduced (as far as small frequencies are concerned)
to a steady flow problem. Both the integral equation (31a) for L, and the integral equation (31b)
for L, are of the same type as the integral equation for the load distribution of a wing in steady
flow. The incidence term in (31b) is modified by a term F(x, y), which can be assumed as known
after (31a) has been solved. Since F(x,y) depends on o, the function L; and the load /; will
depend on .

11



The actual solution of the problem and the numerical calculation of stability derivatives
depends on the possibility of solving this steady flow problem. For subsonic flow Multhopp’s
method® is available. Its general applicability may be restricted to not too small aspect ratios
and ‘reasonable’ incidence distributions. Practical experience must show, whether these
restrictions can be overcome. For supersonic flow most calculations have been based on the
theory of conical fields and its extensions rather than on a direct solution of the integral equation.
For sonic flow the solution of the corresponding steady flow problem® is comparatively simple
and easy, and so the remainder of this paper is devoted to a solution of the oscillatory wing
flow problem at sonic speeds (section 3). ’

It may be mentioned here that /; and thus the stability derivatives become independent of -
the frequency if the Mach number M is either small or big compared to 1. In such a case the
function (1/w) sin H,, in F(x, y) may further be simplified as
1. 1 oM(er — (x — %)) M(er — (x — %))
o S = S T e ST M
This assumes that o < < |1 — M?|, which excludes the sonic region. Most calculations up to .
now are based on this additional assumption. A number of authors®®® 18 1718,18,21,2 gyycceeded
in reducing the unsteady case, at least for frequencies w << << |1 — M?|, to a steady flow problem,
by introducing a ‘ modified ’ velocity potential and a  modified * load distribution. The connec-

tions of these methods with the new procedure, outlined in this paper, are explained in Appendix
II and III.

3. Somic Flow.—3.1. The Integral Equation.—All the results derived in section 2, in particular
equation (26), are valid for any Mach number and the results of section 2.4 apply for any frequency
w. Now we consider the case of sonic flow for all values of the frequency as limiting case for a
subsonic flow, Then we have e = 1, M < 1 and

o 0 « >« '
e () — ={if S (32a)
M—>1 4 2 x < x
and from (29) for x = X and ' < x:
. : w|x —x a®
Hozﬂilfln(H)x:X—E [ Z + (x—x’)c'] S . . .. (32b)
Because of (32a) the integration in (26) has to be extended only over the part S* of S, which is

upstream from the point (x, ) (#" < x). Thus we have the following integral equation for sonic
flow and any value of the frequency w :

w

KN CY 7%
2 0) = {1y e

g

bj2 X ‘
£ ' —ig, L % — % dx dy'
T 1 J_b/z L(y") Lt<e 2(1 o x’l>>’”'=*"¢ — }H. . (33)

The Kutta-Joukowsky condition (/= 0 along the trailing edge) now becomes irrelevant,
except for plan-forms (swallow-tailed wings), where parts of the trailing edge are upstream of
certain points (x, y) of the wing. After L is determined from (33), the load / itself is obtained
from (25).

For wings with an unswept trailing edge the integral in (33) may be written as
W 1 L dx dy’ ) .
= (x,v,0) = — L(x', y) e o —— .. .. .. .. .. 33a
g0 = o (e e 00 | (35a)
if we take the ‘ finite part * or ‘ principal value ’ of this integral (see Refs. 31, 34, 35, 36).
12




It may be mentioned that for o =0 (H,=0) we obtain from (33) the case of a steady motion.
The equation is usually written as

s(x)
o w 1 ay’
— = (x50 =— Lix,v") ——
% 2, 0) %J )
(2s(x) = local wing span at the point (x, )). At first we have to solve a two-dimensional problem

in the (y, 2)-plane, containing the point (x, y, 0), and these ‘sectional’ solutions are combined
afterwards in order to satisfy equation (33a) itself (compare Ref. 29).

—s(%)

Unfortunatély there is no similar procedure available for the unsteady case. But the general
problem of a sonic oscillatory flow can considerably be simplified if we restrict ourselves to the
calculation of stability derivatives. Then it is sufficient to consider only small values of the

reduced frequency o = né|V.

As a first step we split equation (33a) in its real and imaginary part. We obtain, using the
notations introduced in equation (27) :

1 L ’ L dx’ dy’
w5 3) = g ([ (LA ) cos Hy + wLi(w', ) sin Holoo
. (34)
R P D
w,(x, y) = y Lf {Li(x ,v')cos Hy — er(x ,¥') sin HO:L:O (y — 9

If we neglect terms of higher order in |w(¥ — #')/2¢| < » we may write as in section 2.5:

oy —y)  el—x)  oly —y)

(cos Hy),—o = €OS

20(x — %) 2c 2e(x — «')
S .. . (35)
- o —a) oy —y) o ely—y)
(Sin Ho)eo = =07 008 e — a) T 2a(x — x)
and i
1 _r = o=y T ely Y )
- (sin Hy),mo = o ©08 %r — ) -+ —sin % — ) . . .. (35a)

: : oy =¥ 5,2 =) :

Since the functions cos % — ) and sin % — ) oscillate rapidly between 4 1 and — 1
as x" approaches x for constant values of y — y" 7= 0, they contribute a great deal to make some
of the integrals in (34) convergent. In such a case the function has to be retained and cannot
be replaced by a few terms of its Taylor series. If we consider only small values of o, the second
term in the first equation (34) may be omitted, and we may write our system in this way :

_ 1 L) g O = V) dxdy”
w,(%, y) = - f5£ L,(x',y") cos Foiw =) (y — ¥V . .. .. . (36a)
_ 1 L eos QY =) _dx dy'
w.,-(x, y) + F(x,y) = . j'sf* L,(«x', v') cos %w — ) (y — ¥V . .. .. .. (36b)
with :
1 Coalr =2 ey —9) 1 . ey —y)F] a¥'dy
Fx ) = 47 jsi LA ") [ 2 COSZé(x — %) T o 2(x — &) | (y — ) (87)
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The real part L, can now be determined from (86a) and the imaginary part L, follows afterwards
from (36b) since F(x, y) does not depend on L, but on Z, only. Both equations are of the same
type. Only the left-hand side is different so that the same method can be applied for the solution
in either case. ‘

A further simplication of the equations (36) results from the fact that for wings of finite aspect
PR ’\2

g—c_%)c—_—j;z) by 1 on the right of equation (36a) and (36b) and in the first

term of (37). This is proved in Appendix IV by showing that the terms omitted in this way

are at most proportional to the reduced frequency . But the frequency must be retained in the

second term of (37) since F tends to infinity for o — 0 and the load L and / becomes infinite for
w — 0.

ratio we may replace cos

Thus our results will depend on the value of w although only small values of w shall be considered
in this paper. If bigger values of w are required, some of the terms which are neglected here,
should be taken into account.

3.2. The Integral Equation for Small Frequencies.—For a wing with an unswept trailing edge
and for small values of » we obtain from (36), replacing the cosine by 1, the following two
equations for L, and L; :

-~

1 ax" dy’
winy) = 4 LW Y) =,
> .. .. .. .. (38)
) 1 d ’ d ’ 4
e, ) + Fis,3) = - [ L) 0

The expreséion (37) for the ‘incidence ’ F(x, y) can be simplified by replacing the cosine by 1 in
the first term. After an integration by parts with respect to #’ (which puts the first term (37)
into a form similar to the right-hand side of (38)), we obtain :

I I Y AR 2
F(x,y) = e fsj I:J IAL,(E, ) 25]0} Y + Fy(x, y) .. .. .. (39)
where '
_ 1 iy L @ — ) dx'dy’

| Fl(x,y)—4n fsj*L,(x,y)wsmzc_(x_x,) b —yp .. S (40)
Equations (38) to (40) follow from equations (31) for the case of sonic flight. Since the integral
equations (38) are linear, we can express L, as a sum of sevéral terms, each of which corresponds
to a certain term on the left-hand side. Thus

' oar N N
L,-O(x,y)zj L,(E,y)ié R . .. .. . .. . (41)

*

P

forms the first contribution to L, namely the contribution which arises from the term
F(x,y) — Fi(x,y). This follows by comparison of (38) and (39) and we can see that the function
(L{x', ¥') — Lio(x, »)) has to satisfy the second equation (38) with F(x, y) replaced by
Fi(x, y). ' _

The contribution to L;, which arises from w;, is zero for a heaving oscillation (equation (7a))
and corresponds to the load distribution of a cambered wing (incidence proportional to x — %)
for a rotary oscillation (equation (7b)). It shall be denoted by L,(x', »') and has been calculated
in Ref. 29 for a big family of plan-forms.

14



The greatest difﬁcﬁlty is presented by the calculation of the load contribution to L, which
arises from the ‘incidence ’ F,(x, v) as defined by (40). We cannot solve this problem for an
arbitrary plan-form in this paper, but shall restrict ourselves to the case of a Delta wing (section 4).

Before proceeding to the actual calculation of F,(x, ) and the corresponding load distribution,
we split Fi(x, y) into two terms, each of which permits certain simplifications and thus makes

the solution possible. We write?

Fi(x,y) = Ful(x, y) + Fn(x, )
where .

1 C o a1l o w(y —y)? dxdy
Fu(x, y) = 4 f5£ [L.(x", ¥') L, (% )] w S 20(x — ) (v — ')

1 [ , “sin ay’
Ful#,9) = 1~ J L, ') U - d%}% .
-5 U

Here the following transformation is used :

and

Loy —y)  dw_ % dx oy —y)

T 2%r—x) " # o (y—y)P’ T2 — x(y)

Since

"’ U U

1% U 0

(y = 1-7811 = Eulerian constant) we may write for small values of U :

%2

J Y ju =1 —log (yU)

U

© . o0 . U
J' sm%d%:smU_i_J CO;%dMZSHlU—IOg(yU>+J 1_—cosud%

(42)

(43a)

(43b)

(44)

(45)

(46)

where terms of the order U® (i.¢., order »®) have been neglected. With the same degree of accuracy
we may replace the sin-function in (43a) by its argument (compare Appendix IV, section 2)

and obtain :
% ps(x)

1 7 ’ ’ d / dx/

Fll(xyy):@J' J [L7(x,y)—Lr(x7y)] -z—)x_x/ i
. 0Jo
a1 [ : __wyst T
Flz(x: y) - 4_7_£ JO Lr(xay) [1 —lOg 85(% o xl(yl)):l ¢
1 [ , £ @y
T i J_ Ly )loe iy 5

The second term in (48) vanishes as is shown in Appendix IV, section 4.

x () s(x7)
1 &y AW
475 JO < 4[0 Lr(x’ y ) C— a JO Ly(x} y ) C- ) X = x/

1 J x — « ds' dx’

Since

— L,(x,s")log —

x dx ¢
(1]

(47)

(48)

(49)

1 The original version of this Report contained an error in the evaluation of F; as was also pointed out in a

private communication by M. Landahi, Stockholm. -
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as follows by an integration by parts, we find

: . 1 x s{x’) ’ l dy' s{x) dy' : d-x’
Fll(ny)_l_Fw(xry):Zgz Lr(ny) P - L, (xy) x — %’
0 0

s(x) - .
1 ci’y wys?(x) ‘
+47‘J L, (x,v") [1_1{%78595 J . .. . (50)

4. The Delta Wing.—4.1. Evaluation of the Integral F,.—For a Delta wing the local span 2s
1s proportional to the distance x from the apex so that the leading edge (Fig. 2) is given by

x¥ = x, = |y|tan 4, = stan 4, o .. .. . .. .. (61)
where 4, is the sweep angle of the leading edge.

For a Delta wing at a constant incidence the load distribution in a steady sonic ﬂow becomes

proportional to s/4/(s* — 3% . ds/dx (compare Ref. 29). Since w, is constant according to
equation (7), we obtain (assuming w to be small) for the first equation (38) the solution :
_ O ) = — Ay S s
L,(x, y) - 4'6?), ox '\/(S B y) - 47!0, \/(82 _yz) dx (52)

where w, is prescribéd by the boundary conditions (7a) or (7b) respectively for a wing performing
heaving or pitching oscillations. It is easily shown by means of equatlon (IV, 20) in Appendix IV,
that (52) is a solution of (38).

When inserting (52) into (50) we find

wyx
Fl(x: y) w, r)—}'{_z log S-Kz (53)
with
dx
Kztan/l,:—o—lj. . .. £ e - (54)

Thus F, is independent of y which will simplify the calculation of the corresponding contri-
butions L, to the load L.,

4.2. Solution of the Integral Equation for L,—Now we are in a position to solve the second
integral equation (38) for L,. As mentioned before the solution consists of several terms, which
correspond to the various terms on the left-hand side (‘ incidence * terms). The first contribution
is given by equation (41) and becomes for a Delta wing :

2 a2
Lofry) = — 20, YW = 0 s8)

c

The contribution L, arising from F, is ‘easﬂy obtained by means of equations (19) and (20)
in Appendix IV. We find

2w, 0 |x ) 2 yox . (
La(x,v) = — = 2 {0_\/{3 (%) —y}logzc_Kz}. . .. .- . (56)

For a wing, performing heaving oscillations we have w; = 0 accordlng to equation (7a). The
entire load is given by equation (55) and (56) :

L—L1‘w—L10+Lll .« .o ; . . .. (57)
For a wing performing rotary oscillations we have an addltlonal load contrlbutlon L;,, which
arises from the incidence term w; in (38). For a rotary osc111at10n we have according to (7b)
w, = — 9% = const, and

wowiTEo_tEoE gy

7
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agrees with the incidence as it occurs on a wing in quasi-steady pitch. The corrésponding load
distribution is '

Liq(x,y)z—4w,8%<x_5x°\/{sz(x)—yz}>.. )

as can be verified by means of equation (IV, 19) and (IV, 20) of Appendix IV. Thus we have for
a rotary oscillation

Li=IL,=L,+1L,. .o
q

4.3. Forces and Moments.—After the solutions L, and L, of equation (38) have been given in
equation (52) and equations (57) and (60) of the previous sections, we can now determine the
actual loads /, and /; by means of equations (28). The term, which has to be added to the
imaginary part of the load, agrees with L, in equation (55). The result can be written in the

following form, if sw/,, is the imaginary part of the load for a heaving oscillation (w, = — w*/T)
and <wl;, 1s the imaginary part for an angular oscillation (w, = — 9%):
=1, \L
lw=2L;y + L, . . . . . (61)
o = b + Liy=l + ]
Using the results (52), (55), (56) and (59) of the preceding sections, we obtain (K = tan 4,):
N
l’, = — W, —f—
K/(s* = %)’
_/_ V \/—_2_3}2)_ w, 3 jx 2 2 yOX
b = — 4w, T 2o e Y — N gy L (62)
l =L __4wi x_xo\/(z_ 2
g — g T " ox z $ Yy )

-

For the calculation of the forces and pitching moments the spanwise integrals of these loads
are required. We obtain, after performing the differentiations with respect to x, for these
integrals :

* ; dy  Awwx ' )
e K%
Wo—s
Ns
ay  2owx’ 1 o/, WYX
] T =T R [1 T 2K ox (" logsK%)} . (63)
N dy _ 2awx 3_o%
ig g - K22 x
vo—s .
We define the longitudinal stability derivatives in the usual way (see Ref. 2) by writing the
z-component of the complex force due to a heaving oscillation @ = — w,V as
— 37 [, + iolyem dxdy = wz, + wZ,
= @e™ (£, + m Z;) = — pV’w,Se™(z, + twz,)

and the complex pitching moment in a similar way.
17
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Splitting thls into real and imaginary parts leads to the following list of stability derivatives
for heaving oscillations (w, = w*/V, w, = 0} :

a
2 =[], 2L, owm = 1 B
S % S
dx d axd | o
xo ax ay ¥ — Xo axay :
QM,WL ff Z S » 2‘1&7) m, = ll lzw z S J
For rotary oscillations (w, = — #*) we write accordingly for the force :
— 3V [ (L, + iwlg)e™ dxdy = 02, + 9 Z;
— 0% (2, + nZi) = — pV'Sw, (2, + iwz;)

and a corresponding expression for the moment. Splitting this expression into real and imaginary
parts leads to a list of derivatives similar to equation (64). By comparison we find that the
“real parts * of the derivatives agree for both kinds of osc1llat10n

2y = Zg My = Wy . L. (65)
and that the ‘ imaginary parts ’ satisfy the relatlons (compare equatrons (60) and (61)) :
25 = 2y + 2, My = My + m, .. .. . . .. (66)

where z, and m, are defined as the derivatives which occur in the quasi- steady theory of a wing
in prtch namely

dx dy

2wz, = (] I Gl 2w,m, _jfl xodxdy

z 5 (67)

The equations (65) and (66) hold for any W1ng plan-form, as was demonstrated by Neumark
and Thorpe®. , 7

We perform the integrations required in (64) and (67) using equation (63). The results are given
in the first column of Table 1. Here # = x,/¢ denotes the axis position in terms of the mean chord
measured from the apex (A positive if pointing backwards).

4.4. Discussion of Resulis.—The results of the preceding calculations, which are compiled in
the first column of Table 1, show that the relations

Zy = 2y , Wy = My . . .. . (65)
hold also for sonic speeds (M ~ 1), if only small Values of the 1educed frequency w are considered.
The stability derivatives, which correspond to quantities in phase with the original oscillation
of the wing, can be calculated from steady-flow theory (see Ref. 29). The same applies for the
derivatives z, and m,. The latter remains negative for all axis-positions.

The other four derivatives which occur in a short period longitudinal oscillation with two
degrees of freedom, z;, m;, 2;, m; are related through the following equations :

25 = 2, + %, My = M, -+ M, . . .. (66)
All these derivatives depend on the reduced frequency w. In F1g 3 the functlon
zy/(Admcot 4) = — % [1 —|—§cot2 A, log( 942 cot? Al)>] oL .. ce (68)

is plotted against cot 4, for various values of w. (— z;) is positive for small aspect ratios (large
sweep angles) but assumes big negative values for larger aspect ratios. These values become
even bigger for very small frequenc1es and decrease W1th increasing . In Fig. 4 the function

m, 1 | .
4ncot/1, 2nc0t/ll ( ) : 32cot .. .. .. .. .. (69)

is plotted against the axis position % = x,/¢ for various values of the leading-edge sweep angle -
A, and three values of w. For small values of the aspect ratio 4 = 4 cot 4,, m, is negative as

18




required for a damped oscillation (see below). But for a leading-edge sweep 4, = 60 deg, (—m;)
becomes zero or negative for an axis position %z = 4/8 at the aerodynamic centre and definitely
negative for positions forward of the aerodynamic centre. Conditions can be improved slightly
by increasing the reduced frequency w.

The present calculations cover only frequencies up to » = 0-1, since it was felt that for bigger
values of w certain terms, which have been omitted in this paper, may become important. It may
well be that the present analysis applies also for bigger w’s, since calculations in the supersonic
and subsonic range by W. P. Jones have shown that the higher frequency terms do not affect
the results very much. But in the sonic range this point requires further investigation. As can
be seen from Figs. 3 and 4 the frequency w has a bigger influence on the results for a smaller
sweep angle and its influence decreases with decreasing aspect ratio.

_ Figs. 5 and 6 show plottings of the derivatives z; and #; for a Delta wing at sonic speeds for
various axis positions 4 = x,/¢. Since z, and m, are independent of the frequency, the influence
of w on z; and m; is similar to its influence on z; and m,;, as described above.

‘The damping of the short-period oscillation depends on the derivatives —z, and — m; (compare
equation (74) in section 4.5). The first quantity — z, is always damping, whereas — m; may
become zero or negative and thus cancel the favourable influence of (— z,). In order to give
an idea of this unfavourable influence of — m; on the damping, Fig. 7 shows the curves — m; = 0
as functions of the aspect ratio 4 and the axis position % for various values of the reduced
frequency w. For all points below these curves, where — m; is positive, we may expect stable
or damped oscillations. . For an axis position behind £ of the root chord, all oscillations becomes
damped, but this c.g. position can hardly be realised in an actual aircraft. For centre of pressure
positions forward from the £ root-chord point, the aspect ratio for which the oscillations remain
damped, is restricted to fairly small values. This applies even for axis positions 2 or 3 mean chords
ahead of the apex. Thus an efficient tail with a sweep of 45 deg would have to work on a
sufficiently long arm (about 3 or 4 tail mean chords) according to this calculation which neglects
all effects of the downwash, induced by the wing, on the tailplane and also the effects of a
vertical shift of the tailplane position. :

It is not easy to discuss the present results for M = 1 in relation to subsonic results for a
Delta wing since they are not available yet up to sufficiently high Mach numbers. But supersonic
results have been calculated before. They are based on the assumption that  is small compared
to (M*® — 1)/M* (see Appendix IIT and Refs. 17, 18, 19, 23). Column 2 in Table 1 shows these
results for the longitudinal stability derivatives of a Delta wing. As can be seen the sonic results
can be obtained from the supersonic results by taking the limit M — 1, except for the term :

M?*(1 — H)
CMEP—1
which occurs in the ‘ dotted * derivatives and tends to

4 tan 4
cot? Al IOg \W‘j)% -+ oo.
In our sonic solution we have a corresponding term
wy cot® 4,
4

which also tends to 4 oo, if  tends to zero. This is quite satisfactory from the mathematical
point of view, since in the supersonic case o was assumed to be small compared to M? — 1,
which means that o must tend to zero as M approaches 1, whereas in this paper o was retained
for the sonic calculation.

On our present knowledge it is not easy to close the gap between the two theories. In Fig. 8

an attempt has been made to interpolate between M = 1 and the supersonic region. The broken
curves which connect the values for M =1 of the present theory with the supersonic results
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depend on the frequency w, but with increasing Mach number the results become more and more
independent of w, provided » is small so that one single (asymptotic) curve can be used.
Obviously, these interpolated curves which require confirmation by an actual calculation, have
to be used with some caution. Nevertheless it seems to be evident that the ‘ dotted ’ stability
derivatives for a Delta wing of moderate sweep undergo (for a fixed ) rapid variations with
M near the speed of sound. This variation means an appreciable loss in the damping of
the short period longitudinal oscillation. For 4, > 60 deg this loss of damping does not occur.
If the interpolated curves in Fig. 8 are trustworthy, it appears that the supersonic results compiled
in Ref. 23, hold for Mach numbers down to about M* = 1-2 as far as small frequencies are
concerned.

For wings of a very small aspect ratio, the term proportional to cot® 4, can be neglected in the
results of Table 1. We obtain agreement with the results of Garrick (Appendix B of Ref. 14),
which are valid for any Mach number at a very small aspect ratio. - - :

4.5. Application to a Particular Aircraft.—In order to illustrate the application of these results
to actual aircraft, an example is given here, to indicate broadly what happens. According to
the elementary theory*® of the short-period oscillations the reduced frequency w is given by

amzvq:ﬁ @%—@Q}” S ¢ )
M’LB Zw 14 . :
2 |

W . kB

gTég’ ’LB=F .. .. e . . . (71)

with
M =

(W = weight of the aircraft, 2, = radius of gyration, p = density ratio, ¢z = moment of inertia
ratio). We introduce the restoring margin H,, which is according to Table 1 (for a Delta wing
inside the Mach cone from the apex) :

m, 4

H=""=2—h .. . . (1

o

e (O
N CEy)) | N

where E and H depend on a = cot A,4/(M? — 1) (sce Ref. 23). The damping per period is given by

e~B*/me where the reduced frequency o of the (undamped) oscillation is introduced according to
(73) and B is ‘

and have

Mg

S 74

32

In order to have some idea about the magnitude of these quantities, an example was calculated.

The inertia ratio was chosen as 7; = 0-25 and the density ratio as » = 200. TFig. 9 shows the

reduced frequency o and also the damping per period exp(— Bz/(uw)) for a Delta wing with

60-deg leading-edge sweep at sonic speeds (i = 0-25, = 200) for various values of the static

margin H, = 4/3 — h. This particular aircraft is dynamically stable for H, > 0, but h = 4/3 — H,
should be less than 1-00 to obtain static stability at low speeds (subsonic a.c. at 2 = 1).

In order to show the variation of the damping with M this function has been plotted for the
same aircraft (¢; = 0-25, g = 200, 4, = 60 deg) against M for a static margin H, = 0-333,
0-1 and 0-033, For M = 1 the results of this paper are used and for M* > 1-2 the results of
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Ref. 23 (based on the assumption o < << M* — 1). .The intermediate values are interpolated
and have to be used with some caution. This particular aircraft (¢5 = 0-25, p = 200, 4, = 60
deg) is stable for all Mach numbers and all static margins A, given in Fig. 9. Results for a wing of
45-deg sweep (i = 0-25, p = 200) are also shown. The stability of this aircraft would be fairly
poor for a Mach number range between M* = 1 and M* = 1-245, if h = 1.

Before any general conclusions can be drawn from these calculations the effects of a change
in the plan-form of the wing (taper) will have to be investigated.

5. Conclusions.—A new approach to the theory of a lifting surface performing harmonic
oscillations (heaving and pitching oscillations) is suggested, which covers also the sonic range.
Tt is shown, that for small reduced frequencies the problem can be reduced to the solution of an
integral equation which has the same form as the integral equation for the lifting surface in steady
flow (see section 2.5 and Appendices II and III). This equation has been solved for sonic flow
(M = 1) and all 8 stability derivatives for a short-period longitudinal oscillation (with two
degrees of freedom) have been calculated for a Delta wing (Table 1). The results can be found
in Figs. 3 to 7. They show a marked decrease in the damping of the short period longitudinal
oscillation at sonic speeds for wings of moderate leading-edge sweep. This oscillation becomes
undamped for all axis positions in front of the aerodynamic centre unless the aspect ratio
A = 4 cot 4, is sufficiently small. A leading-edge sweep of about 60 deg is required to obtain
damping for a tailless aircraft with a positive static margin. The shape and position of a tail
- must be carefully chosen if it is to improve damping. The damping improves slightly with

increasing frequency. :

Although these calculations are based on potential theory, which neglects the effects of thick-
ness, friction and shock waves, they probably show the main features of the actual flow. It seems
unlikely that the bad results of the potential theory can be off-set to a predominating extent by
the influence of shock waves or friction. The results will depend a great deal on the plan-form of
the wing, and further calculations are required to show this influence, e.g., the eiffect of taper.
Such plan-forms, for which even this theory shows rapid variations of the stability in the sonic
range, should be abandoned in favour of other plan-forms with better characteristics. These will
have to be tested as to their behaviour in a real flow. Thus it is hoped that the linearized theory
outlined in this report, will provide a useful tool in the investigation of transonic stability

problems.
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APPENDIX I

The function L(x, )

We assume a periodical oscillation and the velocity potential 4 in the form

qS:gZ(x,y,z).ei”‘.\\ .. .. .. . - .. .. .. (I, 1)
Then ¢ satisfies Bernoulli’s equation (6) in the form :
m o\ - - =
V7+5;6>¢=—(I—IOO). .. . S o (I, 2)

According to (15) fhe discontinuity 47 along the wing surface produces a load /and a discontinuity
A¢ of the velocity potential

A = 4§, o = 26" V. $4(x, y, + 0) O ()
and we have from (I, 2) (¢* = 0 along leading edge) :
(3N 4‘_j — ] '
4 V+8x>¢ —ZVZ—Z(x,y). .. .. .. .. .. (I, 4)
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We insert this in (23) and obtain after an integration by parts

S
0* ¢
I, y) = 4 [aix + Z—%*}

o* g M
Lix,y) =4 [f;-%%mﬁ] ‘

APPENDIX II
Small Frequency Oscillations tn Subsonic Flow

We consider the case of small frequencies o only. Then we may simplify (25) as

= [T M x—¢ ds
Lﬁ(af):liMJ LEY) — 7o ¢ L,(é,y)};:=0

. C
x L

S .. (LY
rx
1 ! d&
Lti(y) — m Js Lr(E: > g
With the same approximation we have for x = X : ,
('cosH)xsX: cos H, — H,sin H, ==cos H, 0 2
(sin H),_x = H,cos H, + sin H, ' ) (L, 2)

For a wing of finite aspect ratio H, is finite, except in the limiting case M — 1, where the
integration has to be extended over the forward part S* of the wing, where " < X and H, tends
to infinity as ' tends to X. Now we have shown in section 3.2 that even in this limiting case
the following approximation is valid for small frequencies : . :

(cosH),_x =1 ‘ Ii 5
(sin H),_x = H, + sin H, (L. 3)

and therefore it applies also in the case M < 1. When introducing these simplifications in (26)
we obtain the system of equations (31), which is valid for small frequencies (¢ = + 1). Finally"
we may go back to the original load distribution [ = /, 4 sw/; by means of equation (28).

The solution /, will be independent of w, if » is small enough. This is not true for /; and L,
at least not for Mach numbers M near 1. In this case F(x, y) in (31c) depends on » and so does
the function /; and the stability derivatives derived from /. If M is small enough, so that

. wlMo® 1 . oM{x—x —7)
—sin —————,—— = — — sin

w ix — x4 7) w (1= MPe

M x—x —v7

can be replaced by — T Z , the load /; becomes independent of w.
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In this particular case where w < < |1 — M?| we may simplify the equations (31) by intro-
ducing the functions

B ) =D o iM%
y BT P T 0 S M

oo Mx’
¢ *(x, v') = ¥ exp <— (12__—]‘;2)9

where ¢*(x’, y') as defined in (I, 3) describes the discontinuity in the Velocity potential between
both faces of the wing. Then we have according to (I, 5)

L(x',y’)exp( joo M/ > (aqbl mf‘]f% 29‘52 , S s )

When taking real and imaginary part and inserting this in (26) we obtain, using (I, 5) for L,, a
simpler system of two equations for the real and imaginary part of ¢,*. If we prefer to retain the
complex notation, we introduce the transformation (II, 4) in equation (24) and obtain :

W, oy * ’LcoM é.* - tewlMy X — % ax' ay’
IR A I Gl (R

_ e [T ety [ (wﬁ‘"") T
2(1 + M) ¢ A | v ST vyt T

—bj2

-

- R 0§ )

-

with
T M*%
(1 — M*e~ .
When retaining only terms of the first order in /|1 — M?| the exponential in the wake term may
be replaced by 1 and the integrand in the first term of (II, 6) may be written as

O, * 1wM b * 7 0, N ]
l: 1—M2< cax’>}< e )

H*=H —

= (4 ) R B+ ol — )L

Thus we obtain (smce $.* = 0 along leading edge) :
w, X— % dx' dy’
7 % + ;
B3 =g ] < > o (¥ — )
" 4tn,y)
J— ___.L_.‘ 1 xi;
27(1 — M) J_b/z = < (x — ')+ 7 ) . (1L, 7)

When separating this equation into real and imaginary parts, we obtain two equations for
é,,* and ¢, *, each of which is of the same form as the corresponding equatmn for steady flow,
the incidence term for ¢.;* being modlﬁed by an ‘induced incidence ’, which depends on ¢,;*.

This system of equations for ¢,,* and ¢,,* is equivalent to the method suggested by W. P. Jones
in a number of papers (see Ref. 7, 8). It was also suggested by H. Multhopp in an unpublished
paper, derived there without reference to the complete wave equation. Multhopp started instead
with the transformation (II, 4) and after neglecting terms of higher order in w/(1 — M?), solved
the ordinary Laplace equation for ¢*, in terms of an integral equation.
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It may be pointed out that the simplifications, which lead from (26) to the system (31a) to
(31b), are not justifiable for a wing of infinite aspect ratio. In order to show this, we consider an
incompressible flow (M = 0). In the two-dimensional case, where L and w is independent of v,
the spanwise integration in (26) can easily be performed. We obtain from (26)

W 1 (LY dxy L) [ ¥ dw
V(X,O)_%Jlx,_X+47z I T TR T

X

where

Lix) = — sz e %,

. ¢
1

e

(11, 9)

The second integral in (II, 8) (which represents the wake influence) does not converge, if the
exponental function is expanded in powers of w, as it was done for a wing of finite aspect ratio.
This integral can be written as

X Xz <]
iw b dx 1T — i in d%
e c = € [4 e —
X — % u
— o

% — X

with
U=w

We introduce the integral-cosine and integral-sine, as defined in (IV, 5) and (IV, 6) and have

| ea‘ux;xt [_ Gy + Z@ _ Si(U)>}

(i x;>[_ o520 (2ol

(y = log C = 1-781072, C = Eulerian constant). Thus we obtain a term log @, which occurs
in the imaginary part L; and /; as can be seen by splitting (II, 8) in its real and imaginary part:
The ‘ dotted ’ stability derivatives depend on log w. :

APPENDIX III

Supersonic Flow

The procedure which leads from the general equation (26) to the system (31) for small values
of the frequency, can be justified in the same way as this was done for subsonic speeds in Appendix
II. Thus the system (31) holds also for M > 1, provided that the integration is extended over
the part S* of the wing area S, which is inside the forward Mach cone from the point (X, v, 0).
The terms with ¢ = + 1 and ¢ = — 1 must be added.

Thus we find again that the ‘ induced ’ incidence F(x, y) depends on w so that L; and /; and
finally the ‘ dotted ’ stability derivatives depend on e, if M is near to 1.

If M is large enough so that o < << M* — 1, then the transformation (II, 4) can also be
introduced and the system (31) simplifies. The resultant equations can formally be obtained

from (11, 7), if the terms for ¢ = + 1 and ¢ = — 1 are added and the integration is extended
over 5%,
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APPENDIX TV
Some M. athematical Aids

Appendix IV, I. Some integrals.—In this appendix we shall first derive some useful 1ntegrals
which can be used later on, to estimate the order of magnitude of certain terms neglected in
the main part of the paper. We consider (for m = 0, 1 2. ..) the integral

1x 0 N
. a sin # du
A,= 1| sin L (x — 2y Ay = g™ — . . o (IV, 1)
X — x u
g “o

where a = no?/2V is independent of x" and

w=aj(x — ') Mo =al(x — %) .. .. .. .. (V.2
and the integral '
B,,,_J COS( o _ d“J WAL vy
*o
Integrating by parts we have for m > 0
“ sin u du _ sin a4, " cos udu )
" %m—i-l - muom u mur
o v %
T .. . . . .o (IV, 4)

+1 T
%m muoﬂl J v mum
0 o

so that all these integrals can be reduced to integrals with an exponent 1 in the denominator.

F or these we find

© ) fo
cosudu  COS sin % du
“o

(" sinudu = . 7 "0 sinudu |
AO:J“ . :5—81(740)_—:—2-—] » .. .. ... IV, 5)
0 0
~ ¥ cosudu ) 1 — cosu
B, = " = — Ci(uy) = — C — logu, + —%—du . (IV, 6)
uo 0

(C = Eulerian constant ; y = e = 1-781072). Si and Ci denote the integral-sine and integral-
cosine respectively (compare Ref. 38).

From (IV, 4) we find form > 1:

_a ['sin Yo\ v
Am — w i %, (x xﬂ) + Bm—l]
ro . . . oo IV, D)
B, = ” _cos Uo. (X — %o)"— aAm_lJ
and thus in the limiting case a — 0, which implies #,— 0 :
lim B, = =" 19 )
a0 m )
, . .o (IV, 8)
A, (= x) 1 (v = x) B '
}Er—iloa_ m <1+m—-1>_—m—1(m_2’3"')




nmﬂ=1+Bo,nmA0=g | ] ~

a—>0 a ) a—>0 ) } . .. - . . .. (IV, 9)
lim B, = — lim log (yu) J

a—>0 Ue—>0

Finally we find for m > 1:

CMEJ <1 — cos 2 ,>(x — ¥ )y = <1 — cos —2 —> (& — %)"
% X —Xx ' X — X, m
[i]

L J sin % (v — )yt = Z; [L:i@ (¥ — w2 + A;ﬂ .. IV, 10)
0 _
and in the limit a — 0 : ‘
}gﬂi—;bz%z(m=3,4...) )
}i_rilobj——% 5 1 B, e .. IV, 11)
i =3

-/

Appendix IV, 2. Magnitude of some integrals.—The relations, obtained in Appendix IV, 1,
enable us to show the order of magnitude of some integrals, which have been neglected in the
treatment of the integral equations (36) and (38). In (86) the cosine-function was replaced by 1,
which is permissible if the integral :

1 . no® ax’ dy’
—ij,,(x,y)<1—cos2V( > i L ...V, 19

g s+ x — x') o

becomes sufficiently small for o — 0. When integrating with respect to x’, we choose a point
%' = x, near enough to x, so that L,(«x', y') is approximately equal to L,(x, 3’). On the other hand
the interval x — x, must be chosen big enough, so that for x” < x, the expression #e?/2V (x — ') <
no?|2V (x — x,) is bounded, so that it tends to zero for w — 0 and the integral between x" = x,
and %' = %, is finite and vanishes as »® The second part of the integral (IV, 12), between
%' = x, and x’ = x is then (for every value of y’) proportional to the integral C, in (IV, 10) and
according to (IV, 11) proportional to a or to w = n¢/V, q.e.d. Thus the simplification of (36)
and (37) which leads to (38) and (39) is justified for small w’s. This argument does not apply
to wings of infinite aspect ratio since then the spanwise integration produces an infinite contri-
bution so that this term cannot be neglected.

A similar argument can be applied to show that the integral :

1 PN ’ o? . Z . no® ax’ dyl
] [Lf(x,w L,(x,yﬂ [2%5@ = T T o — x,)} = .. (IV,13)

which is the difference of equations (43a) and (46), is also proportional to w, and can therefore
be neglected for small . To prove this, we divide again the interval x, < 5" < x into two
parts. For the first part x, < 2" < x, the distance ¥ — %’ > x — x, remains positive and the
sine function can be expanded, so that this part of the integral becomes proportional to-w®.

28




The second part of the integral for %, < %' < % is of the form (compare (IV

I const.<1 — z _; * sin o —a x,)dx%fly = const. j(x — Xy — ——)

which tends to zero for 4 — 0 according to (IV, 8).

Appendiz IV, 3. Evaluation of some integrals.—We consider an integral of the form

i .ﬁ. ! 2 2 ax’ dy, —
(et =y ) P < by v
where f (x') is bounded for x < ' < xands’ = s(x’), x = x(s') descnbes the leading edge
of the wing. We perform the integration with respect to #’ for constant y’ between s(x') = 3’
and ¥’ = x:

fw [ Vs =y
k(x y) 4n J " (y _y/)z B

Here the principal value of the integral must be taken®. Since :

VIS =y dy V) Ly
J (y —y2 Y —y y,[(y /(s "3_”2) sin”™ = .. .. IV, 15)
and
s =0 for y* < s° b
J (v — y)dvy(sz — 37 { el e L (IV, 16)
B (s — Y J

we have finally for y* <C s?, the only case we are interested in,

hix,y) = — + f(%). . .. .. .. .. .. .. .o (IV,17)
Thus we find as a particular case (f (x) = 1) :

” S ds dx’' dy 1
VE— i o 4

At the same time we have proved that the integral equation :

1 L dx’ dy__ ' '
y ij(x,ry) v — 7 h(x) .. .. .. .. .. .. .. (IV, 19)

S*

where A(x) is known, is solved by

H(x,y):——%(4%&(9&)\/(32—3}2)). e - .. .. (IV, 20)

It can be shown, that this solution is unique if the only solutions to be admitted must have a
singularity of no higher order than 1/4/(s* — »*) along the edge v = + s(x).
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Appendiz IV, 4. Evaluation of an integral.—The last term in equation (48) is proportional to
the integral : ‘

+1

1 1 dn’
I(n) = - lo It m
) nf 83— (T — )

where " < 1. Now it can be shown that for ? < 1

so that
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TABLE 1

T M~1 w < < 1

<y

I

MP> 1,0 < <M®*—1,a=+/(1—F
=4/(M*—1)cot 4, < 1

Zy = 2, — mcot 4, — %COt 4,
| 4
My = My “nCOt/lz<§—h> —%cot A,(%—h
) 27 3 . oy 27 1—H
25 =3 cot Al{l -+ 2c0t2 4,. log <I cot? 4, >} —3E cot /11{1 3 M e 1}
. ' 3 27 1—H
iy, ———cot A A,. 2 S — — —
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2 7 cot A,<3 h) ncot3/1,.log< 1 cot Al> —Ecot A, é—{—ZH h) —{—Ecot a4, M o
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5 2
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[ H— (K — E)

A = 4cot 4, _1og:1 — (-80907
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4tan A
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Fi1G. 1a. Co-ordinates used in the theory. 2
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—— C.G. POSITION

x

F1G. 2. The delta wing.

¥

Fic. 1b. Stability axis (stability derivatives).
F1cs. 1a and 1b. Notations.



€8

025
O \ o
ys -0 ‘cu\:AL « A |-
' =Y
- ém “Mar L
41’rcotA£ 4‘“"30{::{{_
-0-5 -0-28
W 20
w =005
-1 0 -5
w002
-5 -0 75
2.0 -1-Q

FiG. 3. The derivative — z; for a delta wing for various frequencies

Fic. 4. The derivative — m,; for a delta wing at sonic speed against the
o and aspect ratios 4 = 4 cot A, at sonic speed (M ~ 1).

axis position % for various reduced frequencies w and various aspect ratios
4 = 4cot A,



Pe

-+ ‘ ; . ©-'2%

: 90 (all w)
‘[ Ny =80°
|
|

’ (M w)
o i (% ) - -6 "
A e (e _\l;\
e e
-3 L —_—
Amrekly T T e e A, =48
-1
R
L
-
b ]
4
i
___________ SN =38
-2 -9:5
/
/
/
N S Y
—_— . , .
/
/
-3 =075 /
w =01 7 - /
. - — Ww=010
—————— w=0-05 /
- —_——— — — Ww=0-05
JEEE—— § ) o1} '
/ . ————  — wzo0R
-4 ‘ : -0 .
Fic. 5. The derivative — 23 for a delta wing at sonic speed against Fic. 6. The derivative — m; for a delta wing at sonic speed against
the axis position % for various frequencies w and aspect ratios the axis position s for various frequencies w and aspect ratios

A =4 cot A, A =4 cot A,.



ping for all

‘speads oruosiadns
PUE JIUOS 3B ggE-[ = % pue (). [ = y suonrsod SIXe oml 10f GOg.-g =
PUE ¥ = 01eI 309dse o Fuim I[3p © 10 2/0us — SAIJRALISD 9T g “OI]

45°
g90°

20
cot At
-0

-2

-3

-5

Q.10
-6

W

v

points below and to the right of the curves).

—

Q08

w
0 for a delta wing at sonic speeds (— m; is positive and contributes to the dam

DAMPING DECREASING
-9

& DAMPING INCREASING

f

—

Wz 002

-0

=H

240~
2.0~
\\C
|||||||| /
SINTVA * QALY-I0duIIN /
ol N
0-Q= Q
Izl A §9-02
OliQzpm X
S3INIVA  A3LVMI Y3 _ -
: -0~
”~
SP=Ty v
-~
Q=™
ST A &1 °
SEEI=Y
€S-z
O lz e |

Fic. 7. Curves — my

-2

14 e

oOm s ‘v<

35



og

e

25 -0 o-2

sl =N
° )

i

T E
R L )

AT
N
il

ll' U
s, " "' 'l " "
. ,,;;’77;"";’ [N !h" ’
— <
o

il
i

{l

il
TN s \“%&\‘&g\‘ﬁ‘\“‘\\“\‘ “‘ ““ ‘ ‘ ‘ ‘ ‘

| S R W \

e glzrrl;%{relgi?z Esg‘iaogBOf:%? 3}51?1;_23 283)? seillation in & Fic. 10. Expansion of a disturbance wave in a subsonic, sonic, and’

supersonic flow.



R. & M. No. 2924

Pubhcatlons of the
Aeronautlcal Research Councﬂ

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL
(BOUND VOLUMES)
1938 Vol. I. Aerodynamics General, Performance, Airscrews.. 5o0s. (51s. 84.) A
Vol. I1. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials, 3o0s. (313 84.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 5os. (51s. 84.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures Seaplanes etc.
63s. (64s. 84.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Sgablhty and Control,
Structures, and a miscellaneous section. 50s. (51s. 8d.)

1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures.
63s. (64s. 8d.) ' ‘ X ‘ ‘
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 7g5s. (76s. 84.) ‘
Vol. IT. Noise, Parachutes, Stability and Control Structures, Vibration, Wind Tunnels. 47s. 6d.
\ (49s. 2d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. §os. (81s. 84.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance Stahility and Control, Structures.
gos. (gis. 11d.) \
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (86s. 9d.)

Vol. I, Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance,
Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (86s. od.)

ANNUAL REPORTS OF THE ACRONAUTICAL RESEARCH COUNCIL—

103334 15. 6d. (15. 84d.) 10937 28, (25. 23d.)
1934-35 1s. 6d. (1s. 8}d.) 1938 1s. 6d. (1s. 8%4d.)
April 1, 1935 to Dec. 31, 1936 45.  (45. 53d.) 193948 3s. (35. 334.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL
REPORTS, AND SEPARATELY—

April, 1950 -~ - - - - R & M. No. 2600. 2. 6d (2s. 73d.)

AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH |
COUNCIL—

igog-January, 1954 -~ - - R. & M. No. 2570 158, (1358, S%d) ‘
INDEXES TO THE TECHMICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—
December 1, 1936 — June 30, 1939.  R. & M. No. 1850.  15. 3d. (15. 434d.)

July 1, 1939 — June 30, 1945. - R. & M. No. 1950.  15. (15. 1}d.)

July 1, 1945 — June 30, 1946. - R. & M. No. 2050.  1s. (15, 144.) ,

July 1, 1946 — December 31, 1946. - R. & M. No. z150. " 15. 34. (15. 4%4.)

Janvary 1, 1947 — June 30, 1947. - R. & M. No. 2250.  15. 3d. (15. 434.)

PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL—

Between Nos. 2251-2349. -  ~ R. & M. No. 2350.  15. 9d. (15. 103d.) .

Between Nos. 23512449, - ~  R. & M. No. 2450,  2s. (zs. 13d.)

Between Nos, 2451-2540. - - R. & M. No. 2550.  25. 6d. (2s. 73d.)

Between Nos. 2551-2649.  ~ - R. & M. No. 2650,  2s. 6d. (25. 73d.)

Prices in brackels include postage
HER MAJESTY’S STATIONERY OFFICE

York House, Kingsway, London W.C.2; 423 Oxford Street, London W,1 (Post Orders: P.O. Box 3569, Loondon S.E.1);
* 13a Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 109 St, Mary Street,
Cardiff; Tower Lane, Bristol 1; 80 Chichester Street, Belfast, or through any bookseller

$.0. Code No. 23-2924

R. & M. No. 2924



