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Summary.~A method is developed for the cMculation of the pressure distribution and the aerodynamic forces and 
moments on a wing performing harmonic pitching and heaving oscillations. The calculation is based on the assumption 
of inviscid potential flow without shock waves and is restricted to small incidence, so that  thelinearized theory is valid. 

In contrast to other work in the field the theory applies to all Maeh numbers. I t  is restricted to small values of the 
reduced frequency and should be valid for the usual range of short periods occurring at present in flight. The formal 
solution yields two integral equations for the parts of the load, which are in phase and go out of phase with the oscilla- 
tion ; these are of the same form as the corresponding equation in steady flow. 

The way is thus opened for solutions over the whole Mach number range at small frequencies, if the corresponding 
steady solutions can be found. The calculation is in fact easiest for M = 1 and has been done here for Delta wings to 
supplement a previous supersonic calculation% made on different frequency assumptions, which broke down near 
M --  1. I t  appears from the two sets of results that  the short-period oscillation will be unstable near M = 1, if tile 
apex angle of the Delta wing is greater than about 60 deg. This confirms a now generally recognised trend. 

Such results near M = 1 must of course be invalidated to an unknown extent by  thickness viscosity and shock waves 
at their maximum effect. Nevertheless it is unlikely that  these factors will remove the critical nature of the transonic 
damping as calculated by this method. With all its obvious limitations this method, when extended to other plan- 
forms, should provide a useful tool in studying the effect of geometrical parameters on the stability of an aircraft at 
transonic speeds. 
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NOTATION 

Undisturbed velocity 
Cartesian co-ordinates 
Perturbation velocities, caused by the wing 
Time 
Air density 
V/a~, Mach number 
Static pressure 
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1. Zntroduction.--Experience with modern aircraft has shown that there may be a marked 
decrease of the damping of the so-called short-period longitudinal oscillation at transonic speeds 1' 2. 
This may be so serious that  an aircraft, which behaves quite well at subsonic or even supersonic 
speeds, becomes dynamically unstable at transonic speeds. Having regard to the importance of 
this problem for the design of high-speed aircraft and the difficulties involved in experimental 
research in the sonic range, both in wind tunnels and in free flight, it seems worthwhile to supple- 
ment  the knowledge on this subject by theoretical calculations although these are necessarily 
based on certain restricting assumptions. The theory can help to show the important parameters 
which influence the problem and underline at least general trends. 

The theory presented in this paper is based on the assumption of a compressible flow without 
friction or shock waves. All disturbances, caused by the oscillating wing, are assumed to be so 
small that  quadratic terms can be neglected and the usual linearized theory can be adopted. 
The results of a sonic theory which neglects shock waves and friction must clearly be used with 
some care. It will be seen later that  for Delta wings the theory predicts for some cases a severe 
instability near M = 1. It is unlikely that the neglected factors will change the critical nature 
of the transonic results and so it is suggested that those plan-forms which show up badly on this 
theory should be avoided in design and those which seem better should be tested. The theory, 
incomplete as it is, should be a useful tool in sorting out geometrical wing parameters in the 
transonic region. 

Stability calculations for aircraft at subsonic speeds were usually based on stability derivatives 
derived from a quasi-steady calculation or steady experiments. Recently the importance of the 
' unsteady ' derivatives, based on the calculation of the pressure distribution over an oscillating 
wing, has been stressed ~'~. In flutter work, where the reduced frequency co is high, derivatives 
have always been calculated from a simple harmonic motion of the wing, usually only for sectional 
properties, where the two-dimensional solution is assumed to be sufficient. In a recent paper 
Neumark 3 has summarized the results of the two-dimensional theory for subsonic speeds, as far 
as smaller frequencies are concerned, as they occur in the so-called ' short-period oscillations '. 
The same two-dimensional stability derivatives have been used by Pinsker 4 and by Statler 5 
to calculate the longitudinal stability of an aircraft. The finite aspect ratio of the wing has been 
allowed for in these calculations by a simple conversion formula, derived from the steady case, 
whereas Reissner 6 treated this problem in a more elaborate way. He succeeded in separating 
the problem into two parts, one of them being the problem of two-dimensional oscillatory flow, 
the other being the problem of the spanwise circulation distribution. W. P Jones 7 reduced the 
calculation of the load of an oscillating wing, at least for smaller frequencies, to a similar problem 
for a related plan-form in an incompressible flow and solved the latter by the vortex-lattice 
method 8,9 introducing the two-dimensional oscillatory solution for each chordwise section. 

However, it seems by no means certain, that this approach leads to the correct answer for small 
o)'s, since the term log co, which occurs in the two-dimensional calculation, becomes more and 
more unimportant as the aspect ratio decreases (compare Reissner and Stevens 1°, Miles11). 
Without resorting to two-dimensional results Multhopp in an unpublished paper succeeded in 
reducing the problem, for small values of ~o~ to the solution of two integral equations of the same 
form as occurs in the  load calculation for a lifting surface in steady flow, the unsteadiness being 
allowed for by additional downwash terms. As in most other papers, where the numerical work 
has been kept within reasonable bounds, he introduced the parameter ~o/(1 -- M2), which is 
assumed to be small. Thus the results become invalid as the sonic range (M ~-~ 1) is approached. 

On the supersonic side a number of papers exist which deal with the oscillatory flow problem 
in two dimensions or with wings with a 'supersonic' leading edge only (Garrick and Rnbinov 12' 13 
or the flutter report 1~, W. P. Jones15). From the point of view of sonic flight the case of '  subsonic ' 
leading edges is more interesting. Only a few trends from the large output in this field can be. 
mentioned here ,  
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Robinson 16 outlined a method, valid for all frequencies a~, without producing numerical results. 
The numerical work is considerably simplified by restricting the calculation to small frequencies, 
so that  ~o/(M ~ -- 1) is small or equivalent assumptions (Robinson 17, W. P. Jones 14, Ribner and 
Malvestuto .8, Miles 19, Acum ~°, Watkins 21, MoeckeP 2, Mangler 2a or Temple~4). Again by virtue Of 
these assumptions the results become invalid near the sonic speed. 

Furthermore an at tempt has been made to extend the conception of the wing of a very small 
aspect ratio which was so successful in steady flight conditions ~5,26,27,28,~9 to unsteady flight 
(Ribne# 7, Garrick (App. B of Ref. 14)). Unfortunately the range of validity of these unsteady 
results becomes more and more restricted as the sonic speed is approached. As we shall see 
later on, a small increase of the aspect ratio at sonic speeds has a great effect on the results. 

Under these circumstances it seems only natural to try another attack on this problem of 
oscillatory flight by going back to the beginning and devising a method which is valid for the 
whole Mach number range. The differential equation, which governs this problem, is related 
to the general wave equation for acoustic waves (section 2.1). By using the fundamental solutions 
of this equation, which correspond to oscillatory sources and doublets, the problem can be shown 
to require the solution of an integral equation for the doublet strength (section 2.3). In section 
2.4 this equation is given i n a more convenient form valid for any Mach number and 
any frequency. 

Since for stability calculations we are only interested in small values of ~o, this equation can 
be reduced for subsonic and supersonic flow to two integral equations for the real and imaginary 
part of the load distribution (section 2.5). These equations are of the same type as the corres- 
ponding steady flow problem of a lifting surface, the unsteadiness being allowed for by an 
additional downwash term in the equation for the imaginary part. Since this procedure restricts 
the frequency but not the Mach number, we may go to the limit of sonic flow (section 3). Here 
the corresponding problem for steady flow becomes particularly simple=9. In subsonic flow the 
steady problem has not yet found a satisfactory solution valid for any aspect ratio, although 
Multhopp's method '~1 seems to meet most of the requirements for such a calculation. 

As an application results for a Delta wing at sonic speeds are obtained in section 4. All stability 
derivatives/required for the calculation of the short period longitudinal oscillation of a Delta 
wing, are compiled in Table 1. Strictly speaking these derivatives are based on a sustained 
harmonic oscillation and thus are valid only near the stability boundary. But it is felt that 
these derivatives can be employed in connection with the usual equations of motion even for 
damped oscillations or near M = 1, where some of the derivatives cannot be regarded as con- 
stants, but are functions of the reduced frequency. 

The two-dimensional case of an oscillating wing at sonic speed, which has been dealt with by 
Rott  ~9 and Jordan (unpublished paper), has been left outside the scope of this report. It  is 
remarkable that  the limiting case of steady flow does not produce finite derivatives in two- 
dimensional flow, whereas the three-dimensional case contains the steady flow as a limit (co -+  0). 
An extension of the theory to higher frequencies (flutter calculations) is not attempted, although 
it may be feasible. 

2. Principles of the Theory of an Oscillating Wing.--2.1. The EquaEions of Motion.--We consider 
a thin wing at a small incidence in a parallel flow and assume that  all perturbations caused by 
the presence of the (oscillating) wing are so small that the linearised potential theory can be 
applied. Then a velocity potential $ exists so that the perturbation velocities u, v, w are given by t" 

. . . . . . . . . . . .  ( 1 )  

-~ We use a Cartesian sys tem of co-ordinates with x in the direction of the undis turbed veloci ty V and z directed 
upwards  (Fig. l a) 



The iinearized Euier equations, which connect the velocities with the pressure p or enthalpy 

31 
8x 

~y 

31 
8z 

I,  are 

. .  ( 2 )  

where V is the velocity of undisturbed flow and f' z = ~ +  dP--I~+P--P~ (3) 
. . ° . . . . • * * * * 

,~oP P* 

since the density p in the denominator can be replaced by its value p ® in the undisturbed flow. 
The continuity equation can be linearised as 

~u 8v 3w M~(3 3) 
37 + ~ + Z  + - ~  ~ + v ~  z = 0  . . . . . . . .  (4) 

where M = V/a~o is the Mach number of the undisturbed flow. By differentiating this equation 
again along a streamline (y = const, z = const) (using the operator D/at ~- V 8/ax) and introducing 
the derivatives of u, v, w from (2) we find 

+ Sy--~ q- ~-fiz~ I =  M' g) q-8-x i . . . . . . .  (5) 

This is the general wave equation which must be satisfied by the enthalpy I. By using Bernoulli 's 
equation 

~ ; +  v u x  ¢ , + z = L ,  . . . . . . . . . . . .  (6) 

which is a consequence of (1) and (2), and by inserting (1) into (4), we can prove that  the velocity 
potential ¢ also satisfies the wave equation (5). 

2.2. Boundary Conditions.--We consider a thin fiat wing performing heaving or rotary oscilla- 
tions in a steady flow V. Then all perturbations must vanish at a great distance from the wing 
(M < 1) or along the Much cone extending from the foremost point (apex) of the wing (M > 1). 
The motion of the wing surface may be described (in the usual complex notation) by 

z = Zo = Zo (x, y ) .  ¢% 

i.e., we consider a wing performing harmonic oscillations of the frequency n ( =  2~f).  The 
downwash inside the wing surface S is prescribed by the wing motion 

w(x, y, 0 ; t) = #(x,  y,  0 ) .  e"' = ~) + V ~x Zo 

= Ve~"'(iV---°+ ~ /  in~ ) 
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Here  nglV = ~o(g = m e a n  chord) denotes  the  r educed  f requency.  ( L e t t e r s . w l t h  bars d e n o t e  
ampl i t udes  ; suffix ~ refers to real  par t ,  suffix ~ to imag ina ry  p a r t  of a complex  funct ion.)  T h u s  
we have  for a heaving oscillation 

W * 
Zo = Z o *  = c o n s t  - - -  - -  7 -  

t h e  b o u n d a r y  condi t ion  

w* w* 
(x,y,  O) = --  V --  const ,  w, = --  ~ - ,  w, = 0 . . . . . . . . . .  (7a) 

a nd  for a rotary oscillation z0 = --  ~*(x --  Xo) abou t  the  axis x = Xo : 

(x, y, O)= --0.* ( 1  + #,(x - Xo)) w~ = - - ~ * =  const ,  
V V ' 

wi = --  0". x --  xo . .  (7b) 

These  condi t ions  have  to be satisfied for all po in ts  inside the  area S of the  wing. 

In  order  to  t r an s fo rm  the  condi t ions  (7) for the  d o w n w a s h  w in to  condi t ions  for t he  e n t h a l p y  
I = f(x, y, z). e"' 

we in tegra te  the  first equa t ion  (2), which  reads  for a ha rmon ic  oscil lat ion : 

i n +  V w + ~ = O  

along a s t reaml ine  (y = const ,  z = const) and  obta in  

~(x, y, z) = w(x, y, z, t). e-'"' 

'fl = - ~ U~ (~' y '  ~) e-"~'-~)/v de . . . . . . . . . . .  (s) 
co 

The  amp l i t ude  ~r of the  e n t h a l p y  m u s t  sa t is fy  the  differential  equa t ion  

~ + ~ - ~ + ~  f = ~  ~ + ~  ! . . . . . . . .  (9) 

as follows by  inser t ing  I(x, y, z, t) in to  (5). 

2.3. Solution of the Wave Equation.--We t ry  to solve the  wave  equa t ion  (5) or (9) for the  
funct ions  I or I respect ive ly  by  a d i s t r ibu t ion  of pressure  double ts  over  the  wing area. I n  
accordance  wi th  the  a s sumpt ions  of the  l inearized t heo ry  these  singulari t ies  will be p laced  in 
the  p lane  z = 0 ins tead  of the  ac tua l  wing surface. T h e y  p roduce  a pressure  d i s con t i nu i t y  
be tween  b o t h  faces of the  wing  and  therefore  a load dis t r ibut ion.  The  s t r eng th  1 of this  load  
will be chosen in such a way  t h a t  the  r e su l t an t  downwash  according to equa t ion  (8) satisfies t he  
b o u n d a r y  condi t ions  (7), prescr ibed by  the  m o t i o n  of the  wing. 

We  obta in  a pressure  double t  by  superpos ing  a source and  a s ink of a ha rmon ica l ly  osci l la t ing 
s t reng th .  The  source is given b y  (see Refs. 7, 13, 16, 24, 32, 33 and  Fig. 10) : 

l ei~(t - MR~V) 

with  r' = ~/{(x --  x') ~ + (1 --  M~)((y -- y,)2 + (z -- z')~)}, 

R = - M ( x - -  x') + ~r' > 0  (e = -+- 1).  
1 - -  M 2 



R is the radius of the sphere of influence (Fig. 11), affected by  a disturbance,  which was originated 
in the point  (x', y' ,  z') a certain t ime M R / V  ago. Since the centre  of this sphere travels  wi th  the 
veloci ty  V and the  dis turbance with  the veloci ty  V / M ,  every point  (x, y ,  z) enters this sphere 
of influence bu t  never  leaves it  in subsonic flow. Thus we have e = + 1 for M < 1. In  supersonic 
flow every  point  (x, y ,  z) inside the after-cone (r' = O, x' < x) experiences this d is turbance twice, 
once when  enter ing and once when leaving this sphere of influence. Thus we have e = + 1 
for M > 1 and  bo th  solutions have to be added.  We have to remember  tha t  every source affects 
only points inside its after-cone (x' < x, r '  = 0) and every point  (x, y, z) is affected only by  
singularit ies inside its fore-cone. 

For  convenience we shall re ta in  the solution given above with  e, but  we have to r emember  
the  meaning  of ~, which is ~ = + 1 for M < 1 and e ' =  -4- 1 for M > 1 with  both  solutions 
added.  La te r  on we shall see tha t  there  is only one solution for M = 1, which can be  obta ined  
by  a suitable limit M--+ 1, t aken  either from the subsonic or the supersonic side. 

F rom the  solution for a source or sink, we obtain the solution for a doublet  in the point  
(x', y ' ,  0) by  differentiat ing (O/8z') and pu t t ing  z' = 0 af terwards  : 

g~-' 7; . . . ,  =o = - ~ \ ~  ., =o 

with  

z(1 -r~ M~) ( 1  + V 1 ~ ei,,,t - ih 

r ---= ~ / {  (x  - -  x ' )  2 + (1 - -  M 2 ) a = } ,  ~= = ( y  - -  y , ) 2  + z 2, 

n M  n M R  
V(1 - -  M ~) { -  ( x -  x ' ) M  -+- er} - -  V h _ 

A distr ibut ion of doublets  of the s t rength  

+z(,~, y,  ~) = z ( . ,  y) .  e "  

over the p lan- form S of the  wing results in an en tha lpy  function 

. . . . . .  (lO) 

} (11) 

. . . . . .  (12)  

f (x ,  y ,  z) = - zl/~(1 M~) i (x', y ' )  1 + ~ V(1 - -  M ~ ) )  r ~ 
8 ~  ,0 

S 

The s t rength  i mus t  be chosen in such a way  tha t  equat ions (7) and (8) are satisfied inside the 
plan-form of the  wing. 

I t  can be shown tha t  for points inside the plan-form 

~r(x, y ,  4- o ; t )  = i (x ,  y ,  ± o) e"'  

V ~ 
= T ~ l(x, y)e  '~' (14)  

so tha t  the pressure is discontinuous along the wing surface. The local pressure coefficient cp 
or the local load is obta ined  from 

~p  ~ I 4 I (<  y,  - -  0; t) 
cv --  ½0V2 --  1V ~ --  V2 = [ (x, y ) .  e "' . . . . . .  (15) 
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When introducing (13) into (8) we obtain the  following integral  equat ion for the unknown 
load coefficient I : 

where  

or 

(X, y, 0) = i(x', y ' )e  -~" 1 + ie 
,--~o L ~ z 8~ _ 

H = h + n ( X  -- x ) _  n M  [1 + M 
v V ( I + M )  [ ;~I 

nrM ~ a . '  dyq 
v ( i -  M~)J--7~--J  dxj ~ (10) 

- -  ( x  - x) + (x - x') - x - x' - ~r] (17) 
1 - - M  J 

(1 + M)a 2 ] (18) H - - V ( l n M + M )  l + M M ( X _ x ) + ( x _ x , ) + ( x _ x , ) + ~ r  " '" 

This last form for H is most  important ,  since it will enable us to consider t heca se  of sonic flow 
M = 1. This would not be possible if the usual procedure of introducing a ' m o d i f i e d '  
veloci ty potent ia l  or acceleration potential  (see App. II and III) had been followed. When  we 
approach M = 1 from the subsonic side (~ = q- 1) and remember  tha t  a point x is only influenced 
by  singularities x' in the fore-cone (x' < x), we find tha t  r - +  Ix -- x' I for M - +  1 and H tends to 
a finite limit. This will be explained in more detail  later on. 

It  may  be pointed out, tha t  for supersonic flow (M > 1) the integral  in (13) and (16) is to be 
ex tended  only over tha t  part  S ~" of the wing area S, wh ich  is inside the  fore-cone X --  x' >~ 
~/ (M ~ -- 1) ]a] extending from the point  (X, y). Since r tends to zero along this fore-cone, the 
integral  does not  converge in the usual sense. As has been shown previously (compare Refs. 
34, 35, 36), the ' principal value ' of the integral  or its ' finite part  ' has to be taken  in this case 
(Hadamard)~. In the next  section we shall derive another  form for the integral  equat ion (16), 
which will be more convenient  for all Mach numbers.  

2.4. Simplification of the Integral Equation for  i . - - I n  order to simplify the complicated integral  
equat ion (16) for i, we make  use of the following two relations which can be proved for any 
integer number  m and e 2 ---- 1 : 

ax' e-'U e r r l - ' '  =e-~U ~r=k, --  M~) + 

+ * r ,(1 - m) - i V(1 + M)JJ'" (19) 

r I-" =e -ill ~ I i~v 
r V 

q- e r e ( 1 - - m ) + i V ( l + M )  " 

The proof of these relations follows by  differentiation of the lef t -hand side. 

a a x' --  x ine_e~ -- x r*-" . . . .  (21) ~x q- ~x ' e-ill ~ r r l - °  = V  8 r " 

(20) 

Their difference is 

t It has been shown in Ref. 37 that Green's method for subsonic flow can be extended to supersonic flow and leads 
to the same results as Hadamard's approach. 
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From (19) we have for m = i : 

e-'~ f . nrM"~ f" 

which enables us to express the influence function in equation (16) in a simpler form. 
have instead of (16) ; 

l im-bf--z I x [(x', ( ~ i n M  " ~ - i H f  
] J y,) + v(iT: ))L ° V 

Thus we 

/ j - v -  j. (22) 

We integrate by parts (with respect to x') the first term of the integral and obtain (x' = x~(y') 
and x' = x~(y') are the equations of the leading edge and the trailing edge, b = wing span) : 

z~ (X,y,  O) = lim 0 _ [ / X t  t~ [ ,Y ) e - ' ~ (  

z x ~ i (x ' , y ' )  + l (x ' , y ' )  e -'~ 
-4- 8~ -~o ~-x' V(1 q- M) 

/ / x t = x  l U 

e r , / - ~ - -  J "  (22a) 

In order to perform the integration with respect to x in the last term by means of equation (21), 
we define now a new quanti ty L(x,  y) by the relation : 

f 
x in (x-*) 

in e~ z(~, y) d~ . . . . . . . . .  (23) 
L(x, y) = Z(x, y) V(1 + M) ,~ 

L agrees with i in case of a steady flow. Its relation to the velocity potential is explained in 
Appendix I. We differentiate equation (23) with respect to x and obtain the important relation : 

OL + in  ~[ in M 
~ x  V L - -  + l . . . . . . . . . . . .  (24) ~x V1 + M  "' 

and finally, by solving this equation for i : 

fX in -i,,~_ , ,_~, 
l(x, y) = L(x,  y) - /  V(1 -1--7- M) ,, ev(~+~'~lt~ ~' L(~ , y) d~ . . . . . . .  (2s) 

Inserting this into equation (23) leads to an identity as required. 

Now we apply equation (24) in the last term of equation (22a), introducing L instead of i, 
and find after another integration by parts (with respect to x') : 

v ( X ,  y, O) = lira ~ z ~L 'x '  '" l(x', y')} e -~" z--+o~ J ~- ~ 'Y J -  
• o o  

~" / / x t = x  l (12 
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In  the second of these two integrals  we apply equat ion  (21) for m ---- 1, which shows tha t  the 
influence funct ion is the der ivat ive  wi th  respect  to x of the bracket .  Thus the in tegrat ion over  
x can be performed.  In  the first integral  we remember  tha t  L ---- i for x' ~- x~. We obtain finally : 

v ( X , y , O ) = l i m  ~ ( z  [ ( x ' - - x ) ]  dx'dy'  
g = X  

z L,(y') e -~  ~ -- x 

where Lt(y') ~ L(x, y') -- l(xt, y') can easily be obta ined  from (25). 

(26) 

This integral  equat ion  for L(x', y') holds for any  f requency n and any  Mach number  M. We 
have  to r emember  tha t  ~ = + 1 for M < 1 and e ---- + 1 or e ~ --  1 for M > 1, where bo th  
terms have  to be added. For  supersonic flow the area S has to be replaced by  the par t  S* of S, 
which  is inside the Mach fore-cone originating in the point  (X, y). The second integral  in (26) 
represents  the wake effects as can be seen by  in t roducing the new variable 8' = X --  x + x, 
in the  chordwise integral,  which  is then  ex tended  over the wake. Str ict ly speaking the in tegrat ion 
by  parts,  which  lead to equat ion  (26), should have been per formed for this area S* instead of 
S, i.e., the  values along this fore-cone r ---- 0 should have been used instead of the values along 
the  trai l ing edge. But  this contr ibut ion is zero since the  ' finite par t  ' of the integral  mus t  be 
t aken  as explained before (Hadamard) .  For  subsonic flow the K u t t a - J o u k o w s k y  condit ion 
(i = 0) mus t  be satisfied along the trai l ing edge. 

2.5. Small Values of the Reduced Frequency.--The solution of equat ion  (26) in its general  
form for any  value of co and any  Mach number  M presents considerable ma thema t i ca l  difficulties. 
F o r t u n a t e l y  the frequencies, occurring in s tabi l i ty  calculations,  are usual ly small so tha t  terms 
of higher order  in the  reduced f requency co can be neglected.  H o w e v e r ,  an expansion of the 
solution in powers of co is not  feasible near  M ---- 1, as we shall see later  on. We shall be forced 
to in t roduce  terms of the order  log co there. Neverthless  terms of the order  co 2 and co = log co will 
be neglected in this paper.  

For  the actual  calculation we have to split equat ion (26) into its real and imag ina ry  parts.  
We in t roduce (g ~- mean  chord, co ~- reduced  frequency) : 

V -- w' + icow~ , i =  l. + icol. 

L =  L,. + icoL, , L ,~_L(x . y )  = L,. + icoL. ] 

and find from (23) and (25), if terms of the order co 2 are neglected : 

(27) 

L,(x, y) = l,(x, y) 

I 
X 

L,(x,y)  = l~(x,y) 1 + M x~ C 

1 

I 
X 

1 y) dA 

Thus  1~ and L, become equal and l~ and L~ differ by a te rm which can easily be calculated. 
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The expression 

L e -in = (L~ cos H + ~oLi sin H) + ico (L~ cos H -- L, ~ sin H) 

can be simplified by  pu t t ing  

H = H1 + H~ 
wi th  

~ M  [ 1 - I - M X - - x  
H i = l +  M k M " c 

x -  x'  / " . . . .  (29) 
- -  - ~  C .J . . . . . .  

t o m  er - -  (x  - -  x ' )  _ g(sr  + x - -  x ' )  

H ~ , = . I + M .  a ( 1 - - M )  --  ~oM,~ ~ 

Since sin H ,  and cos H ,  can be expanded,  we have for small  values of co : 

cos H = cos H~ - - / / 1  sin H~ 

sin H = H1 cos H~, + sin H2~. 

As will be shown in section 3 (for sonic flow) and in Appendix  I I  (subsonic) and  I I I  (supersonic 
flow), we are ent i t led to simplify this fur ther  and  to wri te  

cos H = 1 1 sin H --  H1 + 1 sin H2~. . . . . . . . . . .  (30) 
co sin H = 0 oo co ~o 

Thus  we ob t a in  f rom equat ion  (26) the following two condit ions for L, and  L~ : 

w~(x ,  y )  = -8~ r 5:~o ( y  - y')= . . . .  

where  

1 ( x ' - x )  dx'dy' F(x,y) . . . .  (31b) w,(x, y) = g= I] Z , ( x ' -  y') ~ ~ %0 ~ (y _ y,)~ 

f ( x ,  y) = ~ I I L(x ' ,  y') + 20 
= o  ( y  - y')~ 

1 L . ( y  e *'=,t (y  _ y,)2 
8Jr - ~  , J -h i 2  / z = o  

(31c) 

depends only on L ,  since L~ follows immedia te ly  from the  th i rd  equat ion  (28). We have  to 
r emember  the meaning  of e, which is e = + 1 for M < 1 and e = + 1 or e = --  1 for M > 1 
wi th  bo th  solutions added.  In  supersonic flow any  point  is affected only by  points (doublets) 
in its fore-cone, so tha t  the area of in tegra t ion  S mus t  be replaced by  the par t  S* of S which is 
inside the fore-cone or iginat ing from (X, y). 

Thus  the problem of an oscillating wing is reduced (as far as small  frequencies are concerned) 
to a s teady  flow problem. Both  the integral  equat ion  (31a) for L~ and the  integral  equat ion  (31b) 
for L~ are of the same type  as the integral  equat ion  for the  load dis t r ibut ion of a wing in s teady  
flow. The incidence t e rm in (31b) is modified by  a t e rm F ( x ,  y ) ,  which can be assumed as known 
after  (31a) has been solved. Since F ( x ,  y )  depends on co, the  funct ion L~ and the load li will 
depend  on a). 
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The actual  solution of the  problem and the numerica l  caiculation of s tabi l i ty  der ivat ives  
depends  on the  possibil i ty of solving this s t eady  flow problem. For  subsonic flow Multhopp 's  
m e t h o &  ~ is available.  I ts  general  applicabi l i ty  m a y  be restr ic ted to not  too small aspect rat ios  
and ' r e a s o n a b l e '  incidence distributions.  Pract ical  experience mus t  show, whe ther  these 
restrictions can be overcome. For  supersonic flow most  calculations have  been based on the 
t heo ry  of conical fields and its extensions ra ther  than  on a direct solution of the integral  equation.  
For  sonic flow the  solution of the corresponding s teady flow problem ~9 is compara t ive ly  simple 
and easy, and  so the remainder  of this paper  is devoted  to a solution of the osci l latory wing 
flow problem at sonic speeds (section 3). 

I t  m a y  be ment ioned  here t ha t  l~ and thus  the  s tabi l i ty  derivat ives become independent  of 
the  f requency if the  Mach n u m b e r  M is ei ther small or big compared  to 1. In  such a case the  
funct ion (1#o) sin H, ,  in F(x,  y) m a y  fu r t he r  be simplified as 

1 sin H,~ = _1 sin coM(er --  (x --  x')) _,,_ M(er  -- (x -- x')) 
o~ (1 - M~)e - -  (1 - -  M~)~ 

This assumes tha t  co < < I1 --  M2[, which excludes the  sonic region. Most calculations up to 
now are based on this addi t ional  assumption.  A number  of authors  7' s, 9, ~, ~5,12, ~s,~9, 2~, 23 s u c c e e d e d  
in reducing the uns t eady  case, at least for frequencies co < < [ 1 --  MS], to a s teady flow problem, 
by  in t roducing a ' modified ' veloci ty  potent ia l  and a ' modified ' load distr ibution.  The connec- 
tions of these methods  wi th  the new procedure,  out l ined in this paper,  are expla ined in Appendix  
I I  and III. 

3. Sonic Flow.--3 .1 .  The Integral Equat ion . - -Al l  the  results derived in section 2, in pa r t i cu la r  
equa t ion  (26), are val id for any  Mach number  and the results of section 2.4 apply  for any  f requency 
co. Now we consider the case of sonic flow for all values of the f requency as l imit ing case for a 
subsonic flow. Then  we have  e = 1, M ~< 1 and 

lira 1 --  x = if . . . .  . . . . . .  (32a) 
M--->~ f X r ~ X 

and  from (29) for x = X and x' < x : 

Ho ~ ~u--~llim (H) ,=x--  ~ c + (x - -  x') . . . . . . . . .  (32b) 

Because of (32a) the in tegrat ion in (26) has to be ex tended  only over the par t  S* of S, which is 
ups t r eam from the  point (x, y) (x' ~< x). Thus we have the following integral  equat ion  for sonic 
flow and any  value of the f requency ~o : 

z~p (x, y,  O) = az ~ { z i l L ( x ,  , y,) e_~H odx'~dy' 

g,(y')  e -'~0 1 + I~ -  ~'1 . . . . .  , L:o ( 7  2 " . • + ~ ~ - ~ t ~  x, 

The K u t t a - J o u k o w s k y  condit ion (i----0 along the trai l ing edge) now becomes irrelevant ,  
except  for plan-forms (swallow-tailed wings), where par ts  of the trai l ing edge are ups t r eam of 
cer ta in  points (x, y) of the wing. After  L is de te rmined  from (33), the load i itself is obta ined 
from (25). 

For  wings wi th  an unswept  trai l ing edge the integral  in (33) m a y  be wr i t ten  as 

~ 1 (~f, L(~',  y ) e - " o  dx' dy' ~ . .  (33a) ~ (x,y, o ) = ~  ( y - y )  J~=o--VT' . . . . . . . .  

if we take the ' finite par t  ' or ' principal  value ' of this integral  (see Refs. 31, 34, 38, 36). 
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I t  m a y  be ment ioned tha t  for ~o = 0 (Ho = 0) we obta in  from (33) the case of a s teady  motion.  
The equat ion is usual ly  wr i t ten  as 

(x, y, O) 1 - ~,(.I a 
= L(x, y,) dy' 

W 

~x V ~ o - , ~  (Y - y ' ) 2  

(2s(x) = local wing span at the point  (x, y)). At  first we have to solve a two-dimensional  problem 
in the (y, z)-plane, containing the point  (x, y,  0), and these ' s ec t iona l '  solutions are combined 
afterwards in order to sat isfy equation (33a) i tself  (compare Ref. 29). 

Unfo r tuna te ly  there is no s imilar  procedure available for the uns teady  case. Bu t  the general  
problem of a sonic oscil latory flow can considerably be simplified if we restr ict  ourselves to the 
calculation of s tab i l i ty  derivatives.  Then it  is sufficient to consider only small values of the 
reduced frequency o~ = ng/V.  

As a first step we split equation (333) in its real and imaginary  part .  
no ta t ions  in t roduced in equat ion (27) : 

1 dx' dy' 
w,(x, y) = ~ f~ [L,(x', y') cos Ho + ooL,(x', y') sin H0],=0 (y _ y,~) 

= ' L~(x, y') sin H0 ~ , ( ~ , y )  ~ f.f L~(~,y' )  cosHo - - -  ' 
o, ~ = o  ( y  - y '~)  

We obtain,  using the 

J 
(34) 

and 

If we neglect terms of higher order in Ico(x --  x')/2g[ < co we m a y  write as in section 2.5 : 

co - -  y')2 co(x --  x') sin ~o(y -- y,)2 (oo  m) =o = - - 

(sin H0)z=o -- ~o(x -- x') 
2g 

COS o,(y - y')~ + sin ?(Y - y')~ 
25(x  - x ' )  2~(x  - x ' )  

. . . .  (as) 

1 (sin Ho)z=o x - -  x' o~(y - -  y')~ + 1 s in m(y  - -  y')= . . . .  (3Sa) 
- 2 ~  c o s 2 e ( x _ x , )  ~ 2 a ( x - x ' ) "  "" 

c o ( y - - y ' ) 2 a n  d s i n O ) ( y -  Y')=oscillate rapidly  between + 1 and -- 1 Since the functions cos2~(x _ x') 2g(x --  x') 

as x' approaches x for constant  values of y -- y '  :fi 0, they  contr ibute  a great  deal to make some 
of the  integrals  in (34) convergent.  In  such a case the funct ion has to be re ta ined and cannot  
be replaced by  a few terms of its Taylor  series. If we consider only small values of oJ, the second 
t e rm in the  first eq.uation (34) m a y  be omitted,  and we m a y  write our sys tem in this  way  : 

1 ~o(y - -  y')2 dx' dy' . .  . .  (36a) 
~(~, y) = ~ ~f L.(~', y')cos 2 ~ -  7 )  (y - y')~ . . . .  

1 ~ (y - y')= gx' @' 
w,(x, y) + F(x,  y) = ~ I~ L,(~', y') cos 2e(~ - . ' )  (y - y')2 "" 

with  
1 1 [-x -- x' o~(y - -y ' )~  + - s i n  

F(x,  y) = ~ f~ L~(~', y') L ~ / -  cos 2e(~ - x') ~o 

13 
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The real part L~ can now be determined from (36a) and the imaginary part L~ follows afterwards 
from (36b) since F(x, y) does not depend on L~ but on L~ only. Both equations are of the same 
type. Only the left-hand side is different so that  the same method can be applied for the solution 
in either case. 

A further simplication of the equations (36) results from the fact that  for wings of finite aspect 

co (y -- y,)2 by 1 on the right of equation (36a) and (36b) and in the first ratio we may replace cos 2g(x -- x') 

term of (37). This is proved in Apl3endix IV by showing that  the terms omitted in this way 
are at most proportional to the reduced frequency co. But the frequency must be retained in the 
second term of (37) since F tends to infinity for ~ -+ 0 and the load L and i becomes infinite for 
60---->-0. 

Thus our results will depend on the value of co although only small values of co shall be considered 
in this paper. If bigger values of o~ are required, some of the terms which are neglected here, 
should be taken into account. 

3.2. The I~tegral Equation for Small Frequemies.--For a wing with an unswept trailing edge 
and for small values of co we obtain from (36), replacing the cosine by 1, the following two 
equations for L~ and L~ : 

1 dx' dy' 
w,(~, y) = T= t~ L~(~', y') (y _ y,)~ 

(as) 
1 dx' dy' 

w,(x, y) + F(x, y) = -~  f~ L,(x', y') (y _ y,)2 

The expression /37) for the ' incidence ' F(x, y) can be simplified by replacing the cosine by 1 in 
the first term. After an integration by parts with respect to x' (which puts the first term (37) 
into a form similar to the right-hand side of (38)), we obtain 

F(x, y) = ~ I~ ,~L/e '  y') 2e j (y  - y')~ + FI(~, y) . . . . . .  (a9) 

where 

1 ,y,) 1 s in~(y --y')~ dx' dy' .. .. (40) F~(x, y) = ~ ,fs.[, L,(x, -~ 2g(x -- x') (y -- y,)2 . . . . .  

Equations (38) to (40) follow from equations (31) for the case of sonic flight. Since the integral 
equations (38) are linear, we can express L~ as a sum of several terms, each of which corresponds 
to a certain term on the left-hand side. Thus 

t ~x! . . 

L,o(.', y') = L(e ,  y') de_ . . . . . . . .  (41) 
2g . . . . . .  x 1 

forms the first contribution to L~, namely the contribution which arises from the term 
F(x, y) -- F,(x, y). This follows by comparison of (38) and (39) and we can see that the function 
(L~(x', y') -- L~o(X', y')) has to satisfy the second equation (38) with F(x, y) replaced by 
FI(x, y). 

The contribution to L~, which arises from w~, is zero for a heaving oscillation (equation (7a)) 
and corresponds to the load distribution of a cambered wing (incidence proportional to x -- Xo) 
for a rotary oscillation (equation (Tb)). It shall be denoted by Liq(x', y') and has been calculated 
in Ref. 29 for a big family of plan-forms. 

14 



The greatest difficulty is presented by the calculation of the load contribution to L~, which 
arises from the ' inc idence '  F~(x, y) as defined by (40). We cannot solve this problem for an 
arbitrary plan-form in this paper, but shall restrict ourselves to the case of a Delta wing (section 4). 

Before proceeding to the actual calculation of F,(x, y) and the corresponding load distribution, 
we split Fdx,  y) into two terms, each of which permits certain simplifications and thus makes 
the solution possible. We write} 

G ( x ,  y) = G d x ,  y) + G d x ,  y) . . . .  

where 
1 

FMx'  Y) = G f~£ [L,(x', y') - L,(x, Y')I )--o, s i n  

and 

~ ( y  _ y,)s ~x' dy' 

25(x -- x') (y -- y,)S 

FMx, y) = ~ us du 25 . . . . .  
s 

Here the following transformation is used : 

u = ~ o ( y  - -  y , ) S  d u  _ 2 5  d x '  U = 

2e(x - x') ' u s o, ( y  - y')~ ' 
Since 

o~(y - y')  s 

2C(X - -  X ' " ,(y )) 

fl t s i n _ _ ~ _ d u _ ~ + u  sin U -7-c°s u du -- SinuU log (7, U) + 

0 U 

(y = 1.7811 = Eulerian constant) we may write for small values of U:  

f l sin u u ~ d U =  1- -1og (yU)  . . . . . . . . . . . .  

f l  1 - -  c o s  u du 
Ct 

.. (42) 

.. (43a) 

. .  ( 48b)  

. .  ( 4 4 )  

. .  (45) 

. .  (46) 

where terms of the order U s (i.e., order co s) have been neglected. With the same degree of accuracy 
we may replace the sin-function in (43a) by its argument (compare Appendix IV, section 2) 
and obtain : 

f ]  is(x,) 1 ' ' . . . . . . . .  ( 47 )  F~l(x, y) = ~ [ L / x ,  y ) --  L~(x, y')] dy' dx' 
5 X - - : g  t 

d 0 

fls(~,  y ) = ~ l  L,(~, y') 1 --  log 8e(~ --  ~,(y')) --e 

+ ~ L /x ,  y ' ) log 4(y -- y,)S e . . . .  
s 

The second term in (48) vanishes as is shown in Appendix IV, section 4. 

4~ 5 , (x ,  y ' )  ay_'c L / x ,  y ' )  ~ - -  .~, 

X - -  x '  d s ' d x '  

x dx' g 

(48) 

. . . .  (49) 

Since 

f 
;g 

1 L,(x,  s') l o g  - -  ----= - -  ~-£ 

0 

]- The original version of this Report  contained an error in the evaluation of F 1 as was also pointed out  in a 
private communication by M. Landahl,  Stockholm. 
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as follows by an in tegra t ion by parts, we find 

"Fll(X, y)  -t-- f l g ( * ,  y ) =  ~ at(X,,, ' y,) dJ" 
C - -  - L ,  ( x ,  Y 3  x - -  x '  ' 

1 ~ ~Y~ 1 - l og  g ~  j .  (50) + ~ L~ (~, y')  e . . . . . .  

The Delta Wing.--4 .1 .  Evaluation of the Integral F~.--For  a I)elta wing the local s p a n  25 . 
is proport ional  to the distance x from the apex so tha t  the  l ead ing  edge (Fig. 2) is given by  

x = & = ]y] tan  A~ = s t a n  A~ . . . . . . . . . . . .  (51) 
where A~ is the sweep angle of the leading edge. 

For a Delta wing at a constant  incidence the  load dis{ribution in a s teady sonic flow becomes 
proport ional  to s/~/(s 2 -  i f ) .  ds/dx (compare Ref. 29). Since w, is constant  according to 
equat ion  (7), we obtain (assuming ~o to be small) for the  first equat ion (38) the solution • 

s d s  (52) 
L,(x,  y )  = - -  4 w ,  ~-x ~/(s2 =-- y~) -~ 4wr ~/(  s~ - -  9 i  d-x . . . . . .  

where w, is prescribed by  the boundary  conditions (7a) or (7b) respectively for a wing performing 
heaving or pi tching oscillations. I t  is easily shown by means of equat ion (IV, 20) in Appendix  IV, 
tha t  (52) is a solution of (38). 

When  inse r t ing  (52) into (50) we find 

x ~rx  (53) 
Fl(x, y) ---- w~ ~-cI~ log 8eK2 . . . . . . . . . . . . . .  

wi th 
d& 

K = tan A t -  dy . . . . . . . . . .  ' . . . . .  (54) 

Th.us F1 is independent  of y which will simplify the calculation of the corresponding contri- 
butions L~I to the load L~. 

4.2. Solution of the Integral Equation for L~.--Now we are in a position to solve the second 
integral  equat ion (38) for L~. As ment ioned  before the solution consists of several terms, which 
correspond to the various terms on the lef t -hand side (' incidence ' terms). The first contr ibut ion 
is given by equat ion (41) and becomes for a Delta wing : 

L,0(x, y)  = - 2w~ ~ / ( s~(~)  - 9 )  . . . . .  . . .  . . . . . . .  (55) 

The contr ibut ion L~ arising from F~ is easily obta ined by means of equations (19) and (20) 
in Appendix  IV. We find 

L,~(x, y) = --  K~ x~ ~ ~/{s  (x) -- y~} log ~ . . . . . . . .  . (56) 

For a wing,  performing heaving oscillations w e  have w~ = 0 according to equat ion (7a). The 
entire  load is given by  equat ion (55) and (56) : 

L, ~ L~ = L~0 -I- L,~ . . . . . . . . .  : . . . . . .  (57) 
For a wing performing rotary oscillations we have an addit ional  load contr ibut ion L~q, which 
arises from the incidence term w~ in (38). For a rotary oscillation we have according to (7b) 
w, = --  ~* = const, and 

x -  X o =  q ( x -  x0) :(58) 
w i = w~ ~ __ V . . . . . . . . . . . .  
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agrees with the incidence as it occurs on a wing in quasi-s teady pitch. The corresponding load 
dis t r ibut ion is 

( X - - x 0  5//{s2(x ) _ y2} ) . . . . . . . . . .  (59) L~q (x, y)  = - -  4 w~ Ux c 

as can be verified by  means of equat ion (IV, 19) and (IV, 20) of Appendix IV. Thus we have for 
a ro ta ry  oscillation 

L~ ~ Li~ = Li~ + Liq . . . . . . . . .  . . . . . .  (60) 

4.3. Forces and M o m e n t s . - - A f t e r  the solutions L, and L; of equat ion (38) have been given in 
equat ion (52) and equations (57) and (60) of the previous sections, we can now determine the 
actual  loads l~ and l~ by  means of equations (28). The term, which has to be added to the 
imaginary  par t  of the load, agrees with L~0 in equat ion (55). The result  can be wri t ten in the 
following form, if imlx~ is the imaginary  par t  ol the load for a heaving oscillation (w, = -- w * / V )  
and icol~o is the imaginary  par t  for an angular  oscillation (w~ = --  v~*) : 

I~ = L~ 

l~ = 2L~o + Ln ~- . . . . . . . . .  (61) 
l 

lie = li~ -~- Liq ~ liw -~ liq ] 

Using the results (52), (55), (56) and (59) of the preceding sections, we obtain (K = tan  At) : 

s 

/ 

l~, = - -  4w~ a/(s~ - i f )  
8 

li~ ~ Lie = - -  4w~ ~xx c 

. .  ( 6 2 )  

For the calculation of the forces and pi tching moments  the spanwise integrals of these loads 
are required. We obtain,  after performing the differentiations with respect t o  x, for these 
integrals : 

f [ 1~ dy 4~w~x 
g K~g fs [ 

li~, dy  __ 2~w,,x 2 
-s c K282 

I 
! 

1 8 / 8 co),x \ 7  [ 
+ logs- ) ] . . .  

t f [  l~q dy  g 

We define the longi tudinal  s tabi l i ty  derivatives in the usual way (see Ref. 2) by  writing the 
z-component of the complex force due to a heaving oscillation z~ = --  wrV as 

= ~e  ~'t (Z~, + in  Z;~) = - -  p V~zo,Se~'~(z~ + ia, z;~) 

and the complex pi tching moment  in a similar way. 
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Split t ing this into real and imaginary parts leads to the following list of stabil i ty derivatives 
for heaving oscillations (w~ = w*/V, w~ = O) : 

dy dy 
S ' s . S s -  I . 

J 
(64) 

2w,m. Ij Z~ x -~ :Co dxsdy , 2w, m; = fI~ G x --5 xo dx@s 

For rotary  oscillations (w~ ----- --  #*) we write accordingly for the force : 
-- ½pV 2 f~ (lr 4- iml,~)e"'dxdy = #Z~ + #Zi  

= a ~'~ e~"(Z~ 4- inZs) = - -  pV~Sw~ e~"'(z~ + i~oz~) 
and a corresponding expression for the moment .  Spli t t ing this expression into real and imaginary 
parts leads to a list of derivatives similar to equat ion (64). By comparison we find tha t  the  
' real parts ' of the  derivatives agree for both  kinds of oscillation : 

z ~  = z~  ~ = ~¢o . . . . . . . . . . . . . .  ( 6 5 )  

and tha t  the  ' imaginary parts  ' satisfy the  relations (compare equations (60) and (61)) : 

z~ = z~ 4- z e, m~ = m~ 4- m e . . . . . . . . . . . .  (66) 
where z e and m e are defined as the derivatives which occur in the quasi-s teady theory  of a wing 
in pi tch ; namely  

2WrZq = YI l~e dX_~y,-- 2w,me = If  Z~q x --g Xo dXsdY . . . . .  . (67) 

The equations (65) and (66) hold for any wing plan-form, as was demons t ra ted  by Neumark  
and ThorpeL 

We perform the  integrat ions required in (64) and (67) using equat ion (63). The results are given 
in the first column of Table 1. Here h = Xo/e denotes the  axis position in terms of the  mean chord 
measured from the  apex (h posit ive if point ing backwards).  

4.4. Discussion of Resul ts . - -The results of the  preceding calculations, which are compiled in 
the  first column of Table 1, show tha t  the relations 

z ~  = z ~ ,  m ~  = * ~  . . . . . . . . . . . . . .  ( 6 5 )  

hold also for sonic speeds (M ~ 1), if only small values of the reduced frequency ~o are considered. 
The stabil i ty derivatives,  which correspond to quanti t ies  in phase wi th  the  original oscillation 
of the  wing, can be calculated from steady-flow theory (see Ref. 29). The same applies for the  
derivatives zq and me. The lat ter  remains negat ive for all axis-positions. 

The other four derivatives which occur in a short period longitudinal  oscillation wi th  two 
degrees of freedom, z~, m~,, z~, m,~ are related through the following equations : 

z~ = zq + z;, m~ = m e + m; . . . . . . . . . . .  (66) 
All these derivatives depend on the  reduced frequency a. In Fig. 3 the function : 

(°' }1 z;/(4~ cot A~) --  1 + -32cot~ A~. log -4- c°t~ A~) . . . . . . . .  (68) 

is p lo t ted  against cot Az for various values of co. (-- z;) is positive for small aspect ratios (large 
sweep angles) but  assumes big negat ive values for larger aspect ratios. These values become 
even bigger for very  small frequencies and decrease with increasing ¢o. In  Fig. 4 the function 

m;~ = z~ l ( ~ _  h ~ 1 
4= cot A, 2= cot AI '2 \ , ,  / -7 ~ c°t~ A, . . . . . . . . . .  (69) 

is p lo t ted  against the axis posit ion h = xo/~ for various values of the  leading-edge sweep angle 
A~ and three values of ~o. For small values of the aspect ratio A = 4 cot Az, m; is negat ive as 
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required for a damped oscillation (see below). But for a leading-edge sweep Az = 60 deg, (--m~) 
becomes zero or negative for an axis position h = 4/3 at the aerodynamic centre and definitely 
negative for positions forward of the aerodynamic centre. Conditions can be improved slightly 
by increasing the reduced frequency c~. 

The present calculations cover only frequencies up to co = 0.1, since it was felt that  for bigger 
values of co certain terms, which have been omitted in this paper, may become important. It may 
well be that  the present analysis applies also for bigger ~o's, since calculations in the supersonic 
and subsonic range by W. P. Jones have shown that  the higher frequency terms do not affect 
the results very much. But in the sonic range this point requires further investigation. As can 
be seen from Figs. 3 and 4 the frequency ~o has a bigger influence on the results for a smaller 
sweep  angle and its influence decreases with decreasing aspect ratio. 

Figs. 5 and 6 show plottings of the derivatives zi and mi for a Delta wing at sonic speeds for 
various axis positions h = Xo/g. Since z~ and m~ are independent of the frequency, the influence 
of co on zi and m~ is similar to its influence on z; and m~ as described above. 

The damping of the short-period oscillation depends on the derivatives --zw and -- m~ (compare 
equation (74) in section 4.5). The first quanti ty -- zw is always damping, whereas -- m~ may 
become zero or negative and thus cancel the favourable influence of (-- z,). In order to give 
an idea of this unfavourable influence of -- m~ on the damping, Fig. 7 shows the curves -- mi = 0 
as functions of the aspect ratio A and the axis position h for various values of the reduced 
frequency co. For all points below these curves, where -- m~ is positive, we may expect stable 
or damped oscillations. For an axis position behind ~ of the root chord, all oscillations becomes 
damped, but this c.g. position can hardly be realised in an actual aircraft. For centre of pressure 
positions forward from the ~ root-chord point, the aspect ratio for which the oscillations remain 
damped, is restricted to fairly small values. This applies even for axis positions 2 or 3 mean chords 
ahead of the apex. Thus an efficient tail with a sweep of 45 deg would have to work on a 
sufficiently long arm (about 3 or 4 tail mean chords) according to this calculation which neglects 
all effects of the downwash, induced by the wing, on the tailplane and also the effects of a 
vertical shift of the tailplane position. 

It is not easy to discuss the present results for M = 1 in relation to subsonic results for a 
Delta wing since they are not available yet up to sufficiently high Mach numbers. But supersonic 
results have been calculated before. They are based on the assumption that  co is small compared 
to ( M  2 - -  1)/M ~ (see Appendix III  and Refs. 17, 18, 19, 23). Column 2 in Table 1 shows these 
results for the longitudinal stability derivatives of a Delta wing. As can be seen the sonic results 
can be obtained from the supersonic results by taking the limit M - +  1, except for the term : 

M 2 ( 1  - -  H )  

M ~ -  1 

which occurs in the ' dotted ' derivatives and tends to 

f 4 tan Az "~ 
cot ~ A, log \ ~ _ - - - 1 ) ) - - +  + co. 

In our sonic solution we have a corresponding term 
t co 7 cot 2 A~ 

- -  ~ cot 2 A~ log 4 

which also tends to + 0% if co tends to zero. This is quite satisfactory from the mathematical 
point of view, since in the supersonic case m was assumed to be small compared to M ~ -  1, 
which means that  ~o must tend to zero as M approaches 1, whereas in this paper co was retained 
for the sonic calculation. 

On our present knowledge it is not easy to close the gap between the two theories. In Fig. 8 
an at tempt has been made to interpolate betweer/M = 1 and the supersonic region. The broken 
curves which connect the values for M = 1 of the present theory with the supersonic results 
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depend  on the frequelmy ~o, but  with increasing Mach number  the results become more and more  
independent  of m, provided o) is small so tha t  one single (asymptotic) curve can be used. 
Obviously, these in terpolated curves which require confirmation by  an actual calculation, have 
to be used with some caution. Nevertheless it seems to be evident  tha t  the  ' do t ted  ' s tabi l i ty 
derivatives for a Delta wing of modera te  sweep undergo (for a fixed o~) rapid variat ions wi th  
M near the speed of sound. This variat ion means an appreciable loss in the  damping of 
the short  period longitudinal  oscillation. For A~ ~> 60 deg this loss of damping  does not  occur. 
If the  in terpolated curves in Fig. 8 are t rustworthy,  it appears tha t  the supersonic results compiled 
in Ref. 23, hold for Mach numbers  down to about  M S =  1.2 as far as small frequencies are 
concerned. 

For  wings of a very  small aspect ratio, the  term proport ional  to cot ~ A~ can be neglected in the  
results of Table 1. We obtain agreement  with the results of Garrick (Appendix B of Ref. 14), 
which are valid for any Mach number  at a very small aspect r a t i o .  

4.5. Application to a Particular Aircraf t . - - In  order to i l lustrate the  application of these results 
to actual aircraft, an example is given here, to indicate broadly what  happens.  According to 
the  e lementary  theory  ~' ~ of the  short-period oscillations the  reduced frequency co is given by 

--z~ ( ~ ,  ~ e ) }  . . . . . .  (70) 
. . . . . . . .  

with 
W kB 2 

iB . . . . . . . . . . . . . . .  (71) 
# - -  gpgS ' ~2 

(W = weight of the  aircraft, kB : radius of gyration, # = densi ty ratio, iB = momen t  of inert ia 
ratio). We introduce the restoring margin H,, which is according to Table 1 (for a Delta wing 
inside the Mach cone from the apex) : 

H,, m~ 4 h (72) 
_ _  - -  . . . . . . . . . .  . . . . , , 

z,~ 3 

and have 

co = ~] ~ E#iB H,~ + E¢ H ,  + H -- 

+ ( :  --  H ) ( H  -- ~ ) ) ] }  . . . . . . . . . . . .  (73> 

where E and H depend on a = cot A~v/(M ~ --  1) (see Ref. 23). The damping per period is given by  
e -~/"~ where the reduced frequency co of the (undamped) oscillation is in t roduced according to  
(73) and B is 

m~ (74) B = -- z~ iB . . . . . . . . . . . . . . . .  

In  order to have some idea about  the magni tude  of these quantit ies,  an example was calculated. 
The inertia ratio was chosen as i~ = 0.25 and the densi ty ratio as # = 200. Fig. 9 shows the 
reduced frequency co and also the damping per period exp(- -  B~/(#co)) for a Delta wing with 
60-deg leading-edge sweep at sonic speeds (i~ = 0.25, ~ = 200) for various values of the static 
margin H,  = 4/3 --  h. This particular aircraft is dynamical ly  stable for H,  > 0, but  h = 4/3 -- H,~ 
should be less than  1.00 to obtain static stabil i ty at low speeds (subsonic a.c. at h = 1). 

In  order to show the variat ion of the damping with M this function has been plot ted for the  
same aircraft (i~ = 0.25, ~ = 200, Az = 60 deg) against M for a static margin H,~ = 0.333, 
0.1 and 0.033, For M = ! the results of this paper are used and for M 2 >~ 1.2 the results of 
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Ref. 23 (based on the assumption co < < M 2 --  1). T h e  intermediate values are interpolated 
and have to be used with some caution. This particular aircraft (iB = 0.25, ~ = 200, A~ = 60 
deg) is stable for all Mach numbers and all static margins H,, given in Fig. 9. Results for a wing of 
45-deg sweep (i~ = 0.25, ¢ = 200) are also shown. The stabili ty of this aircraft would be fairly 
poor for a Mach number range between M ~ = 1 and M ~ = 1.245, if h = 1. 

Before any general conclusions can be drawn from these calculations the effects of a change 
in the plan-form of the wing (taper) will have to be investigated. 

5. Conclusions.--A new approach to the theory of a lifting surface performing harmonic 
oscillations (heaving and pitching oscillations) is suggested, which covers also the sonic range. 
I t  is shown, that  for small reduced frequencies the problem can be reduced to the solution of an 
integral equation which has the same form as the integral equation for the lifting surface in steady 
flow (see section 2.5 and Appendices II  and III). This equation has been solved for sonic flow 
(M = 1) and all 8 stabil i ty derivatives for a short-period longitudinal oscillation (with two 
degrees of freedom) have been calculated for a Delta wing (Table 1). The results can be found 
in Figs. 3 to 7. They show a marked decrease i n  the damping of the short period longitudinal 
oscillation at sonic speeds for wings of moderate leading-edge sweep. This oscillation becomes 
undamped for all axis positions in front of the aerodynamic centre unless the aspect ratio 
A = 4 cot Az is sufficiently small  A leading-edge sweep of about 60 deg is required to obtain 
damping for a tailless aircraft with a positive static margin. The shape and position of a tail 
must be carefully chosen if it is to improve damping. The damping improves slightly with 
increasing frequency. 

Although these calculations are based on potential theory, which neglects the effects of thick- 
ness, friction and shock waves, they probably show the main features of the actual flow. I t  seems 
unlikely that  the bad results of the potential theory can be off-set to a predominating extent by  
the influence of shock waves or friction. The results will depend a great deal on the plan-f0rm of 
the wing, and further calculations are required to show this influence, e.g., the effect of taper. 
Such plan-forms, for which even this theory shows rapid variations of the stabil i ty in the sonic 
range, should be abandoned in favour of other plan-forms with better characteristics. These will 
have to be tested as to their behaviour in a real flow. Thus it is hoped that  the linearized theory 
outlined ill this report, will provide a useful tool in the investigation of transonic stabil i ty 
problems. 
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A P P E N D I X  I 

The function Z(x, y) 

We assume a per iodical  osci l la t ion a n d  the  ve loc i t y  p o t e n t i a l  ¢ in the  fo rm 

¢ = ~ ( x , y , z ) . e % ,  . . . . . . . . . . . .  

• T h e n  6 satisfies Bernoul l i ' s  e q u a t i o n  (6) in the  fo rm : 
. . . .  ( I ,  1) 

y - + = - ( f -  . . . . . . . . . . .  ( i ,  2)  

Accord ing  to  (15) the  d i s c o n t i n u i t y  A f a long  the  wing  surface  p roduces  a load  i and  a d i s c o n t i n u i t y  
d ~ of the velocity potential 

d e  = A ~ .  e ~"e ~ 2 e  e"t V.  ¢ * ( x ,  y ,  + 0) . . . . . . . .  . .  (I, 3) 

a n d  we have  f r o m  (I, 2) (¢* = 0 a long  l ead ing  edge) : 

. . . . . . . . . .  ( i ,  4)  4 - -7 /  ~ ¢ * = 2 ~ = [ ( x , y ) .  
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We insert  this in (23) and obtain after an integrat ion by  parts 

[~4" i n , 7  
l(x, y) = 4 [.~x + P $  J 

L(x, y) = 4 + in M 
~ I + M  $ " 

( i ,  s)  

A P P E N D I X  II  

Small FrequenCy Oscillations in Subsonic Flow 

We consider the  case of small frequencies m only. Then we may  simplify (25) as 

- -  ~ (~ 'Y)  1 + M ~ c Lt,(y) 1 + M  .~ - - =  

.. (I!, 1) 

1 fi t  L , ( y ) - -  1 + M xl c 

With  the  same approximat ion we have for x = X : 

(cos H),=x = cos H~ -- H1 sin H~ -"- cos H~ ; . . .  . .  . .  . .  (II, 2) 

(sin H)~=x = HI cos H~ + Sill H~ J 
For a wing of finite aspect ratio H~ is finite, except  in the l imit ing case M - +  1, where the  

integrat ion has to be ex tended  over the forward part  S* of the  wing, where x' <~ X and H2 tends 
to infinity as x' tends to X. Now we have shown in section 3.2 tha t  even in this l imit ing case 
the  following approximat ion is valid for small frequencies : 

(cos H),=x ---- 1 ; (II, 3) 
. • * • • • • • • • • • , • 

(sin H),=x = H1 + sin H~ 3 
and therefore it applies also in the  case M ~< 1. When  introducing these simplifications in (26) 
we obtain the system of equations (31), which is valid for small frequencies (e = + 1). F inal ly '  
we may  go back to the original load distr ibution i = l,, + icol~ by means of equat ion (28). 

The solu t ion  l, will be independent  of ~o, if co is small enough. This is not  t rue for l~ and L~ 
at least not  for Mach numbers  M near 1. In  this case F(x, y) in (31c) depends on ~ and so does 
the function l~ and the  stabil i ty derivatives derived from l~. If M is small enough, so tha t  

1 s i n  oM~ ~ _-- _ 1 sin ~ m ( x  -- x' --  r) 
e(x - x' + r) ~ (1 - M~)e 

can be replaced by 
M x - - x t - - Y  

1 - -  M 2 
, the load l~ becomes independent  of ~o. 
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in  this particular case where co < < [ i  -- M2i we may simplify the equations (31) by intro- 
ducing the functions 

~-(x, y) = -~ exp 

~*(x',  y') = ¢* exp ( 
\ 

( I I ,  4) 

where ¢*(x', y') as defined in (I, 3) describes the  discontinuity in the velocity potential  between 
both faces of the wing. Then we have according to (I, 5) 

L'x' '" ( i~°M~x' ~(1-M~)gj k,('@¢~*~ li~°M ¢ * ) _ M  2 , y ) e x p  - - 4  + c " . . . . . .  ( II ,  5) 

When taking real and imaginary part and inserting this in (26) we obtain, using (I, 5) for Lt, a 
simpler system of two equations for the real and imaginary part of ¢1". If we prefer to retain the 
complex notation, we introduce the transformation (II, 4) in equation (24) and obtain : 

~ II h ox' + l - M ~ exp (I - M2)g//t,, e + ~ -  ~2Xo (y -- y,)2 

with 
,3 --b/Z co 

I e x p ( _ i H . )  (~ + x--  x')],,=~ d x dy' (II, 6) 
r ~ ~=0 ( Y  - Y')2 

H* =H 
(1 - -  M~)g" 

When retaining only terms of the first order in co/.[ 1 -- M 2] the exponential in the wake term may 
be replaced by 1 and the integrand in the first term of (II, 6) may be written as 

• 

L~XTx'+I-M ~ - *~Tx'/j *+-~-- 

~¢l*f~xTx, ~, e x --r x')/ (1 --i~M " 

Thus we obtain (since ¢1" = 0 along leading edge) : 

-v ~ fJ a ~ ' k  + ~, _ , _ o ( y - y ' )  2 

__ i(D ~ f b]2 ~1¢~(X/' Y') (~  ( ~ -  ~t) @ ~xt__xl_ dy' . .  ( I I ,  7) 
2~(1  - M ~) ~ - ~  c / £ 0  ( y  _ y , ) ~  

When separating this equation into real and imaginary parts, we obtain two equations for 
41,,* and 51~*, each of which is of the same form as the corresponding equation for steady flow, 
the incidence term for 41~* being modified by an ' induced incidence ', which depends on ~bl~*. 

This system of equations for ¢1,* and 6~* is equivalent to the method suggested by W. P. Jones 
in a number of papers (see Ref. 7, 8). It was also suggested by H. Multhopp in an unpublished 
paper, derived there without reference to the complete wave equation. Multhopp started instead 
with the transformation (II, 4) and after neglecting terms of higher order in co/(1 -- M2), solved 
the ordinary Laplace equation for ¢*, in terms of an integral equation. 
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I t  m a y  be poin ted  out  t ha t  the  simplifications, which lead from (26) to the sys tem (31a) to 
(31b), are not  justifiable for a wing of infinite aspect ratio. In  order  to show this, we consider an 
incompressible flow (M ---- 0). In  the two-dimensional  case, where L and w is independen t  of y,  
the  spanwise in tegra t ion  in (26) can easily be performed.  We obtain  from (26) 

w ( x ,  0 ) =  1 ~' tL(x , )d  x, L ( x ~ ) ~  x , x-.~ dx  
x ' - - X  b ~ -  j _  e T - - .  . . . . . . .  ( I1,8)  

x~ oD X t - -  X 

where  

' . .  ( I I ,  9) L ( x , )  = - . . . . . . . . . . . .  

x 1 

The second integral  in (II, 8) (which represents the  wake influence) does not  converge, if the  
exponenta l  funct ion is expanded  in powers of co, as it was done for a wing of finite aspect ratio. 
This integral  can be wr i t ten  as 

x-~ dx  i~ _ du 
i~ -- ei. e ~ - - e  ~ - -  

X t ~ X ,  
- o~ u 

with  

U = r D  x t -  X 
g 

We in t roduce  the  integral-cosine and integral-sine, as defined in (IV, 5) and (IV, 6) and have 

• X - - x  t 

e ' 7 - ~  [ - - C i ( U ) + i ( 2 - - S i ( U ) ) I  

( )[ ' ~  1 + ico X --e x~ - -  log ~' co (x,e-- X )  + ~. ~ co (xt X )  
c 

(y = log C = 1" 781072, C = Euler ian  constant) .  Thus we obtain a te rm log co, which occurs 
in the  imaginary  par t  L~ and l~ as can be seen by  spli t t ing (II, 8) in its real and  imaginary  part.~ 
The ' do t ted  ' s tabi l i ty  derivat ives depend on log o~. 

A P P E N D I X  I I I  

Superson ic  F l o w  

The procedure  which leads from the general  equat ion  (26) to the sys tem (31 for small  values 
of the  frequency,  can be justified in the same way  as this was clone for subsonic speeds in Appendix  
II .  Thus the sys tem (31) holds also for M > 1, provided tha t  the in tegra t ion  is ex tended  over  
the  par t  S* of the wing area S, which is inside the forward Mach cone from the  point  (X ,  y ,  0). 
The terms wi th  e = -}- 1 and e = --  1 mus t  be added. 

Thus  we find again tha t  the ' induced  ' incidence F(x ,  y)  depends on co so tha t  L~ and  l~ and 
finally the ' do t ted  ' s tabi l i ty  derivat ives depend  on co, if M is near  to 1. 

If M is large enough so t ha t  ~ < < M ~ --  1, then  the t ransformat ion  (II, 4) can also be 
in t roduced  and  the sys tem (31) simplifies. The resul tant  equat ions can formal ly  be obta ined 
from (II, 7), if the  terms for ~ ---- q- 1 and  ~ = --  1 are added  and the  in tegra t ion  is ex tended  
over S*. 
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A P P E N D I X  iV 

Some Mathematical Aids 

Appendix  I V ,  I .  Some integrals.--In this appendix  we shall first derive some useful integrals, 
which can be used later on, to est imate the  order of magni tude  of certain terms neglected in 
tile main  part  of the paper. We consider (for m = 0, 1 2 . . . )  the  integral  

A,,, ~ sin ~ (x --  x') .... ~ dx' = a" sin u du (IV, 1) 
. , ~ -  X t • Urn_ I . . . . . .  

x 0 u 0 

where a = U~"/2V is independent  of x' and 

= a l ( ~ -  x') ~o = a l (x  - Xo) . . . .  

and the  integral  

a N ' )  m - 1  ~m B , .  ~ c o s  - . ( x  - d x '  = j4~ t 
x 0 u 0 

In tegra t ing  by  parts we have for m > 0 

sin u du sin uo cos u du 
u m + 1  - -  mqAo m ~- m ~ m  

*to Uo 

COS ~ d ~  

I/~m + 1 

. . . .  ( IV,  2) 

. . . .  (IV, 3) 

. . . .  ( I v ,  4) 
cos u du cos Uo sin u du 

I/4~m + 1 m ~ 0  m m~/A~m 
~o Uo ..~ 

so tha t  all these integrals can be reduced to integrals With an exponent  1 in the  denominator .  

sin u du sin u du _ ~ 'Uo' "o . . . . . .  (lv'T", o)"" 
u 2 2 u 

¢~0 0 

c o s u d u _  Ci(uo) = - -  C - - l o g u o +  ~o du . .  (IV, 6) 
q~ qA 

¢~0 0 

Si and Ci denote  the integral-sine and integral- 

. . . . . . . .  (IV, 7) 

For  these we find 

A 0 =  

B o  

( i v ,  8) 

(C = Eulerian constant  ; 7 = eC = 1.781072). 
cosine respectively (compare Ref. 38). 

From (IV, 4) we find for m ~> 1 : 

=a-[sinU°(xmk uo - - x ° ) " - l + B " - l ]  
A,,, 1 . .  

xo, j j  B,~ = ~ cos Uo. (x --  aA . . . .  1 

and thus in the  l imiting case a - ~  0, which implies Uo --+ 0 : 

lira B,,, --  (x --  Xo/"~ (m = 1, 2 . . . .  ) 
a--->0 m "  

l imA,,,  (X--~o).... ! (  1 ) ( x - -  xo) (m 2 , 3 . .  - 1 + - - -  .) 
~--~o a m - -  1 m - -  1 
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lira 
a - - - ~ 0  

lira 
a-----~0 

m A ~ =  1 + Bo, lira A o - - , ~  
~ - - - + 0  

B0 = - -  lim log (~Uo) 
~o- - -~0  

Fina l ly  we find for m >~ 1 " 

J 
° (IV, 9) 

C , .  ~ 1 - -  c o s  - -  

x 0 

x - -  x I x - -  ~ 1 - - C O S  - - -  

) ( x -  x°)'il 
X - -  X 0 m 

J 
~;g 

¢g a 

+ - sin x' 
m x0 x - -  

and ill the  l imit  a 

(x - x') ,"-s dx'  = - A 
m q/t0 2 

( iv ,  10) 

- + 0 "  

C, , ,  ( X - X o )  . . . .  s 
l i m a s  --  2(m 2) ( m = 3 , 4 . . . )  [ 
a----+O 

l im aS -- 2 + B0 . . . . . . . . . .  (IV, 11) 
a-----~0 

lim C~__ ~ ] 
o ~ o  a 2 j 

Appendix IV ,  2. Magnitude of some integrals.--The relations, obtained ill Appendix  IV, 1, 
enable us to show the order of magni tude  of some integrals,  which have been neglected in the  
t r ea tmen t  of the  integral  equat ions (36) and (38). In  (36) the cosine-function was replaced by  1, 
which is permissible if t h e  integral  : 

1__ , , (  n~ 2 ) dx' dy' . .  . .  ( Iv,  e2) 
4~ ~I, L ( x ,  y )  1 - cos 2V ( x  - x') ~s . .  

becomes Sufficiently small for ~ - +  O. When  in tegra t ing with  respect to x', we choose a point  
x' = x0 near enough to x, so tha t  L/x ' ,  y') is approx imate ly  equal to L,(x, y'). On the other hand  
the  in terval  x -- x0 mus t  be chosen big enough, so tha t  for x' < xo the expression na2/2V(x -- x') < 
n~s/2V(x -- xo) is bounded, so tha t  it tends to zero for ~o --+ 0 and the integral  between x' = x~ 
and x' = Xo is finite and vanishes as co s. The second par t  of the integral  (IV, 12), between 
x' = x0 and x' = x is then (for every value of y')  proport ional  to the  integral  C1 in (IV, 10) and 
according to (IV, 11) proport ional  to a or to co = ng/V, q.e.d. Thus the simplification of (36) 
and (37) which leads to (38) and (39) is justified for small ~o's. This a rgument  does not  apply  
to wings of infinite aspect rat io since then the spanwise in tegra t ion produces an infinite contri- 
but ion  so t ha t  this  t e rm cannot  be neglected. 

A similar a rgument  can be applied to show tha t  the integral  : 

1 [L ' ' 1 [  ~s V s i n  n~s il dx'dy'  . .  (IV,13) 
4-; I~ ~(x, y')  - L ~ ( x , y )  2~(~ - x') ~ .  2 v ( x  - x' ~s 

which is the  difference of equations (43a) and (46), is also proport ional  to ~o, and can therefore 
be neglected for small ~. To prove this, we divide again the in terval  x~ < x' < x into two 
parts.  For the  first par t  x~ < x' < x0 t h e  distance x --  x' > x -- Xo remains positive and the 
sine function can be expanded,  so tha t  this par t  of the integral  becomes proport ional  t o  ~o s. 
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The second par t  of the integral  for x0 < x' < x is of the  form (compare (IV, 1)) • 

f f  c o n s t . (  1 x --a x' x - 2 ' )  2~ - - c o n s t .  f x - -  xo-- ~ dy~ 

which  tends to zero for a - - .  0 according to (IV, 8). 

Appendix IV,  3. Evaluation of some integrals.--We consider an integral  of the form 

where f (x') 
of the  wing. 
and x' = x • 

1 / \ dx' dy' 
~ f  ) h(x, y) (IV, 14) 4-i I~ ~x--' _ ( x ' ) V ( s ' ~ - 9 ) _  (~ - - ~ ) ~  - • . . . . .  

is bounded for x~ < x' < x and s ' =  s(x'), x = xz(s') describes the leading edge 
We perform the in tegra t ion  wi th  respect to x' for cons tant  y '  between s(x') = y'  

_ f ( x )  ~ '~  V(s~(x) : -  9 )  dr' h(x, Y) 
4~ | o-,l~l (Y - -  y')~ 

Here the principal  value of the integral  mus t  be taken% Since • 

V (  s2 - 9 )  dy' V (  s~ - 9 )  

f y, 

dy' _ sin_ I _ 
y - y ' ) ~  y '  - y ( y '  - y ) V ( s '  - y ,2)  s f . .  ( i v ,  i s )  

and 

I = 0  f o r y 2 < s  ~ "~ 

, (y'  - y ) V ( s  ~ - y,,) = y V ( y ~  _ s ~) J 
.. ( i v ,  16) 

we have finally for y2 < s 2, the  only case we are interested in, 

h ( x ,  y )  - -  - i f  (x) . . . . . . . . .  

Thus  we find as a par t icular  case ( f  (x) = 1) : 

1 s ds dx' dy' 1 
4 ~  ~ ~/(s ~ - y'-~)dx:' ~ - ~ . . . . .  

At the same t i m e  we have proved tha t  the  integral  equat ion : 

A ~ i~ (x ' ,  y) dx' dy' _ h(x) . . . . . .  
4 ~  s,  ( y  - -  y ' ) ~  

where h(x) is known,  is solved by  

. .  . . . . . .  ( i v ,  17)  

. . . . . . . .  (IV, IS) 

. . . . . . . .  ( I v ,  19)  

H(x, y) = -- ~x 4h(x) X/(s 2 --  y2) . . . . . . . . . . . . .  (IV, 20) 

I t  can be shown, tha t  this  solution is unique if the only solutions to be admi t t ed  must  have a 
s ingular i ty  of no higher order than  1/~¢/(s 2 --y2) along the edge y = -k s(x). 
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Appendix iV, 4. Evaiuat~or~ of an integraL--The l as t  t e rm  in equa t ion  (48) is p ropor t iona l  to 
t he  in tegra l  • 

= - log 1 _. d~7' 
4(rl - -  V')= V(1  --  r] '=) 

where  r]' < 1. 

so t h a t  

Now it  can  be shown  t h a t  for ~ < 1 

dI(r]) i I ! ~  2 d~]' 
d v  - -  ar lrJ - -  V '  ~ / ( 1  - -  ~1,2) - -  0 

f l  log 
I(rj) = I(0) 4 1 drj' 

2,]' V'(1 - -  V'") 

4 1o 2+i: 1 = - ~ v ' O  - ~ '=)  = o .  
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T A B L E  1 

Z~ 

Z~ 

Z,~ 

gq 

mq 

ng 
M ~ - ~ I , ~ =  V < <  1 

- -  ~ cot A z 

- -  ~- cot A~ . 1 + 3 c o t  ~ Az. 10g cop A l 

--  ~ .  cot 

7~ 
- -  ~ C0P Az 

--~ cot A~ ( ~  - - h )  - - ~  cota A~. l o g ( 4  cop Az) 

X 

--  ~ coPA~ 

-- ~ cot A, (2 --  h) 

A = 4 cot A z -- log y = 0.80907 

M 2 >  1, o~ < < M  e -  1, a = ~ v / ( 1 - - k  ~) 

= V ( M  2 -  ]) cot  A, ~< 1 

- -  ~ c o t  Al 

--  3--E cot A~ 1 --  3 2~r~ --~-  

2~ . 1 --  H 

- - ~ c o t A ,  + 2 H - - h  + ~ c o t A ,  
1 - - H  

M ~ -  1 

--  ~ c o t  A, ( 1  + 3H --  2h(1 + H) + h a) 

+ ~ cot Al - -  h 
1 - - H  

M 2 -  1 

- v 2 cot A, (2H --  h) 

__ ~ ) 2  . 
~ cot A, [ ( ~  + H - - h  + ( ~ - - H ) ( H - - ~ ) ]  

1 - H = ~ " ( K -  E)  
(1 --  a~)E + a"(K -- E) 

, (M2 - l)col:~A, l o g (  4 t a n A ,  "~ 

E = E(k) - - - -~  1, K = K(k) - - - +  oo, H - - - +  1 
M-----~I M.--->I m.----~l 



FIG. la. Co-ordinates used in the theory. 2 ~  
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