

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Measurements of the Aerodynamic Derivatives for Swept Wings of Low Aspect Ratio describing Pitching and Plunging Oscillations in Incompressible Flow

By
C. Scruton, B.Sc., L. Woodgate, and A. J. Alexander, B.Sc., of the Aerodynamics Division, N.P.L.

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE 1957

Measurements of the Aerodynamic Derivatives for Swept Wings of Low Aspect Ratio describing Pitching and Plunging Oscillations in Incompressible Flow

By
C. Scruton, B.Sc., L. Woodgate, and A. J. Alexander, B.Sc., of the Aerodynamics Division, N.P.L.

Reports and Memoranda No 2.925^{*}
October, 1953

Summary.-The aerodynamic lift and moment derivatives for pitching oscillations in incompressible flow have been measured for two axis positions on (i) a clipped delta wing of aspect ratio $1 \cdot 2$, (ii) a complete delta wing of aspect ratio $1 \cdot 6$, and (iii) an arrowhead wing of aspect ratio $1 \cdot 32$. The results for the arrowhead wing and the clipped delta wing are compared with values predicted by the vortex-lattice ${ }^{5}$ and the Multhopp-Garner ${ }^{6}$ methods of calculation. The results for the complete delta wing are compared with values calculated by Garner ${ }^{6}$ and by Lawrence and Gerber ${ }^{11}$. In each of the comparisons a satisfactory measure of agreement was found between the theoretical and experimental values of the derivatives. Calculated values for the clipped delta wing based on very low aspect ratio theory ${ }^{2}$ did not accord with those found by experiment.

1. Introduction.-1.1. Range and Purpose of the Investigation.-It has been shown by W. P. Jones ${ }^{1}$ that theoretical estimates of flutter and stability derivatives for a wing of finite span in compressible flow can be derived from the solution for an 'equivalent' wing in incompressible flow. One of the requirements for the equivalent wing is that its lateral dimensions should be $\left(1-M_{0}{ }^{2}\right)^{1 / 2}$ times those of the original wing, where M_{0} denotes the Mach number of the compressible flow considered. Hence the successful application of the proposed method depends on the reliability of the methods developed for calculating the derivatives of wings of very low aspect ratio oscillating in incompressible flow. The various methods at present available for such calculations include Garrick's ${ }^{2}$ extension of R. T. Jones' solution for steady flow, the vortex-lattice method as developed for unsteady flow by W. P. Jones ${ }^{3}$ and Lehrian ${ }^{4,5}$, the adaptation by Garner ${ }^{6}$ of Multhopp's lifting-surface theory to wings oscillating at low frequency, and the method of Lawrence and Gerber ${ }^{11}$ for plan-forms with straight trailing edges. The purpose of the experiments to be described was to provide values of the derivatives for comparison with those given by the various theories, and also to determine the influence of mean incidence on the derivatives.

The measurements were made with wings of three plan-forms. These were :
(i) a clipped delta wing with a taper ratio of $1 / 7$, an aspect ratio of $1 \cdot 2$, and a thickness/chord ratio of $0 \cdot 06$ (see Fig. 1)
(ii) a complete delta wing of aspect ratio $1 \cdot 6$ obtained by restoring the tips to the clipped delta wing (see Fig. 2)
(iii) an arrowhead wing, of aspect ratio $1 \cdot 32$, and thickness/chord ratio $0 \cdot 10$ (see Fig. 3)

[^0]For each plan-form the pitching moment and the lift derivatives due to pitching motion were measured directly for two axis positions; those due to the plunging motion were obtained from these results by the usual transformation formulae ${ }^{9}$. The tests, which covered the range of frequency parameter $0.06<\omega<0.75$, were carried out in the N.P.L. Low Turbulence Wind Tunnel at wind speeds of between 60 and 120 ft per sec. The tunnel had a polygonal workingsection with sixteen equal sides, opposite faces being spaced 7 ft apart.
1.2. Nomenclature for the Aerodynamic Derivatives.-The sign convention used is shown in the diagrams of Figs. 6 and 7.

The aerodynamic lift and pitching moment, L and M, for plunging and pitching oscillations are expressed in terms of their derivatives by
and

$$
\begin{equation*}
L=L_{\dot{z}} \ddot{z}+L_{\dot{z}} \dot{z}+L_{z} z+L_{i} \ddot{\theta}+L_{t} \dot{\theta}+L_{\theta} \theta \quad \ldots \quad \ldots \quad \text {.. } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
M=M_{z} \ddot{z}+M_{i} \dot{z}+M_{z} z+M_{i} \ddot{\theta}+M_{\theta} \dot{\theta}+M_{\theta} \theta \quad . \quad . . \quad . \quad . \tag{2}
\end{equation*}
$$

where $\bar{c} z$ and θ are respectively the vertical translational and the angular displacements of the wing.

For simple harmonic motions of frequency $p / 2 \pi, L$ and M are expressed in terms of their non-dimensional in-phase and out-of-phase components :

$$
\begin{array}{rllllll}
L & =\rho V^{2} S\left[\left(l_{z}+i \omega l_{z}\right) z+\left(l_{\theta}+i \omega l_{\theta}\right) \theta\right] & . & . & \ldots & . . & \ldots \\
M & =\rho V^{2} S \bar{c}\left[\left(m_{z}+i \omega m_{z}\right) z+\left(m_{\theta}+i \omega m_{\theta}\right) \theta\right] & \ldots & \ldots & \ldots & . \tag{4}\\
\omega & =p \bar{c} / V .
\end{array}
$$

where
The dimensional and non-dimensional coefficients are related as follows:

$$
\left.\begin{array}{rll}
L_{z}-p^{2} L_{\bar{z}} & =\rho V^{2} S l_{z} ; & L_{z}=\rho V S \bar{c} l_{i} \\
L_{\theta}-p^{2} L_{\theta} & =\rho V^{2} S l_{\theta} ; & L_{\theta}=\rho V S \bar{c} l_{\theta} \\
M_{z}-p^{2} M_{z} & =\rho V^{2} S \bar{c} m_{z} ; M_{i z}=\rho V S \bar{c}^{2} m_{z} \\
M_{\theta}-p^{2} M_{i j} & =\rho V^{2} S \bar{C} m_{\theta} ; M_{\theta}=\rho V S \bar{c}^{2} m_{\theta}
\end{array}\right\}
$$

The value of the aerodynamic inertia $-\bar{M}_{\bar{\theta}}$ for pitching oscillations in still air was required for the experiments. It is expressed non-dimensionally as

$$
\begin{equation*}
-\bar{m}_{i}=-\bar{M}_{\bar{t}} / \rho S \bar{c}^{3} \tag{6}
\end{equation*}
$$

1.3. Construction of the Models.-The plan-form, section and main dimensions of the wings are shown on Figs. 1, 2 and 3, the RAE 102 section of thickness/chord ratio 0.06 or 0.10 being maintained at all spanwise sections.

The models were built of solid balsa-wood strengthened by a framework of pine. This framework is shown by the broken lines of the drawings, and it included the central box (A) which enclosed the spring hinge used for the pitching axis. All the force-bearing fittings to the wing were attached to the pine framework.

The 8 -leaf spring hinge, which spanned the width of the pine-box (A), is illustrated by the photograph of Fig. 5. Its fore-and-aft position was adjustable, and the complete hinge could be rotated at its end fittings to the supports so that the wing could be set to high mean incidences without overstressing the leaf springs. The damping of the wing motion produced by the hinge was negligibly small for most conditions of test.
2. Methods of Measurement.-2.1. The Derivatives m_{θ}, m_{θ}. -The two methods used for the measurement of m_{θ} and m_{θ} will be described under the headings 'off-resonance' and 'resonance' methods.
(a) Off-yesonance Method.--The apparatus used previously for the experiments described in R. \& M. 2373^{7} was adapted for the present measurements. It is shown schematically in Fig. 6.

The equation of motion of the wing when forced through the spring S_{1} by the sinusoidal motion of the cross-head of amplitude y_{0} is given by

$$
\begin{equation*}
I \ddot{\theta}+K \dot{\theta}+\sigma \theta=M+\sigma_{f} r y_{0}^{\prime} \mathrm{e}^{i \phi t} \quad . . \tag{7}
\end{equation*}
$$

where I, K, and σ are respectively the structural inertial, damping and stiffness coefficients.
If the'resultant motion of the wing is written

$$
\theta=\theta_{0} \mathrm{e}^{i(p t+\varepsilon)}
$$

and M is expanded in terms of its non-dimensional constituents m_{θ} and m_{θ} then, for $z=0$,

$$
\left.\begin{array}{rl}
m_{\theta} & =\left[\left(\sigma-I p^{2}\right)-\left(\sigma_{f} r y_{0} \cos \varepsilon\right) / \theta_{0}\right] / \rho V^{2} S \bar{c} \\
\omega m_{\theta} & =\left[p K+\left(\sigma_{f} r y_{0} \sin \varepsilon\right) / \theta_{0}\right] / \rho V^{2} S \bar{c}
\end{array}\right\} . \quad . \quad . .
$$

In the evaluation of m_{θ} and m_{θ} from equations (8) the elastic stiffness σ and σ_{f} were obtained from static loading tests. ($I-\bar{M}_{\bar{\theta}}$) was found from a measurement of the natural frequency of oscillation and a value of $-\bar{M}_{\dot{i}}$ obtained from bi-plate experiments ${ }^{8}$ was subtracted to yield the value of I. The apparatus damping K proved to be very small compared with the wind-on aerodynamic damping to be measured, and therefore very accurate determinations of K were not considered to be necessary. The following approximate method was adopted to expedite the experiments. Values of $K-\bar{M}_{\theta}$ were obtained by decaying oscillation tests in still air. The corresponding values of $-\bar{M}_{\dot{b}}$ were taken to be those of a flat plate of the same plan-form as the wing. They were found by swinging experiments on a rig outside the wind tunnel by taking the difference of the damping values obtained with the flat plate and with a concentrated mass of equivalent inertia substituted for the flat plate. Both $K-\bar{M}_{\theta}$ and $-\bar{M}_{\theta}$ were expressed as linear functions of amplitude, and their difference K also showed some variation with amplitude.

A micrometer method was used to determine the amplitude of the y-motion and also the phase of this motion relative to a datum on a phase-commutator fitted to the driving shaft of the reciprocating gear.

Records of the forced motion were used to determine θ_{0} and ε. These records were obtained by photographing the light from a spark (see Fig. 6) on a rotating drum camera after reflection from a concave mirror placed in the wing. The sparks occurred between magnesium electrodes in the secondary circuit of an induction coil and were produced at 15-deg phase intervals of the forcing motion by the operation of the phase-commutator. Initially the commutator was contact operated ; each contact break triggered a neostron relay circuit which discharged a condenser through the primary winding of the induction coil. Later a more reliable and trouble-free action was obtained by replacing the contact-commutator on the driving shaft by a Tufnol disc carrying small stalloy inserts at phase-intervals of 15 deg. The pulses developed when these inserts swept past the pole-piece of an electro-magnetic pick-up were amplified by a special pulseshaping amplifier and the output signal produced was used to trigger the neostron relay operating the sparks. A further spark was controlled by an electrically maintained tuning fork and was focussed directly on to the camera drum to provide both a time scale and a datum line. In the analysis average values of the displacement amplitude for corresponding phase angles were taken over ten consecutive cycles and the most probable values of θ_{0} and ε were then obtained by a ' least-square' method. A small correction to ε was necessary to allow for the time lag between the contact break and the production of the spark. This lag was measured by observation of the commutator in the light of the spark.
(b) Resonance Method.-Some initial measurements of m_{0} and m_{0} were attempted by observation of the resonance frequency $p_{r} / 2 \pi$ and the maximum amplitude attained during a resonance test. It was found that the value of p_{r} could not be estimated with sufficient accuracy to yield reliable values of m_{θ}, but the values of m_{i}, given by equation (9) below showed very good agreement with those obtained in the off-resonance tests.

When, as is usual, the difference between the resonance frequency and the natural frequency of oscillation in a wind is small, the following expression yields the value of m_{θ} to a close approximation :

$$
\begin{equation*}
\rho V S \bar{c}^{2} m_{\theta}=K-\frac{\sigma_{f} r y_{0}}{p_{r} \theta_{0 \text { max }}}\left[1-\frac{\sigma_{f}^{2} r^{2} y_{0}^{2}}{8 p_{r}^{4}\left(I-\bar{M}_{\theta}\right)^{2} \theta_{0 \max }{ }^{2}}\right] \cdot \cdots \quad . \quad . \quad \ldots \tag{9}
\end{equation*}
$$

2.2. The Derivatives l_{θ}, l_{l}.-For these measurements the wing was forced inexorably in pitching motion and the amplitude R_{0} and the phase ε of the vertical force at the support were determined. The wing was supported at the pitching axis by the vertical force indicator shown in the photographs of Figs. 4 and 5, and to the rear of this position by the rigid link connecting the wing to the eccentric of the driving shaft (Fig. 7). Ball-bearing pivots at both ends of the link allowed the rotation of the shaft to be converted to a sinusoidal pitching motion of the wing with only axial forces in the link.

The hinge was attached to the movable limbs A of the indicator (see Fig. 5). The horizontal steel flexure strips B connected the movable to the fixed limbs of the support to give parallel motion and to resist the drag forces. The movement was restrained by the substantial elastic stiffness provided by the semi-circular springs C. Corresponding limbs at each end of the hinge were connected by the cross-bars D. These were bridged at their mid-points by a small concave mirror E supported on vertical flexible phosphor-bronze strips which allowed the mirror to tilt with small differential movements of the cross-bars. Since the mirror was positioned midway between the hinge supports the angle of tilt was independent of the proportion of the total load carried by each support.

In the experiments the wing was forced in pitching motion and the movements of the tilting mirror were recorded by photographing the light from the phase-spark on the drum camera after reflection from the mirror. These records were analyzed in the same way as those described in section $2.1(a)$, and they yielded the amplitude ψ_{0} and the phase ε of the tilting motion of the mirror. The elastic stiffness of the vertical motion was calibrated in terms of the vertical load per unit tilt of the mirror by static loading of the hinge axis in still air. To obtain the total effective stiffness σ_{v} in the wing it was necessary to allow for the restoring action due to the drag forces. This allowance was only significant at the higher wing incidences used in the tests and was calculated from a knowledge of the drag and the length of the horizontal strips B. Finally the value of R_{0} was found from the following relation which takes into account the influence of the inertial reactions due to the small vertical movements of the model

$$
\begin{equation*}
R_{0}=\sigma_{v} \psi_{0}\left(1-f^{2} \mid f_{v}{ }^{2}\right) \tag{10}
\end{equation*}
$$

where f is the frequency of oscillation of the wing and f_{v} is the natural frequency in vertical motion of the wing on its spring support.

In the tests the value of σ_{v} was made sufficiently high to restrict the maximum amplitude of the vertical motion to less than a prescribed limit of 0.01 in . It also gave a high value of f_{v} so that the factor $\left(1-f^{2} / f_{v}{ }^{2}\right)$ did not differ from unity by more than $0 \cdot 03$ in any test.

Since the small vertical movement permitted ensured that the aerodynamic forces and moments due to the vertical motion of the wing were negligible, the balance of the vertical forces is given by

$$
\begin{equation*}
W \bar{x} \ddot{\theta}=-(T+R+L) \tag{11}
\end{equation*}
$$

and that of the pitching moments with respect to the hinge by

$$
\begin{equation*}
I \ddot{\theta}=-\operatorname{Tr}+M-K \dot{\theta} \quad . \quad . \quad . \tag{12}
\end{equation*}
$$

Here $W \bar{x}$ and I are respectively the mass moment and the moment of inertia of the system and T and R are the reactions exerted by the forcing link and the hinge support due to the oscillation of the model.

When K is negligibly small and the unknown T is eliminated from the above equations

$$
\begin{equation*}
R=(I \mid r-W \bar{x}) \ddot{\theta}-(L+M / r) \quad . \quad . . \quad . . \quad . . \quad . . \tag{13}
\end{equation*}
$$

the substitution in equation (13) of

$$
I^{\prime}=I / r-W \bar{x}, \quad \theta_{0}=\theta_{0} \mathrm{e}^{i p t}, \quad R=R_{0} \mathrm{e}^{i(p t+\varepsilon)}, \quad R_{0}^{\prime}=R_{0} / \theta_{0}
$$

and of the non-dimensional forms of the derivatives yields the following expressions for l_{θ} and ωl_{θ} :

$$
\begin{align*}
l_{\theta} & =-\left[\frac{R_{0}{ }^{\prime} \cos \varepsilon+I^{\prime} p^{2}}{\rho V^{2} S}+\frac{\bar{c}}{\gamma} \cdot m_{\theta}\right] \tag{14}\\
\omega l_{\theta} & =-\left[\frac{R_{0}{ }^{\prime} \sin \varepsilon}{\rho V^{2} S}+\frac{\bar{c}}{\gamma} \cdot \omega m_{\theta}\right] . \tag{15}
\end{align*} \quad \ldots \quad . \quad \ldots \quad . . \quad \ldots \quad \ldots .
$$

The values of m_{θ} and m_{6} used in these expressions were supplied by the measurements described in section 2.1.
2.3. The Derivatives m_{z}, m_{i} and l_{z}, l_{i} and the Position of the Aerodynamic Centre. The derivatives of a wing corresponding to two positions of the pitching axis separated by a distance $d \bar{c}$ are related by ${ }^{9}$:

$$
\left.\begin{array}{rl}
l_{s} & =l_{s}^{\prime} \\
l_{\theta} & =l_{\theta}^{\prime}+d l_{z}^{\prime} \\
m_{z} & =m_{z}^{\prime}-d l_{z}^{\prime} \\
m_{\theta} & =m_{\theta}^{\prime}-d\left(l_{\theta}^{\prime}-m_{z}^{\prime}\right)-d^{2} l_{z}^{\prime}
\end{array}\right\} \quad \ldots \quad . \quad . \quad . \quad .
$$

where the unaccented symbols refer to the forward axis position. Formulae for the damping derivatives are of the same form. These transformation formulae were used to derive values of m_{z}, l_{z}, etc., from the measured values of l_{θ}, m_{θ}, etc., obtained with two pitching axes.

The position of the aerodynamic centre is given as a fraction of the mean chord behind the apex of the wing by

$$
\begin{equation*}
\bar{h}=h-m_{\theta} / l_{\theta} \quad . \quad . \quad . \quad . \quad . \quad . \quad \text {. } \tag{17}
\end{equation*}
$$

where the values m_{θ}, l_{θ} relate to an axis position $h \bar{c}$ behind the apex. This formula is derived from the last formula in (16) on the assumption that $l_{z}=m_{z}=0$. It is therefore strictly correct only when $\omega=0$. This estimation of \bar{h} however is only a few per cent in error when $\omega \neq 0$.
3. Results for a Clipped Delta Wing (Aspect Ratio $=1 \cdot 2$).-Corrections for tunnel interference were not attempted for this plan-form but it is considered that they would be small.
3.1. Values for m_{θ}, m_{θ}. -Measurements of m_{θ} and m_{θ} were made for a range of ω and α, and for two positions of the pitching axis, $h=0.754$ and $h=0.973$. The results are given in Tables 1 and 2 and those for $\alpha=0$ are also shown plotted against ω in Fig. 8, together with the theoretical values. The influence of various factors is summarized as follows:
(a) Interference Due to the Model Supports.-Initially the model support did not extend above the wing (see Fig. 6) and it was therefore practicable to suspend a dummy support above the wing to reproduce on the upper surface of the wing similar interference to that produced on the under surface by the true support. Comparison of the results of tests 4 with 7, 6 with 8 (Table 1), and 38 with 41 , 40 with 42 (Table 2) show negligible changes due to the added interference. Hence it was inferred that the aerodynamic effects due to the true support could be disregarded.
(b) Amplitude of Oscillation. -The values of m_{θ} and m_{θ} were independent of θ_{0} for the test range $0.019<\theta_{0}<0.053$ radians. This is shown by the few direct comparisons available (e.g., tests 3 and 4 of Table 1, and 37 to 40 of Table 2) and by the plots of the derivatives against ω in Fig. 8 which permit common curves to be drawn through the points obtained with different amplitudes.
(c) Frequency of Oscillation.-The derivative values varied little over the test range of ω, but tended to rise as $\omega \rightarrow 0$.

Between $\omega=0.16$ and 0.7 the variations of the derivative values are considered to be sufficiently small to justify taking average values as representative for this frequency range. These values are quoted in Table 5.
(d) Scale.-The Reynolds number for most tests was about 1.5×10^{6}, corresponding to a wind speed of nearly 120 ft per sec. A few tests made with half these values (see Table $1(b)$ and Fig. 8) gave increases in the values of $-m_{0}$ of about 20 per cent, and in those of $-m_{\theta}$ of about 7 per cent.
(e) Incidence.-The apparatus was not well suited for measurements at incidence, especially when the pitching axis was forward of the aerodynamic centre. The experimental difficulties increased with incidence and it was only practicable to test up to $\alpha=15$ deg. The detailed results are quoted in Tables 1 and 2, and the values of m_{θ} and m_{0}, corresponding to approximately $\omega=0 \cdot 3$, are plotted against α in Fig. 9. The damping derivative $-m_{\theta}$ shows little variation with incidence. Subsequent measurements of l_{θ}, described in section 3.2 , showed that the marked variation of m_{θ} with α was not accompanied by any substantial shift of the aerodynamic centre (see Table 6).
3.2. Values for l_{θ}, l_{θ}.-The results of the measurements of l_{θ} and l_{θ} for a range of ω and α are given in Tables 3 and 4, and those for $\alpha=0$ are plotted in Figs. 10 and 11 together with the theoretical estimates. The variation of l_{θ} and l_{θ} with α for $\omega=0.3$ approximately is shown by Fig. 12. Some comments on the results are given below.
(a) Influence of the Boundary-Layer Transition.-The first set of values obtained for l_{θ} with $h=0.973$ appeared to indicate a definite decrease of l_{θ} as ω tended to zero. In an attempt to find an explanation for this, observations of the boundary-layer transition on the upper surface of the wing were made by the 'china-clay ' method ${ }^{10}$; and although subsequent repeat measurements did not confirm the decrease of l_{θ} with ω, it is considered worthwhile recording these observations. The diagrams of Fig. 13 show that, for the steady wing at negative incidences, the boundary layer on the upper surface was laminar except for a region due to the disturbances caused by the supports. For positive incidences the turbulent region gradually extended forward from the trailing edge until at $\alpha=10 \mathrm{deg}$ it covered the whole upper surface of the wing. The china-clay method gives no indication of any movement of the transition which might take place during an oscillation. The diagrams obtained with the oscillating wing (Fig. 13(b)) merely indicate that the laminar flow region found for the steady wing remained laminar under oscillatory conditions.

The most direct evidence on the influence of the boundary layer was obtained by repeating the measurements in a turbulent airstream, so that the boundary layer over the whole of both surfaces of the wing (as indicated by china-clay experiments) was turbulent. Sufficient local turbulence for this purpose was produced by two ropes of $\frac{1}{4}$-in diameter, spaced 2 in . apart vertically and stretched horizontally across the wind tunnel 6 ft ahead of the apex of the model wing. It was not considered necessary to re-measure m_{θ} and m_{θ} for these conditions, and thus, strictly, only values of the derivative combinations $\left\{l_{\theta}+(\bar{c} / \gamma) m_{\theta}\right\}$ and $\left\{l_{\theta}+(\bar{c} / \gamma) m_{\theta}\right\}^{*}$ were obtainable (see equations (14) and (15)). However, for convenience in the presentation of the results, values of m_{θ} and m_{θ} found for undisturbed airflow conditions were substituted to obtain the values of l_{θ} and l_{θ} quoted

[^1]in Table 4 and plotted on Fig. 11 for the wing in the turbulent airflow ; and so the differences between the values of l_{θ} and l_{θ} shown for the two boundary-layer conditions are truly only the differences between the derivative combinations mentioned above. These differences were not considered to be sufficiently large to warrant further measurements with the boundary layer turbulent over the whole wing, and the remaining tests were carried out in the undisturbed airflow.
(b) Amplitude Effects.-Measurements were made with various amplitudes within the range $0.0270<0_{0}<0.0767$ radians. Within this range the values of l_{θ} and l_{θ} were independent of θ_{0}.
(c) Dependence on ω.-The plots of l_{0} and l_{θ} against ω shown on Figs. 10 and 11 show very little variation of the derivatives for the test range $0 \cdot 06<\omega<0 \cdot 60$. At the lower end of this range, where the frequency of oscillation was only about $\frac{1}{2}$ cycle per sec, the damping force was too small to measure with accuracy, and the results for l_{θ} show considerable scatter.
(d) Variation with Incidence.-The detailed results of the measurements at incidence are included in Tables 3 and 4, and the values of l_{θ} and l_{θ} for $\omega=0.3$ approximately are plotted against α in Fig. 12. Up, to an incidence of 10 deg the values of l_{θ} were very nearly equal for both axis positions, and increased with α. The results for $\alpha=15 \mathrm{deg}$, however, are surprising in that there is a substantial difference in the value obtained for the two axis positions. A possible explanation of this effect is the establishment of different types of flow for the two axis positions but if this was so, it is remarkable that the position of the aerodynamic centre did not change (see Table 6). The nature of the flow was not investigated and no detailed explanation of the effect is offered by the writers.
3.3. Values for $m_{z}, m_{i}, l_{z}, l_{i}$ and \bar{h}.-Re-arrangements of equations (16) give the following relations between the derivatives m_{z} and l_{s} and the measured derivatives m_{θ} and l_{θ}
\[

\left.$$
\begin{array}{l}
l_{z}=l_{z}^{\prime}=\left(l_{\theta}-l_{\theta}^{\prime}\right) / d \\
m_{z}=m_{z}^{\prime}-d l_{z}^{\prime}=l_{\theta}^{\prime}+\left(m_{\theta}-m_{\theta}^{\prime} \mid d\right) \quad
\end{array}
$$\right\} \quad ··· \quad ···
\]

and similar expressions for the damping derivatives. Values of m_{x}, l_{n}, etc. obtained by the substitution of the means of the measured values are given in Table 5. These values do not, of course, make any further basic contribution to the comparison between theory and experiment, since they are found from the measured derivatives by a theoretical relationship. When comparing the theoretical and experimental results quoted in Table 5 it should be noted that the axis positions used were not sufficiently separated to yield accurate values of the derived derivatives. For instance $a+1$ and -1 per cent variation applied simultaneously to the values of l_{d} measured at the two axis positions produces a ∓ 16 per cent change in the value of l_{z}. The unreasonably high values of l_{z} and m_{z} quoted for $\alpha=15 \mathrm{deg}$ in Table 5 must be regarded as invalid. They arise from the peculiar discrepancy in the measured values of l_{θ} for the two axis positions. (See section 3.2(d).)

The positions of the aerodynamic centre \bar{h} obtained from equation (17) using the mean values of Table 5 are given in Table 6. Measurements at the two axis positions gave the same position to within about 1 per cent, and for $\alpha=0$ this position agreed well with theoretical predictions. There was a very slight rearward movement of the centre as the incidence increased.
3.4. Comparisons with Theory.-Examination of the experimental and theoretical values of m_{θ} and m_{θ} presented in Fig. 8, and those of l_{θ} and l_{θ} shown in Figs. 10 and 11, and also of the comparisons afforded by Table 5 , shows a satisfactory degree of agreement between the measured values and those given by both the vortex-lattice ${ }^{5}$ and the Multhopp-Garner ${ }^{6}$ methods of calculation. The theory for very low aspect ratio wings given in Ref. 2 was also applied to the clipped delta plan-form. The results are quoted in Table 5, and show that this theory is not applicable to this wing.
4. Results for theComplete Delta Wing (Aspect Ratio $=1 \cdot 6$). Measurements on this wing; were made only at zero wing incidence. No calculations of the complete delta wing have been made by the vortex-lattice method but comparison is made with theoretical results given by Lawrence and Gerber ${ }^{11}$ as well as with those obtained by Garner ${ }^{6}$.
4.1. m_{θ}, \bar{h} and \dot{m}_{θ} (Table 7(a) Fig. 14). -The measured values of m_{θ} and \bar{h}, showed only slight variations with ω and were in good agreement with Garner's.calculations ${ }^{6}$. Over the frequency range of the tests the value of $-m_{\theta}$ remained constant at values of between 85 and 90 per cent of those predicted by Lawrence and Gerber ${ }^{11 *}$, and were in slightly closer agreement with the values obtained by Garner for $\omega \rightarrow 0$.
4.2. l_{θ} and l_{θ} (Table 7(b) and Fig. 15).-The measured lift slope agreed well with that calculated by Garner ${ }^{6}$. Except for the lowest values of ω, where the measurements of l_{θ} were not reliable, $l_{\text {f }}$ was independent of ω, its value being approximately 90 per cent of the values given by both Garner ${ }^{6}$ and Lawrence and Gerber ${ }^{11}$.
5. Results for the Arrowhead Wing (Aspect Ratio $=1 \cdot 32$). -With the exception of a few values given in Table 12 the results quoted are not corrected for wall interference and tunnel blockage effects. Approximate estimates ${ }^{12}$ of the wall interference indicate that a correction of 6 per cent should be subtracted from the measured value of l_{θ} to obtain the free-stream value. The correction to m_{θ} is dependent on axis position and amounts to $-0.010 l_{\theta}$ and $-0.001 l_{\theta}$ respectively for axes at $0.883 \bar{c}$ and $1.063 \bar{c}$ aft of the apex of the wing. Rather surprisingly, it was found that the corrections to the damping derivatives l_{θ} and m_{θ} are negligibly small. For low wing incidences the corrections for tunnel blockage effects are also negligible, and they do not exceed 2 per cent of the air loads ($l_{0}, \omega l_{d}$, etc.), at $\alpha=15$ deg.
5.1. Values for m_{0} and m_{0}. -The measured values are tabulated in Tables 8 and 9 and are shown plotted against ω in Figs. 16 to 20, together with some theoretical values. A brief discussion of the results follows.
(a) Amplitude Effects.-Except for $\alpha=10$ deg, $h=1 \cdot 063$, it appears that the results were not influenced significantly by amplitude variations within the test range $0.023<\theta_{0}<0.066$ radians. For $\alpha_{\sqrt{\prime}}=10 \mathrm{deg}, h=1 \cdot 063$, both m_{θ} and m_{θ} varied progressively with θ_{0} (cf. Tests 60 to 64 of Table 9).
(b) Frequency Effects.-The measured values of m_{θ} increased with ω by approximately the same amount as predicted by the vortex-lattice calculations (Figs. 16 and 18). With the pitching axis at $h=0.883$ a slight increase of $-m_{\theta}$ as $\omega \rightarrow 0$ also corresponded roughly to that predicted by the calculations (Fig. 17) but for $h=1.063$ the increase was much more rapid than that predicted theoretically (Fig. 19).
(c) Incidence Effects.-Plots of m_{θ} and $-m_{\theta}$ for $\omega=0 \cdot 3$ against α are given in Fig. 20. The values of m_{0} for both axis positions decreased considerably at the higher incidences but the corresponding rearward movement of the aerodynamic centre \bar{h} (see penultimate column of Table 12) was considerably lessened by increased values of l_{θ} (see Fig. 25).
5.2. Values for l_{θ} and l_{0}. -The results for l_{θ} and l_{θ} are given in Tables 10 and 11 and are plotted in Figs. 21 to 25 together with the calculated values. It should be noted that the accuracy of measurement of l_{θ} improved, while that of l_{0} deteriorated, as the frequency decreased.
(a) Amplitude Effects.-The result of tests made with $\theta_{0}=0.028$ and 0.053 (Tests 74 to 84, Table 10) show no significant effect due to this change of amplitude.
(b) Frequency Effects.-Except for $\alpha=15$ deg only slight variations of the values of l_{θ} and l_{θ} with ω were found, these usually followed the trend predicted by the vortex-lattice calculations.

[^2](c) Incidence Effects.-The variation of l_{θ} and l_{0} for $\omega=0.3$ is shown on Fig. 25. The increases of l_{θ} found at the higher incidences, and their influence on the aerodynamic centre, have been discussed in section $5.1(c)$. The value of l_{θ} changed rapidly with incidence and for both axis positions l_{A} 'would have become negative at incidences a little higher than 15 deg .
5.3. Influence of the Boundary Layer.-Observations of the boundary layer over the clipped delta wing tested previously showed that a laminar boundary layer extended over most of the wing surface. Similar observations were not made on the arrowhead wing since it was considered that the same type of flow would exist. In order to assess the effect of considerable changes in the condition of the boundary layer, some measurements were repeated with the model in the turbulent wake produced by two ropes of $\frac{1}{4} \mathrm{in}$. diameter, spaced two inches apart vertically, and stretched horizontally across the tunnel 6 ft ahead of the model. The presence of these ropes, which must have produced a turbulent boundary layer existing over the whole wing, had negligible effect on l_{θ} and l_{θ} (Figs. 21 and 22). The changes found in the values of m_{θ} and m_{θ} were less than 10 per cent.
5.4. Comparisons with Theory.-Comparative theoretical and experimental values are shown on the graphs of Figs. 16 to 19 and 21 to 24. The values plotted in these figures are all uncorrected for wind-tunnel interference effects. Approximate estimates of the corrections to be applied are given in section 5. In Table 12 some corrected results are given for zero mean incidence and $\omega=0 \cdot 3$, and the comments which follow refer to the comparison between the calculated values and those given by tests carried out with zero mean incidence.
(a) m_{θ} and h.-Vortex-lattice theory ${ }^{5}$ predicted accurately the trend of variation of m_{9} with ω (Figs. 16 and 18). Both pitching axes used in the tests were close to the aerodynamic centre of the wing and hence the considerable percentage differences between the calculated and the measured values of m_{0} are not very significant. If the results quoted in Table 12 are referred to a pitching axis at the apex of the wing then for $\omega=0.3$ the vortex-lattice method yields $m_{0}=-0.763$ and the value derived from the corrected experimental results becomes $m_{\theta}=-0.750$. The corresponding value given by the Multhopp-Garner calculations for $\omega \rightarrow 0$ is $-0 \cdot 809$. The experimental value quoted above cannot be regarded as very reliable since the pitching axes used in the tests were insufficiently separated for accurate extrapolation to an axis at the apex of the wing. The position of the aerodynamic centre \bar{h} (Table 12) was predicted more accurately by the Multhopp-Garner method.
(b) m_{θ}. The measured values of $-m_{\theta}$ were in general somewhat lower than the theoretical estimates (Figs. 17 and 19). This does not apply for low values of ω with $h=1.063$ when the experimental values of $-m_{\theta}$ increased rapidly as $\omega \rightarrow 0$. For $\omega=0.3$ the ratio of the measured to the calculated (vortex-lattice) values is 0.82 for the rear, and 0.94 for the forward, axis positions.
(c) l_{θ}. -The mean of the measured values of l_{θ} after correction for tunnel interference is about 10 per cent higher than the calculated values (Figs. 21 and 23).
(d) l_{θ}.-Theory and experiment showed very good agreement for the forward position of the pitching axis (Fig. 22), especially at the higher frequencies. For the rear position (Fig. 24) the measured values varied between 84 to 92 per cent of those calculated, the closer agreement being found at the higher frequencies.
6. Conchusions.-In the experiments described the aerodynamic lift and moment derivatives have been measured on a clipped delta wing, a complete delta wing and an arrowhead wing. For all three plan-forms values calculated by the Multhopp-Garner method ${ }^{6}$ are available for comparison with the measured values. Calculations by the vortex-lattice method ${ }^{5}$ have been made for the clipped delta and arrowhead but not for the complete delta plan-forms. Lawrence and Gerber ${ }^{11}$ quote calculated values for the complete delta (and rectangular) wings only. In each of the above available comparisons the agreement found between the predicted and the measured
values is considered to be fairly satisfactory. No one of these three theoretical treatments consistently yields results of better agreement with experiment than the other two. For the clipped delta wing comparison was also made between measured values and those given by the low aspect ratio of Ref. 2 . Values calculated by this theory were not confirmed by the experiments.

NOTATION

$\bar{c} \quad$ Mean chord of wing
$c_{0} \quad$ Root chord of wing
$d \bar{c} \quad$ Distance between two positions of the pitching axis
$f \quad$ Frequency of the pitching oscillation
$f_{v} \quad$ Natural frequency in vertical motion of the wing mounted on the vertical force indicator
$h \bar{c} \quad$ Distance between the pitching axis and the apex of the wing
$\bar{h} \bar{c} \quad$ Distance of the aerodynamic centre from the apex of the wing
$I \quad$ Structural moment of inertia of the wing
$K \quad$ 'Apparatus ' damping of the wing on its mounting
$L, M \quad$ Respectively the increments of the aerodynamic lift and pitching moment due to oscillation of the wing
$L_{z}, L_{\theta}, M_{\theta}$, etc. $\}$ Aerodynamic lift and pitching-moment derivatives (defined in section 1.2)
$\left.\begin{array}{c}l_{z}, l_{\theta}, \\ m_{z}, m_{0}, \\ ,\end{array}\right\}$ etc. ${ }^{2}$ Non-dimensional forms of these derivatives (defined in section 1.2)
$p=2 \pi f$
$p_{r}=2 \pi \times$ frequency at resonance
$R_{c}=V \bar{c} / v$
$R, R_{0} \quad$ Increment of the vertical force at the hinge and its amplitude due to the oscillation
$S \quad$ Area of the wing plan-form
$r \quad$ Moment arm of the forcing motion
t Time
$V \quad$ Wind velocity
W Mass of model
$\bar{x} \quad$ Distance of the centre of gravity of the model wing aft of the pitching axis
$y_{0} \quad$ Linear amplitude of the forcing motion
$z \bar{c} \quad$ Vertical displacement of the reference axis
$\alpha \quad$ Mean incidence

NOTATION-continued

ε	Phase advance of the response to sinusoidal excitation
θ, θ_{0}	Angular displacement of the wing in pitching oscillation, and its amplitude
ν	Kinematic viscosity of air
$\sigma_{,} \cdot \sigma_{f}, \sigma_{v}$	Elastic stiffnesses
ψ_{σ}	Amplitude of tilt of the vertical force indicator mirror
$\omega=$	$p \bar{c} / V$
ρ	Air density

REFERENCES

No. Author
1 W. P. Jones Oscillating wings in compressible subsonic flow. R. \& M. 2855. October, 1951.
2 I. E. Garrick Some research on high-speed flutter. Proceedings of the Third Anglo-American Aeronautical Conference, 1951. Royal Aeronautical Society.
3 W. P. Jones The calculation of aerodynamic derivative coefficients for wings of any plan form in non-uniform motion. R. \& M. 2470. December, 1946.

4 D. E. Lehrian Aerodynamic coefficients for an oscillating delta wing. R. \& M. 2841 July, 1951.
5 D. E. Lehrian Calculation of flutter derivatives for wings of general plan form.
6 H. C. Garner Multhopp's subsonic lifting surface theory of wings in slow pitching
7 C. Scruton, W. G. Raymer and D. V Dunsdon

8 C. Scruton Some experimental determinations of the apparent additional mass effect for an aerofoil and for flat plates. R. \& M. 1931. October, 1941.

9 W. J. Duncan and A. R. Collar .. Calculation of the resistance derivatives of flutter theory. Part I.

10 E. J. Richards and F. H. Burstall
11 H. R. Lawrence and E. H. Gerber

12 W. E. Acum and H. C. Garner
R. \& M. 1500. October, 1932.

The 'china-clay' method of indicating transition. R. \& M. 2126. August, 1945.
The aerodynamic forces on low aspect ratio wings oscillating in an incompressible flow. J.Ae.Sci., Vol. 19, No. 11, pp. 769 to 781. November, 1952.
.. Approximate wall corrections for an oscillating swept wing in a wind tunnel of closed circular section. A.R.C. 16,512. January, 1954. (Unpublished.)

TABLE 1
Results for the Clipped Delta Wing. Aspect ratio $=1 \cdot 2$.
Variation of m_{θ} and m_{θ} with ω and α for.
a Pitching Axis $0 \cdot 745 \bar{c}$ from the Apex
(a) $V=118.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=1.5 \times 10^{\mathrm{b}} ; \quad \bar{m}_{\theta}=0.129$.

Test No.	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	ω	$\begin{gathered} \theta_{0} \\ \text { (radians) } \end{gathered}$	$-m_{\theta}$	- m_{6}
1		0.154	$0 \cdot 0225$	$0 \cdot 194$	$0 \cdot 496$
2		$0 \cdot 230$	$0 \cdot 0194$	$0 \cdot 198$	$0 \cdot 500$
3		$0 \cdot 324$	$0 \cdot 0281$	0.198	0.484
4		$0 \cdot 322$	$0 \cdot 0181$	0.198	0.483
5	0	$0 \cdot 410$	$0 \cdot 0327$	$0 \cdot 193$	$0 \cdot 488$
6		$0 \cdot 440$	$0 \cdot 0229$	$0 \cdot 190$	$0 \cdot 486$
7*		$0 \cdot 328$	0. 0280	0.201	0.485
8*		$0 \cdot 440$	$0 \cdot 0346$	0.207	$0 \cdot 492$
9		$0 \cdot 209$	$0 \cdot 0144$	$0 \cdot 266$	$0 \cdot 525$
10	$+3 \cdot 9$	$0 \cdot 321$	$0 \cdot 0245$	0.262	0.493
11		$0 \cdot 412$	0.0283	0. 250	$0 \cdot 504$
12		$0 \cdot 156$	$0 \cdot 0196$	$0 \cdot 349$	0.508
13		$0 \cdot 164$	$0 \cdot 0204$	$0 \cdot 337$	$0 \cdot 507$
14	-5	$0 \cdot 214$	0.0183	$0 \cdot 345$	$0 \cdot 491$
15		$0 \cdot 314$	$0 \cdot 0277$	$0 \cdot 328$	$0 \cdot 470$
16		$0 \cdot 420$	$0 \cdot 0328$	$0 \cdot 312$	$0 \cdot 477$
17		$0 \cdot 158$	0.0205	$0 \cdot 443$	$0 \cdot 548$
18	-10	$0 \cdot 216$	0.0219	$0 \cdot 437$	0.534
19	-10	$0 \cdot 314$	$0 \cdot 0245$	$0 \cdot 430$	0.513
20		$0 \cdot 476$	$0 \cdot 0292$	$0 \cdot 435$	$0 \cdot 486$
21		0.218	$0 \cdot 0255$	$0 \cdot 521$	$0 \cdot 547$
22	-15	$0 \cdot 320$	$0 \cdot 0290$	$0 \cdot 470$	$0 \cdot 522$
23		0.412	0.0336	$0 \cdot 435$	$0 \cdot 552$

(b) $V=59.25 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=0.75 \times 10^{6}$

24	0.161	0.0213	0.239	0.539	
25	0.223	0.0255	0.235	0.512	
26		0.331	0.0189	0.247	0.525
27	0.664	0.0308	0.254	-	

* These tests were made with a dummy support suspended above the wing to form a 'mirror image' of the true support with respect to the horizontal plane of the wing.

TABLE 2

Results for the Clipped Delta Wing. Aspect Ratio $=1 \cdot 2$.
Variation of m_{θ} and m_{θ} with ω and α for a Pitching Axis $0.973 \bar{c}$ for the Apex
$V=118.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=1.5 \times 10^{6} ; \quad-\bar{m}_{\theta}=0.050$.

Test No.	$\begin{gathered} \alpha \\ (\operatorname{deg}) \end{gathered}$	${ }^{\prime} \omega$	$\begin{gathered} \theta_{0} \\ \text { (radians) } \end{gathered}$	$-m_{\theta}$	$-m_{\theta}$
28		$0 \cdot 106$	0.0309	$0 \cdot 0122$	0.294
29		$0 \cdot 159$	$0 \cdot 0311$	$0 \cdot 0134$	$0 \cdot 272$
30		$0 \cdot 300$	$0 \cdot 0280$	$0 \cdot 0071$	0.269
31^{*}		$0 \cdot 341$	$0 \cdot 0278$	-	$0 \cdot 262$
32		$0 \cdot 403$	$0 \cdot 0278$	$0 \cdot 0100$	$0 \cdot 263$
33		$0 \cdot 413$	$0 \cdot 0351$	$0 \cdot 0081$	$0 \cdot 255$
34*		$0 \cdot 498$	$0 \cdot 0420$	- -	$0 \cdot 263$
35^{*}	0	$0 \cdot 514$	$0 \cdot 0378$	-	0.271
36		$0 \cdot 526$	$0 \cdot 0385$	-0.0037	0.273
37*		. 0.646	$0 \cdot 0303$	-	$0 \cdot 262$
38*		$0 \cdot 658$	$0 \cdot 0368$	-	0.263
39*.		0.670	0.0188	-	0.255
40*		$0 \cdot 681$	$0 \cdot 0520$	-	0.252
$41+*$		0.659	$0 \cdot 0298$	-	0.261
42+*	:	0.684	$0 \cdot 0523$	-	$0 \cdot 252$
43		0.163	0.0155	0.0830	$0 \cdot 285$
44		$0 \cdot 260$	$0 \cdot 0231$	0.0769	0.274
45	+5	$0 \cdot 342$	0.0216	$0 \cdot 0842$	$0 \cdot 251$
46		$0 \cdot 398$	$0 \cdot 0251$.	$0 \cdot 0798$	$0 \cdot 252$
47		0.187	0.0144	$0 \cdot 0908$	$0 \cdot 305$
48	- 5	0.273	0.0201 .	0.0834	$0 \cdot 278$
49	-5	0.314	0.0189	0.0898	$0 \cdot 256$
50		$0 \cdot 416$	$0 \cdot 0247$.	0.0785	$0 \cdot 258$
51		$0 \cdot 173$	$0 \cdot 0098$	$0 \cdot 1495$	$0 \cdot 241$
52		$0 \cdot 275$	$0 \cdot 0222$	0:1565	$0 \cdot 249$
53	-8	$0 \cdot 307$	0.0199	0.1462	$0 \cdot 244$
54		$0 \cdot 415$	$0 \cdot 0261$	$0 \cdot 1226$	$0 \cdot 247$
55			$0 \cdot 0204$		
56	-10	0.411	0.0263	$0 \cdot 1180$	$0 \cdot 281$
57	-15	$0 \cdot 300$	$0 \cdot 0230$	$0 \cdot 1090$	$0 \cdot 311$
58	-15	$0 \cdot 422$	$0 \cdot 0305$	$0 \cdot 0812$	$0 \cdot 334$

* Values obtained from the resonance method (see section 2.1(b)).
+ See footnote to Table 1.

TABLE 3
Results for the Clipped Delta Wing. Aspect Ratio $=1 \cdot 2$.
Variation of l_{θ} and l_{θ} with ω and α for a Pitching Axis at $h=0.754$
$V=108.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{\iota}=1.4 \times 10^{6}$.

Test No.	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	ω	$\stackrel{\theta_{0}}{\text { (radians) }}$	l_{θ}	$l{ }_{\theta}{ }^{*}$
59		$0 \cdot 055$	$0 \cdot 0544$	$0 \cdot 841$	0.891
60		$0 \cdot 113$	$0 \cdot 0544$	0.836	0.916
61		$0 \cdot 232$	$0 \cdot 0544$	0.839	0.991
62		$0 \cdot 360$	$0 \cdot 0544$	0.843	1.018
63		$0 \cdot 468$	$0 \cdot 0544$	0.855	1:017
64	0	$0 \cdot 576$	$0 \cdot 0544$	0.947	1.016
65		$0 \cdot 119$	$0 \cdot 0705$	0.833	0.972
66		$0 \cdot 237$	$0 \cdot 0705$	0.837	0.996
67		$0 \cdot 465$	0.0705	$0 \cdot 860$	1.011
68		$0 \cdot 567$	$0 \cdot 0705$	$0 \cdot 884$	1.017
69		0.115	$0 \cdot 0716$	1-102	1.003
70	-5	$0 \cdot 237$	$0 \cdot 0716$	1.073	1.001
71	-5	$0 \cdot 403$	$0 \cdot 0716$	1.050	0.976
72		0.583	$0 \cdot 0716$	1.041	0.930
73		$0 \cdot 117$	$0 \cdot 0728$	$1 \cdot 279$	0.893
74		$0 \cdot 243$	$0 \cdot 0728$	$1 \cdot 310$	0.943
75	-10	$0 \cdot 400$	$0 \cdot 0728$	$1 \cdot 318$	0.905
76		$0 \cdot 567$	$0 \cdot 0728$	$1 \cdot 358$	$0 \cdot 848$
77		$0 \cdot 123$	0.0751	$1 \cdot 39$	0.723
78		$0 \cdot 245$	0.0751	$1 \cdot 42$	0.833
79	-15	$0 \cdot 410$	$0 \cdot 0751$	1.47	0.823
80		0.579	$0 \cdot 0751$	1.54	$0 \cdot 854$

TABLE 4
Results for the Clipped Delta Wing. Aspect Ratio $=1 \cdot 2$.
Variation of l_{θ} and l_{θ} with ω and α for a
Pitching Axis at $h=0.973$

$V=108.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=1.4 \times 10^{6}$					
Test No.	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	ω	$\begin{gathered} \theta_{0} \\ \text { (radians) } \end{gathered}$	l_{θ}	$l{ }_{0}$
81		0.056	$0 \cdot 0270$	0.870	1.085
82		0.066	$0 \cdot 0270$	$0 \cdot 825$	$0 \cdot 789$
83		0.088	$0 \cdot 0270$	$0 \cdot 826$	$0 \cdot 804$
84		0.090	$0 \cdot 0270$	0.844	$0 \cdot 794$
85	0	0.115	$0 \cdot 0270$	0.845	0.877
86		$0 \cdot 176$	$0 \cdot 0270$	$0 \cdot 849$	$0 \cdot 870$
87		$0 \cdot 235$	$0 \cdot 0270$	0.851	$0 \cdot 852$
88		$0 \cdot 344$	$0 \cdot 0270$	$0 \cdot 854$	$0 \cdot 833$
89		$0 \cdot 475$	$0 \cdot 0270$	0.839	0.857
90		$0 \cdot 561$.	$0 \cdot 0270$	0.837	$0 \cdot 858$
91		0.061	$0 \cdot 0529$	$0 \cdot 850$	$0 \cdot 754$
92		$0 \cdot 066$	$0 \cdot 0529$	0.857	$1 \cdot 016$
93		0.074	0.0529	0.857	0.904
94	0	$0 \cdot 117$	$0 \cdot 0529$	$0 \cdot 856$	0.867
95		$0 \cdot 224$	0.0529	0.850	$0 \cdot 812$
96		0.553	0.0529	0.844	$0 \cdot 826$
97^{*}		0.070	$0 \cdot 0529$	0.913	0.723
98*		$0 \cdot 124$	$0 \cdot 0529$	0.907	0.826
99	0	$0 \cdot 243$	$0 \cdot 0529$	$0 \cdot 866$	0.814
100*		$0 \cdot 366$	0.0529	0.909	$0 \cdot 822$
101*		0.593	$0 \cdot 0529$	0.923	$0 \cdot 822$
102		0.059	$0 \cdot 0767$	0.846	0.915
103		$0 \cdot 080$	$0 \cdot 0767$	0.842	0.931
104		$0 \cdot 115$	$0 \cdot 0767$	0.850	$0 \cdot 878$
105	0	$0 \cdot 178$	$0 \cdot 0767$	0.859	0.893
106		$0 \cdot 234$	$0 \cdot 0767$	$0 \cdot 856$	$0 \cdot 749$
107		$0 \cdot 366$	$0 \cdot 0767$	0.859	0.865
108		$0 \cdot 468$	0.0767	0.852	$0 \cdot 855$
109		$0 \cdot 616$	$0 \cdot 0767$	0.863	0.859
110		$0 \cdot 112$	$0 \cdot 0565$	1.014	$0 \cdot 706$
111		$0 \cdot 175$	$0 \cdot 0565$	1.023	$0 \cdot 814$
112		$0 \cdot 243$	$0 \cdot 0565$	1.013	0.779
113	-5	$0 \cdot 354$	$0 \cdot 0565$	1.021	$0 \cdot 755$
114		$0 \cdot 449$	$0 \cdot 0565$	1.015	$0 \cdot 761$
115		0.544	$0 \cdot 0565$	1.133	0.765
		$0 \cdot 237$	$0 \cdot 0541$	$1 \cdot 276$	$0 \cdot 606$
117		$0 \cdot 354$	$0 \cdot 0541$	$1 \cdot 280$	$0 \cdot 646$
118	-10	$0 \cdot 464$	$0 \cdot 0541$	1.286	0.677
119		0.573	0.0541	$1 \cdot 288$	0.677
120		0.232	$0 \cdot 0557$	0.888	$0 \cdot 463$
121		0.347	$0 \cdot 0557$	$0 \cdot 842$	0.573
122	-15	$0 \cdot 470$	0.0557	$0 \cdot 790$	0.577
123		0.574	$0 \cdot 0557$	$0 \cdot 785$	0.639
124		0.620	0.0557	$0 \cdot 699$	0.624

* These tests were carried out with the model in the disturbed flow caused by two ropes stretched horizontally across the tunnel 6 ft ahead of the model and spaced 2 in . apart vertically. The turbulent boundary layer then extended over the whole wing.

TABLE 5

Results for the Clipped Delta Wing.

Mean Values of the Derivatives, and the Comparative Theoretical Values

The values quoted below for $l_{\theta}, l_{\theta}, m_{\theta} m_{\theta}$ are the means taken over the ω range tested. These derivatives did not vary significantly with ω except for some instances at the higher incidences. For this reason the values given below may differ slightly from those plotted in Figs. 9 and 12 for $\omega=0.3$.
The derived derivatives l_{z}, l_{i}, m_{z} and m_{i} and the derivative values quoted for $h=0$, were obtained from these mean values by equations (16).

The calculated values quoted for the vortex-lattice method relate to $\omega=0 \cdot 3$.

TABLE 6
Results for the Clipped Delta Wing :
Position of the Aerodynamic Centre
$\bar{h} \bar{c}=$ distance of the aerodynamic centre from the apex.

α (deg)	Aerodynamic centre \bar{h}		
	Axis at $h=0.754$	Axis at $h=0.973$	Multhopp- Garner
	0.982	0.982	0.982
$\mathbf{5}$	1.067	1.056	-
10	1.085	1.072	-
15	1.082	1.082	-

Note.-These values of \bar{h} were given by the mean values of m_{θ} and l_{θ} quoted in Table 5. They do not differ by more than 2 per cent from those given by values of l_{θ} and m_{θ} taken from Figs. 9 and 12 for $\omega=0 \cdot 3$.

TABLE 7

Results for the Delta Wing. Aspect Ratio $=1 \cdot 60$.
Variation of $m_{\theta}, m_{\theta}, l_{\theta}$ and l_{θ} with ω for Pitching Axes at $h=0 \cdot 862$ and $1 \cdot 112$
(a) Variation of m_{0} and m_{0} with ω
$V=118.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=1.2 \times 10^{6} ; \quad \alpha=0 \mathrm{deg}$

Test No.	h	ω	$\begin{gathered} \theta_{0} \\ \text { (radians) } \end{gathered}$	m_{0}	m_{θ}	$\left(\omega \stackrel{\bar{h}^{*}}{=} 0 \cdot 3\right)$
1		$0 \cdot 096$	0.034	-0.362	-0.682	
2		$0 \cdot 184$	$0 \cdot 037$	-0.359	-0.674	
3	0.862	$0 \cdot 277$	0.043	-0.353	-0.678	$1 \cdot 222$
4		$0 \cdot 373$	$0 \cdot 053$	-0.339	-0.678	
5		0.459	$0 \cdot 062$	-0.320	-0.682	
6		0.046	0.036	-0.098	-0.348	
7		0.093	0.036	-0.099	-0.352	
8		$0 \cdot 134$	0.039	-0.098	-0.355	
9		0.182	$0 \cdot 043$	-0.098	$-0 \cdot 351$	
10		$0 \cdot 228$	$0 \cdot 047$	-0.098	-0.350	
11		$0 \cdot 274$	0.053	-0.096	-0.352	
12	$1 \cdot 112$	0.326	$0 \cdot 043$	-0.098	-0.358	$1 \cdot 211$
13			$0 \cdot 025$	-0.092	-0.357	
14		$0 \cdot 366$ 2	$0 \cdot 049$	-0.096	-0.356	
15		0.413	$0 \cdot 053$	-0.092	-0.357	
16		$0.459\{$	$0 \cdot 027$	-0.084	-0.357	
17		$0 \cdot 459$ \{	$0 \cdot 053$	-0.089	-0.355	
18		$0 \cdot 522$	$0 \cdot 041$	-0.079	-0.358	

* Multhopp-Garner calculations yield $\bar{h}=1 \cdot 205$.
(b) Variation of l_{θ} and l_{6} with ω
$V=108.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=1.1 \times 10^{6} ; \quad \alpha=0 \mathrm{deg}$

Test No.	h	ω	$\stackrel{\theta_{0}}{\text { (radians) }}$	$l{ }_{0}$	l_{θ}
19		$0 \cdot 103$	$0 \cdot 082$	0.983	1-122
20		0.206	,,	0.979	1.187
21	$0 \cdot 862$	$0 \cdot 304$	"	0.972	1:191
22		$0 \cdot 403$	",	0.971	$1 \cdot 189$
23		$0 \cdot 506$	"	0.960	1-183
24		$0 \cdot 052$	$0 \cdot 082$	0.979	0.744
25		$0 \cdot 102$,,	0.979	0.863
26	$1 \cdot 112$	$0 \cdot 200$		0.979	0.929
27		$0 \cdot 300$		$0 \cdot 980$	0.946
28		$0 \cdot 400$		$0 \cdot 982$	0.947
29		$0 \cdot 502$	"	$0 \cdot 964$	0.953

TABLE 8
Results for the Arrowhead Wing. Aspect Ratio $=1 \cdot 32$.
V ariation of m_{θ} and m_{θ} with ω and α for a Pitching Axis at $h=0.883$
$V=118.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=1.7 \times 10^{6} ; \quad-\bar{m}_{\bar{\epsilon}}=0.083$.

Test No.	$\begin{gathered} \alpha \\ (\operatorname{deg}) \end{gathered}$	ω	$\stackrel{\theta_{0}}{\text { (radians) }}$	m_{θ}	$m_{\dot{\theta}}$
1	0	$0 \cdot 068$	0.029	-0.136	-0.262
2		$0 \cdot 149$	0.034	-0.142	-0.237
3		$0 \cdot 188$	0.034	-0.138	-0.278
4		$0 \cdot 196$	0.023	-0.131	-0.277
5		$0 \cdot 247$	0.030	-0.127	-0.274
6		0.260	$0 \cdot 042$	-0.129	-0.265
7		$0 \cdot 316$	$0 \cdot 056$	$-0 \cdot 127$	-0.260
8		$0 \cdot 328$	0.078	-0.130	-0.273
9		$0 \cdot 334$	$0 \cdot 043$	-0.126	-0.272
10		$0 \cdot 337$	$0 \cdot 030$	-0.126	-0.271
11		$0 \cdot 380$	$0 \cdot 058$	-0.124	-0.265
12		$0 \cdot 462$	$0 \cdot 061$	-0.111	-0.267
13		0.519	$0 \cdot 054$	-0.111	-0.261
14		0.621	$0 \cdot 057$	-0.098	-0.262
15	5	$0 \cdot 071$	0.044	-0.154	-0.313
16		$0 \cdot 138$	$0 \cdot 049$	-0.153	-0.311
17		$0 \cdot 202$	$0 \cdot 052$	-0.153	-0.303
18		$0 \cdot 279$	$0 \cdot 053$	-0.151	-0.298
19		$0 \cdot 304$	$0 \cdot 061$	-0.148	-0.292
20		0.335	$0 \cdot 059$	-0.161	-0.293
21		$0 \cdot 382$	$0 \cdot 059$	-0.144	-0.306
22		$0 \cdot 472$	$0 \cdot 063$	-0.127	-0.306
23		$0 \cdot 512$	$0 \cdot 057$	-0.142	-0.297
24		$0 \cdot 638$	$0 \cdot 062$	-0.123	-0.296
25	10	$0 \cdot 271$	$0 \cdot 048$	-0.259	-0.269
26		$0 \cdot 325$	$0 \cdot 064$	-0.250	-0.274
27		0.377	0.054	-0.249	0.263
28		$0 \cdot 538$	0.051	-0.241	-0.275
29		$0 \cdot 675$	0.061	-0.193	-0.284
30		$0 \cdot 523$	0.063	-0.329	-0.229
31	15	$0 \cdot 673$	0.039	-0.344	-0.204
32*	0	$0 \cdot 272$	0.049	-0.123	-0.249
33*		$0 \cdot 374$	0.064	-0.117	-0.251
34^{*}		$0 \cdot 550$	$0 \cdot 062$	-0.094	-0.235

* These tests were carried out with the model in the disturbed flow caused by two ropes stretched horizontally across the tunnel 6 ft ahead of the model. The turbulent boundary layer then extended over the whole wing.

TABLE 9
Results for the Arrowhead Wing. Aspect Ratio $=1 \cdot 32$.
Variation of m_{θ} and m_{θ} with ω and α for a Pitching Axis at $h=1.063$
$V=118.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=1.7 \times 10^{8} ; \quad-\bar{m}_{b}=0.048$

Test No.	$\begin{gathered} \alpha \\ (\operatorname{deg}) \end{gathered}$	ω	$\begin{gathered} \theta_{0} \\ \text { (radians) } \end{gathered}$	m_{θ}	m_{θ}
35		0.027	0.057	$0 \cdot 047$	-0.196
36		0.055	0.062	$0 \cdot 048$	-0.184
37		0.127	$0 \cdot 046$	$0 \cdot 045$	-0.165
38		$0 \cdot 149$	$0 \cdot 051$	$0 \cdot 044$	-0.146
39		$0 \cdot 152$	$0 \cdot 040$	$0 \cdot 053$	-0.141
40		$0 \cdot 186$	$0 \cdot 058$	$0 \cdot 048$	-0.138
41	0	0. 194	$0 \cdot 023$	$0 \cdot 054$	-0.137
42		0.247	$0 \cdot 056$	$0 \cdot 049$	-0.144
43		0.318	$0 \cdot 065$	$0 \cdot 048$	-0.135
44		$0 \cdot 392$	$0 \cdot 047$ *	0.051	-0.135
45		0:473	0.056 *	$0 \cdot 061$	-0.135
46		0.634	$0 \cdot 043$	$0 \cdot 069$	-0.138
47		0.029	$0 \cdot 024$	0.033	-0.174
48		$0 \cdot 060$	$0 \cdot 026$	0.033	-0.170
49		$0 \cdot 126$	$0 \cdot 044$	$0 \cdot 037$	-0.171
50		$0 \cdot 161$	$0 \cdot 042$	$0 \cdot 037$	-0.170
51	5	0.219	0.039	$0 \cdot 038$	-0.167
52		$0 \cdot 317$	$0 \cdot 055$	$0 \cdot 033$	-0.156
53		$0 \cdot 374$	0.056	$0 \cdot 032$	-0.154
54		$0 \cdot 485$	0.054	0.035	-0.152
55		$0 \cdot 654$	0.037	$0 \cdot 048$	-0.152
56		0. 198	0.033	-0.055	-0.121
57		$0 \cdot 233$	$0 \cdot 047$	-0.043	-0.123
58		$0 \cdot 236$	0.057	-0.034	-0.146
59		$0 \cdot 311$	0.066	-0.040	-0.137
60		$0 \cdot 345$	$0 \cdot 031$	-0.063	-0.113
61	10	$0 \cdot 348$	0.041	-0.044	-0.123
62		$0 \cdot 349$	0.034	--0.048	-0.115
63		$0 \cdot 353$	0.066	-0.028	-0.136
64		$0 \cdot 360$	$0 \cdot 090$	-0.030	-0.138
65		$0 \cdot 426$	$0 \cdot 056$	-0.026	-0.138
66		0.515	0.055	-0.025	-0.137
67		0.626	0.059	+0.001	-0.141
		$0 \cdot 314$		-0.138	-0.063
69		$0 \cdot 358$	0.062	-0.120	-0.108
70	15	$0 \cdot 437$	$0 \cdot 058$	-0.119	-0.108
71		$0 \cdot 500$	0.058	-0.107	-0.113
72		0.559	$0 \cdot 055$	-0.097	-0.110
73		$0 \cdot 666$	$0 \cdot 056$	-0.084	-0.119

TABLE 10
Results for the Arrowhead Wing. Aspect Ratio $=1 \cdot 32$.
Variation of l_{θ} and l_{θ} with ω and α for a Pitching Axis at $h=0.883$

$$
V=108.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{e}=1.5 \times 10^{6}
$$

Test No.	$\begin{gathered} \alpha \\ (\operatorname{deg}) \end{gathered}$	ω	$\begin{aligned} & \theta_{0} \\ & \text { (radians) } \end{aligned}$	l_{θ}	l_{θ}
74		0	$0 \cdot 058$	$0 \cdot 980$	-
75		0.071	$0 \cdot 053$	$0 \cdot 974$	$0 \cdot 831$
76		$0 \cdot 143$	"	0.975	$0 \cdot 829$
77		$0 \cdot 285$	"	0.953	$0 \cdot 761$
78		$0 \cdot 420$	"	$0 \cdot 926$	0.772
79	0	$0 \cdot 566$	"	$0 \cdot 904$	0.766
80		$0 \cdot 707$,"	$0 \cdot 868$	0.758
81		$0 \cdot 139$	$0 \cdot 028$	0.997	0.604
82		$0 \cdot 285$	\therefore	0.977	0.755
$83{ }^{\prime}$		0.549	"	0.945	0.753
84		$0 \cdot 709$	"	0.922	0.759
85		$0 \cdot 141$	0.054'	$0 \cdot 927$.	0.694
86^{\prime}	5	$0 \cdot 282$,"	0.918	$0 \cdot 735$
87		$0 \cdot 557$,"	0.875	0.761
88	\cdots	0.701	,"	0.810	0.779
89	'	$0 \cdot 143$	$0 \cdot 055$	$1 \cdot 203$	0.907
90	10	$0 \cdot 278$.,	$1 \cdot 186$	0.823
91		0.556	,"	1-193	0.825
92		0.695	"	1-180	0:826
93		$0 \cdot 296$	$0 \cdot 048$	1.288	0.387
94	15	0.518	,',	$1 \cdot 376$	0.413
95		0.665	"	$1 \cdot 498$	0.474
96*		0.071	0.053	$0 \cdot 950$	0.921
97^{*}		$0 \cdot 146$,.	$0 \cdot 946$	0.866
98*	0	$0 \cdot 295$,	$0 \cdot 935$	0.748
99*		0.437	",	0.922	0.748
100*		$0 \cdot 735$	",	$0 \cdot 855$	0.746

* See footnote to Table 8.

TABLE 11
Results for the Arrowhead Wing. Aspect Ratio $=1 \cdot 32$.
V ariation of l_{θ} and l_{6} with ω and α for a Pitching Axis at $h=1.063$
$V=108.6 \mathrm{ft} / \mathrm{sec} ; \quad R_{\varepsilon}=1.5 \times 10^{6}$

Test No.	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	ω	$\stackrel{\theta_{0}}{\text { (radians) }}$	$l{ }_{0}$	$l \theta$
101	0	0	$0 \cdot 057$	1.062	-
102		$0 \cdot 070$,,	$1 \cdot 000$	$0 \cdot 553$
103		$0 \cdot 137$,"	1.002	$0 \cdot 538$
104		$0 \cdot 286$	",	1.013	$0 \cdot 554$
105		$0 \cdot 416$	",	0.964	0.559
106		0.563	,"	0.973	$0 \cdot 566$
107		$0 \cdot 697$	"	1.007	0.580
108	5	0	$0 \cdot 054$	0.976	-
109		$0 \cdot 070$,"	0.933	0.627
110		$0 \cdot 141$.	,"	0.960	. 0.604
111		$0 \cdot 282$	",	0.983	0.587
112		$0 \cdot 417$	",	0.996	0.574
113		. 0.567	",	0.954	0.569
114		$0 \cdot 703$	"	1.003	0.588
115	10	0	$0 \cdot 055$	1.089	-
116		$0 \cdot 284$,	$1 \cdot 110$	$0 \cdot 424$
117		0.417	,"	1-128	0.435
118		0.578	",	$1 \cdot 112$	0.465
119		$0 \cdot 718$	"	1-160	0.487
120	15	0	$0 \cdot 057$	1-281	-
121		$0 \cdot 280$	"	1-229	$0 \cdot 064$
122		0.443	,	$1 \cdot 235$	$0 \cdot 136$
123		0.544	",	1.229	$0 \cdot 191$
124		0.710	",	$1 \cdot 293$	0.230

TABLE 12
Results for the Arrowhead Wing. Aspect Ratio $=1 \cdot 32$.
Comparison of the Calculated and Measured Values of the Derivatives
The measured values of $l_{\theta}, l_{\theta}, m_{\theta}$ and m_{θ} quoted are those corresponding to $\omega=0 \cdot 3, \alpha=0$ deg. The usual transformation formulae (equations (16)) were used to derive the remaining derivatives. The figures in parentheses apply to free-stream conditions and were obtained by using the wall interference corrections calculated by Acum and Garner. These corrections to the damping derivatives were negligible. The values given by the vortex-lattice calculations relate to $\omega=0 \cdot 303$.
※

Fig. 1. The clipped delta wing (aspect ratio $=1 \cdot 2$).

FIG. 2. The delta wing (aspect ratio $=1 \cdot 6$).

Fig. 3. The arrowhead wing (aspect ratio $=1 \cdot 32$).

Fig. 4. View of the complete delta model mounted on the vertical force indicator.

Fig. 5. Close-up view of the spring hinge mounted on the vertical force indicator.

Fig. 6. Arrangement for measurement of pitching-moment derivatives.

Fig. 7. Arrangement for measurement of lift derivatives.

(a) Variation of $-m_{\theta}$ with ω

Legend		
-	Experiment: $h=0.754$	$R=1.5 \times 10^{6}$
-	Experiment: $h=0.754$	$R=0.75 \times 10^{6}$
-x-	Experiment: $h=0.973$	$R=1.5 \times 10^{6}$
----	Theory: vortex lattice	Ref. 5)
*	Theory: Multhopp - Gar	(Ref. 6).

Fig. 8. Clipped delta wing. Aspect ratio $=1 \cdot 2$. Dependence of m_{0} and m_{θ} on ω for $\alpha=0$ deg.

Fig. 9. Clipped delta wing. Aspect ratio $=1 \cdot 2$. Dependence of m_{θ} and m_{0} on ω for $\alpha=0.3$.
Legend

$--0---$	Experiment: $\theta_{0}=0.0544$ radians
$--\sigma---$	Experiment: $\theta_{0}=0.0705$ radians
--	Theory: Vortex-lattice (Ref. 5)
$*$	Theory: Multhopp-Garner (Ref. 6).

(a) Variation of l_{s} with w.

∞

Fig. 10. Clipped delta wing. Aspect ratio $=1 \cdot 2$. Dependence of l_{θ} and l_{θ} on ω for $\alpha=0, h=0.754$.

(a) Variation of l_{θ} with ω.

(b) Variation of $l_{\dot{\theta}}$ with ω.

Fig. 11. Clipped delta wing. Aspect ratio =1.2. Dependence of l_{θ} and l_{θ} on ω for $\alpha=0, h=0.973$.

(a) Variation of τ_{θ} with α
:

(b) Variation of $l_{\dot{\theta}}$ with $\dot{\alpha}$

Fig. 12. Clipped delta wing. Aspect ratio $=1 \cdot 2$. Dependence of l_{θ} and l_{θ} on α for $\omega=0.3$

- - Position of the supports.

V/ll/l/, Region of turbulent boundary layer
Fig. 13. Extent of the turbulent boundary layer on the upper surface of the clipped delta wing.

for legend see fig. 15
©

Fig. 14. Delta wing. Aspect ratio $=1 \cdot 6$. Dependence of m_{θ} and m_{θ} on ω for $h=0.862$ and $1 \cdot 112$.

Fig. 15. Delta wing. Aspect ratio $=1 \cdot 6$. Dependence of l_{θ} and l_{θ} on ω for $h=0 \cdot 862$ and $1 \cdot 112$.

-	Experiment
-0---	Experiment: with turbulence ropes (See Table 8 footnote)
-- --	Theory: vortex-lattice (Ref. 5)
*	Theory: Multhopp - Garrier (Ref 6)

Fig. 17. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence of m_{θ} on ω and α for $h=0.883$.

Fig. 18. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence of m_{θ} on ω and α for $h=1 \cdot 063$.

Fig. 19. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence of $-m_{\theta}$ on ω and α for $h=1 \cdot 063$.

$\underset{\omega}{\mathscr{\omega}}$

Frg. 20. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence of m_{θ} and - m_{θ} on α and h for $\omega=0.3$.

Fig. 21. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence of l_{θ} on ω and α for $h=0.883$.

$$
\begin{aligned}
& \text { Table } 8 \text { footnote) } \\
& \text { *-Theory : vorten-lattice (Ref.5). } \\
& \text { *- Theory : Multhopp - Garner (Ref.6). }
\end{aligned}
$$

34

Fig. 22. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence of l_{θ} on ω and α for $h=0.883$

Fig. 23. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence
of l_{θ} on ω and α for $h=1 \cdot 063$.

FIG. 24. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence of l_{θ} on ω and α for $h=1 \cdot 063$.

Fig. 25. Arrowhead wing. Aspect ratio $=1 \cdot 32$. Dependence of l_{θ} and l_{θ} on α and h for $\omega=0 \cdot 3$.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (5Is. 9 d .)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64 s . 9 d .)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (51s. 9 d.)
194 I Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63 s. (64 s. 9 d.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 9d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tumnels. 47s. 6d. (49.s. $3^{\text {d. }}$)

1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (8rs. gd.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. gos. (92s. 6 d .)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (86s. 3 d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (86s. 3 d.)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. rics. (r32s. 6d.)
Vol. II. Aircraft, Airscrews, Controls. I3os. (I32s. 6d.)
Vol.III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 1305 (132s. 3 d.)
Vol. IV. Stability, Structures, Wind tunnels, Wind Tunnel Technique. Izos. (I32s. 3d.)

> anNuAl reports of the aeronautical research council-
> 1937 2s. (2s. 2d.) $\quad 1938 \quad$ rs. $6 d$. (rs. 8d.) $\quad 1939-48 \quad$ 3s. (3s. 3 d.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-

April, 1950 - $-\quad-\quad$ R. \& M. No. 2600. 2s. 6d. (2s. 8d.)
AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-I909-January, 1954 - - \quad R. \& M. No. 2570. r5s. (I5s. 6d.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

December I, 1936-June 30, 1939.	R. \& M. No. 1850	
39 - June 30	R. \& M. No. 1950.	1s. (1s. 2d.)
根 I, 1945 - June 30, 1946.	No	
cember 3r,	R. \& M. No.	
nuuary I, 1947 - June 30	R. \& M. N	

PUBLISHED REFORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-

Be	-		R. \& M. No. 2350.	rs. 9 d. (rs. rid.)
Between Nos. 2351-2449.	-		R. \& M. No. 2450.	2s. (2s. 2 d .)
Between Nos.			R. \& M. No. 2550.	2s. 6d. (2s. 8d.)

Prices in brackets include postage

HER MAJESTY'S STATIONERY OFFICE

[^0]: * Published with permission of the Director, National Physical Laboratory.

[^1]: * In the experiments $c / r=2$.

[^2]: *The values quoted in this report for a triangular wing of aspect ratio 1.6 were obtained by interpolation of the values given in Ref. 11 for aspect ratios of $0 \cdot 5,1 \cdot 0,2 \cdot 0$, and $4 \cdot 0$.

