C.P. No. 336
(18.730)
A.R.C Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Brief Description of the R.A.E. Intermittent Supersonic Wind Tunnel Plant
By
K.G.Winter

U.D.C. No. 533.6.071.1/.2: 533.6 .011 .5

```
Technical Note No. Aero 2459
June, 1956
```


ROYAL ATRCRAFII ESTABIISHMENI

Brief description of the Royal Aırcraft Establishment
Intermattent Supersonic Wind Tunnel Plant
by
K. G. Winter

SUMMARY
The plant is vacuum-operated on a closed circuit with storage of the air in a flexible contaner. The useful Mach number range is up to about 4.5. For the largest of the tunnels (15 in. $\times 16 \mathrm{in}$.) the maximum running time is of the order of 20 seconds over the whole Mach number range. Runs of 10 to 15 seconds duration can be made every five minutes.

LIST OF CONTENTS

Page1 Introduction 3
2 Vacuum system 3
3 Dry air container 3
4 Drying plant 4
5 Arrangement of tunnels 4
5.1 Valves 4
$5.215 \mathrm{In} . \times 16 \mathrm{ln}$. working section 5
6 Running times 5
LIST OF FIGURES
FIg
External view of plant 1
Cut-away perspective drawing 2
Vacuum vessels 3
Vacuum pumps 4
Pump performance 5
Interior of balloon housing beforefatting of fabrac 6
Interzor of housing showing balloon 7
Drying plant 8
27 In. quack-acting valve 9
$15 \mathrm{in} . \times 16 \mathrm{in}$. Wind Tunnel 10
Values of ' μ ' assumed in expression for running time 11
Assumed values of breakdown pressure ratio 12
Running tame for $15 \mathrm{in} . \times 16$ in. tunnel 13
Effect of duration of run on tame between runs 14

The R.A.E. intermittent Supersonic Wind Thnnel Plant was designed In conjunction wath the $7000 \mathrm{H} . \mathrm{P}$. continuous tunnel described by Knowler'. The plant as vacuum-operated'('suckdown') on a closed circult wath storage of the air in a flexable contanner. The pressure ratio available is sufficient for running up to Mach numbers where heating of the air is necessary (say $M=5$). An external view of the complete plant is shown in FIg 1 and a perspectave cut-away drawing in Fig 2.

The plant was arranged to have four tunnel lines. Two lanes are occupled by small pilot tunncls of $4 \mathrm{in} . \times 4 \mathrm{in}$. and $7 \mathrm{in} . \times 4 \mathrm{in}$. working sections intended primaraly for tunnel development work. Of the other two lines, one is occupied by a $9 \mathrm{in} . \times 9 \mathrm{in}$. tunnel and one was arranged to accormodate either of the working sections ($18 \mathrm{in} . \times 18$ in. and $28 \mathrm{in} . \times 16 \mathrm{in}$.) of the contimuous tunnel. The $15 \mathrm{in} . \times 16 \mathrm{in}$. tunnel is now fitted in this last line. The resources of the plant are currently being increased by the addrtion of a 7 in. $\times 7$ in. Hypersomec tunnel. A description of thas faciluty is beyond the scope of this note. In addition to the tunnel lines there is a further pipe from the ilexible container to the vacuum vessels used for returning air when the plant is closed down. The plant came into operation during 1950.

2 Vacuum system

The vacuum storage is provided by two welded steel vessels of total capacity $35,000 \mathrm{cu} . \mathrm{f}^{\prime} \mathrm{t}$ (Fig 3). Whree of the tunnels run into one vessel and the fourth into the other; by manipulation of valves and blanking plates it is possible to utilise either tank independently.

The tanks are evacuated by reciprocating doublc-acting twincylunder Pearn pumps (Fig 4). The two cylinders can be used an stage or in parallel, the latter alternative being adopted. There are twenty one pumps each driven by an electric motor of nomanally 15 H.P.* In practice twenty pumps only are used, manntenance always being carried out on one. By doung thas the pumps are always kept in good condition. The performance of the pumps is shown in Fig 5 .

From the pumps the air is fed through an oll separator either directly, or through a small 'charging' druer, to the balloon. The oil separator is necessary to avold contamination of the sillica gel in the drying plant. It is sumply a partitioned box, in which trays of 'activated charcoal' are inserted wath a final stage of felt filters.

3 Dry air contaznor ('Balloon')

The dry air container can be lukened to a ple-dish wath a crust on top. The ple dish is formed by a brick wall some seven feet high with two straight parallel sades jouned by semi-curcular ends and resting on a concrete base. The interior of the wall is cement-faced and covered wath a bitumastic coating (Fig 6). The crust is the upper half of the balloon fabric contaner (Fig 7) which forms a complete envelope lining the ple dish. It is attached to the top of the wall by clamps and adhesave. The total capacaty is about $40,000 \mathrm{cu} . \mathrm{ft}$.

[^0]The shape of the balloon was chosen to fit inside a 'Romney' prefabricated steel building which is supported at the level of the top of the brick wall on two rows of 'flying buttresses'. Louvres in the roof of the building permit egress and ingress of air as the balloon is inflated and deflated.*

The pape linc from the pumps comes in at one end of the container and the connections to the four tunnels are made in one of the stranght walls. Along this wall (see Fig 6) a wooden fromework is fitted to avold the possibility of the fabrac being sucked over the entrance to a tunnel. The height of the balloon is indicated in the tumnel room by a weight suspended from a wire passing over pulleys to a brıdle attached to the fabrıc.

Two pairs of relief valves form a further safety precaution for the fabric. These consist of scuare flanged plates standing in troughs of mercury round the peramoter of square apertures. The pressure relief valves blow at $\frac{1}{4} \mathrm{~mm}$. of water excess pressure and the suction valves at $\frac{1}{2}$ In. of water depression.

4 Drying Plant (iig 8)

There are two silica gel beds. A small bed contanring $\frac{1}{4}$ ton of gel is used to dry the inntial charge from the vacuum vessels to the balloon. Thereafter air from the balloon is carculated at a rate of 2500 c. 1 .m. through a large bed contanning 3 tons of gel. This bed removes any water vapour which permeates through the balloon fabric. The original specification was that the air should be manntaned at a absolute humidity of 0.0005 with an allowable permeation of moisture through the rabric of $0.08 \mathrm{lb} / \mathrm{min}$. Rough experiments have shown the latter figure to be excessive. Humiditues of about 0.0002 are in fact maintained.

The plant was designed to operate on a 24 hour cycle of 8 hours running and 16 hours activating and cooling of the siluca beds. In fact several days runring can be tolerated before re-activation is necessary.

5 Arrangement of tunnels

5.1 Valves

Each of the four tunnel lines is fitted with a flap valve upstream of the working section, to retain the air in the balloon when the working section is open, and a quick-acting valve downstream of the working section. The opering time of the quick-acting valves is 1 to 2 seconds. 'iwo types of valves are used, both of which have proved satisfactory. Onc type is operated hydraulically, a jack replacing the scrow of a screw-down circular gate valve. Two of these valves of 12 m . and 20 m . diancter are used.

The other type of which again there are two, 18 In . carcular and 27 In . square, is of more elaborate design. A sketch of the 27 in. valve used in the $15 \mathrm{in} . \times 16 \mathrm{in}$. tunnel is shown in Fig 9. A rectangular stecl plate wath a brass seat provides the seal. The plate ls operated by pneumatic jacks. In the edges of the plate are fittcd rollers which run on tracks. In the closed position the rollers are clear of the tracks. when the valve is operated, airbags, located behind the tracks, are inflated, lifting the valve plate off ats seat, so that durang its movenent it runs on the rollers and avoids scuf'fing the seat.

[^1]
5.2 15 in. $\times 16 \mathrm{in}$. working section

Of the working eections the $15 \mathrm{in} . \times 16 \mathrm{in}$. (Fig 10) is the only one warranting description. It is of extremely simple construction, consusting of top and bottom channels to which glass sides are clamped. The heaght of 15 zn . was chosen as gavang adequate safety factor on the $1 \frac{1}{2}$ in. glass immediately avallable, and the width 16 in . to enable use to be made of the existing contraction and diffuser of the $28 \mathrm{in} . x$ 16 in . tunnel, by lining only two sides.

The nozzle blocks in the working section are of the fixed interchangeable type. Existing blocks for Mach numbers up to 2.5 are of teak, but subsequent pairs up to $M=4.5$ are being manufactured as iron castings coated with araldite.

The model is supported on a quadrant* with an incidence range of $\pm 22 \frac{1}{2}$, carried in a section separate from the working section. The quadrant is moved by a hydraulic jack, the travel of which is controlled by adjustable stops. The tunnel is not at present fitted with a variable supersonic diffuser. One is belng designed together with a new model-support section.

6 Running times

The running time of a vacuum operated intermittent tunnel is gaven by (see for example Lucaslewlcz ${ }^{2}$)

$$
t=\frac{V}{\mu v} \frac{\Delta p}{p_{a}}
$$

where $\quad V$ is the volume of the tanks
v the tunnel volume flow at atmospheric density
μ an empirical factor which is equal to the adiabatic index in the absence of hoat transfer.
pa atmospheric pressure
Δ p pressure rase in tanks during run.
Values of μ have been measured for the $15 \mathrm{In} . \times 16 \mathrm{mn}$. tunnel at Mach numbers of $2.0,2.25$ and 2.5. The values drpend upon running time and are given for maximum runs with punps mumning in Fig 11 together with an assumed variation over the whole Mach number range. Using these values of μ and the values of breakdown pressure ratio of Fig 12 , again measured up to $M=2.5$, calculated valucs of maximum running time for varıous inmtial pressures are gaven in Fig 13. The rumnng times at the hightr Mach numbers would of course be ancreased appreciably by the use of a variable deffuser.

In Fig 14 the time requared for pumping for runs down to breakdown at $M=2.5$ is plottod agaist runnang time. The curves show that it is not economonical to use runs of more than 20 seconds duration (vacuum vessel pressure at start of run 3 in Hg) and in fact runs of about 15 scconds are usual.

* The quadrant shown in Fig 10 is in fact the 'half' quadrant' and has an incidence range of only $\pm 12^{\circ}$.

REFEREMCES

No. Author	Title, Etc.		
1	A. E. Knowler		The No. 19 Wind Tunnel at Farnborough
:---			
Aircraft Lingineering. June 1955.			

FIG.I. EXTERNAL VIEW OF PLANT

THE R.A.E INTERMITTENT SUPERSONIC AND HYPERSONIC TUNNEL PLANT

SUPERSONIC TUNNELS MACH NUMBER RANGE UP TO 45
HYPERSONIC TUNNEL MACH NUMBER RANGE 50-90

fig. VACUUM vESSELS

FIG.4. VACUUM PUMPS
FIG3 34

FIG.5. PUMP PERFORMANCE.

FIG.6. INTERIOR OF BALLOON HOUSING BEFORE FITTING OF FABRIC

FIG.7. INTERIOR OF HOUSING SHOWING BALLOON

FIG. 687

FIG.8. DRYING PLANT

FIG.10. 15 inch $\times 16$ inch WIND TUNNEL

FIG. $8: 10$

FIG. 9. 27in. QUICK ACTING VALVE 15in. $\times 16$ in. TUNNEL.

FIG.II. VALUES OF ' μ ' ASSUMED IN EXPRESSION FOR RUNNING TIME.

PRESSURE

FIG.I2. ASSUMED VALUES OF BREAKDOWN PRESSURE RATIO.

FIG. 13. RUNNING TIME FOR $15{ }_{1 n \times} \times 16 \mathrm{in}$. TUNNEL.

FIG.I4. EFFECT OF DURATION OF RUN ON TIME BETWEEN RUNS - $15{ }_{5 \times 1} \times 16_{1 N}$ TUNNEL $M=2.5$

C.P. No. 336

(18,730)
A.R.C Technical Report

Crown copyrıght reserved
Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w.I
${ }_{13 \text { A Castle Street, Edinburgh } 2}$
109 St Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol i
2 Edmund Street, Birmingham 3
8o Chichester Street, Belfast
or through any bookseller
printed in great britain
S.O. Code No. 23-9010-36
C.P. No. 336

[^0]: \% Use of these partzcular pumps in this quantity was dictated solely by theur avallability. If pump room size were of fundamental zmportance, a fewer number of pumps of greater capacity could clearly have been used.

[^1]: * No particular virtues are claimed for this balloon arrangement compared to gasometer-lıke arrangements. When the building work housing the balloon is taken into account, the costs arc probably about the same.

