
R. \& M. No. 2932
$(16,029)$
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Aerodynamic Flutter Coefficients for Subsonic, Sonic and Supersonic Flow (Linear Two-dimensional Theory)

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE 1957

Aerodynamic Flutter Coefficients for Subsonic, Sonic and Supersonic Flow (Linear Two-dimensional Theory)

By
P. F. Jordan
Communicated by the Principal Director of Scientific Research (Air), Ministry oe Supply

Reports and Memoranda No. 2932* April, 1953

Summary.-The solution is derived, in a convenient form for numerical evaluation, for a two-dimensional aerofoil oscillating with arbitrary downwash at sonic speed, and is shown to be the limit of both the subsonic and the supersonic solutions as the Mach number tends to unity. Linear theory is shown to be applicable at sonic speed for an oscillating aerofoil of zero thickness, but at near-sonic speeds consideration of the lift distribution shows that linearization is not permissible. Hence for near-sonic speeds the sonic solution gives a better approximation to the non-linear solution than does the linear solution for the actual speed. It is shown that interpolation of the force coefficients is more justifiable in the subsonic range than in the supersonic range. The physical validity of the linear solution is discussed; certain singularities which occur in the transition to sonic speed are shown to have no physical significance.

The four main aerodynamic force coefficients for an oscillating two-dimensional wing are presented in the form of tables and isometric graphs over the ranges 0 to 2 of Mach number and 0 to $1 \cdot 4$ of frequency parameter based on the wing chord; the present sonic solution and existing subsonic and supersonic solutions have been supplemented by interpolated values for Mach numbers between 0.7 and unity.

1. Introduction.-Until recently it was the general belief that linearised aerodynamic theory was unsuitable for application at sonic and near-sonic speeds ($M \bumpeq 1$). This belief arose from consideration of the familiar (but purely theoretical) case of a wing of infinite span, rigidly fixed right across the air stream, for which this simplified theory leads to a 'sonic barrier' of infinite lift and drag, in contradiction to its own assumption of small perturbations only. This occurrence is readily explained by the fact that the individual stream tube has its minimum cross-section at sonic speed, so that neither by acceleration nor by deceleration can way be made for the wing. However, the ' barrier ' disappears if way is made for the wing by relieving the conditions of the problem, e.g., by considering the wing of finite span, or the wing accelerated in the flow direction, or the oscillating wing. In all these cases-and hence in all practical cases-'reasonable,' i.e., finite, forces are obtained also at sonic speed.

This observation has recently led to a number of investigations. The present paper deals with the harmonically oscillating aerofoil of zero thickness and infinite span. The fact that this problem can be linearised has been shown by Lien, Reissner and Tsien ${ }^{1}$, who have discussed the basic equations of non-steady motion. A confirmation of their conclusions is provided by the actual linear solution for the wing with rigid chord, presented graphically in Fig. 1. It appears

[^0]that in the usual range of flutter frequencies $(\nu>0 \cdot 2$, say $) \dagger$ the order of magnitude of the solution is roughly independent of M, even in the sonic region. This agrees with the conclusions of a previous paper ${ }^{2}$ that the values of the parameter 'flutter danger,' calculated for a given wing at subsonic and supersonic speeds, can usually be interpolated by smooth curves through the sonic range.

Solutions for $M=1$ have already been given by Heaslet, Lomax and Spreiter ${ }^{3}$ and by Rott $\mathrm{t}^{4,5}$. The first obtained the lift due to vertical translation by Laplace transformation of their solution of the gust problem. Rott has given formulae and numerical tables for the four main wing forces. Similar tables by Nelson and Berman ${ }^{6}$ became available during the draft stage of the present report.

The present investigation was stimulated by the statement by Rott ${ }^{4}$ that the sonic solution exists. As a first step the solution for $M=1$ is obtained (section 3.4) by an independent method \ddagger, viz., as the limit $M=1+0$, i.e., M tending to unity from above. The investigation is then extended to cover the supersonic range ($M=1+\delta$; section 3.3) and the subsonic range $(M=1-\delta$; section 3.5). Tables and graphs covering the speed range $0 \leqslant M \leqslant 2$ are given (section 4) and their physical validity is discussed (section 2). The main purpose of this report is thus (a) to present a new solution for sonic and near-sonic speeds, and (b) to present values of the wing force coefficients over the continuous range of Mach number (0 to 2) and frequency parameter (0 to $1 \cdot 4$) by combining the results of the sonic solution with values based on available results for subsonic and supersonic speeds.

Considering the limit process $M \rightarrow 1$, it turns out that, while the limit solution is common in its essentials to both sides (i.e., the limits $M=1-0$ and $M=1+0$ are identical to the solution for $M=1$) there is an important difference in the manner in which this limit is approached. A consequence of this difference is that interpolation of the aerodynamic coefficients both with respect to speed parameter M and to frequency parameter v, is better justified in the range $M=1-\delta$ than in the range $M=1+\delta$. This, however, refers to the theoretical solution. From a physical point of view, and for the frequencies usual in flutter, the linear solution for $M=1$ should be preferred, in the near-sonic range $M=1+\delta$, to the 'correct' linear solution for the actual Mach number M.
2. Physical Validity of the Linear Solution.-2.1. General Considerations.-The presentation in this report of the linear solution for the transonic range is not meant to imply that this solution has the same degree of physical validity for the actual wing in actual flow as we are used to expect of the incompressible solution. At low speeds the oscillations are superposed on a relatively stable steady flow; experience shows that to a reasonable degree the oscillatory solution is independent of the steady disturbances, so that the unsteady solution for the infinitely thin wing can be used in flutter calculations for wings of finite thickness (provided the mean incidence is small and the frequency parameter is sufficiently large). At high speeds, and in particular at transonic speeds, the field of the steady disturbances is much less stable and highly non-linear ; the degree of physical validity which may be attributed to the independent linear solution for superposed oscillations must be decided by experience.

The primary case for the application of linear theory to the transonic range is that its results, obtained with relative ease, will provide a welcome basis for the interpolation and interpretation of more reliable results which should be forthcoming from experiments and more refined theories.

[^1]We consider first the infinitely thin wing oscillating at zero mean incidence, for which no steady disturbance exists. The linear solution for this case is discussed below in section 3 . The solution for $M=1$ is quite smooth (see Figs. 1, 2 and particularly 5) ; it thus justifies the simplifications involved in linearising the problem (provided that the frequency parameter v is sufficiently large) to at least the same degree as do the solutions for $M=0.7$ or $M=1 \cdot 4$, say. The same is not true if M differs slightly from unity : in the transition $M \rightarrow 1$ singularities occur which contradict the conditions of linearisation, i.e., the conditions which the solutions must fulfil in order to be valid. However, we are going to show that these singularities are a consequence of the particular (and usual) method of linearising rather than of linearisation as such, and that, as an approximation to the solution of the original, non-linear problem, the linear solution for $M=1$ is preferable to the linear solution for the correct value of M if M lies in a certain range $M=1 \pm \delta$. How to show this is an analytical problem which is discussed in section 2.2; a few remarks concerning the physical problem, i.e., the wing of finite thickness etc., follow in section 2.3.

The understanding of the subsequent discussion may be helped by anticipating section 3 in a short description of the linear near-sonic solution with the aid of Figs. 2 and 8 . The perturbation field of an oscillating point disturbance in an air stream consists of long waves and short waves. The long waves do not interest us here. The length of the short waves tends to zero as M tends to unity from either side. Corresponding short waves appear in the lift distribution $p(x)$ of the oscillating wing ; at subsonic speeds, Fig. $8+$, they start from the trailing edge but they start from the leading edge at supersonic speeds, Fig. 2 (in particular see the real part pz', Fig. 2a). In Fig. 8 the local amplitude of the waves tends to zero as M tends to unity, except at the trailing edge, while in Fig. 2 it remains constant ; thus $p(x)$ has a limit for $M=1-0$ (i.e., from the subsonic side, Fig. 8) but not for $M=1+0$ (i.e., from the supersonic side, Fig. 2).

A different position arises if the mean local lift-see equation 3.42 (12) below-is considered. In this case both limits exist; the important points are that (a) the two limits are identical, i.e., that there is a common limit, and that (b) this common limit satisfies the wave equation, thus representing the solution for $M=1$.

For our subsequent discussion of the permissibility of linearisation we note that the derivative of $p(x)$ with respect to x takes arbitrarily large values as M tends to unity from either side; that is, arbitrarily large perturbation velocities occur, not only at the leading and trailing edgeswhere they occur also in incompressible flow theory (owing to the simplification of the physical problem)-but at every point of the wing chord.
2.2. Analytical Consideration of the Linear and Non-linear Problems (Two-dimensional).The complete non-linear differential equation for the perturbation velocity potential Φ of a twodimensional non-viscous flow field reads :

$$
\left.\begin{array}{rl}
\Phi_{x^{\prime} x^{\prime}}(1- & \left.\frac{\Phi_{x}{ }^{2 \prime}}{a^{2}}\right)+\Phi_{z z}\left(1-\frac{\Phi_{z}{ }^{2}}{a^{2}}\right)-\frac{2}{a^{2}} \Phi_{x^{\prime} z} \Phi_{x} \Phi_{x} \\
& =\frac{1}{a^{2}}\left[\Phi_{t t}+2 \Phi_{x^{\prime}} \Phi_{x^{\prime} t}+2 \Phi_{z} \Phi_{z t}\right] \quad \ldots \tag{1}
\end{array} \quad \ldots \quad \ldots \quad \ldots\right) .
$$

if x^{\prime}, z are Cartesian co-ordinates fixed in space, t is the time, a the local speed of sound, and suffices denote differentiation.

Let the wing proceed in the direction of the negative x^{\prime}-axis and let its velocity be V. Let x be a co-ordinate fixed to the wing so that

$$
\begin{equation*}
x=x^{\prime}+V t \quad . \quad . . \quad . . \quad . \quad \quad . . \quad . \quad \quad . \quad \text {.. } \quad . \tag{1a}
\end{equation*}
$$

\dagger Fig. 8 shows not the lift $p(x)$ but a function $G(x)$ which illustrates the nature of $p(x)$.
and let ϕ be the perturbation potential in the moving axes: .

Let the perturbation velocities be u and w, so that

$$
\begin{equation*}
\phi_{x}=\Phi_{x^{\prime}}=u ; \quad \phi_{z}=\Phi_{z}=w \quad . . \quad . . \quad . \quad . \quad . \quad . \tag{1c}
\end{equation*}
$$

while

$$
\phi_{t}=\Phi_{t}-V u .
$$

Further let a_{∞} be the free-stream velocity of sound and introduce

$$
\begin{equation*}
\bar{u}=\frac{u t}{a_{\infty}} ; \quad \bar{w}=\frac{w}{a_{\infty}} ; \quad M=\frac{V}{a_{\infty}} ; \quad \quad \tau=\frac{t}{a_{\infty}} . \tag{1d}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
\bar{u} \ll 1 ; \quad \bar{w} \ll 1 \tag{1e}
\end{equation*}
$$

so that the products of \bar{u}, \bar{u} can be neglected in comparison with unity. Transformation of (1) to the moving co-ordinates then yields

$$
\begin{equation*}
u_{x}\left(1-M^{2}-2 M \bar{v}\right)+w_{z}-2 M w_{x} \bar{w}=\phi_{z \tau}+2\left[u_{\tau}(M+\bar{u})+w_{z} \bar{w}\right] . \tag{2}
\end{equation*}
$$

Equation (2) is linear in incompressible flow ($\alpha_{\infty}=\infty$) but is non-linear in compressible flow. The familiar linear equation for the latter case is obtained if all the remaining non-linear terms in (2) are also neglected, i.e., if

$$
\begin{equation*}
\bar{u}=\bar{\varphi}=0 \tag{2a}
\end{equation*}
$$

is formally introduced in (2).
Consider in particular the transonic range. Let $M=1+\delta$ and let

$$
\begin{equation*}
\delta \ll 1 . \quad \text {. } \tag{3}
\end{equation*}
$$

Assume harmonic motion ; let $2 \pi f$ be the circular frequency. Further let the co-ordinates x and z be made non-dimensional with some length c as reference length. Then (2), after multiplication by c, becomes

$$
\begin{equation*}
-2 u_{x}(\delta+\bar{u})+w_{z}-2 w_{x} \bar{w}=-\frac{1}{c} \nu_{0}^{2} \phi+2 i v_{0}[u(1+\delta+\bar{u})+w \bar{w}] \quad \ldots \tag{4}
\end{equation*}
$$

if

$$
\nu_{0}=2 \pi f c / a_{\infty}
$$

is the frequency parameter referred to c and the free-stream speed of sound.
The conditions which the solution of the linear problem (2a), (4) must fulfil in order that (2a) is justified can be cleduced from (4) :
(a) \bar{u}, \bar{w}, if related to the wing amplitudes, must be of the same order as in the solution for $M=0$, say
(b) u_{x}, w_{x} must be of order $\nu_{0} u, \nu_{n} \psi$

Further, as δ appears in (4) in the combination ($\delta+\bar{u}$) only, a consequence of (a) and (b) will be
(c) the parameter M has negligible effect.

In fact the solution of (4), (2a), described in section 2.1 with the aid of Figs. 2 and 8, fulfils neither condition (b) nor (c): \varkappa_{i} takes arbitrarily large values if δ is sufficiently near to zero. Has the conclusion to be drawn that linearisation is not permissible in the transonic range ?

The existence of the regular solution for $M=1$ contradicts this conclusion; it can rather be argued that, as the non-linear equation (4) describes a physical problem, the solution of (4) for $M=1 \pm \delta$ cannot be far different from the linear solution for $M=1$. Indeed if (1e) justifies (2a) then (3) justifies

$$
\begin{equation*}
\bar{u}+\delta=\bar{w}=0 . \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{4a}
\end{equation*}
$$

Equations (4), (4a) define an alternative linear problem in which M no longer appears; the solutions of (4), (4a) fulfil the conditions (a) to (c), thus justifying the assumptions made. Hence the linear solution for $M=1$ can be accepted as a reasonable approximation throughout that near-sonic range where the usual linear solution does not fulfil condition (b) \dagger.
2.3. Application to Actual Wings.-The argument of section 2.2 is reassuring as regards the physical validity of linear theory in the sonic range-reassuring in so far as the non-linear solution for the thin plate at zero mean incidence can be accepted as the solution for the actual wing. Reassuring also is an 'analytic result of G. L. Sewell which indicated that the presence of attached shock waves had no effect on the end result of the small disturbance, non-steady, potential theory at low supersonic speed ' (stated by Garrick ${ }^{8}$). On the other hand W. P. Jones ${ }^{9}$ has shown that the thickness effect is not negligible. He investigated the range $M \geqslant 1 \cdot 4$, but his conclusions should also apply if $M \bumpeq 1$.
A serious objection to the application of two-dimensional theory to wings of finite span at near-sonic speeds arises from the fact that the spanwise co-ordinate attains major importance as M tends to unity, the effective aspect ratio being

$$
A_{c}=\sqrt{ }\left\{\left|1-M^{2}\right|\right\} A
$$

Further, the three-dimensional sonic lift distribution is quasi-subsonic in that upper and lower wing surfaces are interdependent (for all wing shapes), while the two-dimensional distribution is quasi-supersonic in this respect; on the other hand the leading-edge singularity of the latter is already quasi-subsonic, see Fig. 2, so that the two distributions have the same form at both leading and trailing edges, provided that the trailing edge is normal to the air stream. The quantitative effect of these points requires further investigation.

Flutter speeds calculated from a self-contained set of theoretical aerodynamic derivatives are often in better agreement with experiment than are the derivatives themselves. This may be why the little evidence that is available from transonic flight tests seems to indicate that flutter calculations based on linear derivatives show the correct tendency. No experimental results at near-sonic speeds exist for comparison with the theoretical result, given here. However, the wind-tunnel flutter tests by Tuovila, Baker and Regier ${ }^{10}$ at low supersonic speeds ($M=1 \cdot 3$) should be mentioned as giving some confirmation of linear theory. On the other hand the measurements of damping in pitch by Bratt and Chinneck ${ }^{11}(M \geqslant 1 \cdot 275)$ are sometimes quoted as a refutation of linear theory : in these experiments positive damping was found instead of the negative damping predicted by theory. However, the pitching centre in these tests was at mid-chord and was thus near the border of the predicted range of negative damping, Fig. 3. Thus the expected inaccuracy \dagger rather than a failure of the theory was shown. Further, the frequency parameter value of the test was very small ($v<0.03$) so that damping due to boundary-layer effects can be assumed to have been larger than it would have been in the usual frequency range of flutter.
\dagger A similar practice prevails in another of the cases mentioned in section 1, viz., in the case of the steady wing of finite aspect ratio. Here the effect of δ is accepted to be negligible for a wing of aspect ratio A if

$$
\delta A^{2} \ll 1
$$

--in spite of the fact that the lift-slope curve as obtained by linear theory has a vertical tangent for $M=1+0$.
\ddagger Due largely to the finite thickness of the wing model ; see W. P. Jones ${ }^{9}$.
3. Linear Analysis for the Thin Aerofoil Oscillating Harmonically in Troo Dimensional Flow.3.1. Introductory Remarks.-The present section is concerned with the purely mathematical task of solving the two-dimensional linearised problem of the thin aerofoil at zero mean incidence oscillating harmonically with an arbitrary mode $z(x)$ in non-viscous flow, and in particular with the transition $M \rightarrow 1$ both from the supersonic side and from the subsonic side. The fundamental equation governing the lift distribution $p(x)$ along the chord will in both cases be used in its integral form rather than in the equivalent differential form (2a), (4) of section 2.2.

The total wing forces as shown in Fig. 1 appear to be regular functions of v and M if the neighbourhood of the point $[\nu, M]=[0,1]$ is excluded. This gives a wrong impression of the difficulties of the problem and is due partly to the fact that not all the details of the transition $M \rightarrow 1$ can be shown in these drawings, and partly to the fact that total forces are considered. A better insight into the difficulties of the problem is obtained from Fig. 4, where 'standard lift distributions ' $p_{0}(x)$ are shown. These are defined, for a given speed M, as

$$
\begin{equation*}
p_{0}(x)=\lim _{v \rightarrow 0}\left(\frac{p(x, v)}{p(0 \cdot 5, v)}\right) \quad . \tag{1}
\end{equation*}
$$

$p(x, y)$ being the lift distribution due to pitch.
There are only three different distributions $p_{0}(x)$:

$$
\begin{align*}
p_{0}(x) & =\left\{\begin{array}{l}
\sqrt{ }(1-x) / x \\
1 / \sqrt{ }(2 x) \\
1
\end{array}\right\} ; \\
x_{0} & =\left\{\begin{array}{l}
\frac{1}{4} \\
\frac{1}{3} \\
\frac{1}{2}
\end{array}\right\} \text { if } M\left\{\begin{array}{l}
<1 \text { subsonic } \\
=1 \text { sonic } \\
>1 \text { supersonic }
\end{array}\right\} \tag{1a}
\end{align*}
$$

(x_{0} is the position of the centre of pressure of $p_{0}(x)$.)
The subsonic distribution is characterised by its singularities of order $1 / \sqrt{ } x$ at the leading edge and $\sqrt{ }$ at the trailing edge; the supersonic distribution exhibits neither singularity. The sonic distribution is quasi-subsonic at the leading edge but is quasi-supersonic at the trailing edge. This distinction is still valid if v is not zero, see, e.g., Fig. 2. It follows that the transition $M \rightarrow 1$ is irregular and non-uniform whether the sonic speed is approached from below or from above.

Our analytical method is to replace the cylinder functions in the fundamental equations by asymptotic expressions. These expressions are useful if their argument is sufficiently large. This argument being $v /\left|1-M^{2}\right|$, our investigation applies to a part of the ν, M-plane which contains the sonic line $M=1$ and has an apex at the point $[\nu, M]=[0,1]$.
3.2. Notation:-(a) General

ρ	Air density
V	Speed of wing
M	Free-stream Mach number
$\gamma=$	$1 / M$ Reciprocal Mach number

If $n=1,2,3 \ldots$ then

$$
\begin{aligned}
& \bar{n}!=\sqrt{ } \pi \cdot \frac{1}{2} \cdot \frac{3}{2} \ldots \frac{2 n-1}{2} ; \quad \overline{-n}!=\pi(-)^{n} / \bar{n}! \\
& \bar{n}=\sqrt{ } \pi \cdot \frac{1}{2} \cdot \frac{3}{4} \ldots \frac{2 n-1}{2 n} ; \quad \overline{-n}=0 .
\end{aligned}
$$

If $n . \gg 1$, then

$$
\bar{n}!\bumpeq \frac{n!}{\sqrt{ } n} ; \quad \bar{n} \bumpeq \frac{1}{\sqrt{ } n}
$$

n	-2	-1	0	1	2	3	4
$n!$	∞	∞	1	1	2	6	24
$\bar{n}!/ \sqrt{ } \pi$	$4 / 3$	-2	1	$1 / 2$	$3 / 4$	$15 / 8$	$105 / 16$
$\bar{n} / \sqrt{ } \pi$	0	0	1	$1 / 2$	$3 / 8$	$5 / 16$	$35 / 128$

3.3. Supersonic Wing Force Coefficients ($M=1+\delta$).--Two-dimensional linear supersonic theory has been discussed by numerous authors ; see, e.g., Refs. 7, 12 and 13. As a result, the four force coefficients of the wing with rigid chord, defined in section $3.2(b)$, may be written in the form

$$
\begin{align*}
l_{s}= & 2 \omega^{2} H+2 \omega\left(K_{0}-K_{1}\right) \\
l_{a}= & \left(1+\frac{1}{\omega}\right) l_{z}+m_{s} \\
-m_{s}= & \left(\omega^{2}-1+x\right) H+(\omega+1)\left(K_{0}-K_{1}\right)-\varkappa K_{0} \\
-m_{a}= & {\left[\frac{1}{\omega}(1-x)+\omega+\frac{2}{3} \omega^{2}\right] H+\left[\frac{1}{3}(2 \omega+1)-\frac{1}{\omega}(1-x)\right]\left(K_{0}-K_{1}\right) } \\
& +\frac{n}{3}\left(2 K_{0}+\frac{1}{\omega} K_{1}\right) . \quad \ldots \quad . . \quad . \quad . . \quad . \quad . \tag{1}
\end{align*}
$$

Here

$$
\begin{align*}
H & \equiv H(\gamma, \nu)=\frac{\gamma}{\sqrt{ } x} \int_{0}^{1} J_{0}\left(\frac{\gamma \nu}{x} \xi\right) \mathrm{e}^{-\omega \xi \xi x} d \xi \\
K_{p} & \equiv K_{p}(\gamma, \nu)=\frac{\gamma}{\sqrt{ } x}(-i \gamma)^{p} \mathrm{e}^{-\omega / x} J_{p}\left(\frac{\gamma \nu}{x}\right), \tag{1a}
\end{align*}
$$

$\omega=i \nu$ is the imaginary frequency parameter and

$$
\begin{equation*}
\gamma=1 / M<1 ; \quad x=1-\gamma^{2}>0 \quad . . \quad . . \quad . . \quad . . \quad . \tag{1b}
\end{equation*}
$$

are speed parameters. J_{p} are Bessel functions of the first kind.

The function H may be transformed into

$$
\begin{equation*}
H=-\gamma\left[\frac{i}{\nu}+\frac{1}{\sqrt{ } \varkappa} \int_{1}^{\infty} \mathrm{e}^{-\omega \xi \xi \kappa} J_{0}\left(\frac{\gamma \nu}{x} \xi\right) d \xi\right] \quad . \quad \ldots \quad . . \tag{1c}
\end{equation*}
$$

by means of Schwarz ${ }^{14}$, equation (46).
We are concerned with the range $\nu / x \geqslant 1$. The functions H and K_{p} may therefore be evaluated by using asymptotic expressions for the Bessel functions (see equation $\mathrm{AI}(1) \dagger$). For K_{p} we obtain immediately

$$
\begin{equation*}
K_{p} \sim \frac{\gamma^{p+0.5}}{\pi} \frac{1}{(2 \pi \omega)^{0.5}} \sum_{0}^{\infty} \frac{\overline{m+p!} \overline{m-p!}}{m!}\left(\frac{x}{2 \gamma \omega}\right)^{m}\left\{\mathrm{e}^{-u}+i(-)^{m+p} \mathrm{e}^{-u}\right\} \ldots \tag{2}
\end{equation*}
$$

with

$$
\left.\left.\begin{array}{l}
u=\frac{\omega}{1+\gamma} \rightarrow \frac{\omega}{2} \tag{2a}\\
v=\frac{\omega}{1-\gamma} \rightarrow i \infty
\end{array}\right\} \begin{array}{llllll}
\end{array}\right\} \text { if } M \rightarrow 1 . \quad . \quad . \quad . \quad . \quad .
$$

Some further transformations are required in the case of the function H. Substituting $\operatorname{AI}(1)$ in (1c) yields

$$
\begin{equation*}
H \sim \gamma\left\{\frac{1}{\omega}-\frac{1}{\pi(2 \pi \omega \gamma)^{0.5}} \sum_{0}^{\infty} \bar{m}\left(\frac{x}{2 \omega \gamma}\right)^{m}\left[I_{m}(u l)+i(-)^{m} I_{m}(v)\right] \quad . \quad .\right. \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{m}(\alpha) \equiv \bar{m}!\int_{1}^{\infty} \frac{\mathrm{e}^{-\alpha_{5}^{\xi}}}{\xi^{m+0 \cdot 5}} d \xi . \quad \ldots \quad \quad . \tag{3a}
\end{equation*}
$$

The two cases $I_{m}(u)$ and $I_{m}(v)$ have to be treated differently in view of the limit $M \rightarrow 1$ (see 2a)). Applying the relation

$$
\begin{equation*}
I_{m}(\alpha)=\overline{m-1}!\mathrm{e}^{-\alpha}-\alpha I_{m-1}(\alpha) \quad . . \quad . \quad \quad . . \quad . . \quad . \quad . \tag{3b}
\end{equation*}
$$

in opposite directions we obtain

$$
\begin{equation*}
I_{m}(u)=(-u)^{m}\left[I_{0}(u)+\mathrm{e}^{-u} \sum_{1}^{m i} \frac{\overline{n-1}}{(-u)^{n}}\right] \quad \ldots \quad . . \quad \therefore \quad \ldots \quad . \tag{4a}
\end{equation*}
$$ Introduce (see AI(2))

Then

$$
\begin{equation*}
I_{0}(u)=\overline{0}!\left(\int_{0}^{\infty}-\int_{0}^{1}\right) \frac{d \xi}{\sqrt{\xi}} \mathrm{e}^{-u_{\xi}^{!}}=\pi u^{-0.5}-\sqrt{\left\{\frac{1+\gamma}{2 \pi \gamma}\right\} U ~} \tag{5a}
\end{equation*}
$$

[^2]\[

$$
\begin{align*}
& \begin{array}{l}
I_{m}(v) \sim-(-v)^{m} \mathrm{e}^{-v} \sum_{m+1}^{\infty} \frac{\overline{n-1!}}{(-v)^{n}} .
\end{array} \quad . \quad . \quad . . . \tag{4b}\\
& \text { (4b) is an asymptotic expansion of a well known typef. } I_{0}(u) \text { is essentially a Fresnel integral. }
\end{align*}
$$
\]

Owing to $\mathrm{AI}(3 \mathrm{a})$

$$
\begin{equation*}
I_{0}(u) \sum_{0}^{\infty} \bar{m}\left(\frac{-u \tau}{2 \omega \gamma}\right)^{m}=\pi \sqrt{\left(\frac{2 \pi \gamma}{\omega}\right)-U . . \quad . \quad . \quad . . \quad .} \tag{5b}
\end{equation*}
$$

The term $1 / \omega$ in (3) is cancelled if (4a) and (5b) are introduced. Introducing also (4b) and changing the order of summation we obtain finally

$$
\begin{align*}
H \sim & \frac{\sqrt{ } \gamma}{\pi(2 \pi \omega)^{0.5}}\left\{U-\sum_{1}^{\infty} \frac{\overline{n-1}!}{(-\omega)^{n}}\left[(1+\gamma)^{n} \mathrm{e}^{-u} \sum_{n}^{\infty} \bar{m}\left(\frac{\gamma-1}{2 \gamma}\right)^{m}\right.\right. \\
& \left.\left.-i(1-\gamma)^{n} \mathrm{e}^{-v} \sum_{0}^{n-1} \bar{m}\left(\frac{1+\gamma}{2 \gamma}\right)^{m}\right]\right\} . \tag{6}
\end{align*} \quad \ldots \quad \ldots \quad \ldots \quad \ldots . \quad . \quad .
$$

Substituting (2) and (6) in (1) yields the complete asymptotic expansions for the four wing force coefficients.

Consider in particular the transition $M \rightarrow 1$. The functions U and $\exp (-u)$ are regular ; however, this is not true of the function $\exp (-v)$, which represents a waveform whose wavelength becomes smaller and smaller as M tends to unity-compare (2a). Fortunately exp ($-v$) has the factor $1-\gamma \bumpeq M-1 \bumpeq \frac{1}{2} \kappa \rightarrow 0$ in all four coefficients (1) (this is immediately seen for H from (6) and is seen for the function K_{p} if the difference $K_{0}-K_{1}$ is formed). Thus the four coefficients are regular in $M \geqslant 1$; however their derivatives with respect to M are not regular \dagger.
3.4. Sonic Speed $(M=1+0)$.-3.4.1. Wing force coefficients.-Introducing $\gamma=1$ in 3.3(2), (6), we obtain

$$
\begin{align*}
H & =\frac{2}{(2 \pi \omega)^{0.5}} \sum_{0}^{\infty}\left(-\frac{\omega}{2}\right)^{n} \frac{1}{n!(2 n+1)} \cdot \\
K_{0}-K_{1} & =\frac{2}{(2 \pi \omega)^{0.5}} \sum_{0}^{\infty}\left(-\frac{\omega}{2}\right)^{n} \frac{1}{n!} \cdot \quad . \quad . \quad \ldots \quad \ldots \tag{1}
\end{align*} . \quad \ldots .
$$

We write the four wing force coefficients as series of similar form

$$
\begin{equation*}
l_{z}=\frac{8}{(2 \pi \omega)^{0.5}} \sum_{0}^{\infty}\left(-\frac{\omega}{2}\right)^{n} l_{z}^{n} . \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{2}
\end{equation*}
$$

From (1), (2) and 3.3(1)

$$
\begin{equation*}
l_{x}^{n}=\frac{1}{(n-1)!(2 n-3)} ; \quad l_{z}^{0}=0 \quad . . \quad . . \quad . . \quad . . \quad . \quad . \tag{2a}
\end{equation*}
$$

and

$$
\left.\begin{array}{rl}
l_{a}^{n} & =\frac{2}{2 n+1} l_{z}^{n}-\frac{1}{2} l_{z}^{n+1} \tag{2b}\\
m_{z}^{n} & =\frac{2 n-1}{2 n+1} l_{z}^{n} \\
m_{a}^{n} & =\frac{2 n+1}{2 n+3} l_{a}^{n}
\end{array}\right\} . \quad \ldots \quad \ldots \quad . . \quad \ldots \quad . .
$$

\dagger See section 3.3.2.

The series (2) converge for all values v; they converge rapidly in the usual range of flutter frequencies, where numerical evaluation is convenient owing to the simple form of the series coefficients. Numerical values are contained in Tables 2 and 3.

It should be noted here that, while the simplicity of (2a) is of course a peculiarity of the sonic solution, the relations (2b) represent, in their essence, a property of the whole range $M \geqslant 1 . \dagger$

Expanding (2), (2a), (2b) we obtain

$$
\left.\begin{array}{rl}
l_{s} & =\frac{1-i}{\sqrt{ }(\pi v)}\left(0+2 i v-\nu^{2} \ldots\right) \\
l_{a} & =\frac{1-i}{\sqrt{ }(\pi v)}\left(2+\frac{7}{3} i v-\frac{19}{60} v^{2} \ldots\right) \\
-m_{s} & =\frac{1-i}{\sqrt{ }(\pi \nu)}\left(0+\frac{2}{3} i v-\frac{3}{5} v^{2} \ldots\right) \tag{4}\\
-m_{a} & =\frac{1-i}{\sqrt{ }(\pi v)}\left(\frac{2}{3}+\frac{7}{5} i v-\frac{19}{84} v^{2} \ldots\right)
\end{array}\right\}
$$

Both in translation and pitch the first non-zero term represents a force which has its centre of pressure at $x_{0}=1 / 3$. In each case let suffix s denote the sth non-zero term ; from (2b)

$$
\begin{equation*}
x_{0, s}=\frac{2 s-1}{2 s+1} \quad(M=1) . \quad . \quad . \quad . \quad . \quad . \quad . \tag{5}
\end{equation*}
$$

The corresponding supersonic relation is from (3a)

$$
\begin{equation*}
x_{0, s}=\frac{s}{s+1} \quad(M>1) . . \quad . \quad . . \quad . . \quad . \quad . \quad . \tag{5a}
\end{equation*}
$$

In all cases

$$
\lim _{s \rightarrow \infty} x_{0, s}=1
$$

\dagger In the supersonic range we may write

$$
\begin{equation*}
l_{z}=\sum_{0}^{\infty}\left(-\frac{\omega}{2}\right)^{m} l_{2}^{m} . \tag{3}
\end{equation*}
$$

The series (3) converge if $\nu / x<2$. The relations corresponding to (2b) are

$$
\begin{align*}
l_{a}^{m} & =\frac{1}{m+1} l_{z}^{m}-\frac{1}{2} l_{z}^{m+1} \\
-\bar{m}_{z}^{m} & =\frac{m}{m+1} l_{z}^{m} \tag{3a}\\
-\overline{m a}^{m} & =\frac{m+1}{m+2} l_{a}^{m}
\end{align*}
$$

$$
\{, \cdots
$$

see Jordan ${ }^{33}$ (31) to (33). Now the coefficients $l_{a}^{2 m} \ldots$ belong to the power m of ω while the coefficients $l_{s}^{n} \ldots$ belong to the power ($n-0.5$) in (2). Accordingly (3a) becomes (2 b) if m is replaced by $(n-0.5$).
3.4.2. Lift dislributions.-The basic formula connecting lift distribution $p(x)$ and downwash $w(x)$ in supersonic flow may be written

$$
\begin{gather*}
p(x)=\frac{2 \gamma}{\sqrt{ } x}\left\{\int_{0}^{x}\left[w^{\prime}(x-\xi)+w(x-\xi)\right] \mathrm{e}^{-w \xi \xi / x} J_{0}\left(\frac{\gamma v}{x} \xi\right) d \xi\right. \\
\left.+w(0) \mathrm{e}^{-\omega x / x} J_{0}\left(\frac{\gamma^{v}}{x} x\right)\right\} \quad \ldots \tag{6}
\end{gather*}
$$

-see Ref. 12 equation (43)-provided that $w(x)$ is continuous for $0<x<1$. We require the limit of $p(x)$ as M tends to unity. The formal procedure of inserting the asymptotic expression $\mathrm{AI}(1)$ in (6) and then letting M tend to unity yields the correct limit for $p(x)$ in spite of the fact that the argument of J_{0} reaches zero in the integral. This may be proved by dividing the range $[0, x]$ of the integral into the two ranges $[0, \sqrt{ } x]$, and $[\sqrt{ } x, x]$. The integral over the first range disappears as x tends to zero. In the second range insert $\mathrm{AI}(1)$. Thus an error is committed which depends on the lower limit of the argument of $J_{0}, v i z$, on $\gamma \nu / \sqrt{ } x$; as x tends to zero, this lower limit tends to infinity and the error vanishes.

The supersonic lift distribution $p(x)$ is independent of the chord length c; hence we introduce a modified chordwise co-ordinate

$$
\begin{equation*}
\hat{x}=\frac{\pi c x}{V \mid f}=\frac{1}{2} \nu x \quad . . \quad . \quad \quad . \quad . \quad . \quad . \quad . \quad \text {.. } \tag{7}
\end{equation*}
$$

referring the physical co-ordinate $c x$ to the wavelength V / f, and further

$$
\begin{equation*}
y=i \hat{x}=\frac{1}{2} \omega x \tag{7a}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{\gamma \rightarrow 1} \frac{2 \gamma}{\sqrt{ } x} \mathrm{e}^{-\omega x / x} J_{0}\left(\frac{\gamma v}{x} x\right)=\frac{1}{(\pi y)^{0.5}}\left\{\mathrm{e}^{-y}+i T(y)\right\} \quad \ldots \quad . . \quad . \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
T(y)=\lim _{\gamma \rightarrow 1} \mathrm{e}^{2 y /(y-1)} . \quad \text {. } \tag{8a}
\end{equation*}
$$

The downwash $w(x)$ arises from the mode $z(x)$ and is given by

$$
\begin{equation*}
w(x)=z_{x}(x)+\omega z(x) . . \quad . \quad . \quad . \quad \text {.. } \tag{9}
\end{equation*}
$$

We consider the elementary downwash distribution

$$
\begin{equation*}
w_{r}(x) \equiv w_{r} \equiv y^{r}(r \geqslant 0) \quad . \quad . \quad . . \quad . \quad . \quad . . \quad . \tag{9a}
\end{equation*}
$$

where r is positive or zero but need not be integral.
The lift distribution arising from w_{r} we denote by

$$
\begin{equation*}
p_{r} \equiv p_{r}(x) \text {. } \tag{9b}
\end{equation*}
$$

When (8) is substituted in (6), that part of the integral which contains $T(\eta)$ disappears owing to the Riemann-Lebesgue lemma. Thus (6) becomes

$$
\begin{gather*}
p_{r}=\frac{1}{\sqrt{ } \pi}\left\{\int_{0}^{y}[\gamma+2(y-\eta)](y-\eta)^{r-1} \mathrm{e}^{-\eta} \eta^{-0.5} d \eta\right. \\
 \tag{10}\\
\left.+w(0) \mathrm{e}^{-y} \frac{y_{2}^{-0.5}}{2}\left[1+i \mathrm{e}^{y} T(y)\right]\right\} .
\end{gather*}
$$

Consider first the case $r>0$. As $w(0)=0$, the awkward term $T(y)$ disappears, and we obtain by means of $\mathrm{AI}(5 \mathrm{~b})$

$$
\begin{equation*}
p_{r}=\frac{r!}{\sqrt{ } \pi} \sum_{n=0}^{\infty} \bar{n}(-y)^{n}\left\{\frac{1}{\gamma+n!}+\frac{2 y}{\gamma+n+1!}\right\} y^{r-0.5} \quad . \quad . . \quad . \tag{10a}
\end{equation*}
$$

or

$$
\begin{equation*}
p_{r}=\frac{\gamma!w_{r}}{(\pi y)^{0.5}} \sum_{n=0}^{\infty} \bar{n} \frac{(-y)^{n}}{\gamma+n!} \frac{1+2 n}{1-2 n} . \quad . . \quad . \quad . \quad . . \quad . \tag{11}
\end{equation*}
$$

This is the final result. The series (11) converges for any value y; it converges rapidly in the range required for flutter calculations.

We have still to consider the case $y=0, w_{0} \rightleftharpoons 1$. The function $T(y)$ is represented graphically by a wave-form of zero wavelength-this means that the real and imaginary parts of p_{0} are both represented not by single curves but by strips of width $\sqrt{ }(2 / \pi \hat{x})$. (In other words, the transition $M \rightarrow 1$ is not regular; the physical significance of this fact has been discussed in section 2.) However, the ambiguity which is thus introduced is eliminated by defining $p(x)$ to be the mean lift on a finite length of wing chord:
replace $\quad p(x)$ by $\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+e} p(x) d x . \quad . \quad . \quad . \quad . \quad . \quad$
By means of the operation (12), $T(y)$ disappears in (10) which is otherwise left intact. It is then easily shown that application of $\mathrm{AI}(5 \mathrm{~b})$ to the case $\gamma=0$ again leads to (11). Thus (11) is valid for $r \geqslant 0$.

By superposition of the elementary solutions (11) the lift distribution caused by any downwash distribution $w(x)$ which may occur on a wing with rigid or non-rigid chord can be obtained.

Equation (11) connects downwash w and lift p by means of a kind of response function which depends on the power r :

$$
\begin{equation*}
p_{r}=(\bar{y})^{0.5} P_{r} w_{r} . \quad . \tag{13}
\end{equation*}
$$

Sample response functions $P_{r}=P_{r}^{\prime}+i P_{r}^{\prime \prime}$ are shown in Fig. 5. The fact that the curves of Fig. 5 are perfectly regular and smooth supports the argument of section 2. It is easy to show that

$$
\begin{equation*}
P_{r}^{\prime} \rightarrow \gamma ; \quad P_{r}^{\prime \prime} \rightarrow \frac{3 \hat{x}}{2 \sqrt{ } r}(r \rightarrow \infty) . \quad . \quad . . \quad . . \quad . \quad . . \quad . \tag{13a}
\end{equation*}
$$

3.4.3. Comparison of results.-The downwash distributions due to unit vertical translation (suffix z) and to unit pitch (suffix α) about the leading edge are, owing to 3.4.2(9), (9a)

$$
\begin{array}{ll}
w_{z}=\omega w_{0} & (z=1) \\
w_{n}=\dot{w}_{0}+2 w_{1} & (z=x)
\end{array}
$$

and hence the corresponding lift distributions are

$$
\begin{aligned}
& p_{z}=\omega p_{0} \\
& f_{a}=p_{0}+2 p_{1}
\end{aligned} \quad\left(p_{z} \text { and } p_{a} \text { are shown in Fig. 2) } .\right.
$$

Thus the four main wing force coefficients are :

$$
\left.\begin{array}{rl}
l_{z} & =\int_{0}^{1} p_{z} d x=2 \int_{0}^{\omega / 2} p_{0} d y \\
l_{a} & =\int_{0}^{1} p_{a} d x=\frac{1}{\omega} l_{z}+\frac{4}{\omega} \int_{0}^{\omega / 2} p_{1} d y \\
-m_{z} & =\int_{0}^{1} x p_{z} d x=\frac{4}{\omega} \int_{0}^{\omega / 2} y p_{0} d y \\
-m_{a} & =\int_{0}^{1} x p_{a} d x=-\frac{1}{\omega} m_{z}+\frac{8}{\omega^{2}} \int_{0}^{\omega / 2} y p_{1} d y
\end{array}\right\}
$$

Substituting 3.4.2 (11) in (14) leads again to 3.4.1(2), (2a), (2b).
3.4.4. Control surfaces.-In linear theory the specific property of supersonic flow that no disturbance produces any effect upstream is still valid at sonic speed. (As a consequence all force coefficients required for the flutter calculation of a wing with control surfaces are linear combinations \dagger of the four main wing force coefficients (see 3.4.1(2) and Tables 2 and 3). When the control-surface coefficients for $M=1$ have been obtained in this way approximate values for high subsonic speeds can be obtained by interpolation § (see sections 3.5.4 and 4.1).
3.5. Subsonic Range ($M=1-\delta$).-In the subsonic range the lift distribution $p(x)$ is the solution of the Possio equation (see, e.g., Ref. 17)

$$
\begin{equation*}
w(x)=\nu \int_{0}^{*} k[\nu(x-\xi)] p(\xi) d \xi . \quad . \quad . \quad . . \quad . \quad . . \tag{1}
\end{equation*}
$$

The symbol * \int denotes Cauchy's principal value. The kernel $k[\nu(x-\xi)]$ of the integral equation (1) has the form

$$
\begin{equation*}
k(\mathbf{x})=\frac{\sqrt{ }\left(1-M^{2}\right)}{2 \pi \mathbf{x}}-i \frac{\log |\mathbf{x}|}{2 \pi \sqrt{\left(1-M^{2}\right)}}+. \quad . . \quad . \quad . . \tag{1}
\end{equation*}
$$

In (1a) the argument $\nu(x-\xi)$ is replaced by \boldsymbol{x} for shortness. Owing to the singularity of order \boldsymbol{x}^{-1} of the kernel the integral equation (1) has a continuum of solutions $p(\mathbf{x})$; a unique solution is enforced by adding to (1) the Kutta-Joukowsky condition

$$
\begin{equation*}
p(1)<\infty . \quad \text {.. } \tag{1b}
\end{equation*}
$$

To the speed parameters $3.3(1 \mathrm{~b})$ for the supersonic range correspond the parameters

$$
\begin{equation*}
M<1 ; \quad x=1-M^{2}>0 . . \quad . . \quad . . \quad . . \quad . \tag{2}
\end{equation*}
$$

for the subsonic range.
\dagger e.g., the oscillating aileron behind a steady wing can be treated as a free wing ; the force on the aileron due to wing motion is obtained by deducting from the total wing force the force on the front part of the wing. A complete table of the coefficients required for the wing with aileron and tab, both with aerodynamic balance, is given in Ref, 13,
§ For extensive tables of control-surface coefficients up to $M=0 \cdot 7$, see Minhinnick ${ }^{16}$.
3.5.1. Possio kernel.-The kernel $k(\boldsymbol{x})$ of 3.5 (1), though regular for $|\boldsymbol{x}|>0$, is a fairly complicated function \dagger of its parameters \mathbf{x} and M. An asymptotic expression for $k(\boldsymbol{x})$ is developed in Appendix III ; the result is

$$
\left.\begin{array}{c}
k(\mathbf{x}) \sim K\left(\frac{2 \mathbf{x}}{1+M}\right) \exp \left(i \frac{1-M}{1+M} \mathbf{x}\right)-\left(\frac{i}{2 \mathbf{x}}\right)^{0.5} \cdot \sum_{n=1}^{\infty}\left(\frac{i \varkappa}{2 M \mathbf{x}}\right)^{n} C_{n} \exp \left(-\frac{i M \mathbf{x}}{1+M}\right) \tag{3}\\
k(-\mathbf{x}) \sim\left(\frac{i}{2 \boldsymbol{x}}\right)^{0.5} \cdot \sum_{n=1}^{\infty}\left(\frac{i \varkappa}{2 M \mathbf{x}}\right)^{n} D_{n} \exp \left(-\frac{i M \mathbf{x}}{1-M}\right)
\end{array}\right\}
$$

if

$$
\begin{equation*}
\mathbf{x}>0 \quad \text {.. } \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
K(\mathbf{x})=\left(\frac{i}{2 \mathbf{x}}\right)^{0.5} \mathrm{e}^{-i \mathbf{x} / 2} \sum_{0}^{\infty} \frac{1}{\bar{n}!}\left(-\frac{i \mathbf{x}}{2}\right)^{n} . \quad . \quad . \quad \ldots \quad . . \quad . \quad \ldots . \tag{3b}
\end{equation*}
$$

The coefficients $C_{m} D_{n}$ are given by AIII (12a), (13a) ; in particular

$$
\begin{equation*}
\lim _{M \rightarrow 1} 2 n C_{n}=\lim _{M \rightarrow 1} D_{n}=\frac{\overline{n-1}}{\sqrt{\pi}} \cdot \frac{\overline{n!}}{\pi} . \quad . . \quad . \quad . \quad . . \quad . . \quad . \tag{3c}
\end{equation*}
$$

Thus

$$
\lim _{M \rightarrow 1}\left\{\begin{array}{l}
k(\mathbf{x})=K(\mathbf{x}) \tag{4}\\
k(-\mathbf{x})=0
\end{array} \quad . \quad .\right.
$$

It appears that the kernel $k(\mathbf{x})$ loses an important feature during the transition $M \rightarrow 1$: the limit function $K(\boldsymbol{x})$ is integrable throughout.
$k(\boldsymbol{x})$ is shown graphically \ddagger in Fig. $6\left(k \equiv k^{\prime}+i k^{\prime \prime}\right)$.
3.5.2. Solution for $M=1-0$.-In the limit $M=1-0$ the Possio equation 3.5(1), owing to $3.5 .1(4)$, becomes

$$
\begin{equation*}
w(x)=v \int_{0}^{x} K(\nu \xi) p(x-\xi) d \xi . \quad . \quad . \quad . \quad . \quad . \quad . \tag{5}
\end{equation*}
$$

Consider the elementary downwash w_{r}, see 3.4.2(9). Inserting $3.5 .1(3 \mathrm{~b})$ in (5) and making use 3.4.2(7), (9b) we obtain

$$
\begin{equation*}
w_{r} \equiv y^{\prime}=\int_{0}^{y} \mathrm{e}^{-\eta} \eta^{-0.5} d \eta p_{r}(y-\eta) \sum_{0}^{\infty} \frac{(-\eta)^{m}}{\bar{m}!} . \quad . \quad . \quad . . \quad . \tag{6}
\end{equation*}
$$

We are going to show that 3.4.2(11), the lift distribution for $M=1+0$, is also the solution of (6), i.e., the lift distribution for $M=1-0$. For this purpose transform 3.4.2(10a) by means of $\mathrm{AI}(4 \mathrm{c})$:

$$
p_{r}=y^{r-0.5} \mathrm{e}^{-y} \sum_{0}^{\infty} \frac{y^{n}}{n!}\{r \cdot \overline{n+r-0.5}+2 y . \overline{n+r+0.5}\}
$$

[^3]or \dagger
\[

$$
\begin{equation*}
p_{r}=y^{r-0.5} \mathrm{e}^{-\gamma} \sum_{0}^{\infty} \frac{y^{n}}{n!\overline{n+r}} \frac{2 n+r}{n+r} \tag{7}
\end{equation*}
$$

\]

Denote by $R(y)$ the right-hand side of (6) after (7) has been inserted in it ; thus

$$
\begin{equation*}
R(y)=\mathrm{e}^{-r} \int_{0}^{r} \frac{d \eta}{[\eta(y-\eta)]^{0 \cdot 5}} \sum_{n=0}^{\infty} \frac{(-\eta)^{m}}{\bar{m}!} \sum_{n=0}^{\infty} \frac{(y-\eta)^{n+r}}{n+r!} \frac{(n+\gamma)!}{n!} \frac{2 n+r}{n+r} . \quad \ldots \tag{8}
\end{equation*}
$$

Apply $\mathrm{AI}(5 \mathrm{a})$ with $n+r$ for $p, m+n+r$ for q, and t for $m+n$.
Thus

$$
\begin{equation*}
R(y)=y^{y} \mathrm{e}^{-y} \sum_{t=0}^{\infty} \frac{(-y)^{t}}{(t+r)!} S(t) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
S(t)=\sum_{n=0}^{b}(-)^{n} \frac{(n+r)!}{n!}\left(1+\frac{n}{n+r}\right)=(-)^{(t+r)!} \frac{(t)}{t!} \tag{9a}
\end{equation*}
$$

Substituting (9a) in (9) yields

This completes the proof for the elementary downwash w_{r}. Obviously this proof also covers any arbitrary downwash distribution $w(x)$ which can be obtained by linear superposition of elementary distributions w_{r}.
3.5.3. Part solution for $M=1$ - δ.-The asymptotic expression 3.5.1(3) for the Possio kernel $k(\boldsymbol{x})$ suggests the approximation

$$
k(\boldsymbol{x}) \bumpeq k_{0}(\boldsymbol{x})=\left\{\begin{array}{lll}
K\left(\frac{2 \boldsymbol{x}}{1+M}\right) \exp \left(i \frac{1-M}{1+M} \boldsymbol{x}\right) & \text { if } \boldsymbol{x}>0 & \tag{11}\\
0 & \text { if } \boldsymbol{x}<0 & \ldots
\end{array}\right.
$$

The : modified kernel' $k_{0}(\boldsymbol{x})$ is integrable whereas $k(\boldsymbol{x})$ is not; of course the approximation (11) is valid only if κ / x is sufficiently large (see Table 6 and Fig. 7).

The function $k_{0}(\boldsymbol{x})$ has some analytical interest in that the solution of the 'modified Possio equation'-3.5(1) with $k_{0}(x)$ instead of $k(\boldsymbol{x})$-can readily be derived, see Appendix IV. In particular the gradient of the modified forces at the point $M=1$ can be given, see AIV(6). It appears that the amount of this gradient is about one quarter of the amount of the forces themselves-compare 3.4.1(4). Unfortunately this gradient of the modified solution is not identical with the gradient of the correct solution-this can be seen from 3.5.1(3)-and the modified solution itself can be considered a useful approximation only if ν is rather largethis can be seen from 3.5(1) and Fig. 7.
\dagger Some care has to be taken in the case $\gamma=0$ which is to be understood as the limit $\gamma \rightarrow 0$. Thus

$$
\begin{equation*}
\left(\frac{2 n+r}{n+r}\right)_{\substack{n=0 \\ r=0}}=\lim _{r \rightarrow 0}\left(\frac{0+r}{0+r}\right)=1 . \quad . \quad . . \quad . \quad \therefore . \quad . . \quad . \quad . \tag{7a}
\end{equation*}
$$

3.5.4. Remark on complete solution.-In Figs. 1e and 1f curves of the subsonic and supersonic lift coefficients are shown side by side. The curves for $M=0 \cdot 8,0 \cdot 9,0.95$ are interpolations, see section 4.1 ; the remaining curves represent the correction solution.

To the curves $M=0.8,0.9,0.95$ correspond the curves $M=1.25,1.11,1 \cdot 05$. The latter are of a trochoidal nature ; interpolation between $M=1$ and $M=1 \cdot 43$ would lead to considerable error. However this does not necessarily reflect on the reliability of interpolation in the range $0.7<M<1$: a comparison of the two corresponding curves $M=1.43$ and 0.7 with the curve $M=1$ would suggest, on the contrary, that though interpolation is of little value for $M=1+\delta$ it will yield reasonable approximations for $M=1-\delta$. This will now be supported by a discussion of the different natures of the lift distributions $p(x)$ in the two regions $M=1 \pm \delta$.

The trochoidal nature of the curves $M=1+\delta$ arises from the waviness of the lift function $p(x)$ (see Fig. $2 \dagger$). This waviness in its turn corresponds to the short-waved part of the perturbation field $\operatorname{AII}(3)$ and originates, in the first instance, in the disturbance formed by the leading edge; its amplitude decreases as the impulse travels on. A similar short-waved perturbation will occur in subsonic flow, see $\operatorname{AII}(1) \ddagger$, but in this case the impulse travels forward, originating at the trailing edge. The difference in question between the supersonic and the subsonic lift distributions must therefore be due to a difference between the boundary conditions for the leading edge, $M \geqslant 1$, and the trailing edge, $M \leqslant 1$.

We may put our problem as follows : for $M=0$ a rapidly convergent (and often used) representation of $p(x)$ is

$$
\begin{equation*}
p(x)=\sqrt{\left\{\frac{1-x}{x}\right\} \sum_{0}^{\infty} c_{0 n} x^{n} \quad(M=0) . \quad . . \quad . . \quad . \quad . . \quad . .} \tag{12}
\end{equation*}
$$

For $M=1$ from 3.4.2(11)

$$
\begin{equation*}
p(x)=\frac{C}{\sqrt{x}} \sum_{0}^{\infty} c_{1 n} x^{n} \quad(M=1) \quad . . \quad . . \quad . \quad . \quad . \quad . \tag{12a}
\end{equation*}
$$

is again rapidly convergent. Thus for $M \leqslant 1$ we may write tentatively

$$
\begin{equation*}
p(x)=\frac{G(x, M)}{\sqrt{ } x} \sum_{0}^{\infty} c_{M n} x^{n} \quad(M \leqslant 1) . \quad . . \quad . \quad . . \quad . . \quad . \tag{13}
\end{equation*}
$$

For the convergency of (13) to be uniform in M we must impose the condition that the function $G(x, M)$ exhibits the waviness of the form $\exp \{2 i M \hat{x} \mid(1-M)\}$, discussed above, and also that

$$
G(x, M) \rightarrow\left\{\begin{array}{cc}
\sqrt{ } 1-x) & (M \rightarrow 0) \tag{13a}\\
C & (M \rightarrow 1)
\end{array} \quad . \quad . \quad \ldots \quad . . \quad \ldots \quad . .\right.
$$

The further condition

$$
G(x, M) \bumpeq \text { const } \sqrt{\left\{\frac{1-x}{x}\right\}} \begin{gather*}
(x \bumpeq 1) \tag{13b}\\
(M \bumpeq 1) .
\end{gather*} \quad \because \quad . . \quad . . \quad . \quad .
$$

arrived at as follows :

[^4]Writing for the lift distributions $p(x)$ belonging to a given downwash $w(x)$ but various Mach numbers $M \leqslant 1$
we know

$$
p(x) \sim\left\{\begin{array}{c}
x^{a} \quad \text { near leading edge }(x \approx 0) \tag{14}\\
(1-x)^{\beta} \text { near trailing edge }(x \approx 1)
\end{array} \quad . \quad . \quad . \quad . \quad .\right.
$$

M	0	1			
α	-0.5	-0.5	\ldots	\ldots	\ldots
β	+0.5	0			

Thus we expect α to equal -0.5 , as is implied in (13), for all M not exceeding unity. As regards β, we might suspect that β tends to zero as M tends to unity for ν not zero. That this is not possible appears from the integral $\mathrm{AI}(6)$ which occurs for $3.5(1)$ owing to $3.5(1 \mathrm{a})$. Obviously the term with x^{a} in $\mathrm{AI}(6)$ must disappear in order that $3.5(1)$ can be satisfied ; the same applies to a corresponding term $(1-x)^{\beta}$ which arises from the symmetry of $3.5(1)$. Thus

$$
\begin{equation*}
\alpha, \beta=0 \cdot 5(\bmod 1)(M<1) \tag{14b}
\end{equation*}
$$

in confirmation of (13). (13b) then follows.
The above set of conditions for the function $G(x, M)$ appears to be rather stringent and the fact that it is fulfilled by a fairly simple function makes it likely that this function would be a suitable choice in our tentative series (13). This function is

$$
\begin{equation*}
G(x, M)=\sqrt{\left\{\frac{\pi(1+M)}{2 M}\right\} F\left(\frac{M v(1-x)}{1-M}\right)} . \quad . \quad \ldots \quad . \quad \ldots \quad . \tag{15}
\end{equation*}
$$

It is plotted in Fig. 8 ; we have, compare $\mathrm{AI}(2)$

$$
\begin{equation*}
G(x, 0)=\sqrt{ }\{v(1-x)\} ; \quad G(x, 1)=\frac{1}{2}(1-i) \sqrt{ } \pi . \quad . \quad . . \quad . \quad . \tag{15a}
\end{equation*}
$$

It is significant that $G(x, M)$ is again a Fresnel integral and thus is nearly related to the solution for $M=1$.

Figs. 2 and 8 show the different natures of the lift distributions $p(x)$ in the two regions $M=1 \pm \delta$. As M tends to unity from the supersonic side (Fig. 2) the waves formed by $p(x)$ contract to the left and pass the trailing edge (which is determined by $\hat{x}=\frac{1}{2} v$) thus giving rise to the oscillating term $\exp (-v)$ in the force coefficients, see $3.3(2),(6)$. A similar process occurs as M tends to unity from the subsonic side (Fig. 8) though in the opposite direction. The essential difference however is that as M tends to unity the amplitude of the waves remains nearly unchanged at a given point \hat{x} of Fig. 2 but tends to zero at a given point $x<1$ of Fig. 8 . This difference explains why interpolation may be used for $M=1-\delta$ but not for $M=1+\delta$. Clearly the change in the wing force coefficients (i.e., of the integrals of $p(x)$) has a higher order of smoothness when M tends to unity from the subsonic side than when M tends to unity from the supersonic side \dagger.

The cause of the difference just discussed is indeed the difference in the boundary conditions at the leading and trailing edges; the limit function is of order $1 / \sqrt{ } x$ in Fig. 2, constant in Fig. 8. Thus the maximum amplitude of the waves must increase indefinitely as M tends to unity in Fig. 2 but remains constant (roughly) in Fig. 8.

[^5]So much for the nature of $p(x)$. An actual numerical computation on the basis of (13) and (15), even if simplified by means of sections 3.5 . 1 and 3.5 .3 , would still require a considerable amount of work. This work does not appear to be justified in view of
(a) the relatively small degree of physical validity which can be expected for the correct linear solution,
(b) the conclusion (which can be drawn from the above argument) that interpolation through the range $M=1-\delta$ will lead to a reasonable approximation to the linear solution.
3.5.5. Discussion of existing numerical results for $M \leqslant 0 \cdot 8$. -As may be seen from Fig. 8, the waviness of the lift function $p(x)$ does not become pronounced in the truly subsonic range, $M \leqslant 0 \cdot 8$, say, at least not for moderate frequencies ($v \leqslant 1 \cdot 5$, say). A number of numerical solutions for this range have been published, notably by Frazer and Skan ${ }^{19}[M \leqslant 0 \cdot 7]$, Dietze, Turner and Rabinowitz ${ }^{17}$ [$\left.M \leqslant 0 \cdot 7\right]$, Schade ${ }^{20}$ [$M \leqslant 0 \cdot 8$] and recently by Timman, van de Vooren and Greidanus ${ }^{21}[M \leqslant 0 \cdot 8]$. The results of the first three investigations agree with each other satisfactorily but they differ systematically from those of the fourth. The differences are large enough \dagger to warrant a discussion.

Timman ${ }^{21}$ starts directly from the linear differential equation while the first three papers use its equivalent integral form, viz., the Possio equation, 3.5(1). However the Possio equation can be taken to be well confirmed \ddagger, so that the difference in the results cannot be explained by this difference in method.

The methods of Frazer ${ }^{19}$ and Schade ${ }^{20}$ are approximate methods in that in them a number N of terms to be considered in the series corresponding to $3.5 .4(12)$ has to be chosen initially. The methods of Dietze ${ }^{17}$ and Timman ${ }^{21}$ are 'exact' methods§ in that in them the summation can be continued until a chosen accuracy is reached.

Schade ${ }^{20}$ uses the series

$$
\begin{equation*}
p(x)=b \sqrt{\left\{\frac{1-x}{x}\right\}+\sum_{0}^{N} b_{n} x^{n} ; p(1)=0 \quad \ldots \quad \ldots} \quad . . \tag{17}
\end{equation*}
$$

instead of $3.5 .4(12)$. (17) contradicts $3.5 .4(13 \mathrm{a})$ but this should not have an appreciable effect if $M \leqslant 0.7$ (see Fig. 8 ; a confirmation is (16)).

Our further discussion is confined to the two exact methods. These are not very different as far as the representation of the lift distribution $p(x)$ is concerned. Dietze ${ }^{17}$ uses the Fourier series

$$
\begin{array}{rcc}
p(x)=a_{0} \cot \frac{1}{2} \theta+\sum_{1}^{\infty} a_{n} \sin n \theta & . & . \tag{18}\\
& \left(\theta=\cos ^{-1}(1-2 x)\right)
\end{array}
$$

which can be rearranged in the form 3.5.4 (12). Timman et al. ${ }^{21}$ write

$$
\begin{equation*}
p(x)=\bar{p}(x) \exp \left(i \frac{M^{2}}{1-M^{2}} x v\right) \quad . \quad . . \quad . . \quad . \quad . . \tag{19}
\end{equation*}
$$

\dagger An example in point is

$$
l_{z}^{\prime}(M=0 \cdot 7, v=1)=\left\{\begin{array}{ll}
0 \cdot 168 & \text { Refs. } 17,19,20 \tag{16}\\
0.244 & \text { Ref. } 21
\end{array} . \quad . \quad \ldots \quad . . \quad \ldots \quad \ldots\right.
$$

See also Fig. 9.
\ddagger Section 3.5 . 2 above may be taken as another confirmation of the Possio equation.
§ Dietze ${ }^{17}$, it is true, uses an approximation of the Possio kernel ; however, this approximation should be exact within the accuracy of Dietze's numerical calculation.
and

$$
\begin{equation*}
\bar{p}(x)=a_{0} \cot \frac{1}{2} \theta+\sum_{1}^{\infty} b_{n} s e_{n}(\pi-\theta) . \quad . \quad . \quad . \quad . \quad . \tag{19a}
\end{equation*}
$$

The $s e_{n}$ are Mathieu functions. As

$$
\begin{equation*}
s e_{n}(x)=\sum_{1}^{\infty} B_{n} \sin r x \quad \ldots \quad \quad . \quad \text {.. } \quad . \tag{19b}
\end{equation*}
$$

it follows that, by rearrangement of (19a), the function $\bar{p}(x)$ can also be given the form (18).
The two methods further agree in that the coefficients a_{n}, b_{n} are defined as sums

$$
a_{n}=\sum_{0}^{\infty} a_{r n} ; \quad b_{n}=\sum_{0}^{\infty} b_{r n}
$$

and that successive terms $a_{r n}, b_{m n}$ are obtained from recurrence relations.
The essential difference between the two methods would thus seem to be the exponential factor in (19). This factor has the following significance :

The perturbation field AII(1) of a moving source exhibits the two wavelengths

$$
\begin{equation*}
w_{1}=\frac{2 \pi c}{\nu M}(1+M) ; w_{2}=\frac{2 \pi c}{\nu M}(1-M) . \quad . \quad . \quad . \quad . \quad . \tag{20}
\end{equation*}
$$

However, writing for the velocity potential $\bar{\varphi}$, in accordance with (19),

$$
\begin{equation*}
\bar{\varphi}=\bar{p} \exp \left(i \frac{M^{2}}{1-M^{2}} v x\right) \quad . \quad . . \quad . \quad . . \quad . . \quad . \tag{20a}
\end{equation*}
$$

we find

$$
\begin{equation*}
\vec{\varphi}=\frac{-Q}{4 \pi|x|} \exp \left(-i \frac{M \nu}{1-M^{2}}|x|\right) \quad \ldots \quad \quad . . \quad . . \quad . . \quad . \tag{20b}
\end{equation*}
$$

with only one wavelength

$$
\begin{equation*}
w_{3}=\frac{2 \pi c}{\nu M}\left(1-M^{2}\right) . \quad . \quad . \quad \text {.. } \tag{20c}
\end{equation*}
$$

Thus $\bar{\phi}$, and therefore \bar{p}, correspond to a medium at rest.
For the speed range $M=1-\delta$, neither method appears to be suitable. In both methods the respective solutions ($p(x), \bar{p}(x))$ exhibit waves the length of which $\left(w_{2}, v v_{3}\right)$ tends to zero as M tends to unity ; the respective series (18), (19a) become progressively more unsuitable for representing these waves. The nth term of (18) has n nodes along the chord while the nth term of (19a) has only $\frac{1}{2} \imath$ nodes ; as against this, w_{3} tends to $2 w_{2}$ as M tends to unity. Thus neither method appears to have an advantage over the other in this respect.

We now return to the differences, mentioned at the beginning of this section, between the two sets of numerical results. An independent repetition of Timman's work would be rather laborious as the analysis and numerical work are both rather involved. On the other hand Dietze's analysis has been thoroughly checked by Turner and Rabinowitz ${ }^{17}$, who have also repeated his numerical calculation. A possible objection to Dietze's method is that its convergency has not been proved generally; however for $M=0 \cdot 7, \nu=1$, i.e., for the case of equation (16), this convergency has now been re-checked carefully and was found to be of order 2^{-n} at least.

In view of this position, and as Dietze's results agree well enough with the results by Frazer ${ }^{19}$ and Schade ${ }^{20}$, the results ${ }^{17}$ obtained by Dietze's method have been preferred to Timman's results ${ }^{21}$ as a basis for the main tables of the present report. \dagger
3.6. Survey of the Solutions.-In Fig. 2 the lift distributions $p(x)$ due to vertical translation and to pitch are plotted for different Mach numbers $M \geqslant 1$ (and also for $M=0$). The position of the trailing edge is given by $\hat{x} \equiv \nu x / 2=\nu / 2$. The true local lift $p(x)$ has no limit as M tends to unity, but the mean local lift

$$
\begin{equation*}
p_{m}(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} p(\xi) d \xi \quad \ldots \quad . . \quad . . \quad . \quad . . \quad . \tag{1}
\end{equation*}
$$

has a limit. The nature of the subsonic lift distributions $p(x)$ is indicated by a function G, Fig. 8. Here the limit $M \rightarrow 1$ exists without proviso.

The solution for $M=1$ is the common limit of both the supersonic solution and the subsonic solution. It has a particularly simple analytical form 3.4.2(11). This simplicity is illustrated graphically in Fig. 5, where the response function P defined by

$$
\begin{equation*}
p(x)=\frac{1-i}{\sqrt{ }(\nu x)} P(x) w(x) \quad . \quad \quad . \tag{2}
\end{equation*}
$$

is shown for different downwash distributions $w(x)=x_{r}$.
The four main wing force coefficients for $M=1$ are given by 3.4.1(2). They are series of powers ($n-0 \cdot 5$) of ν, while the corresponiding supersonic series are series of the integral powers of ν. Corresponding relations $3.4 .1(2 \mathrm{~b})$, (3a) respectively, are valid for the two types of series. The aerodynamic coefficients of the wing with aileron and tab are implicitly given by these four main coefficients.

In addition, asymptotic expressions for the force coefficients are given for $M=1+\delta$, see 3.3(1), (2), (6). These expressions are useful when $v / \sqrt{ }\left(M^{2}-1\right)$ is large (>3, say). For $M=$ 1 - δ the asymptotic expression for the Possio kernel is given 3.5.1(3), and also the solution for the main part of the kernel, Appendix IV. In section 3.5.4 it is shown that interpolation (which is of little value for $M=1+\delta$) will yield reasonable results for $M=1-\delta$.

In section 3.5 .5 it is explained why the numerical results of Dietze ${ }^{17}$ are thought to be reliable in spite of differing results recently published.
4. Tables and Graphs of Wing Force Coefficients.-The four main wing force coefficients \ddagger are tabulated in Table $2(\nu \leqslant 1 \cdot 4)$ and are shown in isometric presentation in Figs. la to $1 \mathrm{~d}(\nu \leqslant 1)$. Additional values for $M=1$ and $M=1.05$ are given in Table 3 .

The following sources were used in the different speed ranges (for $M=0.8,0.9,0.95$ see section 4.1) :
(a) $M=0$: Standard results
(b) $M=0 \cdot 5,0 \cdot 6,0 \cdot 7$: Turner and Rabinowitz ${ }^{17}$, tables for $\nu=0(0 \cdot 04) 0 \cdot 2(0 \cdot 2) 1 \cdot 4$
(c) $M=1$: Equations 3.4.1(2), (2a), (2b)
(d) $M=1 \cdot 05, \nu \leqslant 0 \cdot 35$: Additional table§ calculated by D. L. Woodcock, printed in Temple and Jahn^{7}. Parameter of this table is $y=\nu M^{2} /\left(M^{2}-1\right)$

[^6](e) $M=1 \cdot 05, v \geqslant 0 \cdot 4$: Equations 3.3(1), (2), (6)
(f) $M \geqslant 1 \cdot 111:$ Jordan ${ }^{13}$, tables for $\dagger \log _{10}(\nu / 2)=-2(0 \cdot 05) 0$.

Accuracy: The present tables should be accurate (i.e., should give the correct solution of the linear problem) to less than a unit in the last decimal place in cases $(a),(c)$ and (e). In the remaining cases errors arise from the following reasons:
(i) Inaccuracy of source: for case (b), the results of Turner and Rabinowitz ${ }^{17}$ should be accurate to within 1 per cent \ddagger; and should usually be better.
(ii) In cases (b) and (f) the factor π or $\frac{1}{2} \pi$ in the transformation (Table 1) introduces an error in the fourth decimal place of l_{z}, l_{α} and $m_{z}-$ up to 2 units for l_{s} (factor π) and up to 1 unit for l_{α} and $m_{z}\left(\right.$ factor $\left.\frac{1}{2} \pi\right)$. \S
(iii) In case (d) there is an error in the imaginary part of each derivative of up to 3 units in the fourth decimal place, due to the factor ν in the transformation.
(iv) Interpolation: Some of the values given for case (b) and all of the values for cases (d) and (f) had to be obtained by interpolation with respect to ν. Third-order interpolation was used throughout. Last decimal figures (usually the fourth only, but exceptionally the third as well) have been omitted in those regions where the estimated maximum error due to interpolation exceeded 3 units of the cancelled decimal place.
4.1. Range $0.7<M<1$. -It is not claimed that the table entries for $M=0.8,0.9$ and 0.95 (Table 2) represent the correct solution with the same degree of accuracy as do the other entries of the same tables; they are nothing but the formal result of what seemed to be the most reasonable method of interpolation based on these other entries.

Different interpolations are shown in Fig. 9 for the case $v=0 \cdot 8$, viz., the interpolations based on the table entries for $M=0 \cdot 5(\operatorname{not}(\mathrm{~A})), M=0 \cdot 6,0 \cdot 7$ and $1 \cdot 0$:
(A) Second order in M
(B) Third order in M
(C) Third order in $x=1-M^{2}$.

From 3.5.1(3) it appears that (C) is preferable if ν is sufficiently large; hence (C) is entered in Table 2 and is shown in Figs. 1e and 1f. The isometric graphs Figs. 1a to 1d, show the interpolation (A) (the difference is usually hardly visible owing to the small scale of the graphs).

In addition to the interpolations (A) to (C), Fig. 9 also shows values obtained from other sources:

Schade ${ }^{20}$, tables for $v=0(0 \cdot 4) 2$
Timman et al. ${ }^{21}$, tables for the parameter $\nu M /\left(1-M^{2}\right)$

$$
\} \quad M \leqslant 0 \cdot 8
$$

Of these, the values for $M=0.8$ (interpolated for frequericy parameter in the case of Ref. 21) are tabulated in Table 4.

[^7]The reason why Ref. 21 has not been made use of in the main Table 2 has been stated in section 3.5.5. Schade's values have been excluded for two reasons :
(a) They are so few that interpolation with regard to ν becomes doubtful
(b) Interpolation with regard to M becomes less straightforward if Schade's values are included ; see, e.g., $l_{a}^{\prime \prime}$ and m_{a}^{\prime} in Figs. 9 c and 9 d .
Discussing (b), we must distinguish :
(i) The curves which represent the correct linear solution. These curves are waved; wavelengths and amplitudes decrease as M tends to unity.
(ii) Curves which approximate (i) reasonably well but smooth out the waviness of (i). The aim of our interpolation are curves (ii). The observation (b) may have one or both of two reasons :
(I) The curves (ii) are appreciably more strongly curved than is anticipated in our interpolation formula
(II) The difference between (i) and (ii)-which we assumed to be negligible for $M \leqslant 0.7$-is already appreciable for $M=0.8$ (Schade's values lie on (i)).
It is difficult to decide which of the two reasons is correct or preponderates. For our aim, a good average of approximation, it seemed safer to choose the simpler curves, i.e., to exclude Schade's values.

Lastly the significance for the present interpolation of recently published solutions \dagger of the subsonic problem for the range $\mu M / \sqrt{ }\left(M^{2}-1\right) \Rightarrow 1$ needs to be discussed. Of these solutions the one by W. P. Jones ${ }^{23}$ is the best, giving good approximation up to $\nu \bumpeq 0 \cdot 2$ for $M=0 \cdot 7$. However, to $v=0.2$ for $M=0.7$ corresponds in accuracy $v \bumpeq 0.15$ for $M=0 \cdot 8, v \bumpeq 0.10$ for $M=0.9$; thus even Jones's results are valid only for a small corner of the region covered by our interpolation.
4.2. Discussion.-The numerical values given in Table 2 should cover the practical requirements of wing flutter calculations. Interpolation, required in the case of control surface flutter, is convenient for $M \leqslant 1$. Interpolation with respect to both M and ν is difficult in a certain range $M=1+\delta$ because of the short waves which characterise the curves in this range. However these waves can be expected to have little physical significance (see section 2.1) ; the force coefficients for this range can be replaced by coefficients for $M=1$.

Little need be said about the isometric graphs of Fig. 1, except perhaps that the often discussed region of negative damping in pitch (see Fig. 3) corresponds to the funnel $-m_{a}{ }^{\prime \prime}<0$ in Fig. 1d. The graphical representation has been truncated at the plane $-m_{a}^{\prime \prime}=-1 \cdot 4$; the coefficient $m_{a}^{\prime \prime}$ itself reaches arbitrarily large values near the point $[M, v]=[1,0]$. When threedimensional effects are allowed for, the v, M-region of negative damping is reduced but it persists \ddagger in a region near the point $[M, \nu]=[1,0]$-as indeed would be expected from Fig. 1d.
5. Conclusion.-Linear theory is applicable to the two-dimensional problem of the oscillating wing of zero thickness, even at sonic speed. In order to facilitate such application the four main wing coefficients have been tabulated (and illustrated by isometric graphs) in the speed range $0 \leqslant M \leqslant 2$. Further, the complete solution for an arbitrary downwash at sonic speed has been given in a form convenient for numerical evaluation. For near-sonic speeds, this sonic solution is preferable, as an approximation to the non-linear solution, to the 'exact' linear solution.

[^8]
REFERENCES

No.	Author	Title, etc.
1	C. C. Lien, E. Reissner and H. T. T	On two-dimensional non-steady motion of a slender body in compressible fluid. J. Math. Phys. Vol. XXVII, p. 220. 1948.
2	P. F. Jordan	Flutter at subsonic and supersonic speeds. A.R.C. 9813.1946. (Unpublished.)
3	M. A. Heaslet, H. Lomax and J. Spreiter	Linearised compressible-flow theory for sonic flight speeds. N.A.C.A. Report 956. 1950.
4	N. Rott	Oscillating airfoils at Mach number 1. J. Ae. Sci. Vol. 16, p. 380. 1949.
5	N. Rott	Fü̈gelschwingungsformen in ebener kompressibler Potentialströmung Z.A.M.P. Vol. I, p. 380. 1950.
6	H. C. Nelson and J. H. Berman	Calculations on the forces and moments for an oscillating wingaileron combination in two-dimensional potential flow at sonic speed. N.A.C.A. Report 1128. 1953. (Formerly N.A.C.A. Tech. Note 2590. January, 1952.)
7	G. Temple and H. A. Jahn	Flutter at supersonic speeds: Derivative coefficients for a thin aerfoil at zero incidence. R. \& M. 2140. April, 1945.
8	I. E. Garrick	Some research on high-speed flutter. Third Anglo-American Aeronautical Conference. Brighton, 1951.
9	W. P. Jones and S. W. Skan	Aerodynamic forces on biconvex aerofoils oscillating in a supersonic airstream. R. \& M. 2749. August; 1951.
10	W. J. Tuovila, J. E. Baker and A. Regier	Initial experiments on flutter of unswept cantilever wings at Mach number 1-3. N.A.C.A. Research Memo. L8J11. 1949.
11	J. B. Bratt and A. Chimeck	Measurements of mid-chord pitching moments at high speeds. R. \& M. 2680. June, 1947.
12	L. Schwarz	Ebene instationäre Theorie der Tragfläche bei Überschallgeschwindigkeit. Jahrbuch, 1943. der Deutschen Luftfahrtforschung.
13	P. F. Jordan and M. Gawehn	Unsteady acrodynamical coefficients for supersonic flow. A.R.C. 10,052 and A.R.C. 11,400. 1946. (Translation from German.)
14	L. Schwarz	Untersuchung einiger mit den Zylinderfunktionen nullter Ordnung verwandter Funktionen. L.F.F. Vol. 20, p. 341. 1943. Reprinted as A.R.C. 8,699.
15	E.T. Copson .	Theory of Functions. Oxford University Press. 1935.
16	I. T. Minhinnick	Subsonic aerodynamic flutter derivatives for wings and control surfaces. R.A.E. Report Structures 87. A.R.C. 14,228. 1950: and Addendum, A.R.C. 14,855. 1952.
17	F. Dietze	The air forces for the harmonically oscillating aerofoil in a compressible medium at subsonic speeds (two-dimensional problem) 1943. A.R.C. 10,219. (Translation from German.) This paper has been translated, thoroughly checked, corrected and extended by :
	M. J. Turner and S. Rabinowitz	Chance Vought Aircraft Report GTR-65 (1947). The corrections and extensions are reprinted in N.A.C.A. Tech. Note 2213 . October, 1950.
18	L. Schwarz	Zahlentafeln zur Luftkraftberechnung der schwingenden Tragfäche in kompressibler ebener Unterschallströmung. ZWB FB 1838. 1943. These tables have been extended by:
	Th. Schade	ZWB UM 321. 1944. A.R.C. 9,506. (See Ref. 20.)
19	R. A. Frazer and S. W. Skan	Possio's subsonic dexivative theory and its application to flexuraltorsional wing flutter. R. \& M. 2553. 1942.

REFERENCES-continued

No. Author
20 Th. Schade

21 R. Timman, A. I. van de Vooren and J. H. Greidanus

22 John W. Miles
23 W. P. Jones
24 J. R. M. Radok

25 S. Neumark Two-dimensional theory of oscillating aerofoils. R.A.E. Report

26 H. L. Runyan, H. J. Cunningham and Ch. E. Watkins

27 W. Magnus and F. Oberhettinger

28 E. T. Whittaker and G. N. Watson

29 P. F. Jordan

Title, etc.

The numerical solution of Possio's integral equation for an oscillating aerofoil in a two-dimensional subsonic stream (1944/6). A.R.C. 9,506, A.R.C. 10,108 and Addendum. (Translation from German.)
Aerodynamic coefficients of an oscillating aerofoil in two-dimensional subsonic flow. J. Ae. Sci. Vol. 18, p. 797. 1951.
Quasi-stationary aerofoil theory in compressible flow. J. Ae. Sci. Vol. 16, p. 509. 1949. Also Quart. App. Math. Vol. VII. 1949.
Oscillating wings in compressible subsonic flow. A.R.C. 14,336. 1951.
An approximate theory of the oscillating wing in a compressible subsonic flow for low frequencies. N.L.L. Report F.97. September, 1951. Aero 2449. A.R.C. 14,889. 1952.
Theoretical investigation of several types of single-degree-of-freedom flutter. J. Ae. Sci. Vol. 19, No. 2, p. 101. February, 1952.
Formelin and Sätze fur die speziellen Funktionen der mathematischen Physik. Springer, Berlin. 1948 (2nd Ed.)
A Course of Modern Analysis. Cambridge University Press. 1946. (4th Ed.)
Further comments. \qquad 'Reader's Forum '. J. Ae. Sci. Vol. 20, p. 362. 1953.

APPENDIX I

Basic Mathematical Formula

(1) Using the notation defined in section 3.1 we obtain \dagger the following asymptotic expressions for Bessel functions of the first kind, $J_{b}(x)$, and Bessel functions of the second kind (Weber's form) $N_{p}(x)$ (also called Neumann functions)

$$
\left\{\begin{array}{c}
J_{p}(x) \tag{1}\\
i N_{p}(x)
\end{array}\right\} \sim \frac{i^{p}}{\pi(2 i \pi x)^{0.5}} \sum_{0}^{\infty} \frac{\overline{m+p}!\overline{m-p}}{m!(2 i x)^{m}}\left[\mathrm{e}^{i x} \pm i(-)^{m+p} \mathrm{e}^{-i x}\right] . \quad \ldots \quad \ldots
$$

Thus the Hankel functions (or Bessel functions of the third kind)

$$
\left\{\begin{array}{c}
H_{p}^{(1)}(x)=J_{p}(x)+i N_{p}(x) \tag{1a}\\
i H_{p}^{(2)}(x)=i J_{p}(x)+N_{p}(x)
\end{array}\right\} \sim \pm 2 \frac{\mathrm{e}^{ \pm i x}}{\pi(2 i \pi x)^{0.5}} \sum_{0}^{\infty}(\pm i)^{p-m m+\bar{m} \overline{m-p}!} \frac{\overline{m!(2 x)^{m}}}{m} .
$$

If x is real and positive-in the present report this is always the case-then the amount of the error which is committed by breaking off after the n-th term is smaller than the amount of the $(n+1)$-th term.
\dagger See, e.g., Magnus and Oberhettinger ${ }^{27}$ p. 34. Note that

$$
\frac{1}{4 m}\left(4_{p}{ }^{2}-1\right)\left(4_{p}{ }^{2}-3^{2}\right) \ldots\left(4_{p}{ }^{2}-(2 m-1)^{2}\right)=\frac{(-)^{m+p}}{\pi} \overline{m+p!} \overline{m-p!}
$$

(2) The Fresnel integrals $C(x)$ and $S(x)$, see, e.g., Ref. 26, we use in the combination

$$
\begin{align*}
F(x) & =C\left(\sqrt{\frac{2 x}{\pi}}\right)-i S\left(\sqrt{\frac{2 x}{\pi}}\right)=\frac{1}{\sqrt{ }(2 \pi)} \int_{0}^{x} \mathrm{e}^{-i u} \frac{d u}{\sqrt{ } u} \\
& =\sqrt{\frac{2 x}{\pi}} \sum_{0}^{\infty} \frac{(-i x)^{n}}{n!(2 n+1)}=\mathrm{e}^{-i x} \sqrt{\frac{x}{2}} \sum_{0}^{\infty} \frac{(i x)^{n}}{n+1!} \tag{2}
\end{align*} \cdots \quad \ldots \quad \ldots \quad . .
$$

(see (4c) below). For large x

$$
\begin{equation*}
F(x)=\frac{1-i}{2}+\frac{i}{\sqrt{ }(2 \pi x)} \mathrm{e}^{-i x}+O\left(\frac{1}{x}\right) . \quad . \quad . \quad \ldots \quad \ldots \quad . \tag{2a}
\end{equation*}
$$

A graphical illustration is Fig. 8 where

$$
G(x, M)=\sqrt{\left\{\frac{\pi(1+M)}{2 M}\right\} F\left(\frac{M v(1-x)}{1-M}\right)}
$$

is plotted.
(3) The interesting relation

$$
\begin{equation*}
\sum_{m=0}^{n}\binom{n}{m}(-)^{m} \frac{(m+a)!}{(m+a+b)!}=\frac{a!}{(b-1)!} \frac{(n+b-1)!}{(n+a+b)!} \quad . \tag{3}
\end{equation*}
$$

can be proved by means of the integral (5) ; however (3) is more elementary than (5) and hence deserves an independent elementary proof:

Note first that it is sufficient to prove (3) for $a=0,1,2 \ldots n$ (multiplication by $(n+\dot{a}+b)!/ a$! leads to an nth order expression in a on the left, while the right-hand side becomes independent of a).

Consider the case $a=0$, i.e.,

$$
\begin{equation*}
\sum_{n=0}^{n}(-)^{m} \frac{n!}{(n-m)!} \frac{b!}{(m+b)!}=\frac{b}{n+b} . \quad . \quad \quad . \quad . . \quad . \tag{3a}
\end{equation*}
$$

Assume (3a) to be correct if $[n, b]$ is replaced by $[n-1, b+1]$. The sum in (3a) can be transformed to read

$$
1-\frac{n}{b+1} \sum_{0}^{n-1}(-)^{m} \frac{(n-1)!}{(n-1-m)!} \frac{(b+1)!}{(m+b+1)!}=1-\frac{n}{b+1} \frac{b+1}{n+b}=\frac{b}{n+b}
$$

From this and the fact that (3a) is obviously correct for $n=0$ or 1 , for all values of b, it follows that (3a) is correct for any number n.

Now assume that (3) is correct when a is replaced by $(a-1)$; then

$$
\begin{aligned}
\sum_{n=0}^{n}\binom{n}{m}(-)^{m} \frac{(m+a)!}{(m+a+b)!} & =\sum_{m=0}^{n}\binom{n}{m}(-)^{m} \frac{(m+a-1)!}{(m+a+b)!}(m+a+b-b) \\
& =\frac{(a-1)!(n+b-1)!}{(b-1)!(n+a+b-1)!}-b \frac{(a-1)!(n+b)!}{b!(n+a+b)!} \\
& =\frac{a!(n+b-1)!}{(b-1)!(n+a+b)!}
\end{aligned}
$$

It follows from this, since (3) has been shown to be correct for $a=0$, that (3) is correct for $a=1,2 \ldots n$, and therefore for all values of a

This completes the proof.
A particular form of (3) is

$$
\begin{equation*}
\sum_{m=0}^{n}\binom{n}{m}(-)^{m} \bar{m}=\bar{n} . \quad . \tag{3b}
\end{equation*}
$$

(4) Some infinite series:

$$
\begin{align*}
& \frac{1}{\sqrt{ } \pi} \sum_{n=0}^{\infty} \bar{n} y^{n}=\frac{1}{(1-y)^{0.5}} \tag{4a}\\
& \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{\bar{n}}{n+p+0.5}=\bar{p} \quad . \tag{4b}\\
& \mathrm{e}^{y} \sum_{n=0}^{\infty} \frac{(-y)^{n}}{n!} \frac{(n+a)!}{(n+a+b)!}=\sum_{0}^{\infty} \frac{y^{n}}{n!} \frac{a!}{(b-1)!} \frac{(n+b-1)!}{(n+a+b)!} . \tag{4c}
\end{align*}
$$

Formula (4a) is well known. (4b) follows from (5a) below, with $p=n, y=1$, by means of (4a) (4c) is equivalent to (3). A special case of (4c) is $(a=0 ; b=-0.5)$:

$$
\begin{equation*}
\mathrm{e}^{y} \sum_{0}^{\infty} \frac{(-y)^{n}}{\bar{n}!}=\frac{1}{\sqrt{ } \pi} \sum_{0}^{\infty} \frac{y^{n}}{n!(1-2 n)} \cdot \quad . \quad . \quad . . \quad . . \quad . \tag{4d}
\end{equation*}
$$

(5) The Euler integral of the first kind \dagger is

$$
\begin{equation*}
\int_{0}^{1} x^{p}(1-x)^{q} d x=\frac{p!q!}{(p+q+1)!}(p, q>-1) \quad . \quad . . \quad . \quad . \tag{5}
\end{equation*}
$$

for real parameters p, q. We use it in the form

$$
\begin{equation*}
\int_{0}^{y} \frac{(y-\eta)^{p} \eta^{g-p}}{[\eta(y-\eta)]^{0.5}} d \eta=\frac{\overline{p!} \overline{q-p!}}{q!} y^{q} . \quad . . \quad . . \quad . \quad . . \quad . \tag{5a}
\end{equation*}
$$

By means of (5a)

$$
\begin{equation*}
\int_{0}^{y}(y-\eta)^{r} \mathrm{e}^{-n} \eta^{-0.5} d \eta=r!y^{s+0.5} \sum_{n=0}^{\infty} \frac{(-y)^{n}}{\overline{\gamma+n+1!}} \bar{n} . \quad . \quad . \quad . \tag{5b}
\end{equation*}
$$

(6) The integral

$$
\begin{gathered}
\int_{0}^{*} \frac{\xi^{\alpha}}{x-\xi} d \xi=\sum_{n=0}^{\infty} \frac{x^{n}}{n-\alpha}+x^{\alpha} \pi \cot \pi \alpha \quad . . \quad . \quad . \quad . \\
0 \leqslant x<1 ; \alpha>-1
\end{gathered}
$$

\dagger See, e.g., Whittaker and Watson ${ }^{28}$ p. 253.
can be derived as follows : assume first $x \neq 0, \alpha>0$. Then

$$
\begin{aligned}
\int_{0}^{1} \frac{\xi^{\alpha}}{x-\xi} d \xi & =\lim _{\varepsilon \rightarrow 0} \sum_{n=0}^{\infty}\left\{\int_{0}^{x-\varepsilon} \frac{\xi^{n+\alpha}}{x^{n+1}} d \xi-\int_{x+\sigma}^{1} \frac{x^{n}}{\xi n+1-\alpha} d \xi\right\} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}}{n-\alpha}-x^{a} \sum_{-\infty}^{+\infty} \frac{1}{n-\alpha} .
\end{aligned}
$$

From this (6) follows ; see e.g., Ref. 28, p. 136.
In the limit $\alpha \rightarrow 0$ from (6) formally

$$
\lim _{\alpha \rightarrow 0} \int_{0}^{*} \frac{\xi^{a}}{x-\xi} d \xi=\lim _{a \rightarrow 0}\left\{-\frac{1-x^{\alpha}}{\alpha}+\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right\}=\log \frac{x}{1-x}
$$

-the correct result. It is also obvious that (6) remains correct for $x \rightarrow 0$. It follows at once from the relation

$$
\int \frac{\xi^{a}}{x-\xi} d \xi=\frac{1}{x} \int\left(\xi^{a}+\frac{\xi^{a+1}}{x-\xi}\right) d \xi
$$

that (6) is also correct for $0>\alpha>-1$.

APPENDIX II

Perturbation Potential of Moving Source

Consider the perturbation field of a disturbance the speed of which passes through the sonic range. The aim of the Appendix is to record briefly the nature of this field in its simplest form.

The perturbation potential $\varphi=\bar{\varphi} \exp (2 i \pi f t)$ of a single oscillating source S of intensity $Q \exp (2 i \pi f t)$, acting at the origin of the moving co-ordinates, is given on the x-axis and for $M<1$ by

$$
\bar{\varphi}=\frac{-Q}{4 w|\hat{x}|} \exp \left(-\frac{2 i M|\hat{x}|}{1 \pm M}\right) \quad\left(\begin{array}{ll}
(x \gtrless 0) & \ldots \tag{1}
\end{array} . \quad \ldots \quad \ldots\right.
$$

where the variable sign is + or - according as $x>$ or <0, and $w=2 \pi / \nu$. Thus a long-waved perturbation occurs to the rear $(x>0)$; it arises from the rearward impulse of S travelling at the high relative speed $(1+M) V_{\text {sound }}$. The short-waved perturbation to the front $(x<0)$ arises from the forward impulse travelling with the low relative speed $(1-M) V_{\text {sound }}$. The wavelength $w_{1} \bumpeq 4 \pi c / v$ of the first is long compared with the wing chord c and varies little with M; the wavelength $w_{2} \bumpeq 2 \pi(1-M) c / \nu$ of the second tends to zero as M tends to unity.

Equation (1) remains valid in its essence if the speed is increased to reach the sonic speed, and beyond. For $M=1$ the long-waved term takes the simple form

$$
\begin{equation*}
\bar{\varphi}=\frac{-Q}{4 w \hat{x}} \exp (-i \hat{x}) \quad(x>0) . \quad . \quad . \quad . \quad . \quad . \tag{2}
\end{equation*}
$$

The short-waved term takes the form of the function $T(y)$ (see 3.4.2(8a)). We may either repeat the argument of 3.4.2(12) or argue that, as the forward speed of the impulse is zero, no point $x<0$ will ever be reached by it. By either argument

At supersonic speed $(1-M) V_{\text {sound }}$ is negative; thus the short-waved impulse also travels in the direction of the positive x-axis :

$$
\hat{\varphi}=\left\{\begin{array}{lc}
\frac{-Q}{4 z \hat{x}}\left[\exp \left(-\frac{2 i M \hat{x}}{M+1}\right)-\exp \left(-\frac{2 i M \hat{x}}{M-1}\right)\right] & (x>0) \tag{3}\\
0 & (M>1) \\
& (x<0)
\end{array} .\right.
$$

APPENDIX III

Possio Kernel ; Asymptotic Formula

The Possio kernel, see, e.g., Dietze ${ }^{17}$, is

$$
\left.\begin{array}{l}
k(\boldsymbol{x}) \equiv k_{1}(\mathbf{x})-k_{2}(\mathbf{x}) \tag{1}\\
k_{1}(\boldsymbol{x})=\frac{1}{4 \sqrt{ } x}\left[H_{0}^{(2)}\left(\frac{M|\boldsymbol{x}|}{x}\right)-i M \frac{\boldsymbol{x}}{|\boldsymbol{x}|} H_{1}^{(2)}\left(\frac{M|\boldsymbol{x}|}{x}\right)\right] \exp \left(i M^{2} \boldsymbol{x} / x\right) \\
k_{2}(\boldsymbol{x})=\frac{i}{2 \pi}\left[\log \frac{1+\sqrt{ } x}{M}+\frac{\pi \sqrt{ } x}{2} \int_{0}^{x / x} \mathrm{e}^{-i \xi} H_{0}^{(2)}(M|\xi|) d \xi\right] \mathrm{e}^{-i \mathbf{x}}
\end{array}\right\}
$$

$H_{p}{ }^{(2)}$ are Hankel functions, or Bessel functions of the third kind.
The nature of $k(\mathbf{x})$ is different in the two ranges $\boldsymbol{x}>0$ and $\boldsymbol{x}<0$; see Fig. 6. From now on we assume

$$
x>0
$$

and treat the two cases $k(\boldsymbol{x})$ and $k(-\boldsymbol{x})$ separately.
Note first that the integral

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{e}^{ \pm i \xi} H_{0}^{(2)}(M \xi) d \xi=\frac{1}{\sqrt{ } x}\left[i \pm i \pm \frac{2}{\pi} \log \frac{1-\sqrt{ } x}{M}\right] \quad . \quad . \tag{2}
\end{equation*}
$$

owing to Ref. 12, equations (42), (43).
We use the modified co-ordinates

$$
\begin{equation*}
X=\frac{M \mathbf{x}}{x}(\rightarrow \infty) ; \quad \mathbf{z}=\frac{i}{2 X}(\rightarrow 0) \text { as } M \rightarrow 1 . \quad . \quad . \quad . \quad . \tag{3}
\end{equation*}
$$

From (1), (2), (3)

$$
\begin{align*}
k_{1}(\pm \boldsymbol{x}) & =\frac{1}{4 \sqrt{ } x}\left[H_{0}^{(2)}(X) \mp i M H_{1}^{(2)}(X)\right] \mathrm{e}^{ \pm^{i M X}} \\
k_{2}(\pm \boldsymbol{x}) & =\frac{i}{4}\left[i \pm i \mp \frac{\boldsymbol{x}}{\sqrt{ } x} \int_{1}^{\infty} \exp \left(\pm i \frac{X}{M} \eta\right) H_{0}^{(2)}(X \eta) d \eta\right] \mathrm{e}^{\mp i x} . \quad . \quad . \tag{4}
\end{align*}
$$

For $p=0,1$ from $\mathrm{AI}(1 \mathrm{a})$

$$
\begin{align*}
H_{p}^{(2)}(X) & \sim \frac{1}{\pi}\left(\frac{2 i}{\pi \bar{X}}\right)^{0.5} \mathrm{e}^{-i x} \sum_{0}^{\infty}\left(\frac{i}{2 X}\right)^{m} \bar{m} \bar{m}!c_{p m} \\
c_{0 m} & \equiv 1 ; c_{1 m}=-i \frac{2 m+1}{2 m-1} . \quad . \quad . \quad . \quad . \quad . \tag{5}\\
k_{1}(\pm x) & \sim \frac{1}{2 \pi}\left(\frac{i}{2 \pi M \boldsymbol{x}}\right)^{0.5} \exp \left(-\frac{i M \mathbf{x}}{1 \pm M}\right) \sum_{0}^{\infty} \bar{m} \bar{m}!\mathbf{z}^{m}\left(1 \mp M \frac{2 m+1}{2 m-1}\right) . \tag{6}
\end{align*}
$$

Thus

The integral in k_{2} is of the same form as the integral in $3.3(1 \mathrm{c})$. With $3.3(3 \mathrm{a})$ buit, instead of $3.2(2 \mathrm{a})$

$$
\left.\begin{array}{l}
u=-\frac{i \mathbf{x}}{1+M} \rightarrow-\frac{i \mathbf{x}}{2} \tag{7}\\
v=\frac{i \mathbf{x}}{1-M} \rightarrow i \infty
\end{array}\right\} \begin{array}{lllll}
& \ddots & \ldots & \\
\text { if } M \rightarrow 1 & \ldots & \ldots & \ldots &
\end{array}
$$

we have

$$
\begin{equation*}
A^{ \pm} \equiv \frac{x}{\sqrt{ } x} \int_{1}^{\infty} \exp (i \pm X \eta / M) H_{0}^{(2)}(X \eta) d \eta \sim \frac{1}{\pi}\left(\frac{2 i \boldsymbol{x}}{\pi M}\right)^{0.5} \sum_{0}^{\infty} \bar{m} \boldsymbol{z}^{m} I_{m}(\boldsymbol{\alpha}) \quad \ldots \tag{8}
\end{equation*}
$$

where $I_{m}(\alpha)$ is defined by $3.3(3 \mathrm{a})$, and $\alpha=u$, v, for A^{+}, A^{-}respectively.
Making use of 3.2(4a), we obtain first

$$
A^{+} \sim \frac{1}{\pi}\left(\frac{2 i x}{\pi M}\right)^{0.5} \sum_{0}^{\infty} \bar{m}\left(\frac{M-1}{2 M}\right)^{m}\left[I_{0}(u)+\mathrm{e}^{-u} \sum_{1}^{\infty} \frac{\overline{n-1!}}{(-u)^{n}}\right]
$$

and then, introducing $3.3(5 \mathrm{a})$, (5) and changing the order of summation we obtain

$$
\begin{align*}
& k_{2}(\boldsymbol{x}) \sim i\left(\frac{i \boldsymbol{x}}{\pi(1+M)}\right)^{0.5} \mathrm{e}^{-i \mathbf{x}} \sum_{0}^{\infty}\left(\frac{i \boldsymbol{x}}{1+M}\right)^{n} \frac{1}{n!(2 n+1)} \\
& -\frac{1+M}{2 \pi}\left(\frac{i}{2 \pi \boldsymbol{x} M}\right)^{0.5} \exp \left(-\frac{i M \mathbf{x}}{1+M}\right) \sum_{n=0}^{\infty} \bar{n}!\mathbf{z}^{n} \sum_{m=1}^{\infty} \overline{m+n}\left(\frac{M-1}{2 M}\right)^{m} . \tag{9}
\end{align*}
$$

Also making use of $3.3(4 \mathrm{~b})$ we obtain

$$
A^{-} \sim-\frac{1}{\pi}\left(\frac{2 i \mathbf{x}}{\pi M}\right)^{0.5} \mathrm{e}^{-v} \sum_{0}^{\infty} \bar{m}\left(\frac{1+M}{2 M}\right)^{m} \sum_{m+1}^{\infty} \frac{\overline{n-1}!}{(-v)^{n}}
$$

and

$$
\begin{equation*}
k_{2}(-\mathbf{x}) \sim \frac{1-M}{2 \pi}\left(\frac{i}{2 \pi \mathbf{x} M}\right)^{0.5} \exp \left(-\frac{i M \mathbf{x}}{1-M}\right) \sum_{n=0}^{\infty} \bar{n}!\mathbf{z}^{n} \sum_{n=0}^{n} \overline{n-m}\left(\frac{2 M}{1+M}\right)^{m} \tag{10}
\end{equation*}
$$

Equations (6), (9), (10) provide the complete asymptotic expression for the Possio kernel $k=k_{1}-k_{2}$. It remains to write this set of formulae in a more convenient form.

Consider first the case $M \rightarrow 1$. Denote the limit of k by K. Thus

$$
\begin{aligned}
K(\boldsymbol{x}) & =\left[k_{1}(\mathbf{x})-k_{2}(\boldsymbol{x})\right]_{M \rightarrow 1} \\
& =\left(\frac{i}{2 \pi \boldsymbol{x}}\right)^{0.5} \mathrm{e}^{-i \mathbf{x} \mid 2}-i\left(\frac{i \boldsymbol{x}}{2 \pi}\right)^{0.5} \mathrm{e}^{-i \boldsymbol{x}} \sum_{0}^{\infty}\left(\frac{i \mathbf{x}}{2}\right)^{n} \frac{1}{n!(2 n+1)}
\end{aligned}
$$

and finally by means of $\mathrm{AI}(4 \mathrm{~d})$

$$
\begin{equation*}
K(\boldsymbol{x})=\left(\frac{i}{2 \boldsymbol{x}}\right)^{0.5} \mathrm{e}^{-i x / 2} \sum_{0}^{\infty}-i\left(\frac{i x}{2}\right)^{n} \frac{1}{\bar{n}!} \cdot \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{11a}
\end{equation*}
$$

For negative arguments

$$
\begin{equation*}
K(-\mathbf{x}) \equiv 0 . \quad \text {. } \tag{11b}
\end{equation*}
$$

Now return to the general case $M \leqslant 1$. Considering first only the term $m=0$ in (6), the first sum in (9), and the term $n=0$ in the second sum in (9), we obtain, making use of AI(4a)

$$
k_{1}(\boldsymbol{x})-k_{2}(\boldsymbol{x})=K\left(\frac{2 \mathbf{x}}{1+M}\right) \exp \left(i \frac{1-M}{1+M} \boldsymbol{x}\right)+\ldots
$$

Finally

$$
\begin{align*}
k(\boldsymbol{x})= & K\left(\frac{2 \boldsymbol{x}}{1+M}\right) \exp \left(i \frac{1-M}{1+M} \boldsymbol{x}\right) \\
& -\left(\frac{i}{2 \boldsymbol{x}}\right)^{0.5} \sum_{n=1}^{\infty} C_{n}\left(i \frac{1-M^{2}}{2 M \boldsymbol{x}}\right)^{n} \exp \left(-\frac{i M \boldsymbol{x}}{1+M}\right) \ldots \quad \ldots \quad \ldots \tag{12}
\end{align*}
$$

with the coefficients

$$
\begin{equation*}
C_{n}=\frac{\bar{n}!}{\pi} \sqrt{\frac{M}{\pi}}\left[\overline{n-1}-\frac{1+M}{2 M} \sum_{0}^{\infty} \overline{m+n}\left(\frac{M-1}{2 M}\right)^{m}\right] \quad . \quad . \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
k(-\boldsymbol{x})=\left(\frac{i}{2 \boldsymbol{x}}\right)^{0.5} \sum_{1}^{\infty} D_{n}\left(i \frac{1-M^{2}}{2 M \boldsymbol{x}}\right)^{n} \exp \left(-\frac{i M \boldsymbol{x}}{1-M}\right) \quad \ldots \quad . . \quad . \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{n}=\frac{\bar{n}!}{\pi} \sqrt{\frac{M}{\pi}} \sum_{0}^{n-1} \frac{\bar{m}}{1-2 m}\left(\frac{2 M}{1+M}\right)^{n-m} . \quad . \quad . \quad . \quad . \tag{13a}
\end{equation*}
$$

The set of formulae \dagger (11), (12), (13) is convenient for numerical evaluation if x / \boldsymbol{x} is sufficiently small.

[^9]
APPENDIX IV
 Part Solution for $M=1-\delta$

The modified Possio equation as defined in section 3.5 .3 becomes for the elementary downwash w_{r} (see 3.4.2(9))

$$
\begin{equation*}
y^{r}=\frac{1}{\alpha} \int_{0}^{\bar{y}} d \bar{\eta} \mathrm{e}^{-M \bar{\eta}}(\bar{\eta})^{-0.5} p_{r}(y-\eta) \sum_{0}^{\infty} \frac{(-\bar{\eta})^{m}}{\bar{m}!} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{1}
\end{equation*}
$$

if

$$
\begin{equation*}
\alpha=\frac{2}{1+M} ; \quad \bar{y}=\alpha y=\frac{\omega x}{1+M} ; \bar{\eta}=\alpha \eta \quad . \quad . \quad . . \quad . \tag{1a}
\end{equation*}
$$

(compare 3.5.2(6)). We introduce a function P_{r} defined by a relation similar to $3.5 .2(7)$) :

$$
\begin{aligned}
& \quad P_{r}=(\bar{y})^{r-0 \cdot 5} \mathrm{e}^{-\bar{y}} \sum_{0}^{\infty} \\
& P_{r} \text { for } p_{r} \text { in (1) leads t } \\
& R(y)=\frac{1}{\alpha}(\bar{y})^{r} \mathrm{e}^{(1-M \bar{y}}
\end{aligned}
$$

(compare 3.52.(8), (9), (10)) ; it follows that

$$
\begin{equation*}
\dot{p}_{r}=\alpha^{1-r} \sum_{m=0}^{\infty} P_{r+m m} \frac{(M-1)^{n}}{n!} \quad . \quad . . \quad . \quad . \quad . \quad . \tag{3}
\end{equation*}
$$

is the solution of (1). After some manipulation

$$
\begin{equation*}
p_{r}=\frac{r!\alpha^{1-r}}{M(\pi y)^{0.5}} w_{r} \sum_{0}^{\infty} \bar{n} \frac{(-\bar{y} M)^{n}}{\overline{r+n!}} \frac{M+2 n}{1-2 n} \tag{3a}
\end{equation*}
$$

The limit of (3a) as M tends to unity agrees with 3.4.2(11), as of course it should.
Substituting (3a) in 3.4.3(14) we find

$$
\begin{equation*}
l_{z}^{n}=\frac{1}{(n-1)!(2 n-3)} \alpha^{n-0.5} M^{n-2}\left(1-\frac{1-M}{2 n-1}\right) \quad . . \quad . . \quad . \tag{4}
\end{equation*}
$$

(compare 3.4.1 (2a)). 3.4.1(2b) remains valid. The derivatives with respect to M of the modified forces can immediately be written down. Defining, in accordance with 3.4.1(2), for the point $M=1$

$$
\left(\frac{\partial l_{z}}{\partial M}\right)_{M=1}=\frac{8}{(2 \pi \omega)^{0 \cdot 5}} \sum_{0}^{\infty}\left(\frac{\partial l_{z}^{n}}{\partial M}\right)_{M=1}\left(-\frac{\omega}{2}\right)^{n}
$$

we find

$$
\begin{equation*}
\left(\frac{\partial l_{x}^{n}}{\partial M}\right)_{M=1}=\left(\frac{2 n-7}{4}+\frac{1}{2 n-1}\right)_{z}^{n} . \quad . \quad . \quad . \quad \ldots \quad . . \tag{5}
\end{equation*}
$$

The derivatives of the other series coefficients, are given by relations which may be obtained from $3.4 .1(2 \mathrm{~b})$ by replacing all the series coefficients by their derivatives with respect to M. It follows that

$$
\left.\begin{array}{l}
-\left(\frac{\partial l_{z}}{\partial M}\right)_{M=1}=\frac{1-i}{\sqrt{ }(\pi v)}\left(0+\frac{1}{2} i v-\frac{5}{12} \nu^{2} \ldots\right) \\
-\left(\frac{\partial l_{a}}{\partial M}\right)_{M=1}=\frac{1-i}{\sqrt{ }(\pi v)}\left(\frac{1}{2}+\frac{3}{4} i v-\frac{39}{240} \nu^{2} \ldots\right)
\end{array}\right\}
$$

TABLE 1
Comparison of Different Notations for Leading-edge Derivatives
ω

Present report	British ${ }^{16}$ subsonic	Temple and Jahn ${ }^{7}$ supersonic	Küssner, subsonic	$\begin{gathered} \text { Jordan }^{13} \\ \text { supersonic } \end{gathered}$
l_{z}	$l_{z}+i \nu l_{z}-\nu^{2} l_{z}$	$l_{z}+i v l_{z}$	πk_{a}	πk_{a}
l_{a}	$l_{\alpha}+i \nu l_{\dot{\alpha}}-\nu^{2} l_{\dot{\alpha}}$	$l_{\alpha}+i v l_{\dot{\alpha}}+\frac{1}{2}\left(l_{z}+i \nu l_{z}\right)$	$\frac{1}{2} \pi\left(k_{b}+\frac{1}{2} k_{a}\right)$	$\frac{1}{2} \pi k_{b}$
m_{3}	$m_{z}+i \nu m_{\dot{z}}-\nu^{2} m_{z}$	$m_{z}+i v m_{\dot{z}}-\frac{1}{2}\left(l_{z}+i \nu l_{\bar{z}}\right)$.	$-\frac{1}{2} \pi\left(m_{a}+\frac{1}{2} k_{a}\right)$	$-\frac{1}{2} \pi m_{a}$
m_{α}	$m_{a}+i \nu m_{\dot{u}}-\nu^{2} m_{\ddot{a}}$	$\begin{gathered} m_{a}+i v m_{\dot{\dot{ }}}-\frac{1}{4}\left(l_{z}+i v l_{\dot{z}}\right) \\ +\frac{1}{2}\left(m_{z}+i \nu m_{\dot{j}}-l_{a}-i v l_{\dot{\alpha}}\right) \end{gathered}$	$-\frac{1}{4} \pi\left\{\left(m_{b}+\frac{1}{4} k_{a}+\frac{1}{2}\left(m_{a}+k_{b}\right)\right\}\right.$	$-\frac{1}{4} \pi m_{6}$

TABLE 2
Wing Force Coefficients
2a Lift coefficient $l_{z}=l_{z}^{\prime}+i l_{z}^{\prime \prime}$

v	M														
	0	$0 \cdot 5$	$0 \cdot 6$	0.7	$0 \cdot 8$	$0 \cdot 9$	$0 \cdot 95$	1.0	1.05	1-1111	$1 \cdot 1765$	$1 \cdot 25$	$1 \cdot 4286$	1-6667	$2 \cdot 0$
${ }^{0}$	${ }^{0}$	0	0	0	0	0	0	0	0	0	0		${ }^{0}$	0	${ }^{0}$
0.05	+0.0117	$+0.01878$	$+0.0236$	-0.0320	0.055	$0 \cdot 115$	$0 \cdot 169$	0.2460	0.0720	0.0217	$0 \cdot 0104$	0.0059	0.0024	0.0011	0.0005
$0 \cdot 1$	0.0333	$0 \cdot 05214$	0.0645	$0 \cdot 0844$	$0 \cdot 123$	$0 \cdot 198$	0.258	0.3391	0.237	0.0833	0.0409	0.0234	0.0093	0.0042	0.0019
$0 \cdot 15$	0.0561	0.0879	0.1072	$0 \cdot 1377$	$0 \cdot 188$	0.270	$0 \cdot 330$	0.4047	$0 \cdot 402$	0.1747	0.0892	0.0516	0.0208	0.0094	0.0043
$0 \cdot 2$	0.0768	$0 \cdot 1206$	$0 \cdot 1460$	$0 \cdot 1849$	$0 \cdot 243$	0.330	$0 \cdot 387$	$0 \cdot 4550$	$0 \cdot 480$	0.2817	$0 \cdot 1517$	0.0893	0.0366	0.0166	0.0076
0.25	0.0936	$0 \cdot 1484$	$0 \cdot 1787$	$0 \cdot 2240$	0.289	$0 \cdot 377$	0.432	0.4952	$0 \cdot 470$	0.3880	$0 \cdot 2236$	0.1349	0.0563	0.0256	0.0118
0.3	$0 \cdot 1050$	0.1696	$0 \cdot 2043$	$0 \cdot 2555$	$0 \cdot 326$	$0 \cdot 417$	0.470	0.5276	$0 \cdot 437$	0.4788	$0 \cdot 2998$	0.1864	0.0794	0.0365	0.0168
0.35	$0 \cdot 1110$	0.1844	0.2232	$0 \cdot 2798$	$0 \cdot 356$	$0 \cdot 449$	0.501	0.5543	$0 \cdot 446$	0.5432	$0 \cdot 3750$	0.2415	0. 1056	0.0489	0.0227
0.4	0.1114	0.1929	$0 \cdot 2356$	$0 \cdot 2975$	0.379	0.475	0.526	0.5759	0.5069	0.5760	0.4441	0.2979	0.1342	0.0628	0.0293
0.5	0.0946	0.1922	0.2424	0.3150	$0 \cdot 408$	0.512	0.562	0.6071	$0 \cdot 6034$	0.5574	0.5474	$0 \cdot 4052$	0. 1962	0.0943	0.0444
0.6	$+0.0553$	0.1690	$0 \cdot 2271$	$0 \cdot 3120$	$0 \cdot 419$	0.534	0.585	0.6257	0.5421	$0 \cdot 488$	0.5889	0.4915	0.2602	0.1291	0.0618
0.7	-0.0059	0.1251	0.1925	$0 \cdot 2935$	$0 \cdot 420$	0.549	$0 \cdot 601$	0.6342	0.5705	$0 \cdot 449$	$0 \cdot 5695$	0.5444	0.3210	$0 \cdot 1654$	0.0805
$0 \cdot 8$	-0.0880	+0.0616	$0 \cdot 1404$	$0 \cdot 2614$	0.412	0.558	$0 \cdot 611$	0.6345	0.6202	$0 \cdot 479$	$0 \cdot 5091$	0.5584	0.3735	0.2014	$0 \cdot 1001$
$0 \cdot 9$	-0.1902	-0.0202	+0.0726	$0 \cdot 2186$	0.400	0.566	0.618	0.6279	0.5494	0.542	$0 \cdot 438$	0.5355	0.4134	0.2350	0.1197
1.0	-0.3119	-0.1191	-0.0088	$0 \cdot 1678$	0.385	0.576	0.625	0.6155	0.5557	0.576	0.383	0:4840	$0 \cdot 4377$	0.2644	$0 \cdot 1385$
1.2	-0.6115	-0.3629	-0.2061	$+0.0622$	0.389	$0 \cdot 642$	$0 \cdot 670$	0.5765	0.5032	$0 \cdot 47$	0.374	$0 \cdot 348$	$0 \cdot 4337$	$0 \cdot 3045$	$0 \cdot 1707$
1.4	-0.9834	-0.6641	-0.4373	-0.0418	$0 \cdot 431$	0.756	0.743	$0 \cdot 5227$	0.5039	$0 \cdot 38$	0*429	0.250	$0 \cdot 3648$	0.3122	0.1912

TABLE 2a
2a Lift coefficient $l_{z}=l_{z}{ }^{\prime}+i l_{z}{ }^{\prime \prime}$

p	M														
	0	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	$0 \cdot 9$	$0 \cdot 95$	$1 \cdot 0$	$1 \cdot 05$	$1 \cdot 1111$	$1 \cdot 1765$	$1 \cdot 25$	1.4286	$1 \cdot 6667$	$2 \cdot 0$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.05	$0 \cdot 1499$	0.1699	$0 \cdot 1816$	0. 1989	$0 \cdot 221$	$0 \cdot 243$	0.252	$0 \cdot 2587$	0.2926	$0 \cdot 2036$	$0 \cdot 1604$	$0 \cdot 1329$	$0 \cdot 0979$	$0 \cdot 0750$	$0 \cdot 0577$
$0 \cdot 1$	$0 \cdot 2855$	$0 \cdot 3175$	$0 \cdot 3353$	$0 \cdot 3595$,	$0 \cdot 384$	$0 \cdot 397$	$0 \cdot 392$	$0 \cdot 3748$	$0 \cdot 485$	$0 \cdot 3906$	$0 \cdot 3153$	$0 \cdot 2634$	$0 \cdot 1951$	$0 \cdot 1497$	$0 \cdot 1153$
$0 \cdot 15$	$0 \cdot 4090$	$0 \cdot 4478$	$0 \cdot 4678$	$0 \cdot 4938$	$0 \cdot 517$	0.519	$0 \cdot 504$	0.4701	$0 \cdot 551$	$0 \cdot 5475$	$0 \cdot 4595$	$0 \cdot 3891$	0.2910	0.2239	$0 \cdot 1728$
$0 \cdot 2$	$0 \cdot 5227$	0.5649	0.5856	$0 \cdot 6107$	$0 \cdot 630$	$0 \cdot 623$	$0 \cdot 600$	$0 \cdot 5559$	$0 \cdot 548$	$0 \cdot 6660$	$0 \cdot 5888$	$0 \cdot 5080$	$0 \cdot 3848$	$0 \cdot 2974$	$0 \cdot 2299$
$0 \cdot 25$	$0 \cdot 6286$	$0 \cdot 6702$	$0 \cdot 6908$	0.7138	$0 \cdot 728$	$0 \cdot 714$	$0 \cdot 685$	$0 \cdot 6361$	$0 \cdot 567$	0.7448	$0 \cdot 7001$	$0 \cdot 6181$	$0 \cdot 4761$	0.3699	0.2867
$0 \cdot 3$	$0 \cdot 7283$	$0 \cdot 7708$	0.7912	0.8128	$0 \cdot 824$	$0 \cdot 802$	$0 \cdot 769$	0.7131	0.653	0.7889	$0 \cdot 7922$	$0 \cdot 7184$	0.5641	0.4413	$0 \cdot 3430$
0.35	0.8232	$0 \cdot 8673$	$0 \cdot 8876$	0.9085	0.917	$0 \cdot 890$	$0 \cdot 851$	$0 \cdot 7877$	0.781	$0 \cdot 8092$	$0 \cdot 8646$	$0 \cdot 8077$	$0 \cdot 6486$	0.5113	0.3988
$0 \cdot 4$	0.9143	$0 \cdot 9604$	$0 \cdot 9808$	$1 \cdot 0015$	1.008	$0 \cdot 975$	0.932	0.8609	$0 \cdot 8902$	$0 \cdot 8191$	0.9190	$0 \cdot 8856$	$0 \cdot 7290$	$0 \cdot 5798$	$0 \cdot 4539$
$0 \cdot 5$	1.0879	1-1389	1-1605	1-1825	1. 188	1.146	$1 \cdot 092$	$1 \cdot 0053$	$0 \cdot 9622$	$0 \cdot 8606$	0.9860	$1 \cdot 0085$	0.8767	$0 \cdot 7113$	0.5620
$0 \cdot 6$	$1 \cdot 2534$	$1 \cdot 3116$	$1 \cdot 3361$	$1 \cdot 3616$	$1 \cdot 368$	$1 \cdot 317$	1-253	1-1485	$1 \cdot 0754$	0.983	$1 \cdot 0256$	$1 \cdot 0934$	$1 \cdot 0058$	0.8351	$0 \cdot 6668$
0.7	1.4138	$1 \cdot 4853$	$1 \cdot 5155$	1-5463	$1 \cdot 554$	1.493	$1 \cdot 416$	$1 \cdot 2923$	1.2847	1-177	1.0744	$1 \cdot 1532$	1.1166	0.9505	0.7679
0.8	1-5707	1-6606	1.6990	$1 \cdot 7373$	1.747	1.675	1.584	1-4376	$1 \cdot 3717$	1.376	1. 1600	1-2041	$1 \cdot 2108$	1.0570	$0 \cdot 8651$
0.9	1.7254	$1 \cdot 8397$	1.8891	1.9371	$1 \cdot 950$	$1 \cdot 865$	$1 \cdot 757$	$1 \cdot 5848$	1.4959	$1 \cdot 519$	1. 293	1-2623	$1 \cdot 2914$	$1 \cdot 1551$	0.9582
$1 \cdot 0$	$1 \cdot 8785$	$2 \cdot 0248$	$2 \cdot 0879$	$2 \cdot 1482$	$2 \cdot 165$	$2 \cdot 066$	1.938	$1 \cdot 7345$	1.6985	1.604	1.465	$1 \cdot 3408$	$1 \cdot 3627$	$1 \cdot 2456$	1-0472
$1 \cdot 2$	$2 \cdot 1820$	$2 \cdot 4175$	$2 \cdot 5177$	$2 \cdot 5924$	$2 \cdot 594$	$2 \cdot 447$	$2 \cdot 286$	$2 \cdot 0421$	1.9357	1.81	1-834	1. 585	$1 \cdot 4965$	$1 \cdot 4075$	$1 \cdot 2137$
$1 \cdot 4$	$2 \cdot 4839$	$2 \cdot 8510$	$2 \cdot 9961$	$3 \cdot 0753$	$3 \cdot 039$	$2 \cdot 825$	$2 \cdot 630$	$2 \cdot 3618$	$2 \cdot 2536$	$2 \cdot 18$	2-109	1.923	1.6498	$1 \cdot 5550$	$1 \cdot 3681$

TABLE 2b
Lift coefficient l_{α}

v	M														
	0	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	$0 \cdot 9$	0.95	$1 \cdot 0$	$1 \cdot 05$	$1 \cdot 1111$	1-1765	$1 \cdot 25$	1.4286	1-6667	$2 \cdot 0$
0	$3 \cdot 1416$	$3 \cdot 6276$	$3 \cdot 9270$	4.3992	$5 \cdot 236$	$7 \cdot 207$	10.061	∞	$6 \cdot 247$	4-1295	$3 \cdot 2272$	$2 \cdot 6667$	1.9604	1.5000	$1 \cdot 1547$
$0 \cdot 05$	$3 \cdot 0073$	$3 \cdot 4129$	$3 \cdot 6518$	$4 \cdot 0022$	$4 \cdot 448$	$4 \cdot 932$	5-155	$5 \cdot 3386$	$5 \cdot 877$	$4 \cdot 0794$	$3 \cdot 2118$	$2 \cdot 6603$	1.9589	1.4995	1-1545
$0 \cdot 1$	$2 \cdot 8823$	3.2186	$3 \cdot 4004$	$3 \cdot 6611$	$3 \cdot 944$	$4 \cdot 124$	$4 \cdot 111$	$3 \cdot 9789$	4.939	3.9347	$3 \cdot 1666$	$2 \cdot 6419$	1.9544	1.4981	1.1541
$0 \cdot 15$	$2 \cdot 7734$	$3 \cdot 0572$	$3 \cdot 2045$	$3 \cdot 4031$	$3 \cdot 597$	3-667	$3 \cdot 597$	$3 \cdot 4130$	$3 \cdot 840$	$3 \cdot 7113$	$3 \cdot 0935$	2.6116 2.6705	1.9467 1.9365	1.4957	1.1533 1.1529
$0 \cdot 2$	$2 \cdot 6791$	$2 \cdot 9251$	$3 \cdot 0499$	$3 \cdot 2092$	$3 \cdot 351$	3-372	$3 \cdot 285$	$3 \cdot 0960$	$2 \cdot 977$	3.4330	$2 \cdot 9966$	$2 \cdot 5705$	1.9365	1-4926	1.1522
$0 \cdot 25$	$2 \cdot 5968$	$2 \cdot 8209$	2.9318	$3 \cdot 0701$	3-186	3-182	$3 \cdot 086$	$2 \cdot 8929$	$2 \cdot 552$	3.1286	$2 \cdot 8802$	$2 \cdot 5196$	1.9233	1-4883	1-1506
$0 \cdot 3$	$2 \cdot 5243$	$2 \cdot 7308$	$2 \cdot 8315$	2.9548	$3 \cdot 054$	$3 \cdot 037$	$2 \cdot 941$	$2 \cdot 7523$	$2 \cdot 487$	$2 \cdot 8268$	$2 \cdot 7503$	$2 \cdot 4602$	1.9076	1.4833	1.1490
0.35	$2 \cdot 4593$	$2 \cdot 6534$	$2 \cdot 7472$	$2 \cdot 8608$	$2 \cdot 950$	$2 \cdot 927$	$2 \cdot 832$	$2 \cdot 6498$	$2 \cdot 562$	$2 \cdot 5541$	$2 \cdot 6127$	$2 \cdot 3944$	1.8897	$1 \cdot 4775$	$1 \cdot 1470$
$0 \cdot 4$	$2 \cdot 4007$	$2 \cdot 5873$	$2 \cdot 6771$	$2 \cdot 7857$	$2 \cdot 870$	$2 \cdot 845$	$2 \cdot 751$	$2 \cdot 5724$	$2 \cdot 5747$	$2 \cdot 3298$	$2 \cdot 4734$	$2 \cdot 3237$	1.8694	1.4709	1-1448
$0 \cdot 5$	$2 \cdot 2957$	$2 \cdot 4827$	$2 \cdot 5724$	$2 \cdot 6828$	$2 \cdot 770$	$2 \cdot 745$	$2 \cdot 649$	$2 \cdot 4651$	$2 \cdot 3177$	$2 \cdot 0618$	$2 \cdot 2128$	$2 \cdot 1752$	1.8239	1.4555	1-1393
$0 \cdot 6$	$2 \cdot 2012$	$2 \cdot 4052$	$2 \cdot 5031$	$2 \cdot 6268$	$2 \cdot 727$	$2 \cdot 705$	$2 \cdot 600$	$2 \cdot 3960$	$2 \cdot 2162$	2.010	$2 \cdot 0056$	$2 \cdot 0293$	1.7733	1.4379	1-1329
$0 \cdot 7$	$2 \cdot 1115$	$2 \cdot 3392$	$2 \cdot 4500$	$2 \cdot 5921$	$2 \cdot 710$	$2 \cdot 691$	$2 \cdot 576$	$2 \cdot 3492$	$2 \cdot 2761$	$2 \cdot 065$	1.8721	1.8994	$1 \cdot 7197$	1.4183	1-1258
$0 \cdot 8$	2.0231	$2 \cdot 2841$	$2 \cdot 4128$	$2 \cdot 5789$	$2 \cdot 718$	$2 \cdot 703$	$2 \cdot 574$	$2 \cdot 3165$	$2 \cdot 1761$	2.113	1.8130	1.7948	1.6660	$1 \cdot 3971$	1-1178
0.9	1.9334	$2 \cdot 2354$	$2 \cdot 3863$	$2 \cdot 5811$	$2 \cdot 746$	$2 \cdot 733$	$2 \cdot 587$	$2 \cdot 2929$	$2 \cdot 1377$	$2 \cdot 094$	1.812	1.7211	$1 \cdot 6143$	$1 \cdot 3752$	1-1091
$1 \cdot 0$	$1 \cdot 8409$	2-1888	$2 \cdot 3653$	$2 \cdot 5925$	$2 \cdot 786$	$2 \cdot 776$	$2 \cdot 610$	$2 \cdot 2755$	$2 \cdot 1807$	$2 \cdot 027$	1.844	1.6789	$1 \cdot 5669$	1-3531	1-1002
$1 \cdot 2$	1.6424	2.1067	$2 \cdot 3502$	$2 \cdot 6496$	$2 \cdot 897$	$2 \cdot 882$	$2 \cdot 673$	$2 \cdot 2522$	$2 \cdot 1083$	1.95	1.905	1.672	$1 \cdot 4907$	1.3104	$1 \cdot 0817$
$1 \cdot 4$	$1 \cdot 4216$	$2 \cdot 0367$	$2 \cdot 3601$	$2 \cdot 7320$	$3 \cdot 024$	$2 \cdot 992$	2.737..	$2 \cdot 2374$	2-1054	$2 \cdot 00$	1-887	$1 \cdot 716$	$1 \cdot 4451$	$1 \cdot 2731$	1.0631

TABLE 2b-continued
Lift coefficient l_{a}

v	M														
	0	$0 \cdot 5$	$0 \cdot 6$	0.7	$0 \cdot 8$	0.9	$0 \cdot 95$	$1 \cdot 0$	$1 \cdot 05$	1•1111	$1 \cdot 1765$	$1 \cdot 25$	1•4286	$1 \cdot 6667$	$2 \cdot 0$
0	0	0	0	0	0	0	0		0						
$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	${ }_{-0.1184}^{-0.1213}$	-0.2445	-0.3318	-0.4830	-0.934	-2.122	-3.199	-4.7499	-1.286	${ }_{-0.3315}^{0}$	${ }_{-0}^{0} 1283$	${ }_{-0}^{0} 0515$	$0_{0.0020}^{0}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0.0164 \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0.0193 \end{aligned}$
0.15	-0.0671	-0.2509	-0.3649	-0.5790	-0.954 -0.874 0	-1.711	-2.320	-3.1463	-2.098	-0.6318	-0.2500	-0.1010	$0 \cdot 0043$	0.0329	${ }_{0} 0.0385$
0.2	+0.0078	-0.1797	-0.2931	-0.4708	-0.754	${ }_{-1}^{-1.207}$	${ }_{-1}^{-1.853}$	${ }^{-2.3932}$	-2.327	-0.8737	${ }_{-0.3591}^{-0.4501}$	-0.1465	0.073	0.0496	0.0578
0.25	0.0971	-0.0834	-0.1914	-0.3586	-0.615	-1.001	-1.523	-1.9183	- -1.445	- ${ }_{-1} 1.0375$	-0.4501 -0.5186	-0.1863	0.012	0.0665	0.0772
${ }_{0}^{0.3}$	$0 \cdot 1961$	$+0.0179$	-0.0854	-0.2440	-0.480	${ }_{-0.823}^{-1.231}$	${ }_{-1}^{-1.046}$	${ }_{-1.3093}$	- ${ }_{-0.994}$	${ }_{-1.1023}^{-1.133}$	${ }_{-0.5617}^{-0.5186}$	-0.2186	0.0165 0.0233	0.0836 0.1012	0.0967
$0 \cdot 35$	$0 \cdot 3002$	$0 \cdot 1235$	$+0.0242$	-0.1277	-0.350	${ }_{-0.663}$	${ }_{-0.861}^{-1.810}$	-1.0909	-0.773	${ }_{-1.0144}^{-1.103}$	-0.5617	- ${ }^{-0.2422}$	0.0233 0.0319	(1012	$\begin{aligned} & 0 \cdot 1162 \\ & 0 \cdot 1359 \end{aligned}$
$0 \cdot 4$	0.4073	$0 \cdot 2327$	$0 \cdot 1367$	-0.0102	-0.223	-0.516									
0.5	0.6268	0.4587	$0 \cdot 3675$	+0.2256	+0.022	-0.252	-0.698	${ }_{-}^{-0.9055}{ }_{-0}$	-0.7249	-0.8680	-0.5664	-0.2589 -0.2318	0.0426 0.0709 0.	0.1378 0.1766	0.1558 0.1959 0
${ }_{0}^{0.6}$	0.8480 1.0688	0.6898	0.6014	0.4583	0.252	-0.021	-0.180	-0.3517	-0.2183	-0.140	-0.2919	${ }_{-0.1613}$	${ }_{0} 1095$	${ }_{0} .2181$	0.1959 0.2369
${ }_{0.8}^{0.7}$	1.0688	0.9167	$0 \cdot 8300$ 1.0562	0.6803 0.8944	${ }_{0}^{0.462}$	+0.180	$+0.023$	-0.1392	-0.0585	+0.089	-0.0728	-0.0531	$0 \cdot 1589$	0.2627	${ }_{0}$
$0 \cdot 9$	1.5054	1.3701	1.2801	0.8944 1.1006	0.656 0.834	0.358 0.515	0.200 0.357	$\stackrel{+0.0484}{+}$	+0.0538	${ }^{0.201}$	+0.1510	+0.0833	$0 \cdot 2190$	0.3104	${ }_{0} 0.2215$
												$0 \cdot 2364$	$0 \cdot 2895$	0.3616	$0 \cdot 3654$
$1 \cdot 0$	${ }^{1} \cdot 7208$	1.5979	$1 \cdot 5018$	$1 \cdot 2990$	0.999	0.653	$0 \cdot 496$	0.3748	0.4097	$0 \cdot 365$	0.507	0.3942			
1.2	${ }^{2 \cdot 1461}$	2.0530	$1 \cdot 9434$	$1 \cdot 6641$	1.251	0.832	0.693	0.6594	${ }_{0} .6863$	${ }_{0.68}$	0.507 0.705	0.3942	${ }^{0.3690}$	0.4162 0.5349	0.4104 0.5038 0.607
$1 \cdot 4$	+2.5654	+2.5151	$+2 \cdot 3770$	+1.9873	+1-422	+0.915	$+0.814$	$+0.9180$	$+0.8908$	$+0.92$	+0.849	$+0 \cdot 906$	${ }_{0} 0.7440$	${ }_{0.6647}$	${ }^{\text {o }}$

TABLE 2c

Moment coefficient m_{s}

v	M														
	0	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	$0 \cdot 9$	$0 \cdot 95$	$1 \cdot 0$	$1 \cdot 05$	$1 \cdot 1111$	$1 \cdot 1765$	$1 \cdot 25$	$1 \cdot 4286$	1-6667	$2 \cdot 0$
0	0	0	0	0	0	0	0	0	0	0	0	0			
$0 \cdot 05$	+0.0024	$+0 \cdot 0040$	$+0.0050$	+0.0068	$+0.014$	$+0.034$	$+0.053$	$+0.0803$	$0 \cdot 0474$	$+0.0144$	+0.0069	+0.0039	$0 \cdot 0016$	$0 \cdot 0007$	$0 \cdot 0003$
$0 \cdot 1$	$0 \cdot 0054$	0.0102	0.0126	$0 \cdot 0165$	0.027	0.053	0.076	0-1083	$0 \cdot 151$	0.0549	$0 \cdot 0272$	0.0155	$0 \cdot 0062$	$0 \cdot 0028$	0.0013
$0 \cdot 15$	0.0096	0.0156	$0 \cdot 0192$	0.0246	$0 \cdot 037$	$0 \cdot 066$	$0 \cdot 091$	$0 \cdot 1263$	$0 \cdot 235$	$0 \cdot 1135$	0.0588	0.0341	$0 \cdot 0139$	$0 \cdot 0063$	$0 \cdot 0029$
$0 \cdot 2$	0.0114	0.0191	0.0233	0.0296	$0 \cdot 043$	0.074	0.101	$0 \cdot 1385$	$0 \cdot 242$	$0 \cdot 1788$	0.0990	$0 \cdot 0588$	$0 \cdot 0243$	0.0110	$0 \cdot 0051$
$0 \cdot 25$	0.0111	$0 \cdot 0201$	$0 \cdot 0245$	$0 \cdot 0310$	$0 \cdot 045$	- 0.078	0.107	0.1468	-0.183	$0 \cdot 2386$	$0 \cdot 1440$	$0 \cdot 0882$	0.0372	0.0170	0.0078 0.0112
$0 \cdot 3$	0.0086	0.0182	$0 \cdot 0227$	0.0291	$0 \cdot 044$	0.078	0.109	0.1521	$0 \cdot 123$ 0.114	0.2817 0.3009	0.1900 0.2326	$0 \cdot 1207$ 0.1547	$\begin{aligned} & 0.0522 \\ & 0.0691 \end{aligned}$	$\begin{aligned} & 0.0241 \\ & 0.0323 \end{aligned}$	0.0112 0.0150
$0 \cdot 35$	$+0.0037$	0.0136	$0 \cdot 0179$	$0 \cdot 0240$	$0 \cdot 039$	$0 \cdot 076$	$0 \cdot 108$	$0 \cdot 1550$	$0 \cdot 114$	$0 \cdot 3009$	$0 \cdot 2326$				
$0 \cdot 4$	-0.0036	+0.0062	$+0.0102$	$+0.0157$	$0 \cdot 031$	$0 \cdot 069$	$0 \cdot 105$	0.1558	$0 \cdot 1577$	$0 \cdot 2938$	$0 \cdot 2681$	$0 \cdot 1882$	0.0873	0.0413	0.0193
0.5	-0.0254	-0.0168	-0.0137	-0.0096	$+0.005$	0.049	0.091	$0 \cdot 1525$	$0 \cdot 2102$	$0 \cdot 2167$	$0 \cdot 3066$	$0 \cdot 2470$	0.1257	$0 \cdot 0614$	0.0291
$0 \cdot 6$	-0.0569	-0.0502	-0.0485	-0.0457	-0.030	+0.021	0.071	0-1440	0-1182	0.116	$0 \cdot 2926$	$0 \cdot 2845$	0.1635	0.0831	$0 \cdot 0402$
$0 \cdot 7$	-0.0977	-0.0938	-0.0937	-0.0914	-0.073	-0.013	0.045	0-1312	0.1296	0.065	$0 \cdot 2322$	$0 \cdot 2925$	0. 1965	0. 1050	$0 \cdot 0519$
$0 \cdot 8$	-0.1477	-0.1473	-0.1487	-0.1461	-0.124	-0.052	$+0.016$	0.1150	0.1586	$0 \cdot 085$	$0 \cdot 1462$	0.2687	0. 2210	0.1256	$0 \cdot 0638$
0.9	-0.2066	-0.2105	-0.2131	-0.2088	-0.180	-0.095	-0.017	$0 \cdot 0959$	0.0738	$0 \cdot 136$	$0 \cdot 062$	$0 \cdot 2169$	$0 \cdot 2340$	0.1433	$0 \cdot 0752$
$1 \cdot 0$	-0.2743	-0.2832	-0.2865	-0.2787	--0.241	-0.140	-0.051	$0 \cdot 0745$	$0 \cdot 0736$	0.154	$+0.005$	$+0 \cdot 1461$	$0 \cdot 2336$	$0 \cdot 1568$	$0 \cdot 0855$
$1 \cdot 2$	-0.4356	-0.4558	-0.4584	-0.4258	-0.344	-0.197	-0.096	$+0.0261$	$0 \cdot 0080$	$+0.03$	-0.020	-0.003	0-1900	0.1670	$0 \cdot 1006$
1.4	-0.6307	-0.6647	-0.6594	-0.5795	-0.424	-0.218	-0.115	-0.0277	$0 \cdot 0082$	-0.05	+0.049	-0.093	$0 \cdot 0984$	0-1499	0.1052

TABLE 2c-continued
Moment coefficient m_{z}

v	M														
	0	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	0.9	0.95	$1 \cdot 0$	$1 \cdot 05$	$1 \cdot 1111$	$1 \cdot 1765$	$1 \cdot 25$	$1 \cdot 4286$	1-6667	$2 \cdot 0$
0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
$0 \cdot 05$	0.0375	$0 \cdot 0425$	$0 \cdot 0455$	$0 \cdot 0499$	$0 \cdot 057$	0.069	0.077	$0 \cdot 0879$	$0 \cdot 1414$	0. 1011	$0 \cdot 0800$	0-0664	$0 \cdot 0489$	0.0375	0.0289
$0 \cdot 1$	0.0714	$0 \cdot 0796$	$0 \cdot 0842$	0.0907	$0 \cdot 100$	$0 \cdot 112$	$0 \cdot 120$	0. 1298	$0 \cdot 209$	0.1898	$0 \cdot 1558$	0. 1309	$0 \cdot 0973$	0.0748	0.0576
$0 \cdot 15$	0. 1023	0.1125	0.1180	$0 \cdot 1257$	$0 \cdot 136$	0.149	$0 \cdot 157$	0.1656	$0 \cdot 191$	0. 2563	0. 2237	0.1919	$0 \cdot 1447$	0.1117	0.0863
$0 \cdot 2$	0.1307	0.1423	0.1485	$0 \cdot 1569$	0.168	0.182	0. 190	$0 \cdot 1991$	$0 \cdot 140$	$0 \cdot 2951$	$0 \cdot 2805$	$0 \cdot 2477$	0.1906	$0 \cdot 1480$	$0 \cdot 1147$
$0 \cdot 25$	$0 \cdot 1572$	0.1694	$0 \cdot 1762$	0.1853	0.197	0.212	0.221	$0 \cdot 2314$	- 131	$0 \cdot 3063$	$0 \cdot 3244$	0. 2972	$0 \cdot 2345$	$0 \cdot 1837$	$0 \cdot 1428$
$0 \cdot 3$	$0 \cdot 1821$	0•1954	$0 \cdot 2030$	$0 \cdot 2133$	$0 \cdot 227$	$0 \cdot 243$	0.253	$0 \cdot 2632$	$0 \cdot 188$	$0 \cdot 2953$	$0 \cdot 3543$	$0 \cdot 3394$	$0 \cdot 2762$	$0 \cdot 2185$	0.1707
$0 \cdot 35$	$0 \cdot 2058$	$0 \cdot 2206$	$0 \cdot 2291$	$0 \cdot 2409$	0.256	$0 \cdot 275$	$0 \cdot 285$	$0 \cdot 2950$	- $0 \cdot 281$	$0 \cdot 2717$	$0 \cdot 3708$	$0 \cdot 3737$	$0 \cdot 3151$	$0 \cdot 2523$	0-1981
0.4	$0 \cdot 2286$	$0 \cdot 2451$	$0 \cdot 2546$	$0 \cdot 2685$	$0 \cdot 287$	$0 \cdot 307$	$0 \cdot 317$	$0 \cdot 3268$	$0 \cdot 3478$	$0 \cdot 2470$	0.3753	$0 \cdot 3999$	$0 \cdot 3511$	$0 \cdot 2849$	$0 \cdot 2250$
$0 \cdot 5$	$0 \cdot 2720$	0.2928	$0 \cdot 3051$	$0 \cdot 3244$	$0 \cdot 349$	$0 \cdot 375$	$0 \cdot 385$	$0 \cdot 3912$	$0 \cdot 3407$	$0 \cdot 2359$	$0 \cdot 3597$	$0 \cdot 4298$	$0 \cdot 4135$	$0 \cdot 3462$	$0 \cdot 2772$
0.6	$0 \cdot 3134$	$0 \cdot 3400$	$0 \cdot 3562$	$0 \cdot 3831$	$0 \cdot 417$	0.448	0.457	$0 \cdot 4574$	$0 \cdot 3903$	$0 \cdot 310$	$0 \cdot 3360$	$0 \cdot 4356$	0.4627	$0 \cdot 4019$	$0 \cdot 3270$
0.7	$0 \cdot 3535$	$0 \cdot 3883$	0.4101	0.4467	0.492	0.528	0.534	$0 \cdot 5256$	0. 5282	$0 \cdot 446$	0.3336	$0 \cdot 4287$	0.4992	$0 \cdot 4514$	$0 \cdot 3742$
0.8	$0 \cdot 3927$	$0 \cdot 4382$	$0 \cdot 4672$	$0 \cdot 5164$	0.575	0.618	0.619	0. 5961	0.5426	$0 \cdot 576$	$0 \cdot 3727$	$0 \cdot 4227$	$0 \cdot 5250$	0.4948	${ }^{0}$
0.9	$0 \cdot 4313$	$0 \cdot 4903$	$0 \cdot 5284$	$0 \cdot 5934$	0.669	$0 \cdot 718$	0.711	$0 \cdot 6689$	$0 \cdot 6011$	$0 \cdot 647$	0.458	$0 \cdot 4308$	$0 \cdot 5427$	$0 \cdot 5324$	$0 \cdot 4184$ $0 \cdot 4599$
1.0	0.4696	$0 \cdot 5454$	$0 \cdot 5947$	$0 \cdot 6792$	0.776	0.830	0.813	$0 \cdot 7443$			0.576	$0 \cdot 4628$	$0 \cdot 5561$	$0 \cdot 5650$	0.4984
$1 \cdot 2$	$0 \cdot 5455$	$0 \cdot 6669$	0.7473	$0 \cdot 8773$	1.018	1.079	1.033	$0 \cdot 9024$	$0 \cdot 8301$	$0 \cdot 74$	$0 \cdot 817$	0.611	0.5859	$0 \cdot 6191$	0.5679
$1 \cdot 4$	$0 \cdot 6210$	$0 \cdot 8090$	0.9309	1-1179	1-309	1.371	$1 \cdot 285$	1-0704	1-0028	$0 \cdot 99$	0.954	0.838	$0 \cdot 6452$	$0 \cdot 6675$	0.6297

TABLE 2d
Moment coefficient.ma

TABLE 2d-continued
Moment coefficient m_{a}

v	M														
	0	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	$0 \cdot 9$	0.95	$1 \cdot 0$	$1 \cdot 05$	$1 \cdot 1111$	$1 \cdot 1765$	$1 \cdot 25$	$1 \cdot 4286$	1-6667	$2 \cdot 0$
0	0	0	0	0	0	0	0	-	0	0	0	0	0	0 .	0
$0 \cdot 05$	-0.0107	-0.0350	$-0 \cdot 0522$	-0.0819	-0.210	--0.596	-0.964	-1.5040	-0.847	-0.2203	-0.0854	-0.0343	$0 \cdot 0013$	$\begin{aligned} & 0.0109 \\ & 0 \cdot \end{aligned}$	$\begin{aligned} & 0 \\ & 0.0128 \end{aligned}$
$0 \cdot 1$	$+0.0097$	-0.0196	-0.0382	-0.0700	-0.163	-0.404	-0.622	-0.9356	-1.326	-0.4157	-0.1655	-0.0670	$0 \cdot 0029$	$0 \cdot 0220$	$0 \cdot 0257$
$0 \cdot 15$	0.0421	$+0.0140$	-0.0026	-0.0292	$-0 \cdot 100$	-0.276	--0.433	-0.6578	$-1 \cdot 338$	- 0.5647	-0.2356	-0.0965	$0 \cdot 0050$	0.0331	$0 \cdot 0386$
$0 \cdot 2$	$0 \cdot 0805$	0.0566	$+0.0435$	$+0.0241$	-0.029	-0.168	-0.294	-0.4763	-0.982	-0.6523	-0.2912	-0.1214	0-0079	$0 \cdot 0444$	$0 \cdot 0515$ 0.0515
$0 \cdot 25$	$0 \cdot 1224$	$0 \cdot 1052$	$0 \cdot 0967$	$0 \cdot 0844$	$+0.044$	-0.073	-0.182	-0.3412	-0.469	-0.6717	-0.3292	-0.1404	0.0079	$0 \cdot 0444$ $0 \cdot 0560$	0.0645
$0 \cdot 3$	$0 \cdot 1668$	$0 \cdot 1551$	0.1509	0.1454	0.115	+0.014	-0.085	-0.2328	-0.139	-0.6252	-0.3472	$-0 \cdot 1525$	0.0171	0.0678	$0 \cdot 0776$
$0 \cdot 35$	$0 \cdot 2125$	$0 \cdot 2062$	$0 \cdot 2061$	$0 \cdot 2070$	$0 \cdot 185$	$0 \cdot 094$	$+0.001$	-0.1416	-0.031	-0.5229	-0.3442	-0.1568	$0 \cdot 0237$	0.0801	$0 \cdot 0908$
$0 \cdot 4$	$0 \cdot 2589$	$0 \cdot 2583$	$0 \cdot 2621$	$0 \cdot 2692$	$0 \cdot 255$	$0 \cdot 171$	$0 \cdot 080$	-0.0622	-0.0701	-0.3811	$-0 \cdot 3204$	-0.1528	$0 \cdot 0319$	$0 \cdot 0927$	$0 \cdot 1041$
$0 \cdot 5$	$0 \cdot 3530$	$0 \cdot 3648$	-0.3762	$0 \cdot 3948$	$0 \cdot 393$	$0 \cdot 317$	$0 \cdot 223$	+0.0729	-0.0439	-0.0568	-0.2168	-0.1191	0.0540	$0 \cdot 1194$	0.1311
$0 \cdot 6$	$0 \cdot 4476$	0.4731	$0 \cdot 4923$	$0 \cdot 5214$	$0 \cdot 529$	0.453	$0 \cdot 352$	0.1874	$+0.2180$	$+0.207$	-0.0586	-0.0527	$0 \cdot 0840$	$0 \cdot 1482$	$0 \cdot 1587$
$0 \cdot 7$	0.5421	$0 \cdot 5810$	$0 \cdot 6087$	$0 \cdot 6480$	$0 \cdot 663$	0.583	$0 \cdot 473$	$0 \cdot 2887$	0.2772	0.345	$+0.1226$	$+0.0411$	$0 \cdot 1224$	$0 \cdot 1793$	$0 \cdot 1870$
$0 \cdot 8$	0.6362	$0 \cdot 6900$	$0 \cdot 7264$	$0 \cdot 7750$	$0 \cdot 796$	$0 \cdot 709$	0.586	$0 \cdot 3809$	$0 \cdot 3125$	$0 \cdot 379$	0.2957	$0 \cdot 1537$	$0 \cdot 1690$	$0 \cdot 2130$	$0 \cdot 2161$
$0 \cdot 9$	0.7298	$0 \cdot 8006$	$0 \cdot 8455$	$0 \cdot 9025$	0.927	$0 \cdot 830$	$0 \cdot 694$	0.4667	$0 \cdot 4708$	$0 \cdot 386$	0.437	$0 \cdot 2752$	$0 \cdot 2232$	0.2494	$0 \cdot 2460$
$1 \cdot 0$	$0 \cdot 8229$		0.9663	1.0304	$1 \cdot 056$	0.948	$0 \cdot 797$	0.5476	$0 \cdot 5265$	$0 \cdot 430$	$0 \cdot 537$	$0 \cdot 3955$	$0 \cdot 2841$	$0 \cdot 2882$	$0 \cdot 2768$
$1 \cdot 2$	$1 \cdot 0078$	$1 \cdot 1430$	$1 \cdot 2160$	$1 \cdot 2824$	$1 \cdot 290$	$1 \cdot 145$	$0 \cdot 971$	0.6993	$0 \cdot 6865$	$0 \cdot 64$	0.631	0.601	0.4197	$0 \cdot 3733$	0.3410
$1 \cdot 4$	+1.1911	$+1 \cdot 3824$	+1.4729	$+1.5245$	$+1.489$	$+1.295$	+1.109	$+0.8420$	$+0.7854$	+0.79	$+0.691$	$+0.739$	0.5631	0.4663	0.4087

- TABLE 3

Additional Values for $M=1 \cdot 0$ and $M=1 \cdot 05$

	ν	l_{z}^{\prime}	$l_{z}^{\prime \prime}$	l_{a}^{\prime}	$l_{a}^{\prime \prime}$	$-m_{z}^{\prime}$	$-m_{z}^{\prime \prime}$	$-m_{a}{ }^{\prime \prime}$	$-m_{a}^{\prime \prime}$
	1.6	0.4582	2.6940	2.2268	1.1594	-0.0848	1.2482	1.0625	0.9791
$M=1.0$	1.8	0.3859	3.0390	2.2180	1.3891	-0.1437	1.4354	1.0648	1.1126
	2.0	0.3084	3.3965	2.2097	1.6107	-0.2030	1.6316	1.0653	1.2439
	1.6	0.4086	2.6079	2.1183	1.1406	-0.0797	1.2119	1.0142	0.9388
$M=1.05$	1.8	0.3252	2.8935	2.0850	1.3647	-0.1523	1.3481	0.9928	1.0750
	2.0	0.2951	3.2441	2.0825	1.5524	-0.1653	1.5441	0.9987	1.1788

TABLE 4
Coefficients for $M=0.8$ by Schade ${ }^{20}$ and Timman ${ }^{21}$

		l_{z}^{\prime}	$l_{z}^{\prime \prime}$	$l_{a}{ }^{\prime}$	$l_{a}{ }^{\prime \prime}$	- m_{z}^{\prime}	$-m_{z}{ }^{\prime \prime}$	- $m n_{a}{ }^{\prime}$	- $m_{a}{ }^{\prime \prime}$
Schade	$0 \cdot 4$	$0 \cdot 3886$	$1 \cdot 0119$	$2 \cdot 8897$	-0.2549	$0 \cdot 0263$	0.2899	$0 \cdot 7838$	0.2719
	$0 \cdot 8$	$0 \cdot 4514$	$1 \cdot 7194$	$2 \cdot 7062$	$+0.5543$	-0.1086	$0 \cdot 5938$	$0 \cdot 8260$	0.7876
	$1 \cdot 2$	$0 \cdot 4263$	$2 \cdot 4460$	$2 \cdot 7207$	1.0714	-0.2571	1.0133	$0 \cdot 9982$	1-1641
	$1 \cdot 6$	$0 \cdot 2900$	$3 \cdot 1325$	$2 \cdot 6148$	+1.5095	-0.3585	1-4358	1-1051	$1 \cdot 3819$
Timman	$0 \cdot 2$	$0 \cdot 2596$	$0 \cdot 6412$	$3 \cdot 3805$	-0.8326	0.0419	$0 \cdot 1702$	0.8833	-0.0202
	$0 \cdot 3$	$0 \cdot 3549$	$0 \cdot 8249$	$3 \cdot 0821$	-0.5854	$0 \cdot 0445$	$0 \cdot 2287$	0.8235	+0.1178
	$0 \cdot 4$	$0 \cdot 4242$	0.9971	$2 \cdot 8746$	-0.3513	$0 \cdot 0343$	$0 \cdot 2889$	$0 \cdot 7864$	0. 2542
	$0 \cdot 5$	0.4713	1-1612	$2 \cdot 7408$	-0.1302	$0 \cdot 0137$	$0 \cdot 3523$	$0 \cdot 7690$	$0 \cdot 3882$
	$0 \cdot 6$	$0 \cdot 5003$	$1 \cdot 3209$	$2 \cdot 6638$	$+0.0781$	-0.0152	$0 \cdot 4204$	$0 \cdot 7681$	$0 \cdot 5187$
	$0 \cdot 8$	$0 \cdot 5190$	$1 \cdot 6411$	$2 \cdot 6123$	$0 \cdot 4562$	-0.0892	0.5759	$0 \cdot 8041$	$0 \cdot 7660$
	$1 \cdot 0$	$0 \cdot 5116$	1.9860	$2 \cdot 5845$	$0 \cdot 7837$	-0.1701	$0 \cdot 7669$	0.8704	0.9890
	$1 \cdot 2$	$0 \cdot 4900$	$2 \cdot 3430$	$2 \cdot 6106$	1.0675	-0.2381	$0 \cdot 9802$	0.9618	1-1683
	$1 \cdot 4$. 0.4669	$2 \cdot 7084$	$2 \cdot 6432$	+1.3084	-0.2856	1-1994	$1 \cdot 0490$	+1.2998

TABLE 5
Errata in Temple-Jahn ${ }^{7}$

y	λ	l_{z}	$-m_{a}$	$l_{\dot{\alpha}}$	$-m_{\dot{z}}$
$3 \cdot 0$	0.2789	0.4483		$-5 \cdot 233$	
$3 \cdot 5$	0.3254	0.4335	-0.2822	-3.715	-0.3789
$3 \cdot 8$	0.3533	0.4481	-0.2106	$-3 \cdot 284$	
$4 \cdot 0$	0.3719	0.4676	-0.1790	$-3 \cdot 110$	-0.2715

TABLE 6
Possio kernel $k(\mathbf{x})$ and modified kernel $k_{0}(\boldsymbol{x})$
(see sections 3.5.1 and 3.5.3)

x	$M=0.9$				$M=1 \cdot 0$	
	k^{\prime}	$k^{\prime \prime}$	$\cdot{ }_{0}{ }^{\prime}$	$k_{0}{ }^{\prime \prime}$	$k^{\prime} \equiv k_{0}{ }^{\prime}$	$k^{\prime \prime} \equiv k_{0}{ }^{\prime \prime}$
0.05	1.9264	+0.8134	1.3204	$+1 \cdot 1328$	$1 \cdot 3531$	+1.1640
$0 \cdot 1$	$1 \cdot 2188$	$0 \cdot 5744$	$0 \cdot 9933$	0.7286	$1 \cdot 0170$	$0 \cdot 7501$
$0 \cdot 2$	$0 \cdot 8541$	$0 \cdot 3358$	0.7766	$0 \cdot 4050$	$0 \cdot 7940$	$0 \cdot 4194$
$0 \cdot 3$	$0 \cdot 7226$	+0.1912	$0 \cdot 6828$	$0 \cdot 2335$	0.6976	$0 \cdot 2445$
0.4	$0 \cdot 6466$	$+0.0835$	$0 \cdot 6225$	$0 \cdot 1131$	$0 \cdot 6358$	$0 \cdot 1220$
0.5	$0 \cdot 5904$	-0.0043	$0 \cdot 5744$	$+0.0181$	0.5866	$+0.0254$
$0 \cdot 6$	$0 \cdot 5419$	-0.0790	0.5307	-0.0612	0.5422	-0.0550
0.7	0. 4961	-0.1439	$0 \cdot 4880$	-0.1293	$0 \cdot 4989$	-0.1241
0.8	0.4508	-0.2008	$0 \cdot 4448$	-0.1885	$0 \cdot 4552$	-0.1841
0.9	$0 \cdot 4047$	-0.2506	$0 \cdot 4003$	-0.2401	$0 \cdot 4103$	-0.2364
$1 \cdot 0$	$0 \cdot 3575$	-0.2939	$0 \cdot 3541$	-0.2847	$0 \cdot 3638$	-0.2818
$1 \cdot 1$	$0 \cdot 3088$	-0.3310	$0 \cdot 3063$	-0.3229	$0 \cdot 3157$	-0.3205
$1 \cdot 2$	$0 \cdot 2589$	-0.3621	$0 \cdot 2571$	-0.3549	$0 \cdot 2661$	-0.3530
$1 \cdot 3$	$0 \cdot 2079$	-0.3872	$0 \cdot 2066$	-0.3807	0.2153	-0.3794
1.4	$0 \cdot 1561$	-0.4065	$0 \cdot 1552$	-0.4006	$0 \cdot 1637$	-0.3998
$1 \cdot 5$	$0 \cdot 1038$	-0.4200	$0 \cdot 1033$	-0.4147	$0 \cdot 1115$	-0.4142

Fig. 1a. Lift coefficient $l_{z}=l_{z}^{\prime}+i l_{z}{ }^{\prime \prime}$.

Fig. 1b. Lift coefficient l_{a}.

Fig. 1c. Moment coefficient m_{R}.

Fig. 1d. Moment coefficient m_{α}.

Fig. 2a. Vertical translation : $p_{z}=p_{z}{ }^{\prime}+i p_{z}{ }^{\prime \prime}$.

Fig. 2b. Pitching : p_{a}.
Fig. 2. Lift distributions at different speeds.
(See section 3.4, equation (3).)

FIg. 3. Range of negative damping in pitch.

Fig. 4. Standard lift distributions $p_{0}(x)$. (See section 3, equation (1).)

Fig. 5. Response functions P_{r} at sonic speed. (See section 3.4.2, equation (13).)

Fig. 6. Possio kernel $k(\mathbf{x})$
(See section 3.5.1).

Fig. 7. Modified Possio kernel $k_{0}(\boldsymbol{x})$ for $M=0 \cdot 9$. (See section 3.5.3).

(See section 3.5.4).

Fig. 9a. Lift coefficient $l_{z}=l_{z}{ }^{\prime}+i l_{z}{ }^{\prime \prime}$.

Fig. 9b. Lift coefficient l_{a}. (For legend see Fig. 9a.)

Figs. 9a and 9b. Different subsonic solutions and interpolations ($\nu=0 \cdot 8$).

$\xrightarrow[8]{0}$

Fig. 9c. Moment coefficient m_{z}. (For legend see Fig. 9a.)

Fig. 9d. Moment coefficient m_{a}. (For legend see Fig. 9a.)

Ftgs. 9c and 9d. Different subsonic solutions and interpolations ($\nu=0 \cdot 8$).

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

r939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 5os. (5rs. 9d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63s. (64 s .9 d .)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (5Is. 9d.)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63 s. (64 s .9 d .)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 9d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. $6 d$. (49s. $3^{\text {d.) }}$
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (8is. 9d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 90s. (92s. 6d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (86s. 3 d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (86s. 3d.)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. I3Os. (I32s. 6d.)
Vol. II. Aircraft, Airscrews, Controls. I30s. (132s. 6d.)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 1305 (132s. 3d.)
Vol. IV. Stability, Structures, Wind tunnels, Wind Tunnel Technique. I3os. (132s. 3 d.)

> ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-
> $\begin{array}{llllll}1937 & 2 s .(2 s .2 d .) & 1938 & 1 s .6 d .(1 s .8 d .) & 1939-48 & 3 s .\left(3 s .3^{d .}\right)\end{array}$

INDEX TO ALE REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-

April, 1950 - - - \quad R. \& M. No. 2600. 2s. 6 d. (2s. $8 d$.)
AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-

```
        1909-January, 1954 - - - R. & M. No. 2570. 15s. (15s. 6d.)
```

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCILDecember 1, 1936 - June 30 , $1939 . \quad$ R. \& M. No. 1850 . is. 3 d. (1 s. 5 d.) July 1, 1939 - June 30, 1945. - R. \& M. No. 1950. is. (is. 2d.) July I, 1945 - June 30, 1946. - \quad R. \& M. No. 2050. rs. (xs. 2d.) July I, 1946 - December 3I, 1946. \quad R. \& M. No. $2150 . \quad$ is. 3 d. (is. 5 d.) January I, 1947 - June 30, 1947. - R. \& M. No. 2250. is. 3 d. (1s. 5 d.)

PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-

Between Nos. $225 \mathrm{I}-2349 . \quad-\quad-\quad$ R. \& M. No. 2350 . rs. 9 d. ($\mathrm{rs} . \mathrm{rid}$.)
Between Nos. $235 \mathrm{I}-2449 . \quad-\quad-\quad$ R. \& M. No. 2450 . 2s. (2s. 2d.)
Between Nos. 245 I-2549. - - R. \& M. No. 2550. 2s. 6d. (2s. 8d.)
Between Nos. 2551-2649. - - R. \& M. No. 2650. 2s. 6d. (2s. 8d.)
Prices in brackets include postage
HER MAJESTY'S STATIONERY OFFICE

[^0]: * R.A.E. Report Structures 141, received 7th July, 1953. This report has been prepared for publication by Structures Dept., R.A.E., in the absence of the author.

[^1]: $\dagger \nu=2 \pi f c / v$ is the frequency parameter, referred to chord c.
 \ddagger Owing to its particularly simple form this solution could be used to check, and correct in one instance, the numerical. tables of Ref. 5 prior to their publication. It turned out later that the limit $M=1+0$ is also considered in Refs 5 and 6,

[^2]: \dagger AI refers to the Appendix I.
 \ddagger See, e.g., Copson ${ }^{15}$ p. 231.

[^3]: †Owing to this complexity no closed form solution-as exists for $M=0$ and $M \geqslant 1$-has yet been found for $0<M<1$.
 \ddagger The numerical values of the kernel for $M<1$ are taken from the tables of Schwarz and Schade ${ }^{18}$, Numerical yalues for $M=1$ are given in Table 6.

[^4]: \dagger See in particular $p_{2}{ }^{\prime}, M=1 \cdot 111$. Note that the position of the trailing edge is given by $\hat{x}=2 / v$.
 \ddagger Strictly not the field of a single source as discussed in AII but the field of a line of doublets should be considered. This latter field is represented, in its essence, by $k(\nu x)=k(2 \hat{x})$, see $3.5(3)$, and shows the same two types of wave perturbations.

[^5]: \dagger It also follows that the limit $M=1-0$ of $p(x)$ exists (while the limit $M=1+0$ exists only for the mean 3.4.2(12).)

[^6]: \dagger After this report was written (early in 1952) several notes on the subject have been published ; see Jordan ${ }^{22}$.
 \ddagger For definitions see section 3.2 and Table 1 .
 § An error in this table was discovered when the asymptotic formula section 3.3 was checked. The corrected values are given in Table 5.

[^7]: \dagger Constant steps $\Delta \log \nu$ are more logical than constant steps Δy. The first arrangement is preferable if a value of the parameter ν is chosen for the individual flutter calculation; however it is somewhat inconvenient in those cases where ν is the unknown quantity.
 \ddagger With possible exceptions near the comer $M=0 \cdot 7, \nu=1 \cdot 4$ of the region covered.
 \S This does not apply in case (b) to table entries less than $\pi / 10$ for l_{z}, or less than $\pi / 20$ for l_{a} and m_{z}.

[^8]: \dagger By Miles ${ }^{22}$, W. P. Jones ${ }^{23}$, Radok ${ }^{24}$, Neumark ${ }^{25}$.
 \ddagger See, e.g., Runyan, Cunningham and Watkins ${ }^{26}$.

[^9]: \dagger This set has been checked by using it for recalculating some of Schade's values ${ }^{18}$.

