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Summary.--The solution is derived, in a convenient form for numerical evaluation, for a two-dimensional aerofoil 
oscillating with arbi trary downwash at sonic speed, and is shown to be the limit of both the subsonic and the supersonic 
solutions as the Mach number tends touni ty .  Linear theory is shown to be applicable at sonic speed for an oscillating 
aerofoil of zero thickness, but at near-sonic speeds consideration of the lift distribution shows that  linearization is not 
permissible. Hence for near-sonic speeds the sonic solution gives a better  approximation to the non-linear solution than 
does the linear solution for the actual speed. I t  is shown that  interpolation of the force coefficients is more justifiable 
in the subsonic range than in the supersonic range. The physical validity of the linear solution is discussed ; certain 
singiflarities which occur in the transition to sonic speed are shown to have no physical significance. 

The four main aerodynamic force coefficients for an oscil!ating two-dimensional wing are presented in the form of 
tables and isometric graphs over the ranges 0 to 2 of Mach number and 0 to 1.4 of frequency parameter  based on 
the wing chord ; the present sonic solution and existing subsonic and supersonic solutions have been supplemented 
by  interpolated values for Mach numbers between 0.7 and unity. 

1. !~troductio~c.--Until recently it was the general belief that  linearised aerodynamic theory 
was unsuitable for application at sonic and near-sonic speeds (M ~ 1). This belief arose from 
consideration of the familiar (but purely theoretical) case of a wing of infinite span, rigidly fixed 
right across the air stream, for which this simplified theory leads to a ' sonic barrier ' of infinite 
l if t  and drag, in contradiction to its own assumption of small perturbations only. This occurrence 
is readily explained by the fact that  the individual stream tube has its minimum cross-section 
at sonic speed, so that  neither by acceleration nor by deceleration can way be made for the wing. 
However, the ' barrier ' disappears if way is made for the wing by relieving the conditions of the 
problem, e.g., by considering the wing of finite span, or the wing accelerated in the flow direction, 
o r  the oscillating wing. In all these cases--and hence in all practical cases-- '  reasonable,' 
i.e., finite, forces are obtained also at sonic speed. 

This observation has recently led to a number of investigations. The present paper deals 
with the harmonically oscillating aerofoil of zero thickness and infinite span. The fact that  this 
problem can be linearised has been shown by Lien, Reissner and Tsien 1, who have discussed the 
basic equations of non-steady motion. A confirmation of their conclusions is provided by the 
actual linear solution for the wing with rigid chord, presented graphically in Fig. 1. I t  appears 

* R.A.E. Report Structures 141,.received 7th July, 1953. This report has been prepared for publication by Structures 
Dept.,. R.A.E., in the absence of the author. 
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that  in the usual range of flutter frequencies (v > 0.2, say) t the order of magnitude of the  solution 
is roughly independent of M, even in the sonic region. This agrees with the conclusions of a 
previous papeP that  the values of the parameter ' f lu t ter  danger,' calculated for a given w i n g  
at subsonic and supersonic speeds, can usually be interpolated by smooth curves through the 
sonic range. 

Solutions for M = 1 have already been given by Heaslet, Lomax and SpreiteP and by RotP, 8. 
The first obtained the lift due to vertical translation by Laplace transformation of their solution 
of the gust problem. Rott  has given formulae and numerical tables for the four main wing forces. 
Similar tables by Nelson and Berman 6 became available during the draft stage of the present 
report. 

The present investigation was stimulated by the statement by  Rot t  ~ that  the sonic solution 
exists. As a first step the solution for M = 1 is obtained (section 3.4) by an independent method+ +, 
viz., as the limit M = 1 + 0, i.e., M tending to uni ty  from above. The investigation is then 
extended to cover the supersonic range (M = 1 -~ d ; section 3.3) and the subsonic range 
(M = 1 -- ~ ; section 3.5). Tables and graphs covering-' the speed range 0 ~< M ~< 2 are given 
(section 4) and their physical validity is discussed (section 2). The main purpose of this report 
is thus (a) to present a new sohition for sonic and near-sonic speeds, and (b) to present values of 
the wing force coefficients over the continuous range of Mach number (0 to 2) and frequency 
parameter (0 to 1.4) by combining the results of the sonic solution with values based on available 
results for subsonic and supersonic speeds. 

Considering the limit process M--~ 1, it turns out that,  while the limit solution is common 
in its essentials to both sides (i.e., the limits M = 1 -- 0 and M = 1 + 0 are identical to the 
solution for M = 1) there is an important  difference in the manner in which this limit is 
approached. A consequence of this difference is that  interpolation of the aerodynamic coefficients 
both with respect to speed parameter M and to frequency parameter v, is better justified in the 
range M = 1 -- d than in the range M = 1 + d. This, however, refers to the theoretical 
solution. From a physical point of view, and for the frequencies usual in flutter, the linear 
solution for M = 1 should be preferred, in the near-sonic range M = 1 + d, to the ' correct ' 
linear solution for the actual Mach number M. 

2. Physical Validity of the Linear Solution.--2.1. General Considerations.--The presentation 
in this report of the linear solution for the transonic range is not meant to imply that  this solution 
has the same degree of physical validity for the actual wing in actual flow as we are used to 
expect of the incompressible solution. At low speeds the oscillations are superposed on a relatively 
stable steady flow; experience shows that  to a reasonable degree the oscillatory solution is 
independent of the steady disturbances, so that  the unsteady solution for the infinitely thin 
wing can be used in flutter calculations for wings of finite thickness (provided the mean incidence 
is small and the frequency parameter is sufficiently large). At high speeds, and in particular 
at transonic speeds, the field of the steady disturbances is much less stable and highly non-linear ; 
the degree of physical validity which may be at tr ibuted to the independent linear solution for 
superposed oscillations must be decided by experience. 

The primary case for the application of linear theory to the transonic range is that  its results, 
obtained with relative ease, will provide awelcome basis for the interpolation and interpretation 
of more reliable results which should be forthcoming from experiments and more refined theories. 

"~ v = 2 a f c / v  is the frequency parameter, referred to chord c. 

:~ Owing to its particularly simple form this solution could be used to check, and correct in one instance, the numerical. 
tables of Ref. 5 prior to their publication. It  turned out later that the limit M = 1 q- 0 is ajso considered in Ref~ 
5 and 6, 



We consider first the infinitely, thin wing oscillating at zero mean incidence, for which no 
steady disturbance exists. The linear solution for this  case is discussed below in section 3. 
The solution for M = 1 is quite smooth (see Figs. 1, 2 and particularly 5) ; it thus justifies the 
simplifications involved in linearising the problem (provided that  the frequency parameter v is 
sufficiently large) to at least the same degree as do the solutions for M = 0.7 or M = 1.4, say. 
The same is not true if M differs sl ightly from uni ty : in the transition M --~ 1 singularities occur 
which contradict the conditions of linearisation, <e., the conditions which the solutions must 
fulfil in order to be valid. However, we are going to show that  these singularities are a consequence 
of the particular (and usual) method of linearising rather than of linearisation as such, and 
that,  as an approximation to the solution of the original, non-linear problem, the linear solution 
for M = 1 is preferable to the linear solution for the correct value of M if M lies in a certain 
range M = 1 ~ d. How to show this is an analytical problem which is discussed in section 2.2 ; 
a few remarks concerning the physical problem, i.e., the wing of finite thickness etc., follow 
in section 2.3. 

The understanding of the subsequent discussion may be helped by anticipating section 3 in a 
short description of the linear near-sonic solution with the aid of Figs. 2 and 8. The perturbation 
field of an oscillating point disturbance in an air stream consists of long waves and short waves. 
The long waves do not interest us here. The length of the short waves tends to zero as M tends 
to uni ty  from either side. Corresponding short waves appear in the lift distribution p(x) of the 
oscillating wing ; at subsonic speeds, Fig. 8~, they start  from the trailing edge but they start  
from the leading edge at supersonic Speeds, Fig. 2 (in particular see the real part pz', Fig. 2a). 
In Fig. 8 the local amplitude of the waves tends to zero as M tends to unity, except at the trailing 
edge, while in Fig. 2 it remains constant ; thus p(x) has a limit for M = 1 -- 0 (i.e., from the 
subsonic side, Fig. 8) but not for M = 1 + 0 (i.e., from the supersonic side, Fig. 2). 

A different position arises if the mean local l i f t--see equation 3.42 (12) below--is considered. 
In this case both limits exist ;  the important  points are t h a t  (a) the two limits are identical, 
i.e., tha t  there is a common limit, and that  (b) this common limit satisfies the wave equation, 
thus representing the solution for M = 1. 

For our subsequent discussion of the permissibility of ]inearisation we note that  the derivative 
of p(x) with respect to x takes arbitrarily large values as M tends to uni ty  from either side ; 
tha t  is, arbitrari ly large perturbation velocities occur, not only at the leading and trailing edges--  
where they occur also in incompressible flow theory (owing to the simplification of the physical 
problem)--but  at every point of the wing chord. 

2.2. Analytical Co~sideratfo~¢ of the Li~¢ear and No~-l imar Problems (Two-dimer~sio~al).-- 
The comple[e non-linear differential equation for the perturbation velocity potential ca of a two- 
dimensional non-viscous flow field reads : 

a 2 ) +  a2 ) - ca,',ca- ca, 

1 
-- a2 E¢~, + 2#,,ca,,,-t- 2#,#,,]  . . . . . . . .  (1) 

if x', z are Cartesian co-ordinates fixed in space, t is the time, a the local speed of sound, and 
suffices denote differentiation. 

Let the wing proceed in the direction of the negative x'-axis and let its velocity be V. Let x 
be a co-ordinate fixed to the wing so that  

x ---- x' + Vt  . . . . . . . . . . . . . . . .  (la) 

t Fig. 8 shows not the lift p(x) b u t s  function G(x) which ilklstrates the nature of p(x). 



and let ~/5 be the per turbat ion  potent ia l  in the moving  axes " 

¢(x, z, t) = O(x', z, t) . . . . .  . . . . . . . . . . . .  (lb) 

Let the per turba t ion  velocities be u and w, so tha t  

~ . = o . , = u ;  ~ . = O ~ = w  . . . . . . . . . . . .  ( l c )  

while ~ = ( ~ , -  g u .  

Fur ther  let a~ be the free-strealn velocity of sound and introduce 

u w V t 
£ = - - ;  z ~ = - - ;  M = - - ;  ~:-- . . . . . . . .  (ld) 

(gee gm gm am 

Assume tha t  

~2< < 1;  ~ <  < 1 . . . . . . . . . .  (le) 

so tha t  the products of ~, # can be neglected in comparison with unity.  Transformat ion of (1) 
to the moving co-ordinates then  yields 

ux(1 =- M 2 - - 2 M £ )  4.  w,  - -  2 M w , ~  = 4)= 4.  2 [u~(M 4- a) 4- w#~] . (2) 

Equat ion  (2) is linear in incompressible flow (a~ = co) but  is non-linear in compressible flow. 
The familiar linear equat ion for the lat ter  case is obtained if all the remaining non-l inear  te rms 
in (2) are also neglected, i.e., if 

= z~  = 0 . . . . . . . . . . . . . . . . . .  ( 2 a )  

is formally in t roduced in (2). 

Consider in part icular  the transonic range. Let  M = 1 4. d and let 

,5 < < 1 .  . . . . . . . . . . . . . . . .  (a) 

Assume harmonic  mot ion ; let 2~f be the circular frequency. Fur ther  let the co-ordinates x and z 
be made  non-dilnensional  with some length c as reference length. Then (2), after mtflt iplication 
by  c, becomes 

t 
- 2 u / ~  4 .  ~)  + ~ ,  - 2w# = - - ,,o0¢ + 2#oFU(1 + ~ + ~)  + wz~l . .  (4) 

C 
if 

% = 2~fc/a® 

is the ,frequency parameter  referred to c and the free-stream speed of sound. 

The conditions which the solution of the linear problem (2a), (4) must  fulfil in order t h a t  (2a) 
is justified can be deduced from (4) : 

(a) ~2, z~, if related to the wing amplitudes,  must  be of the same order as in the solution for 
M = 0, s a y  

(b) u,, w.~ must  be of order *,o¢t, vow 

Further ,  as ,5 appears in (4) in the combinat ion (~ + a) only, a consequence (if (a) and (b) 
will be 

t 

(c) the parameter  M has negligible effect. 

In  fact the  solution of (4), (2a), described in section 2.t with the aid of Figs. 2 and 8, fulfils 
nei ther  condit ion (b) nor (c) • u~ takes arbitrarily large values if d is sufficiently near to zero. 
Has the conclusion to be drawn tha t  l inearisation is not  permissible in the transonic range ? 
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The existence of the regular solution for M = 1 contradicts this conclusion ; it can rather be 
argued that,  as the non-linear equation (4) describes a physical problem, the solution of (4) 
for M = 1 ± ~ cannot be far different from the linear solution for M = 1. Indeed if (le) justifies 
(2a) then (3) justifies 

~2+0  = z ~ = 0  . . . . . . . . . . . . . . . . .  (4a) 

Equations (4), (4a) define an alternative linear problem in which M no longer appears;  the 
solutions of (4), (4a) fulfil the conditions (a) to (c), thus justifying the assumptions made. Hence 
the linear solution for M = 1 can be accepted as a reasonable approximation throughout tha t  
near-sonic range where the usual linear solution does not fulfil condition (b)~. 

2.3. Application to Actual Wings.--The argument of section 2.2 is reassuring as regards the 
physical validity of linear theory in the sonic range--reassuring in so far as the non-linear solution 
for the th in  plate at zero mean incidence can be accepted as the solution for the actual wing. 
Reassuring also is an ' analytic result of GI L. Sewell which indicated that  the presence of 
attached shock waves had no effect on the end result of the small disturbance, non-steady, 
potential theory at low supersonic speed'  (stated by GarrickS). On the other hand W. P. Jones ~ 
has shown that  the thickness effect is not negligible. He invesfigated the range M >~ 1.4, but  
his conclusions should also apply if M -~- 1. 

A serious objection to the application of two-dimensional theory to wings of finite span at 
near-sonic speeds arises from the fact that  the spanwise co-ordinate attains major importance as 
M tends to unity, the effective aspect ratio being 

A c  = - -  M L}A • 

Further, the three-dimensional sonic lift distribution is quasi-subsonic in float upper and lower 
wing surfaces are interdependent (for all wing shapes), while the two-dimensional distribution 
is quasi-supersonic in this respect ; on the other hand the leading-edge singularity of the latter 
is already quasi-subsonic, see Fig. 2, so that  the two distributions have the same form at both 
leading and trailing edges, provided that  the trailing edge is normal to the air stream. The 
quantitative effect of these points requires further investigation. 

Flutter  speeds calculated from a self-contained set of theoretical aerodynamic derivatives 
are often in better agreement with experiment than are the derivatives themselves. This may be 
why the little evidence that  is available from transonic flight tests seems to indicate ' that flutter 
calculations based on linear derivatives Show the correct tendency. No experimental results 
at near-sonic speeds exist for comparison with the theoretical result, given here. However, the 
wind-tunnel flutter tests by Tuovila, Baker and Regier 1° at low supersonic speeds (M = 1.3) 
should be mentioned as giving some confirmation of linear theory. On the other hand the 
measurements of damping in pitch by Brat t  and Chinneck 11 (M >~ 1.275) are sometimes quoted 
as a refutation of linear theory :  in these experiments positive damping was found instead of 
the negative damping predicted by theory. However, the pitching centre in these tests was at 
mid-chord and was thus near the border of the predicted range of negative damping, Fig. 3. 
Thus the expected inaccuracy+ + rather than a failure of the theory was shown. Further, the 
frequency parameter value of the test was very small (~ < 0.03) so that  damping due to 
boundary-layer effects can be assumed to have been larger than it would have been in the usual 
frequency range of flutter. 

¢ 

-~A similar practice prevails in another of the cases mentioned in section 1, viz. ,  in the case of the steady wing of 
finite aspect ratio. Here the effect of c3 is accepted to be negl'igible for a wing of aspect ratio A if 

dA ~ 4<1 
---in spite of the fact that  the lift-slope curve as obtained by linear theory has a vertical tangent for M = 1 + 0. 

,Due  largely to the finite thickness of the wing model ; see W. P. Jones °. 
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3. Linear Analysis for the Thin Aerofoil Oscillating Harmonically in Two Dimensional Flow.- 
3.1. Introductory Remarks.--The present section is concerned with the purely mathematical  
task of solving the two-dimensional linearised problem of the thin aerofoil at zero mean incidence 
oscillating harmonically with an arbitrary mode z(x) in non=viscous flow, and in particular with 
the transition M --+ 1 both from the supersonic side and from the subsonic side. Tile fundamental  
equation governing the lift distribution p(x) along the chord will in both cases be used in its 
integral form rather than in tile equivalent differential form (2a), (4) of section 2.2. 

The total wing forces as shown in Fig. 1 appear to be regular functions of v and M if the 
neighbourhood of the point Iv, M] = [0, 1] is excluded. This gives a wrong impression of the 
difficulties of the problem and is due par t ly  to the fact that  not all the details of the transition 
M--+ 1 can be shown in these drawings, and par t ly  to the fact that  total  forces are considered. 
A better insight into the difficulties of the problem is obtained from Fig. 4, where ' s t a n d a r d  
lift distributions ' po(x) are shown. These are defined, for a given speed M, as 

po(x) = lim ( p(x, v_! "~ " "  

p(x, v) being the lift distribution due to pitch. 

There are only three different distributions P0(x) : 

f "v/(1-x)/x } 
po( ) = 1/ g ( 2 x )  ; 

1 

. . . .  ( 1 )  

x0 = ½ if M = 1 sonic 
• j 

½ > 1 supersonic 

(x0 is the position of the centre of pressure of p0(x).) 

(la) 

The subsonic distribution is characterised by its singularities of order 1/5/x at the leading edge 
and w/x at the trailing edge ; the supersonic distribution exhibits neither singularity. The sonic 
distribution is quasi-subsonic at tile leading edge but is quasi-supersonic at the trailing edge. 
This distinction is still valid if ~ is not zero, see, e.g., Fig. 2. I t  follows that  the transition M - +  1 
is irregular and non-uniform whether the sonic speed is approached from below or from above. 

Our analytical method is to replace the cylinder functions in the fundamental equations by  
asymptotic expressions. These expressions are useful if their argument is sufficiently large. 
This argument being ~/[1 --M2],  our investigation applies to a part of the v, M-plane which 
contains the sonic line M ---= 1 and has an apex at the point Iv, M] = [0, 1]. 

3.2. Notation.--(a) General 
p Air density 

V Speed of w i n g  

M Free-stream Mach number 

~' = 1/M Reciprocal Mach number 
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If n =  1 , 2 , 3 . . . t h e n  

2n --  1 nt = V ~ .  ½. ~ . . .  
2 

~ =  ~ / ~ . ~ . ~ - . . .  2f t  - -  1 

2n 

If  n )) 1, then 

n[ 1 

m 

; - n!  = ,~(-),,/~! 

- -  n ---= 0 . 

74 

n! 

- -2  

0:3 

4/3 

0 

- -1  

GO 

- - 2  

0 

0 1 

1 1 

1 1/2 

1 1/2 

2 3 

2 6 

3/4 15/8 

3/s 5/16 

24 

105]16 

35/128 

3.3. Supersonic Wing Force Coefficients (M = 1-b  O).--Two-dimensional l inear supersonic 
theory  has been discussed by  numerous authors  ; see, e.g., Refs. 7, 12 and 13. As a result, the  
four force coefficients of the wing with  rigid chord,  defined in section 3.2(b), may  be wri t ten  in 
the form 

I. = 2 0 2 H +  2m(Ko - -K1)  

/ ~ = ( 1  + l )  l, + m, 

- m ,  = ( ~ , , -  1 + ~ , )H + i o~ + ~ ) ( K . -  K , )  - -  ~ K o  

- - t o o =  (1--;~)  +~o + 5  ~°2 H +  (2~o q- 1 ) - - - ( I - - g )  ( K o - - K , )  
C0 

Here 

+ ~  2 K o + - K ~  . .  
01 

;o,o( 7 rv H ~--- H(7, v) --  ,V, ~ ~- ~ e -'~/" d~ 

. .  (1) 

K ,  - -  K , ( 7 ,  ~) - ~/~ ( -  iv )*  e -°<" J ,  , . .  

co = iv is the  imaginary  f requency parameter  and 

~ , =  l / M <  1; ~ = 1  r 2 > 0  . . . .  

are speed parameters .  Jp are Bessel functions of the first kind. 

. .  ( h )  

. .  ( l b )  
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The function H may be transformed into 

[! 1 ;ie_~/~ffo(~)d~ ] . . . . . .  (lc) H =  - - r  + ~ 7  "" 

by means of Schwarz 1~, equation (46). 

We are concerned with the range v/~ )3)1. The functions h r and Kp may therefore be 
evaluated by using asymptotic expressions for the Bessel functions (see equation AI(1){). For 
Kp we obtain immediately 

with 

u - - 1  + y  2 ~ i f M - + l  . . . . . . . . . . .  (2a) 

J 
(O 

v - -  1 - - y - + i ° °  

Some further transformations are required in the case of the function H. Substituting AI(1) 
in (lc) yields 

f l  1 ( ~ "~"' H ~ r  20 ~(2~o,r) o~ ~o ~ r ~ k 2 ~ o r /  [z , , , (~)  + i ( - ) " ~ L ( v ) ]  . . . .  (3)  

where 

I,,~(~) ~ #zl ~,,,+0.5 d~ . . . . . . . . . . . . . . .  (3a) 

The two cases I,,,(u) and I,,,(v) have to be treated differently in view of the limit M--> 1 (see 2a)). 
Applying the relation 

L, , (~ )  = r~  - 1! e - °  - ~Z,,,_~ (~)  . . . . . . . . . . . .  ( a b )  

in opposite directions we obtain 

I n_--_ 1!-] (4a) ±,,,(~) = ( -  ~)" Zo (~) + e-" ~ ( _  ~),,j . . . .  

l'm(~)) ~ -  ( - -  V)m e-V m+ ~1 ( - -  v)" " 

(4b) is an asymptotic expansion of a well known type +. 
introduce (see AI(2)) 

Then 

. . . . . . . . . .  ( 4 b )  

Io(u) is essentially a Fresnel integral. 

_ % / / { }  

= - • 

. .  ( s )  

. . . .  ( S a )  

t AI refers to the Appendix I. 
$ See, e.g., Copson 15 p. 231. 
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Owing to Ai(3a) 

U~ " m  

The term 1/co in (3) is cancelled if (4a) and (5b) are introcluced. In t roducing also (4b) and 
changing the order of summat ion  we obtain  finally 

~/Y { n - - l [  I y), e - , , - - ( Y - -  1 )  ''~ H~-~ (2~co)0. 5 U - -  } co), ~ ( 1 +  E m i (-- . 2~, 

- -  - -  o 15 2 7  

Subst i tu t ing (2) and (6) in (1) yields the complete asymptot ic  expansions for the four wing force 
coefficients. 

Consider in part icular  the t ransi t ion M--> 1. The functions U and exp(--  u) are regular ; 
however, this is not  true of the function exp(--  v), which represents a waveform whose wave- 
length becomes smaller and smaller as M tends to un i ty - - compare  (2a). For tuna te ly  exp(--  v) 
has the factor 1 --  y -"- M -- 1 -~- ½~ --+ 0 in all four coefficients (1) (this is immedia te ly  seen for 
H from (6) and is seen for the function Kp if the difference K0 -- K1 is formed). Thus the four 
coefficients are regular in M ~> 1 ; however their  derivatives with respect to M are not  regular t. 

3.4. Sonic Speed (M = 1 + 0).--3.4.1. Wing force coefficients.--Introducing y = 1 in 3.3(2), 
(6), we obtain  

H - - ( 2 ~ o ) o .  5Eo --  n l ( 2 n +  1) 

K o -  K 1 -  i2~)o .  5 }o -- n~. . . . . . . . . . . . . .  (1) 

We write the four wing force coefficients as series of similar form 

l ~ -  (2~co)o.  ~ Eo - -  12. . . . . . . . . . . . .  (2) 

From (1), (2) and 3.3(1) 

1 
l"  = ( n -  1)t(2n --  3 ) '  l~° = 0 . . . . . . . . . . . .  (2a) 

and 
2 

1 2 - -  12 - -  ½12 +~ 2n+ 1 

2 n - -  1 
- - m . "  2 n + l  

2 n +  1 
2 n +  3 

• " . . . . . . . . . .  (2b) 

t See section 3.3.2. 
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The series (2) converge for all values v ; they converge rapidly in the usual range of flutter 
frequencies, where numerical evaluation is convenient owing to the simple form of the series 
coefficients. Numerical values are contained in Tables 2 and 3. 

I t  should be noted here that,  while the simplicity of (2a) is of course a peculiarity of the sonic 
solution, the relations (2b) represent, in their essence, a property of the whole range M ~> 1. t 

Expanding (2), (2a), (2b) we obtain 

- i ( o + 2 # _ ~  ..) z, - V ( ~  

~ - i (  7 1 9 ,  ) 
~°-  V ( ~ )  2 + ~¢~ - 65 " 

- ~ n , -  V ( ~ )  0 + - g . . .  

- ~ _ ~ / ( ~ )  + gi~  - ~ . . .  

(4) 

Both in translation and 
of pressure at Xo = 1/3. In 

2s -- 1 
X o , , - - 2 s +  1 ( M = I ) .  

The corresponding supersonic relation is from (3a) 

S 
x0,,--s +~ (M> 1 ) . . .  

"In all cases 

lira x0,, = 1 . 
s - - - ~ o o  

pitch the first non-zero term represents a force which has its centre 
each case let suffix s denote the sth non-zero term ; from (2b) 

/ 

(5) 

(Sa) 

t In  the  supe r son ic  range we m a y  w r i t e  

(3) 

The  ser ies  (3) conve rge  if v'/~ < 2. The  r e l a t i ons  c o r r e s p o n d i n g  to  (2b) a re  

m + l  

- ,  m [ 
_ m j n  . :  m- -+  1 [zm ~ ' . . . . . .  

! 
- ~ J  ' ~ - m  + l IJ'~ I 

~ + 2  j 

see J o r d a n  la (31) to  (33). N o w  the  coefficients I, '~ . . . be long  to the  p o w e r  m of ~o whi le  the  coeff icients  l , " . . ,  be long  to  
t he  p o w e r  (n - -  0 .5)  in  (2). A c c o r d i n g l y  (3a) becomes  (2b) if m is r e p l a c e d  b y  (n - -  0 .5 ) .  
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3.4.2. Lift  dislribulions.--The basic formula connecting lift distribution p(x) and downwash 
w(x) in supersonic flow may be written 

p ( . / -  ~ / j o [ ~ ' ( *  - e / +  ~ { x -  eli e -°'~ ]o 7 e de 

(6) 

--see Ref. 12 equation (43)--provided that  w(x) is continuous for 0 < x < 1. We require the 
limit of p(x) as M tends to unity. The formal procedure of inserting the asymptotic expression 
AI(1) in (6) and then letting M tend to uni ty  yields the correct limit for p(x) in spite of the fact 
that  the argument of J0 reaches zero in the integral. This may be proved by dividing the range 
[0, x] of the integral into the two ranges [0, ~/~1, and [W/~, xl. The integral over the first range 

disappears  as ~ tends to zero. In the second range insert AI(1). Thus an error is committed 
which depends on the lower limit of the argument of .]0, viz.; on 7v/W/a ; as ~ tends to zero, this, 
lower limit tends to infinity and the error vanishes. 

The supersonic lift distribution p(x) is independent of the chord length c ; hence we introduce 
a modified chordwise co-ordinate 

azc;g 

- V l ~ f -  ~ x  . . . . . . . . . . . .  

referring the physical co-ordinate cx to the wavelength V / f ,  and further 

y = i~ = ½o~x . . . . . . . . . . . . .  
Thus 

lira 2Y e .... ' ~ '  ( 7 )  1 y--~'l @ ,JO x -- (~y)O.5 {e-~'+ iT (y ) }  

where 

. . . .  (7) 

. . . .  (7a) 

(8) 

1{; 
p ,  - ~/ ,~ [r + 2 ( s  - ,7)1 ( y  - ,~)'-~ e -~  ~ - o . ~ &  

0 

• } 
+ w(O) e - ' y  -°5 [1 + i e 'T (y ) l  . 

12 

. . . . . .  (~o) 

T(y)  = lim e~y/(~-~). (8a) 
~ 1  " " " ° " " ° • * * " " ° ° * ° 

The downwash w(x) arises from the mode z(x) and is given by 

w(x) ---- &(x) + ~z(x) . . . . . . . . . . . . . . . . .  (9) 

We consider the elementary downwash distribution 

w/x)  ~ w, ~ f f ( r  ~> 0) . . . . . . . . . . . . . .  (9a) 

where r is positive or zero but need n o t  be integral. 

The lift distribution arising from w, we denote by 

p~ ~ p~(.x) . . . . . . . . . . . . . . . . . . .  (9b) . 

When (8) is substituted in (6), that  part of the integral which contains T(v) disappears owing 
to the Riemann-Lebesgue lelnma. Thus (6) becomes 



Consider first the case r > 0. As w(0) = 0, the awkward term T(y) disappears, and we obtain 
by means of AI(Sb) 

P" V ~  ~" n(-Y)'~ 1 2y _.  (lOa) 
- -  ,~=0 r - t - n !  ~ - r + n +  1! y '  °~ . . . . . .  

o r  

rlw, ~ g ( - - y ) ' l  + 2 n  . . . . . .  (11) 
P~ - -  (~y)O.5 ,~=o r + n! 1 - -  2n . . . . .  

This is the final result. The series (11) converges for any value y ; it converges rapidly in the 
range required for flutter calculations. 

We have still to consider the case r = 0, w0 ~- 1. The function T(y) is represented graphically 
by a wave-form of zero wavelength--this means that  the real and imaginary parts of 90 are both 
represented not by single curves but by strips of width W/(2/~2). (In other words, the transition 
M - +  1 is not regular; the physical significance of this fact has been discussed in section 2.) 
However, the ambiguity which is thus introduced is eliminated by defining 9(x) to be the mean 
lift on a finite length of wing chord : 

replace p(x) by lira 1 -["+~ ~--.+o 2~ 9(x) dx . . . . . . . . . . .  (12) 
t 

By means of the operation (12), T(y) disappears in (10) which is otherwise left intact. It  is then 
easily shown that  application of AI(5b) to the case r = 0 again leads to (11). Thus (11) is valid 
for r ~> 0. 

By superposition of the elementary solutions (11) the lift distribution caused by any downwash 
distribution w(x) which may occur on a wing with rigid or non-rigid chord can be obtained. 

Equation (11) connects downwash w and "lift 9 by means of a kind of response function which 
depends on the power r • 

9 ,  = ( 2 ) ° ~ P ~ ,  • . . . . . . . . . . . . . . . .  (13) 

Sample response functions P~ -= P / +  iP/ '  are shown in Fig. 5. The fact that  tile curves of 
Fig. 5 are perfectly regular and smooth supports the argument of section 2. I t  is easy to show 
that  

3~ (r - +  * )  . . . . . . . . . . . . .  (13a) P / - + r ;  P / ' - + ~  

3.4.3. Comparison of results.--The downwash distributions due to unit vertical translation 
(suffix z) and to unit pitch (suffix ~) about the leading edge are, owing to 3.4.2(9), (9a) 

w~ = ~w0 (z = 1) 

w~ = w0 + 2wi (z = x) 

and hence the corresponding lift distributions are 

2 -  = 9o +, 2P, 
(p~ and 9o are shown in Fig. 2 ) .  
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Thus the  four main  wing force coefficients are • 

la = 

p,  dx = 2 p o a y  

= g fl ldy 

,1 f[/s xp, dx = 4 - ypo dy 
O) 

0 

(~xp~dx  1 8 [  '°Is 
- ~ ° =  Jo - ~ + ~ J o  yp~dy 

(14) 

Subst i tut ing 3.4.2 (11) in (14) leads again to 3.4.1(2), (2a), (2b). 

3.4.4. Control surfaces.--In l inear theory  the specific proper ty  of supersonic flow tha t  no dis- 
turbance produces any effect ups t ream is still valid at sonic speed. (As a consequence all force 
coefficients required for the flutter calculation of a wing with control surfaces are linear combina-  
t ionst  of the  four main  wing force coefficients (see 3 .4 .1 (2 )and  Tables 2 and 3). When  the  
control-surface coefficients for M = 1 have been obta ined in this way approximate  values for 
high subsonic speeds can be obtained by  interpolat ion§ (see sections 3.5.4 and 4.1). 

3.5. Subsonic Range (M = 1 -- O).--In the  subsonic range the lift distr ibution p(x) is the  
solution of the  Possio equat ion (see, e.g., Ref. 17) 

*f~k[~(x ~)]p(~) d~ . . . . . . . . . . . . .  (1) w ( x )  = ~ - 
0 

The symbol *f denotes Cauchy's principal value. The kernel  k[v (x --  ~)] of the  integral  equat ion 
(1) has the form 

k ( x )  - -  x / ( 1  - -  M s )  i l o g  Ixl  + .  . .  ( 1 ) a  
2 ~ ×  2 ~ / ( 1  - -  M s) . . . . . .  

In  (la) the  a rgument  v(x --  ~) is replaced by x for shortness. Owing to the singulari ty of order 
x -1 of the  kernel  the  integral  equat ion (1) has a cont inumn of solutions p (×) ;  a un ique  
solution is enforced by adding to (1) the Ku t t a - Joukowsky  condit ion 

p(1) < ~ . . . . . . . . . . . . . . .  (ab) 

To the  speed parameters  3.3(lb) for the supersonic range correspond the parameters  

M < I ;  z - - - - - I - - M S > 0  . . . . . . . . . . . .  (2) 

for the  subsonic range. 

"~ e.g., the oscillating aileron behind a steady wing can be treated as a free wing i the force on the aileron due to wing 
motion is obtained by deducting from the total wing force the force on the front part of the wing. A complete table 
of the coefficients required for the wing with aileron and tab, both with aerodynamic balance, is given in Ref, 13. 

§ For extensive tables of control-surface coefficients up to M ---- 0.7, see Minhinnick 16, 
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3.5.1. Possio kernel.--The kernel  k(x) of 3.5 (1), though regular for Ixl > 0, is a fairly compli- 
ca ted function t of its parameters  × and M. An asymptot ic  expression for k(x) is developed in 
Appendix  I I I  ; the result is 

if 

and 

2x ( i  

(i ,f  
k ( -  x) ~ \ ~ 2  . 

1 - - M  ~ _ ( i ~  °°_~ ( i ~  ~" ( 
1 + ,,=~ 

\ 2 - - ~ J  e x p \  1 -- 

l+m/ 
(3) 

> o . . . . . . . . . . . . . . . .  (3a) 

n ( ~ )  = \ ~ /  e -;~/~ ° ~ # . . . . .  

The coefficients C., D,, are given by  A I I I  (12a), (13a) ; in part icular  

Thus 

. . . . . .  (3b) 

lim 2nC,---  l im D , , - - n - -  1 nl (3c) 
M - - - + I  M - - - + I  . . . . . . . . . . . .  

l im fk(×) = K(x) 
M-+I ~ k ( -  x) = 0 . . . . . . . . . . . . . .  (4) 

I t  appears t ha t  the kernel k(x) loses an impor tan t  feature during the t ransi t ion M - ~  1 • the 
l imit  function K(x) is integrable throughout .  

k(x) is shown graphically+ + in Fig. 6 (k ~- k' + ik"). 

3.5.2. Solution for M ---- 1 --  0 . - - I n  the  l imit M ---- 1 --  0 the Possio equation 3.5(1), owing 
to 3.5.1(4), becomes 

f 
x 

~ ( x )  = ~ K ( ~ ) p ( ~  - -  ~) d ,  . . . . . . . . . . . . .  (S) 
0 

Consider the e lementary  downwash w, see 3.4.2(9). Inser t ing  3.5.1(3b) in (5) and making  use 
3.4.2(7), (9b) we obtain 

w,~y=f(e-~n-°°dnp,(y--n)'~ (-n)~ o ~ !  . . . . . . . .  (6) 

We are going to show tha t  3.4.2(11), the lift dis t r ibut ion for M = 1 + 0, is also the solution 
of (6), i.e., the lift d is t r ibut ion for M ---= 1 --  0. For this  purpose t ransform 3.4.2(10a) by  means 
of AI(4c) • 

p~ z y~-o.s e-y ~ yn 
o ~ { r . n + r - - O . 5 + 2 y . n + r + 0 . 5 }  

tOwing to this complexity no Closed form solution--as exists for M = 0 ar/d M / >  1--has yet been found for 
0 < M < I .  

:~The numerical values of the kernel for M < 1 are taken from the tables of Schwarz and Schade is, Numerical 
¥~lues for M = 1 are .given in Table 6. 
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o r f  

# = y,_O.,~ e_~, ~ 2 y" 2 n + r  
o u ! n + r  ~ + r  . . . . . . . . . . . . .  (7) 

Denote by R(y) the right-hand side of (6) after (7) has been inserted in it ; thus 

j c . y  

R(y)  = e - '  ~,7 ~: ( - , 7 ) "  - o [~(y-~) ]°° ' ' '=°  ~!  ~ (y ~7) ,,+, (~ + r)t 2~+-Fr 
,~:0 n + r! n! n + r . .  (8) 

Apply AI(5a) with n q- r for 25, m + ~ q- r for q, and t for m + n. 

Thus R(y) = y" e-" E ( -  y)' S(t) (9) ,=o (t + r)! . . . . . . . . . . . . . .  

where 

S(t) = E (:)"(n + r) i ( n ) (t + r)! .. . (9a) 
,,=o ~!  " 1 "q- n +----~ (_)t t! 

Substituting (9a) in (9) yields 

R ( y )  - -  y . . . . . . . . . . . . . . . . .  ( lo)  

This completes the proof  for the elementary downwash w,. Obviously this proof also covers 
any arbitrary downwash distribution w(x) which can be obtained by linear superposition of 
elementary distributions w,,. 

3.5.3. Part solution for M = 1 -  ~.--The asymptotic 
kernel k(x) suggests the approximation 

t 

expression 3.5.1(3) for the Possio 

k(x) :-- k0(x) = I 
K i exp i l + M X  i f x > 0  

0 i f x  < 0 

(11) 

The, '  modified kernel '  k0(x) is integrable whereas k(×) is no t ;  of course the approximation 
(11) is valid only if ~/x is sufficiently large (see Table 6 and Fig. 7). 

The function k0(×) has some analytical  interest in that  the solution of the 'modified Possio 
equation '--3.5(1) with k0(x) instead of k(x)--can readily be derived, see Appendix IV. In 
particular the gradient of the modified forces at the point M = 1 can be given, see AIV(6). 
It appears that the amount of this gradient is about one quarter of the amount of the forces 
themselves--compare 3.4.1(4). Unfortunately this gradient of the modified solution is not 
identical with the gradient of the correct solution--this can be seen from 3.5.1(3)--and the 
modified solution itself can be considered a useful approximation only if ~ is rather large-- 
this can be seen from 3.5(I) and Fig. 7. 

tSolY1e care has to be taken in the case r = 0 which is to be understood as the limit r -+ 0. Thus 

= h ( 0  . . . . . . . . .  

~ + ");'pg , - - , . o \o  + , /  . . . . . . .  
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3.5.4. Remark on complete solution.--In Figs. le  and If curves o f t h e  subsonic and supersonic 
lift coefficients are shown side by  side. The curves for M = 0.8, 0-9, 0 .95 are interpolations,  
see section 4.1 ; the  remaining curves represent  the  correction solution. 

To the  curves M = 0.8, 0.9,  0 .95 correspond the curves M = 1.25, 1.11, 1.05. The la t ter  
are of a t rochoidal  na tu r e ;  interpolat ion between M = 1 and M = 1.43 would lead to con- 
siderable error. However  t h i s d o e s  not necessarily reflect on the  reliability of interpolat ion 
in the  range 0-7 < M < 1 : a comparison of the  two corresponding curves M = 1.43 and 0 .7  
with the curve M = 1 would suggest, on the contrary, tha t  though  interpolat ion is of little 
value for M = 1 + d it will yield reasonable approximations for M = 1 --  d. This will now be 
supported by a discussion of- the different natures of the lift distr ibutions p(x) in the  two regions 
M = : I + O .  

The trochoidal  nature  of the  curves M = 1 + ~ arises from the  waviness of the lift function 
p(x) (see Fig. 2t). This waviness in its turn  corresponds to the  short -waved par t  of the pertur-  
bat ion field AII  (3) and originates, in the first instance, in the disturbance formed by  the  lead ing  
edge ;  its ampli tude decreases as the impulse travels on. A similar shor t -waved per turba t ion  
will occur in subsonic flow, see AII  (1)+ +, but  in this case the impulse travels forward, originating 
at the  trailing edge. The difference in quest ion between the supersonic and the  subsonic lift 
distr ibutions must  therefore be due to a difference between the  boundary  conditions for the  
leading edge, M ~> 1, and the  trailing edge, M ~< 1. 

We may  put  our problem as follows : for M = 0 a rapidly convergent  (and often used 
sentat ion of p(x) is 

repre- 

= - c ° " x °  x o ( M = o )  . . . . . . . . . . .  ( 1 2 )  

For M = 1 from 3.4.2(11) 

C ~ cl~,x" (M = 1) (12a) 
p ( x ) -  v7 x o 

is again rapidly convergent .  Thus for M ~< 1 we may  write t en ta t ive ly  

p(x) - M)  c j -  (M 1) . . . . . . . . . . .  (13) 
~/x o 

For the convergency of (13) to be uniform in M we must  impose the  condit ion tha t  the function 
G(x, M) exhibits the  waviness of the  form exp{2iM¢~/(1 -- M)}, discussed above, and also tha t  

V1  -- x) (M--+ 0) (13a) 
, , . ,  . . . .  , 

G(x ,M)-+ C ( / - - +  1) "" 

The further  condition. 

~ / { ~ }  (x -"- 1) . . . . . .  (13b) G(x, M) -"- const (M ~--- 1)  "" "" 

arr ived at as follows : 

t See in pa r t i cu la r  p , ' ,  M = 1.111. Note t ha t  the  posi t ion of the  t ra i l ing  edge is given b y  ~ = 2/v. 

:~ S t r i c t ly  not  the  field of a single source as discussed in h l I  bu t  the  field of a line of doublets  should be considered. 
This l a t t e r  field is represented,  in i ts essence, b y  k(vx) = k(2~), see 3.5(3), and  shows the same two types  of wave • 
per turba t ions .  
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Writing for the lift distributions p(x) belonging to a given 
Mach numbers M ~< 1 

we know 

near leading edge (x % 0) 

x)~ near trailing edge (x ~ 1) 

downwash w(x) but various 

. .  (14) 

M 0 

- -0 .5  

+ 0 . 5  

- - 0 . 5  

0 

(14a) 

Thus we expect ¢¢ to equal -- 0"5, as is iln~plied in (13), for all M not exceeding unity. As regards 
¢~, we might suspect that  fl tends to zero as M tends to uni ty  for v not zero. That  this is not 
possible appears from the integral AI(6) which occurs for 3.5(1) owing to 3.5(la). Obviously 
the term with x ° in AI(6) must disappear in order that  3.5(1) can be satisfied ; the same applies 
to a corresponding term (1 -- x) e which arises from the symmetry of 3.5(1). Thus 

cq/3 = 0.5 (mod 1) (M < 1) . . . . . . . . . . . .  (14b) 

in confirmation of (13). (13b) then follows. 

The above set of conditions for the function G(x, M) appears to be rather stringent and  the 
fact that  it is fulfilled by a fairly simple function makes it likely that  this function would be 
a suitable Choice in our tentative series (13). This function is 

I t  is plotted in Fig. 8 ; we have, compare AI(2) 

o) = V { , , ( 1  - ; 1) = ½(1 - i)V  . . . . . . . . .  ( 15a )  

I t  is significant that  G(x, M) is again a Fresnel integral and thus is nearly related to the solution 
for M = 1. 

Figs. 2 and 8 show the different natures of the lift distributions /5(x) in the  two 
regions M = 1 ± d. As M tends to uni ty  from the supersonic side (Fig. 2) the waves formed by 
25.(x) contract to the left and pass the trailing edge (which is determined by £ = ½v) thus giving 
use to the oscillating term exp(-- v) in the-force coefficients, see 3.3(2), (6). A similar process 
occurs as M tends to uni ty  from the subsonic side (Fig. 8) though in the opposite direction. 
The essential difference however is that  as M tends to uni ty  the amp!i'tude of the waves remains 
nearly unchanged at a given point £ of Fig. 2 but tends to zero at a given point x < 1 of Fig. 8. 
This difference explains why interpolation may be used for M = 1 -- d but not for M = 1 + d. 
Clearly the change in the wing force coefficients (i.e., of the integrals of fl(x)) has a higher order 
of smoothness when M tends to uni ty  from the subsonic side than when M tends to uni ty  from 
the supersonic sider. 

The cause of the difference just discussed is indeed the difference in the boundary condit{ons 
at the leading and trailing edges ; the limit function is of order 1/V/x in Fig. 2, constant in Fig. 8. 
Thus the maximum amplitude of the waves must increase indefinitely as M tends to uni ty  in 
Fig. 2 but remains constant (roughly) in Fig. 8. 

t i t  also follows tha t  the l imit  M = I - -  0 of p(x) exists (while the l imit  M = 1 + 0 exists  only for the  mean 3.4.2(12).) 

' ! 8  



So much for the nature  of p(x).  An actual numerical  computa t ion  on the basis of (13) and 
(15), even if simplified by means of sections 3.5.1 and 3.5.3, would still require a considerable 
amount  of work. This work does not appear to be justified in view of 

(a) the  relat ively small degree of physical val idi ty  which can be expected for t h e  correct 
linear solution, 

(b) the conclusion (which can be drawn from the above argument)  tha t  interpolat ion through 
the range M = 1 --  a will lead to a reasonable approximation to the linear solution. 

3.5.5. Discuss ion  of  exist ing numerical  results f o r  M <~ O" 8.- -As may  be seen from Fig. 8, 
the  waviness of the lift function p(x) does not become pronounced in the t ruly  subsonic range, 
M ~< 0.8, say, at least not  for modera te  frequencies (v ~< 1.5, say). A number  of numerical  
solutions for this range have been published, notably  by Frazer and Skan 19 [M ~< 0.7], Dietze, 
Turner  and R a b i n o w i t J  [M ~< 0.71, Schade ~° [M ~< 0.8  t and recently by Timman,  van de 
Vooren and Greidanus 2. [M ~< 0.8]. The results of the first three investigations agree wi th  
each other satisfactorily but  they  differ systematical ly from those of the fourth. The differences 
are large enough t to warrant  a discussion. 

T imman  21 starts directly from the linear differential equat ion while the first three papers use 
its equivalent  integral  form, viz., the Possio equation, 3.5(1). However  the Possio equat ion can 
be taken to be well confirmed+ + , so tha t  the difference in the results cannot  be explained by this 
difference in method.  

The methods  of Frazer 1° and Schade ~° are approximate  methods  in tha t  in t h e m  a number  N 
of terms to be considered in the series corresponding to 3.5.4(12) has to be chosen initially. 
The methods  of Die tze"  and T imman  21 are ' exact ' methods§ in tha t  in t h e m  the summat ion  
can be cont inued unti l  a chosen accuracy is reached. 

Schade 2° uses the series 

,/{ p(x) = b 1 - -  x + 2 b,x ~ ; p ( ' l ) = 0  . . . . . . . .  (17) 
32 0 

instead of 3.5.4(12). (17) contradicts 3.5.4(133) but  this should not  have an appreciable effect 
if AT ~< 0 .7  (see Fig. 8 ;  a confirmation is (16)). 

Our further  discussion is confined to the two exact methods.  
far as the representat ion of the lift distr ibution p(x) is concerned. 

p(x) = a0 cot ½0 + £ a,, sin nO . . . . . .  
1 

(0 = cos-l(1 - -  2x)) 
t 

which can be rearranged in the form 3.5.4 (12). T imman  et al. 21 write 

p(x)  = p ( x )  exp i l  - - ~ x v  . . . . . .  

These are not  very different as 
Dietze 17 uses the Fourier  series 

. . . . . .  ( 1 8 )  

. . . . . .  (19 i 

]- An example  in point  is 

[ '0 .168 Refs. 17, 19, 20 

~'(M=O.7 .. . .  1) = 4 L 0"244 Ref. 21 . . . . . .  
(16) 

See also Fig. 9. 

Section 3.5.2 above m a y  be taken  as another  confirmation of the Possio equation. 

§ Dietze 17, it is true, uses an approximat ion  of the Possio kernel ; however,  this approximat ion  should be exact within 
the accuracy of Dietze 's  numerical  calculation. 
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and 

= ao cot ½0 + b se,  - o )  . 
1 

The se,, are Mathieu func t ions .  As 

(19a) 

se, , (x)  = y, B . ,  sin r x  . . . . . . . . . . . . . . . .  (19b) 
1 

it follows that,  by rearrangement of (19a), the function/5(x) can also be given the form (18). 

The two methods further agree in that  the coefficients a , ,  b ,  are defined as sums 

0 0 

and that  successive terms a .... b,, are obtained from recurrence relations. 

The essential difference between the two methods would thus seem to be the exponential factor 
in (19). This factor has the following significance • 

The perturbation field AII(1) of a moving source exhibits the two wavelengths 

2zrc 2=c (1 + M); w2 -- (1 -- M) 
w~ - -  v M  v M  . . . . . . . . .  (20) 

However, writing for the velocity potential ~, in accordance with (19), 

= ~ e x p  i l _ M  ~ v x  . . . . . . . .  

we find 

- -  Q exp ( - -  i - -  

with only one wavelength 

2~c (1 - M ~) 
W3 = ~ M  

(20a) 

) 1 - -  M 2 [xl  . . . . . . . . . .  ( 2 0 b )  

° ° ° ° 

Thus g, and therefore 1% correspond to a medium at rest. 

(2Oc) 

For the speed range M = 1 -- ~, neither method appears to be suitable. In both methods the 
respective solutions (p (x), i5 (x)) exhibit waves the length of which (w2, w~) tends to zero as M tends 
to uni ty  ; the respective series (18), (19a) become progressively more unsuitable for representing 
these waves. The nth term of (18) has n nodes along the chord while the nth term of (19a) has 
only ½= nodes ; as against this, w~ tends to 2w~ as M tends' to unity. Thus neither method appears 
to have an advantage over the other in this respect. 

We now return to the differences, mentioned at the beginning of this  section, between the two 
sets of numerical results. An independent repetition of Timman's work would be rather laborious 
as the analysis and numerical work are both rather involved. On the other hand Dietze's analysis 
has been thoroughly checked by Turner and Rabinowitz 17, who have also repeated his numerical 
calculation. A possible objection to Dietze's method is that  its convergency has not been proved 
generally; however for M----0.7,  v = 1, i . e . ,  for the case of equation (16), this convergency 
has now been re-checked carefully and was found to be of order 2-" at least, 
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in  view of this  position, and as Dietze 's  results agree well enough wi th  the results by  Frazer  ~ 
and Schade "°, the  resul ts"  obtained by  Dietze's  method have been preferred to T imman ' s  results ~ 
as a basis for the main  tables of the present  repor t . t  

3.6. S u r v e y o f  the S o l u t i o n s . - - I n  Fig. 2 the lift distr ibutions/5(x) due to vert ical  t rans la t ion 
and to pi tch are plot ted for 'different Mach numbers  M ~> 1 (and also for M = 0). The position 
of the trai l ing edge is given by  £ ~-- ~,x/2 = v/2. The t rue local lift/5(x) has no l imit  as M tends to 
uni ty ,  but  the  mean local lift 

1 t ''+~ p,,~(x) = lim ~ p(~) d~ . . . . . . . . . . . .  (1) 
c'~-~ 0 o x - - e  

has a limit. The nature  of the subsonic lift dis tr ibut ions 15(x) is indicated by  a function G, Fig. 8. 
Here  the l imit M - +  1 exists wi thout  proviso. 

Tile solution for M = 1 is the common limit  of bo th  the supersonic solution and the subsonic 
solution. I t  has a par t icular ly  simple analyt ica l  form 3.4.2(11). This s implici ty  is i l lus t ra ted 
graphical ly  in Fig. 5, where the response function P defined by  

- i . . . . . . . . . . . . . .  ( 2 )  

is shown for different downwash distr ibutions w(x) = x,. 

The four main  wing force coefficients for M = 1 are given by  3.4.1(2). They  are series of 
powers (n --  0.5) of ~, while the corresponding supersonic series are series of the  integral  powers 
of v. Corresponding relations 3.4. l(2b), (3a) resp&etively, are valid for the two types  of series. 
The aerodynamic  coefficients of the  wing wi th  aileron and tab are implici t ly given by  these four 
main  coefficients. 

In  addit ion,  a sympto t ic  expressions fo r  tile force coefficients are given for M = 1 + d, see 
3.3(1), (2), (6). These expressions are useful when v / ~ / ( M  ~ - -  1) is large ( >  3,  say). For M = 
1 --  0 the asympto t ic  expression for the  Possio kernel is given 3.5.1 (3), and also the solution for 
the main  par t  of the  kernel, Appendix IV. In section 3.5.4 it  is shown tha t  interpolat ion (which 
is of l i t t le value for M = 1 + ~) will yield reasonable results for M = 1 -- d. 

In  section 3.5.5 it  is explained why  the numerical  results of Dietze 17 are thought  to be reliable 
in spite of differing results recent ly  published. 

4. Tables and  Gra/shs o f  W i n g  _Force C o e ~ c i e n t s . - - T h e  four main  wing force coefficients+ + are 
t abu la ted  in Table 2 (v < 1.4) and are shown in isometric presenta t ion in Figs. l a  to ld  0' ~< 1). 
Addi t ional  values for M = 1 and M = 1.05 are given in Table 3 .  

The fol lowing sources were used in the  different speed ranges (for M = 0.8, 0.9, 0 .95 see 
section 4.1) : 

(a) M = 0 : S tandard  results 

(b) M = 0.5,  0.6,  0; 7 : Turner  and Rab inowi t z ' ,  tables for v = 0(0.04) 0.2(0.2)  1.4 

(c) M = 1 : Equat ions  8.4.1(2), (2~), (2b) 

(d) M : 1.05, v ~< 0 . 3 5 :  Addit ional  table§ calculated by  D. L. Woodcock, pr inted in 
Temple and J a h n  7. Pa ramete r  of this table is y = ~,M2/(M ~ - -  1) 

]- After this report  was writ ten (early in 1952) several notes on the subject have been published ; s e e  Jordan2% 

$ For  definitions s e e  section 3.2 and Table 1. 

§ An error in this table was discovered when the asymptot ic  formula section 3.3 was checked. The corrected values 
are given in Table 5. "-" 
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(e) M = 1.05, ~, ) 0 . 4 :  Equa t ions  3.3(1), (2), (6) 

( f )  M >~ 1. 111 : Jo rdan  ~3, tables for~ log~o (v/2) = --  2(0.05)0. 

A c c u r a c y :  The present  tables should be accurate  (i.e., should give the correct solution of the 
l inear .problem) to less than  a uni t  in the last decimal  place in cases (a), (c) and  (e). In  the 
remain ing  cases errors arise from the following reasons : 

(i) 

(it) 

Inaccuracy  of source :  for case (b), the results of Turner  and  Rabinowi tz  a7 should be 
accurate  to wi thin  1 per cent$; and should usual ly  be better .  

In  cases (b) and ( f )  the  factor a or ½= in the t ransformat ion  (Table 1) in t roduces  an 
error in the four th  decimal  place of l~, 1, and m~ -- up to 2 .units for l, (factor ~) and up to 
1 uni t  for 1, and  m~ (factor ½~).§ 

(iii) In  case (d) there  is an error in the imaginary  par t  of each der ivat ive of up to 3 uni ts  in 
the four th  decimal  place, due to the factor ~, in the t ransformat ion.  

(iv) In terpola t ion  : Some of the values given for case (b) and all of the values for cases (d) and 
( f )  had  to be obta ined by  interpolat ion with respect to ~. Third-order  in terpolat ion was 
used throughout .  Last  decimal figures (usually the four th  only, bu t  except ional ly  the 
th i rd  as well) have been omi t ted  in those regions where the es t imated  m a x i m u m  error  
due to interpolat ion exceeded 3 units  of the cancelled decimal place. 

4.1. Range  0.7  < 214 < 1 . - - I t  is not  claimed tha t  the table entries for M -~ 0 .8 ,  0 .9  and 0 .95 
(Table 2) represent  the correct solution with  the same degree of accuracy as do the other  entr ies  
of the  same tab les ;  t hey  are nothing but  the formal result  of wha t  seemed to be the most  
reasonable me thod  of in terpolat ion based on these other  entries. 

Different interpolat ions are shown in Fig. 9 for the case v = 0.8,  viz., the interpolat ions  based  
on the  table entries for M = 0 .5  (not (A)), M = 0.6,  0 .7  and 1.0 : 

(A) Second order in M 

(B) Third order  in M 

(C)  T h i r d  order  in x = 1 --  M ~. 

F rom 3.5.1(3) it appears tha t  (C) is preferable if v is sufficiently la rge ;  hence (C) is en t e r ed  in 
Table 2 and is shown in Figs. le  and lf. The isometric graphs Figs. l a  to ld,  show the in terpola t ion  
(A) (the difference is usual ly hard ly  visible owing to the small scale of the graphs). 

In  addi t ion to the interpolat ions (A) to (C), Fig. 9 also shows values ob ta ined  from 
other  sources : 

Schade 2°, tables for ~ = 0(0.4)2 \ M 
~< 0-8 

T imman  el al. 21, tables for the pa.ralneter ~,M/(1 --  M 2) J 
Of these, the values for M = 0 .8  ( interpolated for f requency pa ramete r  in t h e  case of Ref. 21) 
are t abu la ted  in Table 4. 

J- Constant steps A log v are more logical than constant steps Av. The first arrangement is preferable if a value Of 
the parameter v is chosen for the individual flutter calculation ; however it is somewhat inconvenient in those cases 
where v is the unknown quantity. 

.]: With possible exceptions near the corner M = 0.7, v = 1-4 of the region covered. 

§ This does not apply in case (b) to table entries less than a/10 for l,, or less than at/20 for lo and m~. 
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The reason why  Ref. 21 has not  been made  use of in the main Table 2 has been s ta ted  in 
section 3.5.5. Schade's values have been excluded for two reasons • 

(a) They are so few tha t  interpolat ion with regard to v becomes doubtful  

(b) Interpolat ion with regard to M becomes less s traightforward if Schade ' s  values are 
included ; see, e.g., l j '  and too' in Figs. 9c and 9d. 

Discussing (b), we must  distinguish : 

(i) The curves which represent the correct linear solution. These curves are waved ; 
wavelengths  and ampli tudes decrease as M tends to unity.  

(ii) Curves which approximate  (i) reasonably well but  smooth  out the  waviness of (i). 
The aim of our interpolat ion are curves (ii). The observation (b) m a y  have one or 
both  of two  reasons : 

iI) The curves (ii) are appreciably more strongly curved than  is ant ic ipated 
in our interpolat ion formula 

(II) The difference between (i) and (i i)--which we  assumed to be negligible for 
M ~< 0 .7 - - i s  already appreciable for M = 0 .8  (Schade's values lie on (i)). 

I t  is difficult to decide which of the two reasons is correct or preponderates.  F o r  our aim, a 
good average of approximation,  it seemed safer to choose the simpler curves, i.e., to exclude 
Schade's values. 

Last ly the significance for the present interpolat ion of recently published solutions t of the  
subsonic problem for the range v M / ~ / ( M  ~ - -  1) ~) 1 needs to be discussed. Of these solutions 
the  one by W. P. Jones "3 is the best, giving good approximat ion up to v -~-0.2 for M = 0" 7. 
However,  to v = 0 .2  for M = 0 .7  corresponds in accuracy v -~- 0.15 for M = 0"8, v ---~ 0" 10 
for M = 0 .9  ; thus even Jones 's  results are valid only for a small corner of the region covered 
by our interpolation. 

4.2. Disc,~ssio~.--The numerical  values given in Table 2 should cover the practical require= 
ments  of wing flutter calculations. Interpolation,  required in the Case of control surface flutter, 
is, convenient  for M ~ 1. Interpolat ion with respect to both  M and v is difficult in a certain 
range M = 1 + $ because of the short waves which characterise the curves in this range. How- 
ever these waves can be expected to have li t t le physical significance (see section 2.1) ; the force 
coefficients for this range can be replaced b y  coefficients for M = 1. 

Litt le need be said about the isometric graphs of Fig. 1, except perhaps tha t  the often dis- 
cussed region of negat ive damping in pi tch (see Fig. 3) corresponds to the funnel --  m j '  < 0 in 
Fig. ld.  The graphical representat ion has been t runca ted  at the  plane - - m j '  = -- 1 .4 ;  the 
coefficient too" itself reaches arbitrari ly large values near the point  [M, vl = El, 01. When  three- 
dimensional  effects "are allowed for, the v, M - - r e g i o n  of negat ive damping is reduced but  i t  
persists+ + in  a region near the point  ~M, ~1 = [1, 01--as indeed would be expected from Fig. ld.  

5. Cor~clusio~.--Linear theory  is applicable to the two-dimensional  problem of the  oscillating 
wing of zero thickness, even at sonic speed. In order to facilitate such application the four 
ma in  wing coefficients have been tabula ted  (and il lustrated by isometric graphs) in the speed 
range 0 ~< M ~< 2. Further,  the complete solution for an arbi t rary downwash at sonic speed 
has been given in a form convenient  for numerical  evaluation. For near-sonic speeds, this 
sonic solution is preferable, as an approximation to the non-linear solution, to the  ' e x a c t '  
l inear solution. 

]- By Miles ~2, W. P. Jones 2a, Radok 2~, Neumark 25. 

$ See, e.g., Runyan, Cunningham and Watkins 26. 
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APPENDIX I 

Basic Mathematical Formula 

(1) Using the notation defined in section 3.1 we obtain~ the following asymptotic expressions 
for Bessel functions of the first kind, Jp(x), and I3essel functions of the second kind (Weber's 
form) N/x)  (also called Neumann functions) 

{ °r~(*) ; # p~ 

iN/x)J ~(2i~x) °~ ~; ~ + p! ~ - Ee" e - q  

Thus the Hankel functions (or Bessel functions of the third kind) 

.. (1) 

~ H/1)(x) = J / x ) +  i N / x ) \  e~i. ~ + p! "~ _ p! 
± 2 ~(2i=x)0 ~ ~ (:I: iF-" ~<(2x) .... "" (la) 

( 
( iH/2)(x)  U~(~) + N,(~)J o 

If x is real and positive--in the present report this is always the case--then the amount of the 
error which is committed by breaking off after the n-th term is smaller than the amount of the 
(~¢ + 1)-th term. 

-~ See, e.g., Magnus and Oberhett inger "7 p. 34. Note tha t  

1 ( - ) " ~ + ~  - -  
4--m (4p~ --  '1)(4~'2 - -  3"°)" " " (4~'~ --  (2m --  1) 2) - -  

25 

m + p! m - -  p ! .  



(2) The Fresnel  integrals C(x) and S(x), see, e.g., Ref. 26, we use in the combinat ion 

= o < ( 2 ~  + 1 ) -  ~ ~ / 2  0 ~ ÷ l! . . . . . . . .  

• (see (4c) below). For  large x 

F(x) 1 - - i  i e_~. ( l x )  
- 2 / V ( 2 ~ x )  + 0  . . . . . . . . . . .  

(2) 

(2a) 

A graphical  i l lustrat ion is Fig. 8 where 

1 + M )  

is plotted. 

) 

(3) The interest ing relat ion 

.... E o \ m /  ( m + a + b ) ! =  (b - -  1)! ( n + a + b ) !  . . . .  (3) 

can be proved by  means of the  integral  (5) ; however (3) is more e lementary  than  (5) and hence 
deserves an independent  e lementary  proof • 

Note first t ha t  i t  is sufficient to prove (3) for a = 0, 1, 2 . . . .  ~z (multiplication by  (~z + a + b)l/al 
leads to an n t h  order expression in a on the left, while the r igh t -hand  side becomes 
independent  of a). 

Consider the case a = O, i.e., 

~¢! b! b (3a) 
( - ) "  (~ ~ ) f  (~  + ~)! - ~ + b . . . . . . . . .  ,~$=0 

Assume (3a) to be correct if I~:, bl is replaced by  In --  1, b + 11. The sum in (3a) can be trans- 
formed to read 

,~ , , -~(_) , , ,  ( n - l ) !  ( b + l ) !  - 1  ~ b + l  b 
1 b + l  £0 ( n - -  1--m)T. ( m + b + l ) r - - .  b + l  ~ + b - - n + b "  

From this and the fact t ha t  (3a) is obviously correct for n = 0 or 1, for all values of b, it follows 
tha t  (3a) is correct for any  number  n. 

Now assume tha t  (3) is correct when a is replaced by  (a --  1) ; t hen  

.... o m ( m + a + b ) l  ~=0 ( r e + a +  b)! 

( a - -  1)! (n + b - -  1)! 
( b - -  I)! (n + a + b - -  1)l 

- b (a - -  1)! (,~ + b)! 
b!(~ + a + b)! 

a!(~ + b - -  1)! 
(b --  1)l (~ + a + b)!" 
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i t  follows f rom this, s ince (3) has been  shown to be correct  for a = 0, t h a t  (3) is correct  for 
a = 1, 2 . . . .  ~, and  therefore  for all values  of a 

This comple tes  the  proof.  

A par t icu lar  fo rm of (3) is 

E ( : ) ( - - ) " ~ g = g  . . . . . . . . . . . . . . .  (3b) 

(4) Some infini te  series • 

1 1 
X/~ ,,=o ~ g y n =  (1 _ y ) O . ~  . . . . . . . . . . . .  (4a) 

,,=o ~ -k/5 + 0 .5  ---- ~5 . . . . . . . . . . . . . .  (4b) 

,,=0 n! ( ~ + a + b ) ! =  }o n ! ( b - - ~ ) ! ( ~ + a + b ) ! "  (4c) 

Formu la  (4a) is well  known.  (4b) follows from (5a) below, wi th  p = n, y = 1, by  means  of (4a) 
(4c) is equ iva len t  to (3). A special case of (4c) is (a = 0 ;  b = - -  0 .5)  • 

o g! - - V z ~  ~;o r t l ( 1 - - 2 q ~ )  . . . . . . . . . . .  (4d) 

(5) The  Euler  in tegra l  of the  first k ind~ is 

j p~q! 
ox~(1 - x)~dx = (p + q + 1)! (p' q > - 1) . . . . . . . .  (5) 

for real  pa ramete r s  p, q. We  use it in the  form 

J i 
By m e a n s  of (5a) 

(Y - ~)P'7~-' d~ - P! q - P! y .  (Sa) 

(6) 1"he in tegra l  

O 0 

(y - ~7/~ e-~,7 - ° °  d~ = ~! y ÷ ° ~  } ( -  Y/° 
~ = o r + n + l [  

g . . . . . . .  (Sb) 

6:a X ~  
d6: = :~ - -  + x ~ ~ cot  ~c~ . . . . . . . .  . (6) 

X - -  6: ,~=o I ¢ - -  ~ 

0 ~ x < l ;  ~ > - - 1  

"~ See, e.g., W h i t t a k e r  a n d  W a t s o n  2s p. 253. 
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can be derived as follows • assume first x J= 0, ~ > 0. Then 

{;i f: x - -  ~ d 8  = lim 8'~+" d 8  - -  
s---->0 n =  0 .Sfn -I- 1 

0 + ~  

x" + ~ 1 
= E x° E . 

~z + 1 --  ct d~ 

From this (6) follows; see e.g., Ref. 28, p. 136. 

In  the limit a - +  0 from (6) formally 

lira - - d ~ =  lira - - - - +  - ----log 
~-->o X -  ~ ~---+0 0~ ~=~ n 1 - - x  

0 

- - t h e  correct result. I t  is also obvious tha t  (6) remains correct for x - +  0. 
from the  relat ion 

tha t  (6) is also correct for 0 > c~ > --  1. 

It  follows at Once 

A P P E N D I X  II 
I 

Perturbatio~¢ Potential of Moving Source 

Consider the  per turbat ion field of a disturbance the speed o f  which passes through the sonic 
range. The aim of the Appendix  is to record briefly the nature  of this field in its simplest form. 

The per turbat ion potent ia l  ~o = # exp (2iafl) of a single oscillating source S of in tens i ty  
Q exp (2iafl), acting at the  origin of the moving co-ordinates, is given on the x-axis and for 
M < l b y  

-- ( _2i_MN" ~ (x ~ O) 
¢ - 4 w 1 ~  l e x p \  l i r a /  ( M < I )  . . . . . . . .  (1) 

where the variable sign is + or --  according as x > or < 0, and w ---- 2a/f. Thus a long-waved 
per turbat ion occurs to the rear (x > 0) ; it arises from the rearward impulse of S travell ing at 
the  high relat ive speed (1-}-M)Vsou~a. The short -waved per turbat ion to the front (x < 0) 
arises from the  forward impulse travell ing with the low relative speed ( 1 -  M)Vso.na. The 
wavelength wl-"-4~c/~ of the  first is long compared with the wing chord c and varies little 
with M ; the  wave length  w, ~--- 2a(1 --  M)c/v of the second tends to zero as M tends to unity.  

Equat ion  (1) remains valid in its essence if the  speed is increased to reach the sonic speed, 
and beyond.  For  M = 1 the  long-waved te rm takes the simple form 

- (2 ex - '  i~) ¢ - ~ ~ w -  
(x > 0) 

(M = 1)  . . . . . . . . . . . .  (2) 
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The short-waved term takes the  form of the function T(y)  (see 3.4.2(8a)). We m a y  either repeat  
the  a rgument  of 3.4.2(12) or argue that ,  as the forward speed of the impulse is zero, no point  
x < 0 will ever be reached by  it. By  ei ther argument  

q5 = 0  ( ~ / <  = 0~) . . . . . . . . . . . . . . .  (2a) 

At  supersonic speed (1 - -  M)Vso, na is negat ive ; thus  the shor t -waved impulse also travels  in 
the direction of the positive x-axis • 

i ¢ =  

[0 

- ~ 2i~. 5 2i~_'~l ~ T i J  ( M-- 1jj (x > O) 

( M  > 1). 
(~ < o) 

(3) 

A P P E N D I X  I I I  

Possio Kernel  ; Asymptot ic  Formula  

The Possio kernel, see, e.g., Dietze 17, is 

k ( x )  _=  k l ( x )  - k2(×) 

kl (×) - -  4%/~ H°(2I - -  i M  ~]  H~ (2) exp (iM2x/•) 

k~(x) = ~ log + ~ -  

Hp/~l are Hanke l  functions, or Bessel functions of the  th i rd  kind. 

The nature  of k(x) is different in the  two ranges × > 0 and x < 0 ; see Fig. 6. 
we assume 

x > 0  

and t rea t  the two cases k(x) and k(--  x) separately.  

Note first t ha t  the integra  1 

J o 
owing to Ref. 12, equations (42), (43). 

We use the modified co-ordinates 

M x  i 
X - -  (--~oo)- z =  ( -~0)  a s m - + l  

' 2 - X  • 
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From now on 

. .  (2) 
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From (2), (2), (3) 

k~ (-¢- x) -- 4~/~ H°I~I(X) ~ iMH~ I~I(X) e4-iMX 

(4) 

For p = 0, 1 from AI( la)  

Thus 

. 2 m +  1 
Co,,~--- 1; c1,~ = -- Z2m _ 1 " 

1(i)°5 ( 
k~(J: x) ~-~ ~ 2~/Ix exp 1 ± 21/12 } r~r~!z'' o I = F M - -  

(s) 

2 ~  - (~) 

The integral  in k~. is of the same form as the integral  in 3.3(lc). 
of 3.2(2a) 

we have 

ix i x  
I + M  2 

~X 
V 7___ - - - - - - - > - i o O  

1 - - M  

t i f M - + l  

J 

With  3.3(3a) but,  ins tead  

A ± - - V ~  exp(i:J:_X,~/M) H o l = l ( X v ) d v , ' ~ 7 ~ k ~ j  E~-¢z"I,,(~Z)o 

where I,,,(o~) is defined by  3.3(3a), and ~ = u, v, for A +, A -  respectively. 

(7) 

. .  ( s )  

Making use of 3.2(4a), we obtain first 

and then, introducing 3.3(5a), (5) and changing the order of summat ion  we obtain  

2 ~  \ 2 z x M J  exp 1 + M J  ~ ~!z"  E m + n  M - -  1 " ,,=o ,,=1 2M " 

Also making use of 3.3(4b) we obtain 

A--~ - -1 \~/(2ixh°°e-~ ~ ~ \(J CM + Mh''/ ~ ,~- 2! 
= o ,.÷1 ( -  v ) -  

(9) 
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and 

k=(-- ×) 1 -- M [  i ~o.s iM E glz" E n - - m  1 q - M /  (10) 
Y,~ y2~M) , x p  1 -  , , = o  . . . .  o 

Equat ions  (6), (9), (10) provide the complete asymptot ic  expression for th~ Possio kernel  
k = k, -- k2. I t  remains to write this set of formulae in a more convenient  form. 

Consider first the case M--+ 1. Denote the limit of k by  K. Thus 

K(×)  = [ k ~ ( × ) -  ~(×)]~,,,__+~ 

and finally by  means of AI(4d) 

h °°  ; - -  K(×) \~) ~ \2) ~!  

For negat ive arguments  

K ( - -  ~) - -=0 .  

n!(2m -}- 1) 

. .  . . . . . . . .  ( a l l )  

. . . . . . . . . . . . . . .  , . .  ( l l b )  

Now return  to the general case M ~< 1. Considering first only the term m = 0 in (6), the first 
sum in (9), and the term n = 0 in the second sum in (9), we obtain,  making use of AI(4a) 

k,(×) - k~(x) = K 1 T M  exp  ; 1--4 M × + ' ' "  

Fiiaally 

Q 2x ) e x p ( i  I - - M  ) 
k(,,) = K l T- M 1 + M x 

- \ ~ 2  ~ c,, ~ / exp  ( 1 + M /  

with  the coefficients 

c , , _ -  h -  1 - - -  5 ~  7 2M E m + n  

and 

where 

( ~' X~0'5 1 ( 1--M2N~ n ( ~]I/~X N~ 

(12) 

. . . .  (12a) 

. . . . . .  (13) 

D. =- - (13a) 
77 o ~ 1 - 2 , ~  I ~ M /  " ": . . . . . .  

The set of formulae~ (11), (12), (13) is convenient  for numerical  evaluat ion if ~/× is sufficiently 
small. 

J- This set has been checked by using it for recalculating some of Schade's values 18, 
! 



APPENDIX IV 

P a r t  S o l u t i o n  f o r  M = 1 - -  

The modified Possio equation as defined in section 3.5.3 becomes for the elementary downwash 
w ,  (see 3.4.2(9)) 

if 

1 ["d~e_~<~(#)_o.%(y_,) ~ ( -  ~)" . .  . .  .(1) y,, 
=o~ J0 o ~ !  . . . .  

(compare 3.5.2(6)). 

- ® (•)" 2n + r 
P '  = (Y) ' -°  ~ e - '  0 ~ n!  n + r ~ + r 

Substituting P, for p, in (1) leads to 

1 (2P)' e(~-M);  R ( y )  = 

(compare 3.52.(8), (9), (10)) ; it follows that  

p =<z~_, ~ p,+,(M-- 1)" 
,,,=o n! 

is the solution of (1). After some manipulat ion 

2 . ¢OOU . 

~ - - I + M '  3 ~ = ~ Y = l  + M '  q = e ~  . . . . . . . .  (la) 

We introduce a function P, defined by a relation similar to 3.5.2(7)) • 

(2) 

(3) 

r! o~ 1-" ( - - g M ) ~ M  + 2 n  
p,, = M ( n y ) O  5 w, Z ~ . . . . . . . .  (3a) o r + n t  1 -- 2 n  "" 

The limit of (3a) as M tends to unity agrees with 3.4.2(11), as of course it should. 

Substituting (3a) in 3.4.3(14) we find 

1 ~,_O.5M,_2(1 1-,- M )  
12-- (n -- t)! (2n -- 3) ~n~2 ] . . . . . . .  (4) 

(compare 3.4.1 (2a)). 3.4.1(2b) remains valid. The derivatives with respect to M of the modified 
forces can immediately be written down. Defining, in accordance with 3.4.1 (2), for the point 
M----1 

Olfl " 
\~),~<:~ ( 2 . ~ )  0.5 o 

we find 

(~l="'~ 2n -- 7 1 l=" . . . . . .  (5) 
k , , O M i l M =  1 = 4 ~ 2 n -  1 . . . . . .  

The derivatives of the other series coefficients, a re  given by relations which may be obtained 
from 3A.l(2b) by replacing all the series coefficients by their derivatives with respect to M. 
It  follows that  

( Ol:'~ 1 - - i  1 1 
-- k ~ ' i ) M =  1-  V (:713~)(0 '-t'-"~ . ~ -  -12~2., " )  ~ , ,, . . ,  ,, ,, (6) 

(~l<~ 1--7 (1 3 -39 ,2 ) I 
- -  \ ~ - M f f u : ~ - -  % / ( n v )  + iv - -  24--0 " ' "  j 
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T A B L E  1 

Comparison of Different Notations for Leading-edge Derivatives 

Present 
report 

,a 

~,n z 

T/¢. a 

BritisM 6 
subsonic 

1~ + ivl~ - -  v 2 l~ 

l~ + h,l~ - -  ,,2 la 

m z  - t -  i v t1*~  - -  "V~rt1~ 

m o  At- if11?.a - -  v 2 m a  

Temple and Jahn 7 
supersonic 

l~ + iv& 

1 z m~) l~ + ivla + ~ ( .  + 

1 I . .  m~ + ivm~ --  ~-( ~ + ivl~) 

m .  + irma --  }(l~ + ivh) 

+ ½(m~ + ivm~ --  l .  - -  ivla) 

Kiissner, 
subsonic 

~k~ 

1~(t~ ~ + l&) 

- ~n(~n~ + ½&) 

- ~ {  (.~b + }& + ½(,~.~ + k~) } 

Jordan 3 
supersonic 

~k,~ 

½~k6 

- -  ~yZ'717. b 



T A B L E  2 

Wing Force Coefficients 

2a Lif t  coefficient I. = l~' + il," 

M 

Y 

0 0.5 0.6 0.7 0.8 0.9 0.95 1.0 

0 0 0 0 0 0 0 0 0 
0.05 + 0 . 0 1 1 7 + 0 . 0 1 8 7 8 + ( ~ . 0 2 3 6 + 0 . 0 3 2 0  0.055 0.115 0.169 0.2460 
0.1 0.0333 0.05214 0.0645 0.0844 0.123 0..198 0.258 0-3391 
0.15 0.0561 0.0879 0,.1072 0-1377 0.188 0-270 0.330 0.4047 
0.2 0.0768 O. 1206 0-1460 0.1849 0.243 0.330 0.387 0.4550 
0.25 0.0936 0-1484 0.1787 0-2240 0.289 0.377 0.432 0.4952 
0-3 O. 1050 O. 1696 0.2043 0.2555 0.326 0.417 0.470 0.5276 
0.35 0-1110 0-1844 0.2232 0.2798 0.356 0.449 0.501 0-5543 

0.4 0.1114 0.1929 0'.2356 0.2975 0-379 0-475 0-526 0.5759 
0.5 0.0946 0-1922 0'-2424 0-3150i 0.408 0.512 0.562 0.6071 
0.6 +4-0.0553 0-1690 0-2271 0.312G 0-419 0.534 0.585 0.6257 
0.7 - -0 .0059 0.1251 0.1925 0.2935 0.420 0.549 0.601 0.6342 
0.8  --0.0880 +0.0616 0.1404 0.2614 0.412 0.558 0-611 0.6345 
0.9 - -0 .1902- -0 .0202  +0.072C 0.2186 0.400 0.566 0.618 0.6279 

1.0 - -0 .3119- -0 .1191  --0.0088 
1.2 - -0 .6115- -0 .3629  
1.4 --0.9834;--0-6641 

0.1678 0-385 0.576 0.625 0.6155 
- - 0 .2061+0 .0622  0.389 0.642 0.670 0.5765 
--0.4373 - 0 . 0 4 1 8  0.431 0.756 0-743 0.'5227 

1 " 0 5  

0 
0-0720 
0.237 
0.402 
0.480 
0.470 
0.437 
0.446 

0.5069 
0.6034 
0-5421 
0.5705 
0.6202 
0.5494 

0.5557 
0-5032 
0.5039 

1"1111 

0 
0.0217 
0.0833 
0.1747 
0"2817 
0"3880 
0"4788 
0.5432 

0"5760 
0"5574 
0"488 
0"449 
0"479 
0"542 

0"576 
0"47 
0.38 

1"1765 

0 
0"0104 
0"0409 
0"0892 
0"1517 
0"2236 
0"2998 
0"3750 

0"4441 
0"5474 
0"5889 
0"5695 
0"5091 
0"438 

0"383 
0"374 
0,429 

1 • 2 5  

0 
0.0059 
0.0234 
0-0516 
0"0893 
0.1349 
0.1864 
0.2415 

0-2979 
0-4052 
0.4915 
0.5444 
0.5584 
0-5355 

0.4840 
0'.348 
0-250 

1.4286 

0 
0.0024 
0-0093 
0.0208 
0"0366 
0.0563 
0.0794 
0.1056 

0"1342 
0"1962 
0"2602 
0.3210 
0.3735 
0.4134 

0.4377 
0.4337 
0.3648 

1-6667 

0 
0"0011 
0"0042 
0-0094 
0-0166 
0.0256 
0.0365 
0"0489 

0.0628 
0"0943 
0.1291 
0.1654 
0.2014 
0-2350 

0"2644 
0.3045 
0.3122 

2-0 

0 
0"0005 
0.0019 
0"0043 
0"0076 
0"0118 
0"0168 
0.0227 

0.0293 
0-0444 
0"0618 
0"0805 
0.1001 
0-1197 

0"1385 
0"1707 
0.1912 



,¢1 

TABLE 2a 

2a L i f t  coefficient l~ = 1/ + i l l '  

M 

0 0.5 0-6 0.7 0.8 0-9 0.95 1-0 1-05 1.1111 1.1765 1.25 1-4286 1.6667 2.0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.05 0-1499 0.1699 0.1816 0.1989 0.221 0.243 0.252 0.2587 0-2926 0.2036 0.1604 0"1329 0-0979 0.0750 0"0577 
0.1 0-2855 0-3175 0-3353 0.359~ 0.384 0-397 0.392 0.3748 0.485 0.3906 0.3153 0.2634 0.1951 0.1497 0.1153 
0.15 0-4090 0-4478 0.4678 0.4938 0"517 0-519 0.504 0-4701 0-551 0.5475 0-4595 0.3891 0.2910 0-2239 0.1728 
0-2 0.5227 0.5649 0.5856 0.6107 0.630 0.623 0.600 0.5559 0.548 0.6660 0.5888 0.5080 0.3848 0"2974 0-2299 
0.25 0-6286 0.6702 0.6908 0-7138 0.728 0.714 0.685 0-6361 0.567 0"7448 0"7001 0"6181 0.4761 0.3699 0.2867 
0.3 0-7283 0-7708 0.7912 0"8128 0.824 0.802 0.769 0.7131 0.653 0.7889 0.7922 0-7184 0.5641 0.4413 0"3430 
0"35 0.8232 0.8673 0.8876 0"9085 0.917 0.890 0"851 0"7877 0-781 0.8092 0.8646 0"8077 0.6486 0.5113 0.3988 

0.4 
0.5 
0.6 
0.7 
0"8 
0.9 

0.9143 0"9604 0"9808 1.0015 1.008 0.975 0.932 0.8609 0-8902 0.8191 0.9190 0"8856 0-7290 0-5798 0.4539 
1.0879 1.1389 1.1605 1.1825 1"188 1.146 1.092 1.0053 0-9622 0-8606 0.9860 1.0085 0"8767 0-7113 0-5620 
1.2534 1.3116 1"3361 1-3616 1.368 1"317 1.253 1.1485 1.0754 0.983 1-0256 1.0934 1.0058 0"8351 0-6668 
1-4138 1-4853 1.5155 1"5463 1.554 1"493 1.416 1.2923 1.2847 1-177 1.0744 1-1532 1.1166 0"9505 0.7679 
1"5707 1.6606 1.6990 1"7373 1-747 1"675 1"584 i .4376 1.3717 1-376 1.1600 1.2041 1.2108 1.0570 0-8651 
1-7254 1"8397 1-8891 1.9371 1.950 1.865 1-757 1.5848 1.4959 1-519 1.293 1.2623 1.2914 1.1551 0"9582 

1.0 
1-2 
1.4 

1.8785 2.0248 2.0879 2.1482 2.165 2.066 1-938 1.7345 1-6985 1.604 1-465 !-3408 1.3627 1.2456 1.0472 
2.1820 2-4175 2.5177 2.5924 2.594 2.447 2.286 2-0421 1-9357 1.81 1.834 1-585 1-4965 1-4075 1.2137 
2-4839 2.8510 2.9961 3-0753 3.039 2-825 2.630 2.3618 2-2536 2-18 2.109 1.923 1.6498 1.5550 1-3681 

l / '  



T A B L E  2b 

Lift coejficient l° 

I M 
0 0.5 0.6 0.7 0.8 0.9 0.95 1.0 1.05 1.1111 1.1765 1-25 1.4286 1.6667 2,0 

0 3.1416 3.6276 3.9270 4.3992 5.236 7.207 10.061 oo 6.247 4.1295 3.2272 2.6667 1.9604 1 5000 1.1547 
0.05 3-0073 3.4129 3.6518 4.0022 4.448 4.932 5-155 5.3386 5.877 4.0794 3.2118 2.6603 1.9589 1.4995 1.1545 
0-1 2.8823 3.2186 3.4004 3.6611 3.944 4.124 4.111 3.9789 4.939 3.9347 3.1666 2.6419 1.9544 1.4981 1.1541 
0.15 2.7734 3.0572 3.2045 3.4031 3.597 3.667 3.597 3.4130 3.840 3.7113 3.0935 2.6116 1.9467 1.4957 1.1533 
0.2 2.6791 2.9251 3.0499 3.2092 3.351 3.372 3.285 3.0960 2.977 3.4330 2.9966 2-5705 1.9365 1.4926 1.1522 
0.25 2.5968 2.8209 2.9318 3.0701 3.186 3.182 '3.086 2.8929 2.552 3,1286 2.8802 2-5196 1-9233 1.4883 1.1506 
0.3 2.5243 2.7308 2,8315 2.9548 3-054 3"037 2.941 2.7523 2.487 2.8268 2.7503 2.4602 1.9076 1.4833 1.1490 
0.35 2"4593 2.6534 2.7472 2.8608 2.950 2.927 2.832 2.6498 2.562 2.5541 2.6127 2.3944 1.8897 1.4775 1.1470 

0.4 2.4007 2.5873 2.6771 2-7857 2-870 2.845 2.751 2.5724 2.5747 2.3298 2.4734 2.3237 1.8694 1.4709 1.1448 
0.5 2,2957 2.4827 2.5724 2.6828 2.770 2-745 2.649 2.4651 2.3177 2.0618 2.2128 2.1752 1.8239 1.4555 1.1393 
0.6 2.2012 2.4052 2.5031 2.6268 2.727 2.705 2.600 2.3960 2.2162 2.010 2.0056 2.0293 1.7733 1.4379 1.1329 
0.7 2.1115 2.3392 2.4500 2-5921 2.710 2"691 2.576 2.3492 2.2761 2.065 1.8721 1.8994 1.7197 1.4183 1.1258 
0.8 2.0231 2.2841 2-4128 2.5789 2.718 2.703 2.574 2.3165 2.1761 2.113 1.8130 1.7948 1.6660 1.3971 1.1178 
0.9 1.9334 2.2354 2.3863 2.5811 2"746 2.733 2.587 2.2929 2.1377 2.094 1.812 1.7211 1.6143 1.3752 1.1091 

1.0 1.8409 2"1888 2.3653 2.5925 2.786 2.776 2"610 2.2755 2.1807 2.027 1.844 1.6789 1.5669 1.3531" 1.1002 
1.2 1.6424 2.1067 2-3502 2-6496 2,897 2.882 2.673 2.2522 2.1083 1.95 1.905 1.672 1"4907 1.3104 1-0817 
1.4 1.4216 2.0367 2.3601 2.7320 3-024 2.992 2.737..i 2.2374 2.1054 2.00 1"887 1.716 1.4451 1.2731 1.0631 

l ' . t t  



TABLE 2b--continued 

Lift coefficient la 

0 
0.05 
0"1 
0"15 
0"2 
0"25 
0 ' 3  
0"35 

0.4 
0.5 
0.6 
0.7 
0"8 
0"9 

1.0 
1"2 
1"4 

0 0.5 0"6 0.7 0"8 

0 0 0 0 0 
- -0 .  1213 --0.2445 --0" 3318 --0"4830 --0" 934 
--0.1184 --0.2849 --0.3929 --0.5790 --0.954 
--0.0671 
+0"0078 

0.0971 
0.1961 
0.3002 

0"4073 
0.6268 
0.8480 
1"0688 
1"2881 
1.5054 

1'7208 
2"1461, 

- -0 .2509--0 .364!  
--0.1797 --0-2931 
--0.0834 --0.1914 
+0"0179--0.0854 

0"1235 +0.024~ 

0.2327 0. 1367 
0.4587 0.3675 
0.6898 0.6014 
0.9167 0.830( 
1"1432 1"056~ 
1.3701 1"2801 

1.5979 1"5018 
2"05301 1"9434 

- -0 .5513--0 .874  
- -0 .4708--0 .754  
- -0 .3586--0 .615  
2-0.2440--0.48C 
--0"1277--0.35C 

- -0 .0102- -0 .223  
+ 0 . 2 2 5 6 + 0 . 0 2 2  

0.4583 0.252 
0.6803 0.462 
0-8944 0-656 
1.1006 0.834 

1.29901 0..999 
1.66411 1.251 

~-2"56541 ~-2 ' 515114-2 " 3770[ +1 "9873[+1.422 

M 

.0 0"9 0.95 "0 

0 0 
--2.122 - -3 .199 --~"7499 
--1.711 --2.320 +3.1463 
--1.436 - -1 .853 --2-3932 
- 1 2 0 7  - 1 5 2 3  - 1 9 1 8 3  
- 1 0 0 1  - 1 2 6 1  - 1 5 7 5 9  
- 0 8 2 3  - 1 0 4 6 / - 1 3 0 9 3  
--0"663 --0"861 --1"0909 

--0"516 --0"698 --0"9055 
--0"252 --0"417 --0"6003 
--0"021 --0"180 --0"3517 
+0.180 +0.023 - 0 1 3 9 2  

0"358 0"200 i+0"0484 
0"515[ 0"357 0"2183 

0.653/ 0.496 0.3748 
0 .4 

+0 i 

1-05 1"1111 

0 9 
- 1 . 2 8 6  --0.3315 
- 2 . 0 9 8  -0 -6318  
- 2 . 3 2 7  - 0 . 8 7 3 7  
- 1 . 9 9 2  - 1 . 0 3 7 5  
- 1 . 4 4 5  - 1 . 1 1 3 5  
- 0 . 9 9 4  - 1 . 1 0 2 3  
- 0 - 7 7 3  - 1 . 0 1 4 4  

--0"72491--0.8680 
- -0"5853--0 .4901 
- -0"2183- -0 .140  
- - 0 . 0 5 8 5 + 0 . 0 8 9  
+0 .0538  0.201 

0.2844 0.269 

0 .4097" 0"365 
0"6863 0.68 

+ 0 " 8 9 0 8 + 0 . 9 2  

1.1765 1.25 1.4286 

0 0 
- 0 . 1 2 8 3 - - 0 . 0 5 1 5  
- 0 . 2 5 0 0 - - 0 . 1 0 1 0  
- 0 . 3 5 9 1 - - 0 - 1 4 6 5  
- 0 . 4 5 0 1 - - 0 . 1 8 6 3  
- 0 . 5 1 8 6 - - 0 . 2 1 8 6  
- 0 - 5 6 1 7 - - 0 . 2 4 2 2  

0 
0.0020 
0.0043 
0-0073 
0.0112 
0.0165 
0.0233 

--0"5779--2.2559 0.0319 

- -0 .5664--0 .2589 0"0426 
--0"4685--0.2318 0.0709 
--0"2919--0.1613 0.1095 
--0"0728--0.0531 0.1589 
+0"1510+0 .0833  

0.350 0.2364 
0.2190 
0"2895 

0.507 0.3942 0.3690 
0.705 0"684 0.5491 

+0.849 +0 .906  0-7440 

1.6667 2-0 

0 0 
0-0164 0.0193 
0.0329 0-0385 
0-0496 0"0578 
0.0665 0.0772 
0.0836 0.0967 
0-1012 0.1162 
0"1192 0"1359 

0.1378 0.1558 
0.1766 0.1959 
0.2181 0-2369 
0.2627 0-2787 
0"3104 0"3215 
0"3616 0.3654 

0.4162 0.4104 
0-5349 0.5038 
0.6647 0"6017 

U' i 



T A B L E  2c 

Moment coefficient m, 

0 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 

0.4 
0.5 
0"6 
0.7 
0"8 
0.9 

0 0-5 0"6 0.7 0"8 0"9 0"95 

0 
+0-0024 

0.0064 
0.0096 
0.0114 
0"0111 
0.0086 

+0.0037 

--0.0036 
--0.0254 
--0.0569 
--0.0977 
--0.1477 
--0.2066 

0 
+0.0040 

0.0102 
0.015~ 
0-0191 
0.0201 
0.0182 
0.0136 

+0.0062 
--0.0168 
--0.0502 
--0.0938 
--0.1473 
--0-2105 

0 
+0.005C 

0-012~ 
0"0192 
0.0233 
0.0245 
0.0227 
0"0179 

+0.0102 
--0.0137 
--0.0485 
--0.0937 
--0-1487 
--0-2131 

M 

1"0 
l 

1-05 1-1111 1.17651 t -25  1-4286 1.6667 2.0 

0 0 0 0 0 0 
+0.0068+0"014 +0-034 +0.053 +0"0802 0.0474 

0.0165 0"027 0'053 0.076 0-1083:0.151 
0"0246 0"037 0"066 0"091 0.1263 0"235 
0.0296 0"043 0.074 0-I01 0.1385 0.242 
0-0310 0"045 -0"078 0-I07 0"1468 0-183 
0"0291 0.044 0.078 0"109 0.1521 0"123 
0.0240 0.039 0"076 0.108 0.1550 0.114 

0 0 0 0 0 0 
+ 0 - 0 1 4 4 + 0 . 0 0 6 9 + 0 - 0 0 3 9  0.0016 0.0007 0.0003 

0-0549 0.0272 0.0155 0-0062 0.0028 0-0013 
0.1135 0.0588 0.0341 0-0139 0.0063 0-0029 
0.1788 0.0990 0.0588 0.0243 0.0110 0.0051 
0.2386 0-1440 0.0882 0.0372 0.0170 0.0078 
0-2817 0.1900 0.1207 0.0522 0-0241 0-0112 
0.3009 0.2326 0.1547 0.0691 0.0323 0.0150 

+0"0157 0-031 0.069 0"105 0"1558 0.1577 0.2938 0"2681 0.1882 0.0873 0.0413 0-0193 
- - 0 . 0 0 9 6 + 0 " 0 0 5  0.049 0.091 0.1525 0.2102 0.2167 0.3066 0.2470 0-1257 0.0614 0.0291 
- -0 .0457- -0"030  +0.021 0"071 0-1440 0.1182 0.116 0-2926 0.2845 0.1635 0-0831 0.0402 
- -0 -0914- -0 .073  - -0 .013 0.045 0-1312 0.1296 0-065 0.2322 0.2925 0.1965. 0.1050 0.0519 
- -0 .1461- -0 .124  - -0 .052 +0 .016  0.1150 0.1586 0-085 0.1462 0.2687 0.2210 0-1256 0.0638 
- -0 .2088- -0"180  --0 .095 --0"017 0-0959 0"0738 0"136 0.062 0"2169 0.2340 0-1433 0.0752 

1"0 - -0"2743--0"2832--0"2865--0"2787--0"241 - -0"140 --0"051 0"0745 0"0736 0"154 +0"005 +0"1461 0"2336 0"1568 0"0855 
1"2  - -0"4356--0"4558--0"4584--0"4258--0"344 - -0"197 --0"096 +0"0261 0"0080 +0"03 --0"020 --0"003 0"1900 0"1670 0"1006 
1"4 - -0"6307- -0"6647- -0"6594- -0"5795- -0"424 - -0"218  --0"115 --0"0277 0"0082 --0"05 +0"049 --0"093 0"0984 0"1499 0"1052 

--~1~z ~ 



TABLE 2c--continued 

Moment coefficient m~ 

¢,D 

0-5" 

M 

0-6 0.7 0"8 0.'9 0.95 1-0 1-05 1.1111 1.1765 1 "25 1-4286 1-6667 2.0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0-05 0.0375 0"0425 0.0455 0-0499 0.057 0.069 0"077 0-0879 0.1414 0"1011 0.0800 0-0664 0.0489 0.0375 0.0289 
0-1 0.0714 0",0796 0,0842 0.0907 0.100 0.112 0.120 0.1298 0.209 0.1898 0"1558 0.1309 0.0973 0"0748 0.0576 
0 . t 5  0-1023 0.1125 0-1180 0.1257 0"136 0,149 0.157 0-1656 0.191 0.2563 0.2237 0.1919 0-1447 0-1117 0"0863 
0.2 0-1307 0.1423 0.1485 0.1569 0,168 0,182 0,190 0.1991 0"140 0.2951 0.2805 0.2477 0.1906 0-1480 0.1147 
0.25 0.1572 0.1694 0.1762 0"1853 0.197 0.212 0,221 0.2314 0"131 0.3063 0.3244 0.2972 0.2345 0.1837 0.1428 
0-3 0.1821 0.1954 0.2030 0-2133 0,227 0.243 0.253 0.2632 0.188 0.2953 0.3543 0-3394 0.2762 0.2185 0-1707 
0.35 0.2058 0.2206 0.2291 0.2409 0,256 0.275 0,285 0.2950 0.281 0.2717 0.3708 0"3737 0.3151 0/2523 0"1981 

0.4 0-2286 0.2451 0.2546 0.2685 0.287 0,307 0.317 0"3268 0-3478 0.2470 0-3753 0.3999 0-3511 0"2849 0.2250 
0.5 0.2720 0.2928 0.3051 0"3244 0.349 0.375 0.385 0.3912 0.3407 0.2359 0-3597 0.4298 0.4135 0-3462 0.2772 
0.6 0.3134 0"3400 0.3562 0-3831 0.417 0.448 0,457 0.4574 0"3903 0-310 0.3360 0.4356 0.4627 0.4019 0.3270 
0.7 0.3535 0"3883 0-4101 0-4467 0.492 0.528 0-534 0.5256 0.5282 0-446 0.3336 0.4287 0.4992 0.4514 0-3742 
0"8 0.3927 0-4382 0.4672 0.5164 0-575 0.618 0.619 0-5961 0.5426 0.576 0.3727 0.4227 0.5250 0-4948 0.4184 
0.9 0.4313 0.4903 0"5284 0.5934 0-669 0,718 0.711 0-6689 0-6011 0.647 0.458 0.4308 0.5427 0-5324 0-4599 

1.0 0.4696 0.5454 0.5947 0-6792 0.776 0"830 0.813 0.7443 0-7331 0,663 0,576 0.4628 0-5561 0.5650 0.4984 
1.2 0.5455 0-6669 0.7473 0.8773 1,018 1,079 1,033 0.9024 0.8301 0.74 0.817 0"611 0.5859 0,6191 0.5679 
1-4 0.6210 0-8090 0.9309 1-1179 1,309 1.371 1.285 1-0704 1.0028 0-99 0.954 0.838 0.6452 0.6675 0.6297 



T A B L E  2 d  

Moment coe~cient, m~ 

0 0.5 0.6 0.7 0.8 0-9 0-95 

M 

1.0 1.05 1.1111 1.1765 1-25 1.4286 1.6667 2 .0  

0 0.7854 0.9069 0.9818 1.0998 1"309 1.802 2.515 ~ 3.124 2~0647 1.6136 1,3334 0.9802 0.7500 0.5773 
0.05 0.7515 0.8535 0.9138 1.0029 1.151 1.409 1.603 1.8573 2.850 2.0272 1.6021 1.3287 0.9791 0.7497 0.5773 
0"1 0.7193 0.8049 0.8520 0.9212 1.026 1.187 1.298 1.4352 2.162 1.9192 1.5682 1.3148 0.9756 0.7486 0.5769 
0.15 0.6906 0.7641 0.8037 0.8597 0.943 1.071 1.160 1-2697 1.397 1.7540 1-5138 1.292i 0-9700 0.7468 0.5762 
0.2 0.6649 0.7300 0.7650 0.8138 0.887 1.001 1.082 1-1830 "0.870 1.5514 1.4420 1.2614 0.9623 0.7444 0.5755 
0.25 0.6415 0-7022 0.7348 0.7805 0-849 0-958 1.035 1.1315 0.713 1.3345 1-3565 1.2237 0.9525 0.7413 0.5744 
0.3 0.6200 0.6772 0.7082 0.7525 0.820 0.927 1.003 1.0987 0.829 1.1270 1.2623 1.1801 0.9408 0.7376 0.5731 
0"35 0.5998 0.6547 0.6849 0-7292 0-798 0.906 0.982 1.0771 1-009 0.9494 1.1639 1.1319 0.9276 0.7332 0.5715 

0.4 0.5805 0.6343 0.6645 0.7100 0.781 0.891 0.967 1.0627 1.0836 0.8159 1.0664 1.0806 0.9126 0.7283 0.5699 ' 
0.5 0-5432 0.5984 0.6306 0.6822 0.761 0.878 0-955 1"0466 0.9212 0.7022 0.8919 0.9752 0.8792 0.7170 0.5658 
0.6 0.5061 0.5668 0.6033 0.6651 0.757 0.883 0.958 1.0401 0-9049 0-757 0.7674 0.8752 0-8423 0.7039 0.5611 
0.7 0.4678 0"5358 0.5781 0.6531 0.762 0.897 0.969 1.0386 1.0137 0"875 0.7064 0-7913 0.8042 0.6895 0.5558 
0.8 0.4272 0.5051 0.5551 0.6469 0-776 0-922 0.988 1.0398 0.9477 0.956 0.7052 0.7305 0.7667 0-6742 0.5499 
0.9 0.3840 0.4736 0.5333 0.6459 0"800 0.957 1.015 1-0424 0-9424 0.959 0.755 0.6960 0.7318 0.6586 0-5437 

1.0 
1.2 
1.4 

0.3375 0.4401 0.5117 0.6492 0.833 1.002 1.050 1.0456 1.0069 0.911 0.808 0-6873 0.7010 0.6431 0.537t 
0.2339 0.3704 0"4737 0.6725 0.925 1.120 1.136 1.0525 0.9673 0.87 0.898 0.729 0.6564 0.6141 0.5240 
0.1149 0.2978 0.4424 0.7213 1.062 1-285 1.255 1.0583 0.9850 0.95 0.895 0-799 0.6378 0.5902 0.5113 

__7/4. I 



T A B L E  2d--cont inued 

Moment  coefficient ms 

0 0-5 0.6 0.7 0.8 0.9 0.95 

0 0 0 0 
0.05 - -0-0107--0"0350--0-0522 
0-1 -}-0"0097--0"0196--0.0382 
0.15 0 .0421+0.0140- -0 .0026  
0.2 0-0805 0.0566+0-0435 
0-25  0.1224 0.1052 0.0967 
0"3 0"1668 0"1551 0.1509 
0-35 0.2125 0-2062 0-2061 

0 0 
- -0 .0819- -0 -210  
- -0 .0700- -0-163  
- -0 -0292- -0 .100  
+ 0 . 0 2 4 1 - - 0 . 0 2 9  

0 -0844+0 .044  
0.1454 0.115 
0.2070 0-185 

M 

1-0 1.05 

0 0 0 
- -0 .596 - -0 .964 - -1 .5040- -0 .847  
- -0 .404 - -0 .622 - -0 .9356- -1 .326  
- -0 .276 - -0 .433 - -0 -6578- -1 -338  
- -0 .168 - -0 .294 - -0 .4763- -0 -982  
--0-073 - -0 .182 - -0 .3412- -0 .469  
+0 .014  - -0 .085 - -0 -2328- -0 .139  

0.094 -t-0.001 - -0 .1416- -0 .031  

0"4 0.2589 0"2583 0"2621 0"2692 0"255 0"171 0.080 
0.5 0"3530 0.3648 0"3762 0"394~ 0.393 0-317 0.223 
0"6 0.4476 0"4731 0"4923, 0"5214 0"529 0"453  0"352 
0"7 0"5421 0"5810 0.6087 0"648( 0"663 0"583 0"473 
0"8 0"6362 0-6900 0-7264 0"7750 0-796 0.709 0"586 
0"9 0.7298 0"8006 0.8455 0.9025 0"927 0.830 0"694 

0"948 0.797 
1-145 0".971 

+1 .295  +1-109  

1.0 0.8229 0.9135 0-9663 1.0304 1.056 
1.2 1"0078 1.1430 1.2160 1.2824 1.290 
1.4 + 1 " 1 9 1 1 : + 1 - 3 8 2 4 + 1 . 4 7 2 9 + 1 . 5 2 4 5 + 1 - 4 8 9  

I 1"1111 1"1765 1.25 1.4286 1.6667 2-0 

0 0 0 0 0 0 
- -0 .2202- -0 .0854- -0 .0343  0.0013 0.0109 0.0128 
- -0 .4157- -0 .1655- -0 .0670  0.0029 0.0220 0.0257 
- -0 .5647--0 .235(  --0.0965 0.0050 0.0331 0.0386 
- -0 .6523- -0 .2912- -0 .1214  0-0079 0.0444 0.0515 
- -0 .6717- -0 .3292- -0 .1404  0-0119 0.0560 0.0645 
- -0"6252--0-3472--0 .1525  0"0171 0.0678 0.0776 
- -0"5229- -0 .3442- -0 .1568  0.0237 0-0801 0.0908 

- -0"0622- -0"0701- -0 .3811- -0 .3204- -0 .1528  
+0"0729- -0"0439- -0 .0568- -0 .2168- -0 .1191  

0 " 1 8 7 4 + 0 " 2 1 8 0 + 0 . 2 0 7  --0"0586--0"0527 
0-2887 0.2772 0"345 
0"3809 0.3125 0"379 
0"4667 0"4708 0"386 

0"5476 0"5265 0.430 
0.6993 0-6865 0-64 

+ 0 . 8 4 2 0 : + 0 . 7 8 5 4 + 0 . 7 9  

0.0319 0"0927 0"1041 
0"0540 0.1194 0-1311" 
0"0840 0-1482 0"1587 

+0"1226+0 .0411  0-1224 0-1793 0.1870 
0"2957 0-1537 0"1690 0"2130 0-2161 
0"437 0.2752 0.2232 0"2494 0-2460 

0.537 0"3955 0.2841 0.2882 0.2768 
0.631 0"601 0-4197 0.3733 0.3410 

+0.691 +0 .739  0"5631 0-4663 0.4087 



T A B L E  3 

Additional Values for M = 1.0 and M = 1.05 

M = I . O  

M = 1.05 

1.6 
1.8 
2.0 

1.6 
1.8 
2.0 

0.4582 
0.3859 
0-3084 

0.4086 
0.3252 
0.2951 

2.6940 
3.0390 
3-3965 

2.6079 
2.8935 
3,2441 

U 

2.2268 
2.2180 
2.2097 

2.1183 
2"0850 
2,0825 

U, 

1.1594 
1.3891 
1.6107 

1.1406 
1"3647 
1.5524 

--0.0848 
--0.1437 
--0.2030 

--0.0797 
--0.1523 
--0.1653 

- -  ¢~/tz t t  

1.2482 
1"4354" 
1;6316 

1.2119 
1"3481 
1'5441 

- - ~ I / l , a  t 

1,0625 
1-0648 
1:0653 

1.0142 
0"9928 
0.9987 

--~/$a H 

0.9791 
1.1126 
1.2439 

0.9388 
1.0780 
1.1788 

T A B L E  4 

Coefficients for M = O. 8 by Schade 2° and T imman  ~1 

Schade 

Timman 

0"4 
0 '8  
1.2 
1.6 

0 .2  
0-3 
0.4 

0.5 
0.6 
0.8 

1.0 
1.2 
1.4 

0.3886 
0.4514 
0,4263 
0,2900 

0,2596 
0.3549 
0"4242 

0.4713 
0.5003 
0.5190 

0.5116 
0.4900 
0"4669 

U, 

1.0119 
1.7194 
2.4460 
3.1325 

0.6412 
0.8249 
0.9971 

1,1612 
1.3209 
1.6411 

1,9860 
2.3430 
2.7084 

l /  

2.8897 
2.7062 
2.7207 
2-6148 

3-3805 
3.0821 
2,8746 

2.7408 
2.6638 
2.6123 

2.5845 
2.6106 
2.6432 

/ '  

--0.2549 
+0"5543 

1'0714 
+1"5095 

--0.8326 
--0-5854 
--0.3513 

--0"1302 
+0 '0781 

0"4562 

0.7837 
1.0675 

+1.3084 

- -  I q $ ~ '  

0"0263 
--0"1086 
--0,2571 
--0"3585 

0.0419 
0.0445 
0.0343 

0"0137 
--0.0152 
--0.0892 

--0.1701 
--0.2381 
--0"2856 

- -  ~ / 4 ~  I t  

0.2899 
0.5938 
1.0133 
1.4358 

0.1702 
0.2287 
0"2889 

0.3523 
0.4204 
0.5759 

0,7669 
0,9802 
1.1994 

- -  ~i"$a ¢ 

0.7838 
0-8260 
0.9982 
1.1051 

0.8833 
0.8235 
0"7864 

0.7690 
0.7681 
0.8041 

0.8704 
0.9618 
1.0490 

--/4q,,/r 

0.2719 
0-7876 
1"1641 
1"3819 

--0.0202 
+0.1178 

0"2542 

0.3882 
0.5187 
0.7660' 

0"9890 
1.1683 

+1.2998 

T A B L E  5 

Errata in Temple-Jahn 7 

Y 

3"0 
3"5 
3-8 
4"0 

0"2789 
0-3254 
0-3533 
0"3719 

0-4483 
0-4335 
0.4481 
0.4676 

--0.2822 
--0.2106 
--0.1790 

--5 .233 
--3.715 
--3"284 
---3-II0 

--0.3789 

--0.2715 
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TABLE 6 

Possio kerne! k(x) and modified kernd ko(x) 

(see sections 3.5.1 and 3.5.3) 

M = 0.9 M = 1.0 
× 

k' ko" k' ~ k o' k" ~ ko" 

0.05 
0"1 
0.2 
0"3 
0"4 

0.5 
0"6 
0"7 
0"8 
0"9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 

1-9264 
1.2188 
0.8541 
0.7226 
0.6466 

0.5904 
0.5419 
0.4961 
0.4508 
0.4047 

0-3575 
0.3088 
0.2589 
0.2079 
0.1561 

0.1038 

k" k o' 

+0.8134 1.3204 
0-5744 0.9933 
0.3358 0.7766 

+0-1912 0.6828 
+0.0835 0.6225 

--0.0043 0.5744 
--0.0790 0-5307 
--0.1439 0.4880 
--0.2008 0.4448 
--0.2506 0.4003 

--0.2939 0.3541 
--0.3310 0.3063 
--0.3621 0.2571 
i--0.3872 0.2066 
--0.4065 0.1552 

--0.4200 0.1033 

+1.1328 
0.7286 
0.4050 
0.2335 
0.1131 

+0.0181 
--0.0612 
--0.1293 
--0.1885 
--0.2401 

--0.2847 
i--0.3229 
--0.3549 
--0.3807 
--0.4006 

--0.4147 

1.3531 
1.0170 
0.7940 
0.6976 
0.6358 

0.5866 
0.5422 
0.4989 
0.4552 
0.4103 

0.3638 
0.3157 
0-2661 
0-2153 
0.1637 

0.1115 

+1.1640 
0.7501 
0.4194 
0.2445 
0-1220 

+0.0254 
--0.0550 
--0.1241 
--0.1841 
--0.2364 

--0.2818 
--0.3205 
!--0"3530 
--0"3794 
--0.3998 

--0-4142 

43 
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