C.P. No. 337
(18.944)

A R C Technical Report
C.P. No. 337
A.R.C. Technical Report


# MINISTRY OF SUPPLY 

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Tables of Characteristics<br>Slopes for use in the Design of Nozzles for Supersonic Wind Tunnels<br>By<br>K.G.Winter

> U.D.C. No. 533.6.011.5 : 533.6.071.1 : 533.697.4

Technical Note No. Aero. 2444 May, 1956.

## ROYAL AIRCRATM ESTABLISMENTY

Tables of characteristics slopes for use in the design of nozzles for supersonic wind tunnels

## by

K. G. winter

## SUMMARY

Tables are given which are of use in the calculation of characteristic networks appropriate to two-dimensional nozzles f'or Mach numbers up to 4.5 . The tabulated characteristics slopes enable the co-ordinates of a characteristics intersection each to be evaluatod in one operation on a desk calculating machine.

## LIST OF CONTENTS

Page
1 Introduction ..... 3
2 List of Symbols ..... 3
3 Calculation of characteristics slopes ..... 3
4 Description of Tables ..... 5
Reforences ..... 5
LIST OF TABLES
Table
Characteristic Slopes Interval $0.2^{\circ}$ ..... I
Characteristic Slopes Interval $0.4^{\circ}$ ..... IA
Characteristic Slopes Interval 0.4 ${ }^{\circ}$ ..... II
Characteristic Slopes Interval $0.8^{\circ}$ ..... III
Characteristic Slopes Interval $1.6^{\circ}$ ..... IV
Characteristio Slopes Interval $1.6^{\circ}$ ..... V.
LIST OF ILLUSIRATIONS
Fig.
Sketch of characteristics intersections ..... 1

In the design of two-dumensional nozzles for supersonic wind tunnels by the characteristics method the calculations have in many cases been made graphically (for example Harrop and Bright ${ }^{1}$ ). The accuracy can be improved by calculating the characteristics intersections mumerically. If the slopes of the characteristics are available the co-ordinates of intersections may each be evaluated in one operation on a desk calculating machine. In designing nozzles for the R.A.E. intermittent wind tunnels the characteristic slopes have been tabulated for characteristic, numbers appropriate to Mach numbers up to 4.5 for given characteristic intervals. Even though there should be enough nozzle ordinates available by now to limit further calculations to special cases, and though the characteristics methods is becoming unfashionable, it is felt worth while to make the tables of slopes available generally.

2 List of Symbols
The flow is taken as being from left to right.
A right up-going characteristic values (in degrees)
B right dom-going characteristic values (in degrees)
D flow direction
M Mach number
$m_{1}$ slope of A characteristics
$-m_{2}$ slope of $B$ characteristics
$\mathrm{x}, \mathrm{y}$ Cartesian co-ordinates
$\mu \quad$ Mach angle
$v$ Prandti-Neyer angle

## 3 Calculation of characterastics slopes

The characteristics method adopted is that of 'points' rather than 'regions'. That is to say values are attributed to the intersections of characteristics of opposite families, rather than to regions enclosed by two pairs of characteristics of opposite families. Consider the intersections of two such pairs as in Fig.1. The 'A' characteristics are taken to be raght up-going and the ' $B$ ' characteristics right down-going with the flow direction from left to right. It is assumed that the ordinates ( $x_{1}, y_{1}$ and $x_{2}, y_{2}$ ) of the intersections of $A_{1}$ and $B_{1}$ and $A_{2}$ and $B_{2}$ are known and it is required to find $x_{3}$ and $y_{3}$. Then if the mean slopes of the characteristics approaching $x_{3} y_{3}$ are $m_{1}$ and $-m_{2}$ we have

$$
\begin{equation*}
x_{3}=\frac{y_{2}-y_{1}+m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y_{3}=\frac{x_{2}-x_{1}+\frac{y_{1}}{m_{1}}+\frac{y_{2}}{m_{2}}}{\frac{1}{m_{1}}+\frac{1}{m_{2}}} . \tag{2}
\end{equation*}
$$

Thus if the values $m_{1}, m_{2}, m_{1}+m_{2}$ and $\frac{1}{m_{1}}, \frac{1}{m_{2}}, \frac{1}{m_{1}}+\frac{1}{m_{2}}$ are tabulated the co-ordinates $x_{3} y_{3}$ can be obtained inmediately with the use of a desk calculating machine.

The slopes. $m_{1}$ and $m_{2}$ are given by

$$
\begin{align*}
& m_{1}=\tan \left(\mu_{1}+D_{1}\right)  \tag{3}\\
& m_{2}=\tan \left(\mu_{2}-D_{2}\right) \tag{4}
\end{align*}
$$

where $\mu_{1}, D_{1}$ and $\mu_{2}, D_{2}$ are the mean values of the Mach angle and flow direction respectively along the lines $x_{1}, y_{1}: x_{3}, y_{3}$, and $x_{2}, y_{2}$ : $x_{3}, y_{3}$

The values of ' $\mu$ and $D$ are dorived from the characteristics' numbers in the usual way, i.e.

$$
\nu_{1}=A_{1}+\frac{1}{2}\left(B_{1}+B_{2}\right)
$$

where for $\gamma=1.4$ the Prandti-Neyer angle*

$$
\nu=\mu+\sqrt{6} \operatorname{arccot}(\sqrt{6} \tan \mu)-\frac{1}{2} \pi
$$

and

$$
\begin{aligned}
& D_{1}=\frac{1}{\partial}\left(B_{1}+B_{2}\right)-A_{1} \\
& \therefore B_{2}+\frac{1}{2}\left(A_{1}+A_{2}\right) \\
& \nu_{2}= \\
& D_{2}=B_{2}-\frac{1}{2}\left(A_{1}+A_{2}\right)
\end{aligned}
$$

The values of $\nu$ were taken from the tables of Herbert and Older ${ }^{2}$ and the tangents of the angles from Milne-Thomson and Comrie ${ }^{3}$.

The errors in the tables should not exceed 2 units in the last decimal place quoted.

[^0]The tables are set out with given values of $A$ along rows and given values of $B$ down columns. Each block of six numbers gives values of the two slopes and their sum and similarly for the reciprocals. The values refer to the slopes of characteristics approaching a given point $A, B$, with the aporopriate interval. As $A, B$ increase the value of the interval is inrreased progressively. The intervals in degrees are

| Table I | 0.2 | $M<1.22$ |
| :--- | :--- | :--- | :--- |
| Table II | 0.4 | $1.2<M<1.43$ |
| Table III | 0.8 | $1.43<M<1.81$ |
| Tables IV and V | 1.6 | $1.81<M<4.53$ |

$M$ being the Nach number appropriate to the characteristic numbers on the centre-line of a nozzle.

The selection of the values of $A$ in Table I perhaps needs some explanation. It will be noted that the values have a minimum in the midale of the range. The minimum arises because the values are designed to be used in the throat region of a nozzle, where constant Mach number lines are convex downstream (see e.g. Fig. 1 of Ref.1). A right down-going characteristic is thus tangential to some constant Nach number line. The right up-going characteristic through the point of tangency will therefore have a minimum value.

## No. Author

## REF'ERENCES

1 R. Harrop and P.I. Bright

2 P.J. Herbert and S.J. Older

Design and testing of supersonic nozzles Part I R \&N 2712 October, 1948.

Tables for use in the investigation of supersonic fields of flow by the method of characteristics R.A.E. Tech. Note No. CW1 November, 1946. ARU 10.261
3 L.M. Milne-Thomson Standard four-figure Mat ematical Tables and L.J. Comrie

Macmillan 1948.

Slopos refer to ohoracteristics approaching point (A, B)
Table I - Gharacteristic Slopes Interval $0.2^{\circ}$
Key
$\begin{array}{lll}m_{1} & m_{2} & m_{1}+m_{2} \\ 1 / m_{1} & 1 / m_{2} & 1 / m_{1}+1 / m_{2}\end{array}$
Flow from left to right A Fight up-going characteristic (in degrees) B Bight down-going charaoteristic (in degrees)

| $A^{B}$ | 0.9 |  |  | 1.1 |  |  | 1.3 |  |  | 1.5 |  |  | 1.7 |  |  | 1.9 |  |  | 2.1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.1 | 1.5527 | 1.7056 | 3.2583 | 1.5255 | 1.6481 | 3.1736 | 1.5005 | 1.5953 | 3.0958 | $1.4778$ |  |  |  | 1.5013 | 2.9582 |  |  |  |  |  |  |
|  | 0.64,41 | 0.5863 | 1.2304 | 0.6556 | 0.6067 | 1.2623 | 0.666 | 0.6268 | $1.2932$ | $0.6767$ | 0.6466 | 1.3233 | 0.6864 | 0.6661 | 2.9582 1.3525 | 1.4375 0.6956 | $\begin{aligned} & 1.4592 \\ & 0.6853 \end{aligned}$ | $\begin{aligned} & 2.8967 \\ & 1.3809 \end{aligned}$ | $\begin{aligned} & 1.4197 \\ & 0.7044 \end{aligned}$ | $\begin{aligned} & 1.4197 \\ & 0.7044 \end{aligned}$ | $\begin{aligned} & 2.8394 \\ & 1.4088 \end{aligned}$ |
| 1.9 | 1.6075 | 1.7401 | 3.3476 | 1.5767 | 1.6786 | 3.2553 | 1.5489 | 1.6225 |  |  |  | 3.0945 |  |  |  |  |  |  |  |  |  |
|  | 0.6221 | 0.5747 | 1.1968 | 0.6342 | 0.5957 | 1.2299 | 0.6456 | 0.6163 | 1.2619 | 0.6564 | 0.6366 | 1.2930 | 1.5002 | 0.6565 | 3.0234 1.3230 | $\begin{aligned} & 1.4789 \\ & 0.6762 \end{aligned}$ | 1.4789 0.6762 | $\begin{aligned} & 2.9578 \\ & 1.3524 \end{aligned}$ | $\begin{aligned} & 1.4 .592 \\ & 0.6853 \end{aligned}$ | $\begin{aligned} & 1.4375 \\ & 0.6956 \end{aligned}$ | $\begin{aligned} & 2.8967 \\ & 1.3809 \end{aligned}$ |
| 1.7 | 1.6676 | 1.7783 | 3.4459 | 1.6328 | 1.7123 | 3.3451 | 1.6013 | 1.6522 | 3.2535 | 1.5729 | 1.5974 | 3.1703 |  |  |  |  |  |  |  |  |  |
|  | 0.5997 | 0.5623 | 1.1620 | 0.6125 | 0.5841 | 1.1966 | 0.6245 | 0.5052 | 1.2297 | 0.6358 | 0.6260 | 3.17618 | 1.5470 0.6464 | 1.5470 0.6464 | 3.0940 1.2928 | $\begin{aligned} & 1.5232 \\ & 0.6565 \end{aligned}$ | $\begin{aligned} & 1.5002 \\ & 0.6665 \end{aligned}$ | 3.0234 1.3230 | $\begin{aligned} & 1.5013 \\ & 0.6661 \end{aligned}$ | $\begin{aligned} & 1.4569 \\ & 0.6864 \end{aligned}$ | $\begin{aligned} & 2.9582 \\ & 1.3525 \end{aligned}$ |
| 1.5 | 1.7342 | 1.8212 | 3.5554 | 1.6943 | 1.7496 | 3.4439 | 1.6586 | 1.68851 | 3.3437 | 1.6265 | 1.6265 | 3.2530 | 1.5974 | 1.5729 | 3.1703 | 1.5709 | 1.5236 | 3.0945 | 1.5466 |  |  |
|  | 0.5766 | 0.5491 | 1.1257 | 0.5902 | 0.5716 | 1.1618 | 0.6029 | 0.5935 | 1.1964 | 0.6148 | 0.6148 | 1.2296 | 0.6260 | 0.6358 | 1.2618 | 0.6366 | 0.6564 | 1.2930 | 0.6466 | 1.4.6767 | $\begin{aligned} & 3.0244 \\ & 1.3233 \end{aligned}$ |
| 1.3 | 1.8085 | 1.8697 | 3.6782 | 1.7625 | 1.7915 | 3.5540 | 1.7216 | 1.7216 | 3.4432 | 1.6851 | 1.6586 | 3.3437 | 1.6522 | 1.6013 |  |  |  |  |  |  |  |
|  | 0.5529 | 0.5349 | 1.0878 | 0.5674 | 0.5582 | 1.1256 | 0.5808 | 0.5808 | 1.1616 | 0.5935 | 0.6029 | 1.1964 | 0.6052 | 0.6245 | 3.2535 1.2297 | 0.6163 | $\begin{aligned} & 1.5489 \\ & 0.6456 \end{aligned}$ | 3.1714 1.2619 | $\begin{aligned} & 1.5953 \\ & 0.6268 \end{aligned}$ | $\begin{aligned} & 1.5005 \\ & 0.6664 \end{aligned}$ | $\begin{aligned} & 3.0958 \\ & 1.2932 \end{aligned}$ |
| 1.1 | 1.8926 | 1.9250 | 3.8176 | 1.8387 | 1.8387 | 3.6774 | 1.7915 | 1.7625 | 3.5540 | 1.7496 | 1.6943 | 3.4439 | 1.7123 | 1.6328 | 3.3451 | 1.6786 | 1.5767 | 3.2553 | 1.6481 |  |  |
|  | 0.5283 | 0.5195 | 1.0478 | 0.5439 | 0.5439 | 1.0878 | 0.5582 | 0.5674 | 1.1256 | 0.5716 | 0.5902 | 1.1618 | 0.5841 | 0.6125 | 1.1966 | 0.5957 | 0.6342 | 1.2299 | 0.6067 | 0.6556 | $\begin{aligned} & 3.1736 \\ & 1.2623 \end{aligned}$ |
| 0.9 | 1.9890 | 1.9890 | 3.9780 | 1.9250 | 1.8926 | 3.8176 | 7.8697 | 7.8085 | 3.6782 | 1.8212 | 1.7342 | 3.5554 | 1.7783 | 1.6676 | 3.4459 | 1.7401 |  |  |  |  |  |
|  | 0.5077 | 0.5027 | 1.0054 | 0.5195 | 0.5283 | 1.0478 | 0.5348 | 0.5529 | 1.0877 | 0.5491 | 0.5766 | 1.1257 | 0.5623 | 0.5997 | 3.44620 | 1.7401 | 1.6075 0.6221 | 3.3476 1.1968 | $\begin{aligned} & 1.7056 \\ & 0.5863 \end{aligned}$ | $\begin{aligned} & 1.5527 \\ & 0.6441 \end{aligned}$ | $\begin{aligned} & 3.2583 \\ & 1.2304 \end{aligned}$ |
| 0.7 | 2.1012 | 2.0640 | 4.1652 | 2.0242 | 1.9550 | 3.9792 | 1.9584 | 1.8611 | 3.8195 | 1.9015 | 1.7791 | 3.6806 | 1.8518 | 1.7065 | 3.5583 | 1.8078 |  |  |  |  |  |
|  | 0.4759 | 0.4845 | 0.960 | 0.4940 | 0.5115 | 4.0055 | 0.5106 | 0.5373 | 1.0479 | 0.5259 | 0.5621 | 1.0880 | 0.5400 | 0.5860 | 1.1260 | 0.5534 | 1.6415 0.6092 | 3.4493 1.1623 | $\begin{aligned} & 1.7685 \\ & 0.5655 \end{aligned}$ | $\begin{aligned} & 1.5827 \\ & 0.6318 \end{aligned}$ | $\begin{aligned} & 3.3512 \\ & 1.1973 \end{aligned}$ |
| 0.5 | 2.2355 | 2.1543 | 4.3898 | 2.1396 | 2.0278 | 4.1674 | 2.0603 | 1.9218 | 3.9821 | 1.9926 | 1.8303 | 3.8229 | 1.9342 | 1.7504 | 3.6846 | 1.8831 | 1.6795 | 3.5626 | 1.8380 | 1.6160 |  |
|  | 0.4473 | 0.4642 | 0.9115 | 0.4674 | 0.4932 | 0.9606 | 0.4854 | 0.5204 | 1.0058 | 0.5018 | 0.5464 | 1.0482 | 0.5170 | 0.5713 | 1.0883 | 0.5310 | 0.5954 | 1.1264 | 0.5441 | 0.6188 | $\begin{aligned} & 3.4540 \\ & 1.1629 \end{aligned}$ |
| 0.3 | 2.3988 | 2.2541 | 4.6629 | 2.2781 | 2.1155 | 4.3936 | 2.1792 | 4.9925 | 4-1717 | 2.0974 | 1.8895 | 3.9869 | 2.0278 | 1.8003 | 3.8281 | 1.9677 | 1.7223 | 3.6900 |  |  |  |
|  | 0.4170 | 0.4417 | 0.8587 | 0.4389 | 0.4727 | 0.9146 | 0.4588 | 0.5018 | 0.9606 | 0.4767 | 0.5293 | 1.0060 | 0.4932 | 0.5554 | 1.04,86 | 0.5082 | 0.5806 | 1.0888 | 0.5221 | $\begin{aligned} & 1.6532 \\ & 0.6049 \end{aligned}$ | $\begin{aligned} & 3.5685 \\ & 1.1270 \end{aligned}$ |
| 0.1 | 2.6092 | 2.3298 | 4.9390 | 2.444.68 | 2.1662 | 4.6130 | 2.3200 | 2.0332 | 4.3552 | 2.2199 | 1.9226 | 4.1425 | 2.1357 | 1.8280 |  |  |  |  |  |  |  |
|  | 0.3833 | 0.4292 | 0.8125 | 0.4087 | 0.4616 | 0.8703 | 0.3207 | 0.4918 | 0.9225 | 0.4504 | 0.5201 | 4.1425 0.9705 | 2.4682 | 0.5470 | 3.9637 1.0152 | 2.0880 0.4845 | 1.7461 0.5727 | 3.8101 1.0572 | 2.0022 0.4994 | $\begin{aligned} & 1.6735 \\ & 0.5975 \end{aligned}$ | $\begin{aligned} & 3.6757 \\ & 1.0969 \end{aligned}$ |
| 0.1 | 2.6092 | 2.2641 | 4.8733 | 2.4468 | 2.1155 | 4.5623 | 2.3220 | 1.9925 |  | 2.2199 | 1.8895 | 4.1094 | 2.1357 | 1.8003 | 3.9360 |  |  |  |  |  |  |
|  | 0.3833 | 0.4417 | 0.8250 | 0.4087 | 0.4727 | 0.8814 | 0.4317 | 0.5018 | 0.9325 | 0.4504 | 0.5293 | 0.9797 | 0.4682 | 0.5554 | 3.9360 4.0236 | 2.0840 | 1.7223 0.5806 | 3.7863 1.0651 | $\begin{aligned} & 2.0022 \\ & 0.4994 \end{aligned}$ | $\begin{aligned} & 1.6532 \\ & 0.6049 \end{aligned}$ | $\begin{aligned} & 3.6554 \\ & 1.1043 \end{aligned}$ |
| 0.3 | 2.3988 | 2.1543 | 4.5531 | 2.2781 | 2.0278 | 4.3059 | 2.1792 | 1.9218 | 4.1010 | 2.0974 | 1.8303 | 3.9277 | 2.0278 | 1.7504 | 3.7782 | 1.9677 |  |  |  |  |  |
|  | 0.4170 | 0.4642 | 0.8812 | 0.4389 | 0.4932 | 0.9321 | 0.4588 | 0.5204 | 0.9792 | 0.4767 | 0.5464 | 1.0231 | 0.4932 | 0.5713 | 3.7782 1.0645 | 0.9677 | $\begin{aligned} & 1.6795 \\ & 0.5954 \end{aligned}$ | $\begin{aligned} & 3.6472 \\ & 1.1036 \end{aligned}$ | $\begin{aligned} & 1.9153 \\ & 0.5221 \end{aligned}$ | $\begin{aligned} & 1.6160 \\ & 0.6188 \end{aligned}$ | $\begin{aligned} & 3.5313 \\ & 1.1409 \end{aligned}$ |
| 0.5 | 2.2355 | 2.0640 | 4.2995 | 2.1396 | 1.9550 | 4.0946 | 2.0603 | 1.8611 | 3.9214 | 1.9926 | 1.7791 | 3.7717 | 1.9342 | 1.7065 | 3.6407 |  |  |  |  |  |  |
|  | 0.4473 | 0.4845 | 0.9318 | 0.4674 | 0.5115 | 0.9789 | 0.4854 | 0.5373 | 1.0227 | 0.5018 | 0.5621 | 1.0639 | 0.5170 | 0.5860 | 3.6407 1.1030 | $\left\lvert\, \begin{aligned} & 1.8831 \\ & 0.5310 \end{aligned}\right.$ | $\begin{aligned} & 1.6415 \\ & 0.6092 \end{aligned}$ | 3.5246 1.1402 | $\begin{aligned} & 1.8380 \\ & 0.5441 \end{aligned}$ | $\begin{aligned} & 1.5827 \\ & 0.6318 \end{aligned}$ | $\begin{aligned} & 3.4207 \\ & 1.1759 \end{aligned}$ |
| 0.7 | 2.1012 | 1.9890 | 4.0902 | 2.0242 | 1.8926 | 3.9168 | 1.9584 | 1.8085 | 3.7669 | 1.9015 | 1.7342 | 3.6357 | 1.8518 | 1.6676 | 3.5194 | 1.8078 | 1.6075 | 3.4153 |  |  |  |
|  | 0.4759 | 0.5027 | 0.9786 | 0.4940 | 0.5283 | 1.0223 | 0.5106 | 0.5529 | 1.0635 | 0.5259 | 0.5766 | 1.1025 | 0.5400 | 0.5997 | 1.1397 | 0.5531 | 0.6221 | 1.1752 | $0.5655$ | $\begin{aligned} & 1.5527 \\ & 0.6441 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 3.3212 \\ & 1.2096 \end{aligned}\right.$ |
| 0.9 |  |  |  | 1.9250 | 1.8387 | 3.7637 | 1.8697 | 1.7624 | 3.6321 | 1.8212 | 1.6943 | 3.5155 | $1.7783$ | 1.6328 | 3.4111 | 1.7401 | 1.5767 | 3.3168 | 1.7056 | 1.5255 | 3.2311 |
|  |  |  |  | 0.5495 | 0.5439 | 1.0534 | 0.5348 | 0.5674 | 1.1022 | 0.5491 | 0.5902 | 1.1393 | 0.5623 | 0.612 | 1.1748 | 0.5747 | 0.6342 | 1.2089 | 0.5863 | 0.6556 | 1.2419 |
| 1.1 |  |  |  |  |  |  | 1.7915 | 1.7216 | 3.5131 | 1.7496 | 1.6586 | 3.4082 | 1.7123 | 1.6013 | 3.3136 | 1.6786 | 1.5489 | 3.2275 | 1.64481 | 1.5005 | 3.1486 |
|  |  |  |  |  |  |  | . 0.5582 | 0.5809 | 1.1391 | 0.5716 | 0.6029 | 1.1745 | 0.584. 1 | 0.6245 | 1.2086 | 0.5957 | 0.6456 | 1.2413 | 0.6067 | 0.6664 | 1.2731 |
| 1.3 |  |  |  |  |  |  |  |  |  | 1.6851 | 1.6265 | 3.3116 | 1.6522 | 1.5729 | 3.2251 | 1.6225 | 1.5236 | 3.1461 | 1.5953 | 1.4778 | 3.0731 |
|  |  |  |  |  |  |  |  |  |  | 0.5935 | 0.6148 | 1.2083 | 0.6052 | 0.6358 | 1.2410 | 0.6163 | 0.6564 | 1.2727 | 0.6268 | 0.6767 | 1.3035 |
| 1.5 |  |  |  |  |  |  |  |  |  |  |  |  | 1.5974 | 1.5470 | 3.1444 | 1.5709 | 1.5002 | 3.0711 | 1.5466 | 1.4569 | 3.0035 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | 0.6260 | 0.6464 | 1.274 | 0.6366 | 0.6665 | 1.3031 | 0.6466 | 0.6864 | 1.3330 |
| 1.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $1.5232$ | $1-4789$ | 3.0021 | 1.5013 | 1.4375 | 2.9388 |
|  |  |  |  |  |  |  |  | . |  |  |  |  |  |  |  | 0.6565 | $0.6762$ | 1.3327 | 0.6661 | 0.6956 | 1.3617 |
| 1.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 1.4592 \\ & 0.6853 \end{aligned}$ | $\begin{aligned} & 1.4197 \\ & 0.704 \end{aligned}$ | $\begin{aligned} & 2.8789 \\ & 1.3897 \end{aligned}$ |

## TABLE IA

Characteristic Slopes Interval $0.4^{\circ}$
Slopes refer to characteristics approachong point (A, B) Flow from left to rignt
A Right up-golng characternstic (in degrees)


B Fight down-going characterıstics (in degrees)

| $A$ | 1.1 |  |  | 1.5 |  |  | 1.9 |  |  | 2.5 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.7 | 1.2295 | 1.4868 | 2.7163 | 1.2061 | 1.414 | 2.6205 |  |  |  |  |  |  |
|  | 0.8134 | 0.6726 | 1.4860 | 0.8291 | 0.7070 | 1.5361 |  |  |  |  |  |  |
| 3.3 | 1.2927 | 1.5211 | 2.8138 | 1.2651 | 1.4429 | 2.7080 | 1.2410 | 1.3733 | 2.6143 | 1.2149 | 1.2814 |  |
|  | 0.7735 | 0.6575 | $1 \cdot 4.310$ | 0.7905 | 0.6930 | 1.4835 | 0.8058 | 0.7282 | 1.5340 | 0.8231 | 0.7804 | $1.6035$ |
| 2.9 | 1.3639 | 1.5608 | $2.922_{7}$ | 1.3308 | 1.4757 | 2.8065 | 1.3021 | 1.4007 | 2.7028 | 1.2714 | 1.3027 | 2.5741 |
|  | 0.7332 | 0.6407 | 1.3739 | 0.7514 | 0.6777 | 1.4291 | 0.7680 | 0.7139 | 1.4819 | 0.7866 | 0.7676 | 1.5542 |
| 2.5 | 1.1.450 | 1.6075 | 3.0525 | 1.4046 | 1.5138 | 2.9184 | 1.3701 | 1.4323 | 2.8024 | 1.3336 | 1.3270 | 2.6606 |
|  | 0.6921 | 0.6221 | 1.3142 | 0.7119 | 0.6606 | 1.3725 | 0.7298 | 0.6982 | 1.4280 | 0.7498 | 0.7536 | 1.5034 |


| $A^{B}$ | 2.5 |  |  | 2.9 |  |  | 3.3 |  |  | 3.7 |  |  | 4.1 |  |  | 4.5 |  |  | 4.9 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.9 |  |  |  | 1.245 0.803 | $\begin{aligned} & 1.245 \\ & 0.803 \end{aligned}$ | $\begin{aligned} & 2.490 \\ & 1.606 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.5 |  |  |  |  |  |  |  |  |  |  | 1.159 | 2.422 | 1.246 | 1.113 | 2.359 | 1.231 | 1.069 | 2.300 | 1.217 | 1.028 | 2.245 |
|  |  |  |  | 1.303 0.768 | 1.266 0.790 | 2.569 1.558 | 1.281 0.780 | 1.210 0.826 | 2.491 1.606 | 1.263 0.792 | 1.159 0.863 | 2.422 | 1.803 | 0.899 | 1.702 | 0.812 | 0.935 | 1.747 | 0.821 | 0.972 | 1.793 |
| 2.1 |  |  | 2.750 | 1.366 | 1.269 | 2.655 | 1.341 | 1.230 | 2.571 | 1.319 | 1.176 | 2.495 | 1.299 | 1.127 | 2.426 | 1.282 | 1.082 | 2.364 | 1.267 | 1.040 | 2.307 |
|  | 0.717 | 1.355 0.738 | 2.750 1.455 | 0.732 | 0.776 | 1.508 | 0.746 | 0.813 | 1.559 | 0.758 | 0.850 | 1.608 | 0.770 | 0.887 | 1.657 | 0.780 | 0.924 | 1.704 | 0.789 | 0.962 | 1.751 |
| 1.7 |  | 1.387 | 2.858 | 1.437 | 1.316 | 2.753 | 1.407 | 1.253 | 2.660 | 1.381 | 1.196 | 2.577 | 1.358 | 1.144 | 2.502 | 1.338 | 1.096 | 2.434 | 1.320 | 1.052 | 2.372 |
|  | 0.680 | 0.721 | 1.401 | 0.696 | 0.760 | 1.456 | 0.711 | 0.798 | 1.509 | 0.724 | 0.836 | 1.560 | 0.737 | 0.875 | 1.612 | 0.748 | 0.913 | 1.661 | 0.758 | 0.951 | 1.709 |
| 1.3 | 1.559 | 1.424 | 2.983 | 1.517 | 1.346 | 2.863 | 1.481 | 1.279 | 2.760 | 1.450 | 1.217 | 2.667 | 1.422 | 1.162 | 2.584 | 1.398 | 1.112 | 2.510 | 1.377 | 1.066 | 2.443 |
|  | 0.642 | 0.702 | 1.344 | 0.659 | 0.743 | 1.402 | 0.675 | 0.782 | 1.457 | 0.690 | 0.821 | 1.511 | 0.703 | 0.860 | 1.563 | 0.715 | 0.899 | 1.614 | 0.726 | 0.938 | 1.664 |
| 0.9 | 1.660 | 1.468 | 3.128 | 1.603 | 1.382 | 2.990 | 1.564 | 1.308 | 2.872 | 1.526 | 1.242 | 2.768 | 1.494 | 1.183 | 2.677 | 1.465 | 1.130 | 2.595 | 1.440 0.694 | 1.081 0.925 | 2.521 1.619 |
|  | 0.603 | 0.681 | 1.284 | 0.622 | 0.723 | 1.345 | 0.640 | 0.765 | 1.405 | 0.655 | 0.805 | 1.460 | 0.669 | 0.845 | 1.514 | 0.682 | 0.885 | 1.567 | 0.694 | 0.925 |  |
| 0.5 |  | 1.520 | 3.299 | 1.713 | 1.424 | 3.137 | 1.659 | 1.343 | 3.002 | .1.613 | 1.271 | 2.884 | 1.573 | 1.208 | 2.781 | 1.540 | 1.150 | 2.690 | 1.510 | 1.099 | 2.609 |
|  | 0.562 | 0.658 | 1.220 | 0.584 | 0.702 | 1.286 | 0.603 | 0.745 | 1.348 | 0.620 | 0.787 | 1.407 | 0.635 | 0.828 | 1.463 | 0.649 | 0.869 | 1.518 | 0.662 | 0.910 | 1.572 |
| 0.1 | 1.923 |  |  |  | 1.438 | 3.287 | 1.770 | 1.362 | 3.132 | 1.713 | 1.287 | 3.000 | 1.664 | 1.221 | 2.885 | 1.624 | 1.162 | 2.786 | 1.588 | 1.108 | 2.696 |
|  | 0.51820 | 0.645 | 3.474 1.165 | 0.544 | 1.4480 | 1.234 | 0.565 | 0.734 | 1.299 | 0.584 | 0.777 | 1.361 | 0.601 | 0.819 | 1.420 | 0.616 | 0.861 | 1.477 | 0.630 | 0.902 | 1.532 |
| 0.1 | 1.923 | 1.520 | 3.443 | 1.839 | 1.424 | 3.263 | 1.770 | 1.343 | 3.113 | 1.713 | 1.271 | 2.984 | 1.664 | 1.208 | 2.872 | 1.624 | 1.150 0.869 | 2.774 1.485 | 1.588 0.630 | 1.099 0.910 | 2.687 1.540 |
|  | 0.520 | 0.658 | 1.178 | 0.54 .4 | 0.702 | 1.246 | 0.565 | 0.745 | 1.310 | 0.584 | 0.787 | 1.371 | 0.601 | 0.828 | 1.429 | 0.616 | 0.869 | 1.485 | 0.630 | 0.910 |  |
| 0.5 | 1.779 | 1.468 | 3.247 | 1.713 | 1.382 | 3.095 | 1.659 | 1.308 | 2.967 | 1.613 | 1.242 | 2.855 | 1.573 | 1.183 | 2.756 | 1.540 | 1.130 | 2.670 | 1.510 | 1.081 | 2.591 |
|  | 0.562 | 0.681 | 1,243 | 0.58 | 0.723 | 1.307 | 0.603 | 0.765 | 1.368 | 0.620 | 0.805 | 1.425 | 0.635 | 0.845 | 1.480 | 0.649 | 0.885 | 1.534 | 0.662 | 0.925 | 1.587 |
| 0.9 |  |  | 3.084 | 1.608 | 1.346 | 2.954 | 1.56 | 1.279 | 2.843 | 1.526 | 1.217 | 2.743 | 1.494 | 1.162 | 2.656 | 1.465 | 1.112 | 2.577 | 1.440 | 1.066 | 2.506 1.632 |
|  | 0.603 | 0.702 | 1.305 | 0.622 | 0.743 | 1.365 | 0.640 | 0.782 | 1.422 | 0.655 | 0.821 | 1.476 | 0.669 | 0.860 | 1.529 | 0.682 | 0.899 | 1.581 | 0.694 | 0.938 | 1.632 |
| 1.3 | 1.559 | 1.387 | 2.946 | 1.517 | 1.316 | 2.833 | 7.484 | 1.253 | 2.734 | 1.450 | 1.196 | 2.646 | 1.422 | 1.144 | 2.566 | 1.398 | 1.096 | 2.494 | 1.377 | 1.052 | 2.429 |
|  | 0.642 | 0.721 | 1.363 | 0.659 | 0.760 | 1.419 | 0.675 | 0.798 | 1.473 | 0.690 | 0.836 | 1.526 | 0.703 | 0.875 | 1.578 | 0.715 | 0.913 | 1.628 | 0.726 | 0.951 | 1.677 |
| 1.7 | 1.471 | 1.355 | 2.826 | 1.437 | 1.289 | 2.726 | 1.4 .07 | 1.230 | 2.637 | 1.381 | 1.176 | 2.557 | 1.358 | 1.127 | 2.485 | 1.338 | 1.082 | 2.420 | 1.320 | 1.040 | 2.360 |
|  | 0.680 | 0.738 | 1.418 | 0.696 | 0.776 | 4.472 | 0.711 | 0.813 | 1.524 | 0.724 | 0.850 | 1.574 | 0.737 | 0.887 | 1.624 | 0.748 | 0.924 | 1.672 | 0.758 | 0.962 | 1.720 |
| 2.1 | 1.395 | 1.327 | 2.722 | 1.366 | 1.266 | 2.632 | 1.341 | 1.210 | 2.551 | 1.319 | 1.159 | 2.478 | 1.299 | 1.113 | 2.412 | 1.282 | 1.069 | 2.351 | 1.267 | 1.028 | 2.295 |
|  | 0.717 | 0.754 | 1.471 | 0.732 | 0.790 | 1.522 | 0.746 | 0.826 | 1.572 | 0.758 | 0.863 | 1.621 | 0.770 | 0.899 | 1.669 | 0.780 | 0.935 | 1.715 | 0.789 | 0.972 | 1.761 |
| 2.5 |  |  |  | 1.303 | 1.245 | 2.548 | 1.281 | 1.193 | 2.474 | 1.263 | 1.144 | 2.407 | 1.246 | 1.099 | 2.345 | 1.231 | 1.057 | 2.288 | 1.217 | 1.019 | 2.236 |
|  |  |  |  | 0.768 | 0.803 | 1.571 | 0.780 | 0.838 | 1.618 | 0.792 | 0.874 | 1.666 | 0.803 | 0.910 | 1.713 | 0.812 | 0.946 | 1.758 | 0.821 | 0.982 | 1.803 |
| 2.9 |  |  |  |  |  |  | 1.227 | 1.177 | $2.40{ }_{4}$ | 1.211 | 1.131 | 2.342 | 1.196 | 1.088 | 2.284 | 1.183 | 1.048 | 2.231 | 1.172 | 1.010 | 2.182 |
|  |  |  |  |  |  |  | 0.815 | 0.850 | 1.665 | 0.826 | 0.884 | 1.710 | 0.836 | 0.920 | 1.756 | 0.845 | 0.955 | 1.800 | 0.853 | 0.990 | 1.843 |
| 3.3 |  |  |  |  |  |  |  |  |  | 1.163 | 1.118 | 2.281 | 1.150 | 1.077 | 2.227 | 1.139 | 1.038 | 2.177 | 1.130 | 1.002 | 2.132 |
| 3.3 |  |  |  |  |  |  |  |  |  | 0.860 | 0.894 | 1.754 | 0.869 | 0.928 | 1.797 | 0.878 | 0.963 | 1.841 | 0.885 | 0.998 | 1.883 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | 1.108 | 1.068 | 2.176 | 1.098 | 1.030 | 2.128 | 1.090 | 0.995 | 2.085 |
| 3.7 |  |  |  |  |  |  |  |  |  |  |  |  | 0.903 | 0.936 | 1.839 | 0.911 | 0.970 | 1.881 | 0.918 | 1.005 | 1.923 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.060 | 1.023 | 2.083 | 1.052 | 0.989 | 2.041 |
| 4.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.944 | 0.977 | 1.921 | 0.950 | 1.011 | 1.961 |
| 4.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.017 0.983 | 0.983 1.017 | $\begin{aligned} & 2.000 \\ & 2.000 \end{aligned}$ |


| Flow from left to right <br> A Right up-going characteristic (in degrees) <br> B Fight down-going characteristic (in degrees) |  |  |  |  |  |  | table III - Characterlstic Slopes Interval $0.8^{\circ}$ <br> Slopes refer to charapteristios approaching point ( $A, B$ ) |  |  |  |  |  |  |  |  | $m_{1}$ $m_{2}$ $m_{1}+m_{2}$ <br> $1 / m_{1}$ $1 / m_{2}$ $1 / m_{1}+1 / m_{2}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}^{B}$ |  | 5.7 |  |  | 6.5 |  |  | 7.3 |  |  | 8.1 |  |  | 8.9 |  | 9.7 10.5 |  |  |  |  |  |
| 2.5 | $\begin{aligned} & 1.200 \\ & 0.833 \end{aligned}$ | $\begin{aligned} & 0.959 \\ & 1.043 \end{aligned}$ | $\begin{aligned} & 2.159 \\ & 1.876 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.7 | 1.296 0.772 | 0.978 1.023 | 2.274 1.795 | $\begin{aligned} & 1.274 \\ & 0.787 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 0.907 \\ & 1.103 \end{aligned}\right.$ | $\begin{aligned} & 2.178 \\ & 1.890 \end{aligned}$ | $\begin{aligned} & 1.25 t \\ & 0.799 \end{aligned}$ | $\begin{aligned} & 0,84,4 \\ & 1.185 \end{aligned}$ | $\begin{aligned} & 2.095 \\ & 1.984 \end{aligned}$ | 1.235 0.810 | $\begin{aligned} & 0.787 \\ & 1.271 \end{aligned}$ | $\begin{aligned} & 2.022 \\ & 2.081 \end{aligned}$ |  |  |  |  |  |  |  |  |  |
| 0.9 | 1.409 0.710 | 1.004 0.999 | 2.410 1.709 | 1.374 0.728 | $\left\lvert\, \begin{aligned} & 0.924 \\ & 1.082 \end{aligned}\right.$ | 2.298 1.810 | 1.346 0.743 | 0.857 1.167 | 2.203 1.910 | 1.325 0.755 | 0.797 1.255 | 2.122 2.010 | $\begin{aligned} & 1.308 \\ & 0.765 \end{aligned}$ | $\begin{array}{\|l} 0.743 \\ 1.347 \end{array}$ | $\begin{aligned} & 2.051 \\ & 2.112 \end{aligned}$ | 1.294 0.773 | 0.693 1.444 | 1.987 2.217 | $\begin{aligned} & 1.28_{4} \\ & 0.779 \end{aligned}$ | 0.647 1.546 | 1.933 2.325 |
| 0.1 | 1.544 0.648 | 1.015 0.985 | 2.559 1.633 | $\begin{aligned} & 1.496 \\ & 0.669 \end{aligned}$ | 0.935 1.070 | 2.431 1.739 | 1.458 0.686 | 0.865 1.156 | 2.323 1.842 | 1.428 0.700 | 0.803 1.245 | 2.231 1.945 | $\begin{aligned} & 1.405 \\ & 0.712 \end{aligned}$ | 0.747 1.338 | $\begin{aligned} & 2.152 \\ & 2.050 \end{aligned}$ | 1.387 0.721 | 0.696 1.436 | 2.083 2.157 | 1.372 0.729 | 0.656 1.525 | 2.028 2.254 |
| 0.1 | $\begin{aligned} & 1.544 \\ & 0.648 \end{aligned}$ | 1,001 0.999 | $\begin{aligned} & 2.545 \\ & 1.647 \end{aligned}$ | 1.496 0.669 | $\left\lvert\, \begin{aligned} & 0.924 \\ & 1.082 \end{aligned}\right.$ | 2.420 1.751 | 1.458 0.686 | 0.857 1.167 | 2.315 1.853 | 1.428 0.700 | 0.797 1.255 | 2.225 1.955 | 1.405 0.712 | $\begin{aligned} & 0.743 \\ & 1.346 \end{aligned}$ | $\begin{aligned} & 2.148 \\ & 2.058 \end{aligned}$ | 1.387 0.721 | 0.693 1.44 .4 | 2.080 2.165 | 1.372 0.729 | 0.647 1.546 | 2.019 2.275 |
| 0.9 | 1.409 0.710 | 0.978 1.023 | 2.387 1.733 | 1.374 0.728 | 0.907 1.103 | 2.281 1.831 | 1.346 0.743 | 0.844 1.185 | 2.190 1.928 | 1.325 0.755 | 0.787 1.271 | 2.112 2.026 | 1.308 0.765 | 0.735 1.361 | 2.043 2.126 | 1.294 0.773 | 0.687 1.456 | 1.981 2.229 | 1.284 0.779 | 0.643 1.556 | 1.927 2.335 |
| 1.7 | 1.296 0.77 | 0.959 1.043 | 2.255 | 1.771 0.787 | 0.893 1.120 | 2.164 1.907 | 1.251 0.799 | 0.833 1.200 | 2.084 1.999 | 1.235 0.810 | 0.779 1.284 | 2.014 2.094 | 1.222 0.818 | 0.729 1.372 | 1.951 2.190 | 1.213 0.825 | 0.683 1.464 | 1.896 2.289 | 1.206 0.829 | 0.64 .0 1.562 | 1.846 2.391 |
| 2.5 | $\begin{aligned} & 1.200 \\ & 0.833 \end{aligned}$ | $\begin{aligned} & 0.944 \\ & 1.059 \end{aligned}$ | 2.144 1.892 | 1.182 0.846 | $\left\lvert\, \begin{aligned} & 0.882 \\ & 1.134 \end{aligned}\right.$ | $\begin{array}{l\|l} 2.064 \\ 1.980 \end{array}$ | 1.167 0.857 | 0.825 1.213 | 1.992 2.070 | 1.155 0.866 | 0.773 1.294 | 1.928 2.160 | 1.146 0.873 | 0.725 1.380 | 1.871 2.253 | 1.140 0.878 | 0.680 1.470 | 1.820 2.348 | 1.135 0.881 | 0.638 1.566 | 1.773 2.447 |
| 3.3 | $\begin{aligned} & 1.117 \\ & 0.895 \end{aligned}$ | $\begin{aligned} & 0.933 \\ & 1.072 \end{aligned}$ | $\begin{aligned} & 2.050 \\ & 1.967 \end{aligned}$ | $\begin{array}{\|l\|l} 1.103 \\ 0.907 \end{array}$ | $\left\{\begin{array}{l} 0.873 \\ 1.146 \end{array}\right.$ | $\begin{array}{\|l} 1.976 \\ 2.053 \end{array}$ | 1.092 | 0.818 1.222 | 1.910 2.138 | 1.083 | 0.768 1.302 | 1.851 2.225 | 1.077 0.928 | 0.722 1.385 | 1.799 2.313 | 1.073 0.932 | 0.679 1.474 | 1.752 2.406 | 1.071 | 0.638 1.568 | 1.709 2.502 |
| 4.1 | $\begin{aligned} & 1.043 \\ & 0.959 \end{aligned}$ | 0.923 1.083 | 1.966 2.042 | 1.032 0.969 | $\left\lvert\, \begin{aligned} & 0.866 \\ & 1.155 \end{aligned}\right.$ | 1.898 2.124 | 1.024 0.976 | 0.814 1.229 | 1.838 2.205 | 1.019 0.982 | 0.765 1.307 | 1.784 2.289 | 1.015 0.985 | 0.720 1.388 | 1.735 2.373 | 1.013 0.987 | 0.678 1.475 | 1.691 2.462 | 1.012 0.989 | 0.638 1.567 | $\begin{aligned} & 1.650 \\ & 2.556 \end{aligned}$ |
| 4.9 | $\begin{aligned} & 0.976 \\ & 1.024 \end{aligned}$ | $\begin{aligned} & 0.916 \\ & 1.092 \end{aligned}$ | $\begin{aligned} & 1.892 \\ & 2.116 \end{aligned}$ | 0.969 1.032 | $\left\{\begin{array}{l} 0.861 \\ 1.161 \end{array}\right.$ | 1.830 2.193 | 0.963 1.038 | 0.810 1.234 | 1.773 2.272 | 0.960 1.042 | 0.763 1.310 | 1.723 2.352 | 0.958 1.044 | 0.719 1.390 | 1.677 2.434 | 0.957 1.045 | 0.678 1.474 | 1.635 2.519 | 0.957 1.045 | 0.639 1.564 | 1.596 2.609 |
| 5.7 |  |  |  | $\begin{aligned} & 0.911 \\ & 1.098 \end{aligned}$ | $\begin{aligned} & 0.858 \\ & 1.166 \end{aligned}$ | $\begin{aligned} & 1.769 \\ & 2.264 \end{aligned}$ | 0.907 1.102 | 0.809 1.237 | 1.746 2.339 | 0.905 1.104 | 0.763 1.310 | 1.668 | 0.905 1.106 | 0.720 1.388 | 1.625 2.494 | 0.905 1.105 | 0.679 1.472 | 1.584 2.577 | 0.906 1.103 | 0.641 1.559 | 1.547 2.662 |
| 6.5 |  |  |  |  |  |  | $\begin{aligned} & 0.856 \\ & 1.168 \end{aligned}$ | $\begin{aligned} & 0,808 \\ & 1,238 \end{aligned}$ | 1.664 2.406 | 0.855 1.170 | 0.763 1.310 | 1.618 2.480 | 0.855 1.169 | 0.721 1.387 | 1.576 2.556 | 0.857 1.167 | 0.681 1.468 | 1.538 2.635 | 0.859 1.164 | 0.644 1.553 | 1.503 2.717 |
| 7.3 |  |  |  |  |  |  |  |  |  | 0.808 1.237 | $\begin{aligned} & 0.764 \\ & 1.308 \end{aligned}$ | $\begin{aligned} & 1.572 \\ & 2.545 \end{aligned}$ | 0.809 1.235 | 0.723 4.383 | 1.532 2.618 | 0.812 1.232 | 0.684 1.462 | 1.496 2.694 | $\begin{aligned} & 0.815 \\ & 1.227 \end{aligned}$ | 0.647 1.545 | $\begin{aligned} & 1.462 \\ & 2.772 \end{aligned}$ |
| 8.1 |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 0.766 \\ & 1.305 \end{aligned}$ | $\begin{aligned} & 0.726 \\ & 1.377 \end{aligned}$ | $\begin{array}{\|l\|l} 1.492 \\ 2.682 \end{array}$ | $\begin{aligned} & 0.770 \\ & 1.299 \end{aligned}$ | 0.688 1.454 | 1.458 2.753 | 0.773 1.293 | 0.651 1.536 | $\begin{aligned} & 1.424 \\ & 2.829 \end{aligned}$ |
| 8.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 0.729 \\ & 1.371 \end{aligned}$ | 0.691 1.446 | $\begin{aligned} & 1.420 \\ & 2.817 \end{aligned}$ | 0.734 1.363 | 0.655 1.526 | $\begin{aligned} & 1.389 \\ & 2.889 \end{aligned}$ |
| 9.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.696 1.437 | $\begin{aligned} & 0.660 \\ & 1.514 \end{aligned}$ | $\begin{aligned} & 1.356 \\ & 2.951 \end{aligned}$ |

Flow from left to xigh
A Fight up-going characteristio (in degrees)
B Fight down-going characteristic (in degrees)

Silopes ref'er to characteristios approaching point (A, B)

| ${ }^{13}$ | 12.1 |  |  | 13.7 |  |  | 15.3 |  |  | 16.9 |  |  | 18.5 |  |  | 20.1 |  |  | 21.7 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.9 | $\begin{aligned} & 1.274 \\ & 0.785 \end{aligned}$ | $\begin{aligned} & 0.564 \\ & 1.773 \end{aligned}$ | $\begin{aligned} & 1.838 \\ & 2.558 \end{aligned}$ | $\begin{aligned} & 1.268 \\ & 0.789 \end{aligned}$ | $\begin{aligned} & 0.491 \\ & 2.038 \end{aligned}$ | $\begin{aligned} & 1.759 \\ & 2.827 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.1 | 1.357 | 0.565 | 1.922 | 1.346 | 0.491 | 1.837 | 4.343 | 0.424 | 1.767 | 1.348 | 0.362 | 1.710 | 1.358 | 0.305 | 1.663 | 1.374 | 0.2519 | 1.626 |  |  |  |
|  | 0.737 | 1.770 | 2.507 | 0.743 | 2.038 | 2.781 | 0.744 | 2.360 | 3.104 | 0.742 | 2.759 | 3.501 | 0.736 | 3.274 | 4.010 | 0.728 | 3.969 | 4.697 |  |  |  |
| 0.1 | 1.357 | 0.564 | 1.921 | 1.346 | 0.491 | 1.837 | 1.3433 | O, 424 | 1.767 | 1.348 | 0.364 | 1.712 | 1.358 | 0.307 | 1.665 | 1.374 | 0.254 | 1.628 | 1.394 | 0.203 | 1.597 |
|  | 0.737 | 1.773 | 2.510 | 0.743 | 2.038 | 2.781 | 0.744 | 2.360 | 3.104 | 0.742 | 2.750 | 3.492 | 0.736 | 3.258 | 3.994 | 0.728 | 3.940 | 4.668 | 0.717 | 4.917 | 5.634 |
| 0.9 | 1.274 | 0.562 | 1.836 | 1.268 | 0.491 | 1.759 | 1.269 | 0.427 | 1.696 | 1.276 | 0.368 | 1.644 | 1.288 | 0.312 | 1.600 | 1.301 | 0.260 | 1.561 | 1.326 | 0.210 | 1.536 |
|  | 0.785 | 1.779 | 2.564 | 0.789 | 2.035 | 2.824 | 0.788 | 2.342 | 3.130 | 0.784 | 2.720 | 3.504 | 0.776 | 3.203 | 3.979 | 0.766 | 3.846 | 4.612 | 0.754 | 4.753 | 5.507 |
| 2.5 | 1.132 | 0.563 | 1.695 | 1.133 | 0,495 | 1.628 | 1.139 | 0.432 | 1.571 | 1.150 | 0.375 | 1.525 | 4.164 | 0.321 | 1.485 | 1.182 | 0.269 | 1.451 | 1.204 | 0.221 | 1.425 |
|  | 0.883 | 1.777 | 2.660 | 0.883 | 2.022 | 2.905 | 0.678 | 2.313 | 3.191 | 0.870 | 2.669 | 3.539 | 0.859 | 3.120 | 3.979 | 0.846 | 3.711 | 4.557 | 0.831 | 4.531 | 5.362 |
| 4.1 | 1.013 | 0.566 | 1.579 | 1.016 | 0.500 | 4.518 | 1.028 | 0.1440 | 1.468 | 1.041 | 0.383 | 1.424 | 1.057 | 0.330 | 1.387 | 1.075 | 0.280 | 1.355 | 1.097 | 0.232 | 1.329 |
|  | 0.987 | 1.776 | 2.753 | 0.982 | 1.998 | 2.980 | 0.973 | 2.274. | 3.247 | 0.961 | 2.608 | 3.569 | 0.946 | 3.027 | 3.973 | 0.930 | 3.571 | 4.501 | 0.912 | 4.308 | 5.220 |
| 5.7 | 0.911 | 0.572 | 1.483 | 0.919 | 0.508 | 1.427 | 0.931 | 0.449 | 1.380 | 0.945 | 0.394 | 1.339 | 0.962 | 0.341 | 1.303 | 0.981 | 0.292 | 1.273 | 1.002 | $0.244^{4}$ | 1.246 |
|  | 1.098 | 1.747 | 2.845 | 1.088 | 1.968 | 3.056 | 1.075 | 2.228 | 3.303 | 1.058 | 2.541 | 3.599 | 1.040 | 2.929 | 3.969 | 1.020 | 3.427 | 4.447 | 0.998 | 4.090 | 5.088 |
| 7.3 | 0.821 |  | $1.402$ |  | $0.518$ |  | 0.844 | 0.460 |  | 0.860 |  | 1.265 | 0.877 | 0.354 | 1.231 | 0.896 | 0.305 | 1.201 | 0.918 | 0.258 | 1.176 |
|  | 1.218 | $1.722$ | 2.940 | 1.203 | 1.931 | $3.13{ }_{4}$ | 1.184 | 2.176 | 3.360 | 1.163 | 2.469 | 3.632 | 1.140 | 2.829 | 3.969 | 1.116 | 3.283 | 4.399 | 1.090 | 3.880 | 4.970 |
| 8.9 | 0.741 | 0.591 | 1.332 | 0.753 | $0.5 \%$ | 1.282 | 0.767 | 0.472 | 1.239 | 0.783 | 0.418 | 1.201 | 0.800 | 0.367 | 1.167 | 0.820 | 0.318 | 1.138 | 0.841 | 0.272 | 1.113 |
|  | 1.349 | 1.692 | 3.041 | 1.328 | 1.890 | 3.218 | 1.304 | 2.121 | 3.425 | 1.278 | 2.394 | 3.672 | 1.250 | 2.727 | 3.977 | 1.220 | 3.142 | 4.362 | 1.190 | 3.679 | 4.869 |
| 10.5 | 0.669 | 0.603 | 1.272 | 0.682 | 0.542 | 1.234 | 0.596 | 0.485 | 1.181 | 0.712 | 0.4 .31 | 1.143 | 0.730 | 0.381 | 1.111 | 0.750 | 0.333 | 1.083 | 0.770 | 0.287 | 1.057 |
|  | 1.495 | 1.659 | 3.154 | 1.467 | 1.846 | 3.313 | 1.436 | 2,062 | 3.498 | 1.404 | 2.318 | 3.722 | 1.369 | 2.625 | 3.994 | 1.334 | 3.005 | 4.339 | 1.298 | 3.488 | 4.786 |
| 12.1 |  |  |  | $\begin{aligned} & 0.616 \\ & 1.622 \end{aligned}$ | $\begin{aligned} & 0.556 \\ & 1.799 \end{aligned}$ | $\begin{aligned} & 1.172 \\ & 3.21 \end{aligned}$ | 0.631 1.584 | 0.499 2.002 | 1.130 3.586 | 0.648 1.543 | 0.446 2.240 | 1.094 3.783 | 0.666 1.502 | 0.396 2.525 | 1.062 4.027 | 0.685 1.460 | 0.348 2.872 | 1.033 4.332 | 0.705 1.418 | 0.302 3.308 | 1.007 4.726 |
| 13.7 |  |  |  |  |  |  | 0.571 | 0.515 | 1.086 | 0.588 | 0.462 | 1.050 | 0.606 | 0.412 | 1.018 | 0.625 | 0.364 | 0.989 | 0.645 | 0.319 |  |
|  |  |  |  |  |  |  | 1.750 | 1.941 | 3.691 | 1.701 | 2.163 | 3.864 | 1.651 | 2.426 | 4.077 | 1.600 | 2.744 | 4.344 | 1.551 | 3.138 | 4.689 |
| 15.3 |  |  |  |  |  |  |  |  |  | $0.532$ | 0.479 | 1.011 | 0.550 | 0.429 | 0.979 | 0.568 | 0.381 | 0.949 | 0.588 | 0.336 | $0.924$ |
|  |  |  |  |  |  |  |  |  |  | 1.880 | 2.088 | 3.968 | 1.819 | 2.331 | 4.150 | 1.759 | 2.622 | 4.381 | 1.700 | 2.979 | 4.679 |
| 16.9 |  |  |  |  |  |  |  |  |  |  |  |  | 0.497 | 0.447 | $0.944$ | 0.515 | 0.399 | 0.914 | 0.535 | 0.353 | $0.888$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  | 2.013 | 2.238 | 4.251 | 1.940 | 2.506 | 4.446 | 1.869 | 2.830 | 4.699 |
| 18.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.465 | 0.417 | 0.882 | 0.485 | 0.372 | 0.857 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2.149 | 2.395 | 4.544. | 2.063 | 2.690 | 4.753 |
| 20.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.437 | 0.391 | 0.828 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2.290 | 2.559 | 4.849 |




DIRECTION OF FLOW

FIG. I: SKETCH OF CHARACTERISTICS INTERSECTIONS.

## C.P. No. 337 $(18,944)$ <br> A.R.C. Technlcal Report

Crown copyrgght reserved
Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c 2
423 Oxford Street, London w 1
${ }_{13 \text { A }}$ Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller

PRINTED IN GREAT BRITAIN


[^0]:    * The subtraction of $v$ from 1000 in order to obtain the so-called pressure nuriber appears to be a fruitless operation.

