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Summary.~A theoretical analysis is given of the accelerated motion of a single-rotor helicopter for estimation of 
the forward take-off performance. The motion is considered in stages during which either the disc attitude to the 
horizontal or the flight speed is constant. Equations are derived for the motion along and normal to the flight path 
and solutions are given assuming constant mean values for the aerodynamic forces on the rotor and fuselage. The 
equations of motion for constant disc attitude have a simple solution for motion from rest (and for special initial con- 
ditions) giving a straight flight path, and a general solution giving a curved flight path. The performance at constant 
speed is considered for a general climb away case and also for climb away approaching steady flight conditions with the 
thrust approximately equal to the aircraft weight. For application of the theory, charts of the various solutions are 
given covering a representative range of the variables. 

1. Introduction.--A helicopter should ideally be capable of ascending vertically from the ground 
in all  conditions ; in practice, however, it is often necessary to gain speed, normally while airborne 
within the ground cushiori, before climbing away, either because of inadequate vertical cl imb 
performance or to provide a greater degree of safety in the event of power failure. 

A theory of the accelerated motion of a single-rotor helicopter is developed in this report for 
use in the forward take-off case. The assumptions about • the helicopter and rotor are the same 
as made by Squire in R. & M. 17301 for analysis of the steady climb performance. A main point 
of difference from the steady flight analysis, however, is that  Whereas in the latter it may be 
assumed that  the rotor thrust T is approximately equal to the helicopter weight W, in the 
accelerated motion it is necessary to include the possibility that  T > W. 

In practice, even if no control adjustments are made, T will vary to some extent during the 
take-off, owing to speed and rotor incidence changes and variations of ground effect with height 
and speed. In the analysis, however, it is assumed that  the take-off is considered in stages during 
which ft is sufficiently accurate to use a constant mean value f o r t  and also for the other aero- 
dynamic forces acting on  the helicopter ; in addition, during each stage, either the disc at t i tude 
to the horizontal, 0~, or the flight speed, V, is assumed constant. 

A list of symbols is given at the end of the repor t. 

' * A.A,E.E. Report Res/276, received 3rd July, 1953. 



2. Forces on the H e l i c @ t e r . - - T h e  motion is considered in general with the helicopter airborne 
and it is assumed that  it is flying with velocity V at a flight-path angle y to the horizontal. The 
rotor thrust T acts normal to the disc which is at an angle ~ to the horizontal ; the transverse 
force H is parallel to the disc. The other forces on the helicopter are the weight W, and the 
body drag D which is assumed to act  along the direction of flight. The force system is illustrated 
in Fig. 1. 

For estimation of the aerodynamic forces it is assumed that  the formulae for steady conditions 
can be used. Thus for given speed and power conditions (including a specified rotor speed) the 
thrust  may be determined (not taking ground effect into consideration) at all except very low 
speeds, from the momentum thrust equation and the rotor work equation (Ref. 2) 

T = 2zpoe2R~vf(V~ ~ 4- v~ 2 4- 2V~v~ sin i) ~/2 . . . . . . . .  (1) 

where 
eR is the effective rotor radius, allowing for tip losses, 

v~ is the equivalent induced flow velocity (v~/~), 

i is the rotor incidence to the flight path, 
and 

where 
E P  - -  PR = Tu~ = T(vl + V~ sin i) . .  (2)  

element theory formula, 

T. = {ooabc .Qi~R3(O 
\ 2 . . . . . . . . . . . . .  (3)  

At very low speeds the momentum theory is inaccurate and the empirical charts in Ref. 3 
may be used ; the thrust is there given as a function of the speed, power and disc incidence in a 
form similar to Fig. 2. The empirical curve of rotor coefficients for vertical flight also in Ref. 3 
can be used for estimating the static thrust  in motion from rest. The helicopter starts moving 
in the direction of the resultant force, so that  the initial value of the flight path angle, y0, is 
given by 

T cos a -- W 
tan y0 = T sin 0c 

The force H is small and in most cases at low speed.can be neglected. Where necessary it 
can be estimated with sufficient accuracy from the approximate formula 

H = }poCDbcR~?~RV~ cos i. 

if Do is the body drag at 100 ft/sec at sea level 

then 

D = D o  \ 1 0 0 2  ' 

The above method of estimating the forces can be Used throughout the motion if the analys is  
is made on a differential step-by-step basis in which V and ), are determined along the flight path, 

: .2 

E P  is the effective power at the rotor 

PR = lpoCDbcR~3R~(1 + #2). 

For the range of speeds arising in take-off it is normally possible to neglect #~ in PR or to use an 
approximate mean value. 

To simplify the application of (1) and (2) a chart derived from these equations is given in 
Fig. 2, with T/2~poe~R~V~ ~ as a function of ( E P . v G  - -  PR) / 2~poe~R~V~3 and i ; the value of i at 
a point of the take-off path is (~ + y). The blade pitch 0 for the thrust T follows from the blade 



Because of the numerical complexity this is not convenient  for general use, however, and the 
analysis in following paragraphs is developed for finite intervals, either at constant disc att i tude 
c~,, dr at constant speed V,,, mean Values being taken for the aerodynamic forces Tin, H,, and D,,~ ; 
methods of evaluating the mean forces are now outlined. 

The mean forces during a stage of the take-off with constant disc att i tude are considered 
first for the special case of a straight flight path (section 3.1.1). For a straight path the resultant 
force normal to the path must be zero, thus 

T c o s i + H s i n i - -  W c o s T = 0 .  

With H = H0 cos i; this may be written in the fo rm 

T W cos (i -- 0~,,,) -- Ho cos i sin i 
_ . . .  . . . . . .  ( 4 )  

2~poe~R2V~ ~ 2~poe2R~V~2 cos i 

This relation and the data in Fig. 2 are sufficient to determine T,, and i,,, for a given value of e,~, 
and the mean speed ; choice of the mean speed to find T,,~ is justified by the fact (it can be shown 
from Fig. 2) that,  for constant disc incidence, T varies only slightly with V~. For convenience 
in use the data is presented in Fig. 3 with T/2~poe2R2V~ as a function of i, from Fig. 2 for various 
values of the power term, and from (4) for various values of W/2~poe~R2V~ ~ and c~,,,, the H0 term 
in (4) being negligibly small for the range of variables considered. ; T,,, and i,,~ can be found from 
the intersection of the curves for the appropriate power and Weight conditions. H and D are 
functions of V~ and the mean  values H,n and D,,, are simply determined, while the blade pitch 
0,,, follows from (2) and (3). 

In the general case of motion at constant disc att i tude (with a curved flight path), determina- 
tion of T,,~ from Fig. 2 requires knowledge of the mean disc incidence, i,,, As noted above T varies 
only slightly with V~ but it also follows from Figs. 2 and 3 that  it varies appreciably for large 
changes of i, in an approximately linear manner. Since c~ is constant, i,,, can be determined from 
the mean value of ~ and an approximate method of finding y,,, is outlined in section 3.1.2. 

In motion at constant speed, the disc at t i tude is not fixed bu t  must be varied in ~ way to keep 
the resultant force along the flight path zero ; the equation of force along the path  is 

T s i l l i - - H c o s i - - D - - W s i n y ~ 0 .  
/ 

This m a y  be written in the form 

T.  Hocos ~ i + D +  Ws in  
2 ~ p o e 2 R 2 V ~  ~ - -  2~poe2R2V~ 2 sin i 

T/2=ooe2R~V~ ~ is presented in!Fig. 4 as a function of ~ for various values of (D + W sin ),)/2=poe~R~V~2 
(the/-/o term is again negligibly small), together with the power curves from Fig. 3. The mean 
value of ~ for determining T,, and i~ from this chart can be found directly because the solution 
for the motion in section 3.2 is developed in terms Of ), as a parameter. 

The ground effect on the thrust  at a given power in hovering flight may be found from the 
empirical curves in Ref. 4;  there is no published da ta  available on ground effect in forward 
flight on a helicopter but  at low speed the hovering data should be sufficiently accurate. I t  is 
necessary to make an assumption about the  mean height for which the correction should be made. 

3. Theory of Take-off Flight.--3.1.  Motio~ with constant disc at t i tude.~Take-of f  flight i s  
Considered in still air with reference to co-ordinate axes fixed with reference to the ground, 
the x-axis horizontal forwards and the y-axis vertical upwards ; distance along the flight path 
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is specified by s. With the  forces outlined above, the equation of motion along the flight path is 

T H D V d V  
s i n ( ~ . + ~ , ) - - ~ C O S  . ( ~ + ~ , ) - ~ =  g ds + s i n y "  

The equation of motion normal to the flight path is 

T H V dy 
w C ° S ( ~ + Y )  + w s i n ( 0 : + y ) _  g dt + c°s y" 

These equations can be integrated by step-by-step methods, the forces being est imated in the 
way outlined in section 2. For general use, however, simpler solutions than those requiring 
numerical integrations are desirable, and further development of the theory is restricted to 
finding approximate solutions applicable to a finite stage of take-off, in the first place with the 
disc att i tude assumed constant. 

The first equation may be written i f  cos y =/= 0, 

s i n ~ - - ~ c o s  + c o s ~ + ~ s i n  dx W dx - -  g dx + dx " 

The disc at t i tude is assumed to have the constant value ~i,~ and if mean values 7".,,./-/,,,, D,,, are taken 
for the aerodynamic forces this equation m a y  be integrated giving, 

sin ~,,, - - W  cos ~,,, W x + cos ~,,, + ~ sin ~,,,.- 1 y = 2g J 

where V0 is the velocity when x = 27 = s = 0. 

For all but the steepest take-off paths it appears a reasonable approximation to take s/x 1 
in the last term in the first bracket ; when the path is relatively steep, the flight speed must be 
low and D; , /W small, so that: even in this case the error will be small. 

The equation may therefore be written 

V ~ - -  V 0  2 
B x  + A y  - -  2 f  . . . . . . . . . . . . . . . .  (5) 

where 

T,,~ H;,, 
cos ~,,~ + ~ sin ~,,, - -  1 

A----- 
T,,, H.~ 

sin c~,,, -- T~ cos ~;,i 

B = 1 -  D,, , /W 
T~I~ " H ~  

f = g sin o~,,, - -  - ~  cos c~,,, 

4; 



Simliariy for  constant  disc att{tude and as suming  mean va iues  of the {orces, the equat ion o{ 
mo t ion  normal  to the  flight pa th  m a y  be wri t ten 

V ~ d~ 
A - - t a n ~ , - -  f dx . . . . . . . . . . . . . . . . . . . .  (7) 

3.1.1. S15ecial solutio~¢ of equations of motion (tan ~ = A).--I~. is evident  tha t  a special solution 
of (7) is tan  >, = A = constant.  This solution applies to the case where the resul tant  force is 
along the  flight pa th  direction at the point  considered. In particular it applies to mot ion from 
rest, when, with the assumption of constant  mean forces,  the aircraft moves off in the direction 
of the  resul tant  force. It  app l iesequa l ly  to backward and forward take-off. 

Since the flight pa th  is a s traight  line 

Y --  tan  ~ = A. 
X 

Hence, with (5) . 

1 {v. Vo'\ 
x-(A2+B) 2f] 

A IV Voq Y--(A2+8) 9 ]  
(8) 

For A = 0, i.e., in horizontal  flight, there is a relationship between T and e. 

T H 
c o s a + ~ s i n c ~ =  1;  

Normally  (T/W)cos ~ )3 (H/W)sin ~, and so  for a selected mean v a l u e  Of T, cos e = W/T 
approximately.  Hence with constant  mean values for H and D, 

V 2 - -  V O  2 

I.t is sometimes necessary for a helicopter take-off to begin with a ground run, and this type 
Of mot ion is also convenient ly  considered here. In a ground run, the resul tant  force in the 
vert ical  direction is less than  the Weight, so tha t  

T cos ~ + H s i n  c~ < W. 

The equat ion of forward motion is 

T H D ( 1 T  H o~ ) V d V  
sin c~ - - ~  cos ~ W -- ~ .  cos ~ --: ~ sin #I -- g dx 

where / ' I  is the coefficient of forward friction. 

Hence with constant  mean values for T, H, a and  D, 

V 2 - -  V0 2 
y :  

I ~  H,,, (cos ~,,, --  ~Fsin ~,,,) 2g (sfn ~,,, + ~s cos ~,,,) -- D~ f~ 
(10) 
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8.1.2. General solution.--In the general case where tan ~ =/= A, it  is convenient  to put  Q, = V2/2f 
and dQ/dx = q, so tha t  by  differentiation of (5), q = A tan v + B ; equation (7) becomes 

(A 2 + B -- q)(A 2 + B ~ -- 2Bq + q2) = 2A~Qq dq 
dQ" 

In tegra t ing  this  equat ion and subs t i tu t ing  for q gives 

Q 
S --  G(),, A, B), which is char ted in Fig. 5, 

i + tan  2~ ~/A~+~//IA~+I/ 
G ( y , A , B )  ( (A __ tany)~ J exp ( 2 ~ - B ~ l l )  y } . . . .  : .  (11) 

and S -- Oo V0 ~ 
G(v0, A, B) -- 2fG(vo, A, B )  

I t  is useful to note also t ha t  

Q V 
- A ,  B)  

S Vo 

Distance along the pa th  is obtained by  in tegra t ing numerical ly  1/q ( =  dx/dq) as a funct ion of 
Q/S, giving 

S -  -q d =~1 , A , B  say. 

£r(Q/S, A, B) is char ted in Fig. 6 with the zero value at the value of Q/S corresponding to ~ ---= 0 ; 
this  value, Qo/S, can be determined from Fig. 5. Star t ing from a non-zero value of ;"0, the init ial  
value, Qo/S, can be found from the same figure, and then 

S - - ~  , A , B  - - ~  , A , B  ; 

also from (5) 

where 

~' , A, B = ~ B Y , A, B and is char ted in Fig. 7 .  

I t  was pointed out in section 2 tha t  the mean value y,, of the flight pa th  angle is required in 
connection wi th  the est imation of the mean  rotor thrus t  in a speed in terval  from V0 to V1 say. 
An approximate  est imate of the angle ~'1 corresponding to V1, can be made from Fig. 5 using the 
values of A, B and S for the ini t ial  conditions ; a first approximat ion  to ),,,, follows. Fu r the r  
approximat ion  can be made by  using A, B and S for the mean conditions to re-est imate y~, 
from Fig. 5. 

3.1.3. Solution for B = 1 . - -The general solution takes a simpler form when B = 1 ; this occurs 
if the body drag is negligibly small compared to the resul tant  horizontal  component  of the 
rotor  forces. For  B = 1, 

G(y, A, 1) = (A -- t an  ~)2. 



Also in this  case d ( ~ )  has a simpie {ntegrai and 

,A,  1 - - (A  s +  1) + ( A  s +  1) (A = +  1) - -  1 

~¢ ,A,  1 - - ( X 2 + l )  A .  S ( A S + l )  ( A S + l ) - - I  . 

These solutions for x/S and y/S are included in Fig. 6 and 7 respectively. 

3.2. Climb Away at Constant Sfleed.--A take-off technique sometimes used is to accelerate 
horizontally near the ground up to a speed safe in the event of engine failure and then climb away 
at this speed. In this case mean values are taken for the aerodynamic forces as before but the 
disc attitude is variable to keep V constant. The equations of motion may be written 

wT"~ sin (c~ + 7) --wHm cos(c~ +'~) = W + sin ~ D  

T,,, H,, . V = d7 
cos (~ + 7) + - ~  sm (~ + ~) - g ds 

Squaring and adding these equations leads to 

g d ~ C ° S y  = [ ~ - -  + s i n y  - - c o s y  .. 

where RF 2 = T,,, 2 + H,,; 2. 

Integrating this equation 

V 2 - J  ~ 'w'  - J  7°'w' 

@ cos 7. 

.. (11) 

where 

with, for a > b, 

I(r, a, b) = 

and, for a < b, 

I ( r ,  a, b) = 

a 1 = 

£ = 

a 2 = 

J v, W , = I(v, al, bl) + 

Y b b2 a r c t a n  ~ (a2 _ b2 ) 1/2 J J  

I~  cos y 
Y b 

- -  a2) 1/2 {~_ tan ½y - - b  + (b ~ -  a2) 1/2 tl 
(b2 b2 log tan ½7 -- b -- (b 2 -  a2):/2JJ 



J(r, RF/W, D/W) is plot ted in Fig. 8 as a function of 7 for a }ange of values of Rr/W a n d  
D/W ; the constant  has been adjusted to make J zero when 7 = 0. 

The ~cheory does not give a simple integral  for y and this has been found by integrat ing tan r 
numerical ly  as a function of gx/V 2. Then 

- - K  70, W ,  

where 

RF = tan r d ~ K r , W ,  

K(7, RF/W, D/W) is p lo t ted  in Fig. 9 wi th  the zero values at 7 = 0 for a range of values of 
RflW and for D/W --O. 01. 

3.3. Climb Away at Constant Speed Approaching Steady Climb Condition.--The final stage of 
a take-off is t he  transi t ion to the  s teady climb condit ion ; for s teady climb at a given power and 
speed V; the  ordinary  m o m e n t u m  theory may  be used to find the s teady flight values, 7 ,  cq, 
and  T,. The equations of mot ion at constant  speed in section 3.2 apply, and it follows from 
(11) t h a t  

R ,  2 D 2 2D 
W2 - -  1 + ~ + ~ -  sin 7s- . . . . . . . . . . . .  (12) 

Also if it is assumed tha t  V = Vs and T = T~ during the transi t ion to s teady climb, then as in (11) 

g dxC°Sr = ~ W , - -  + s i n r  - - c o s T ,  

and so from (12), 

V? d r  ( ( )}1,, 
2D sin 7 , - -  s in7  -- 1. g dx-- 1 +Wcos  ~r 

Since D/W is small and sin 7 approaches sin 7 ,  it is a sufficient approximation to expand in 
series form retaining the first-power term 0nly~ then integrating, 

D . gx 
V v '  - L(7,  - -  Z(ro, w) 

cot ½rs - -  tan  ½7 
L(7, 7,) = sin 7,. r --  c o s t  + cos 7, log tan ½v, --  tan  ½7 ' is 

p lot ted in Fig. 10 against 7 for a range of values of 7,.. 

Similarly 
Dgy 
w r - N ( r ,  7,) - N(ro ,  r , ) .  

( ( )  } 1 - - s i n 7  is plot ted in Fig. 11 against r for N(7, 7,) = sin r, log sin 7, --  sin 7 

a range of values of 7,. 

4. Application of the Theory.--For convenience in application, the methods  of es t imat ing the 
performance for the  various aspects of take-off are now briefly summarised and discussed. I t  is 
assumed in the  analysis tha t  the take-off can be considered in stages in which either the disc a t t i tude  
to the  horizontal  or the flight velocity is constant  ; in  addition, when motion over a range of speed, 
flight pa th  angle, or height  near the ground, is being considered, constant  mean values are taken for 
the  rotor thrust  T and the  drag forces, H and D. These forces can be es t imated in the way outl ined 
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• in section 2. Estimations of the performance in a stage o~ take-off starts from known initial con- 
ditions, which include the flight path angle, y0, and the speed V0 ; if the motion is at constant 
speed, the disc att i tude must be varied in a way to keep the resultant force along the flight 
path zero. 

The first type of motion considered at constant disc att i tude is the ground run, for which 
(T cos e + H sin ~) < W ; the ground distance to accelerate from speed V0 to V is given by 
equation (10). If (T cos c~ + H sin e) > W, the helicopter will become airborne ; the solution 
of the motion then depends on A, B and f, which can be estimated from the relations in (6). 
If it is found that  A -- tan yo then the flight path is a straight line and the special solutions in 
section 3.1.1 apply;  equations (8) give the distances for climbing flight and (9) the distance for 
horizontal flight (yo = 0). These solutions also apply to motion from rest, that  is for Vo = 0. 

If V0 > 0 and A =/= tan ~0, the general solutions in section 3.1.2, for motion at constant disc 
attitude, apply. These solutions depend on S and Q/S which are defined as follows • 

V0 ~ 
S =  2fG(ro, A, B) 

where G(y0, A, B) is the function charted in Fig. 5, 

Q v 
and ~ -- Vo ~ G(yo, A, B) . 

The horizontal and vertical distances x, y along the flight path in accelerating from speed V0 
at flight path angle e0 to speed V, are given by 

S__~ , A , B  --.~ ,A,  

t 
w (Q A, B )  and ~/ QQ , A, B )  are given in Figs" 6 and 7 

The flight path angle at speed V can be obtained from Fig. 5. In analysing take-off performance 
it can normally be assumed that  the type of motion represented by this solution obtains only 
for the limited period of transition to climb away and tha t  thereafter the pilot adjusts the disc 
att i tude to give either a straight path or a constant speed climb, so that  the simpler special 
solutions may be used. 

, 5  

For motion at constant speed, the solutions for x and y are given in terms of y, D/W and RflW, 
where R~ 2 = T ~ + Hh The horizontal and vertical distances from a flight path angle y0 to 
are given by, 

- J  

gy RF K yo, W W V ~ - K  Y ' W '  ' " 

j(~,, R~/W, D/W) is given in Fig. 8 and K(y, RF/W, D/W) in Fig. 9 for a range of values of 
RF/W and D/W = 0.01. 
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For climb away at constant speed approaching a steady climb condition, the steady flight 
values ?,, c~s and Ts may be found from steady-flight momentum theory. The 'horizontal and 
vertical distances in the transition, from a flight path angle y0 to an angle ~, are given by 

D gx 

Dgy  
w w -  N(7 ,  - -  N(r  o, 

L(V, Ys) is given in Fig. 10 and N(r, ys) in Fig. 11 for a range of values of #s. 

For motion at constant disc attitude, the flight path distances are determined in terms of 
x/S and y/S ; S is proportional to V0 2 and so the range of, for example, y/S to cover a given change 
of height is greater for lower initial speed. To provide completely for estimates from very low 
initial speeds requires a very wide range of the variables, and for equal accuracy in all conditions 
several charts would be required covering progressively larger ranges of x/S and y/S. The charts 
given however, cover a representative range of speeds down to fairly low values only, because it 
is considered that  the overall take-off performance can in general be adequately defined by the 
performance from the initial speeds covered, together with that  from rest, which is given by 
the straight path solutions in (8) and (9) ; the charts can however be extended to deal with lower 
initial speeds if required. The solutions for the motion at constant speed are given in terms of 
gx/V ~ and gy/V 2 and again a number of charts would be required for comparable accuracy at all 
speeds. Normally, however, climb away is not. made at a very low constant speed and a more 
limited range of the variables should be adequate for most purposes. 

The charts given for the different aspects of take-off are given for positive values of ~) only" 
and therefore supply solutions only for cases of take-off in .which there is no loss of height. The 
theory can also be used however for analysis of motions in which y < 0, including general 
decelerated landing motions. Extension of the theory to other types of helicopter, including those 
with multi-rotors or with auxiliary fixed wings, will be considered in connection with the general 
development of performance theory for these types of aircraft. 

Attention is now being given to the development of reduction methods for the take-off per- 
formance of a single-rotor helicopter on the basis of the theory in this report. 

Acknowledgements are due to W. E. Bennett who undertook much of the computation-required 
for the preparation of the charts. 
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LIST OF SYMBOLS 

a l  

Slope of blade lift-coefficient curve 

(R~- ~ D ~ ) 

(~R~ 2 D ~ ) 
= 1 

A = 

TI3l HIn 
cos ~,,, + ~ sin e,,, --  1 

W sin c~,,~---~ cos ~,,, 

Number  of blades 

D 
bl = 2~7 

D RF 

B = 1 - -  

C 

Cv 

D 

D ~  

Do 
E 

f 

D,,JW 
TT;t Hj;b 
W sin ~,,, W -- - -  COS ~t m 

Rotor  blade chord 

H 

i 

P 

PR 

q 

qo 

Q 

Blade 

Body 

Mean 

Body  

Ratio 

profile-drag coefficient at the mean effective lift coefficient 

drag 

body drag 

drag at 100 ff/sec at sea level 

of effective power at rotor to total  power 

sin c~.~ --  ~ cos c~ 

Transverse force on rotor 

Mean transverse force on rotor 

Rotor  disc incidence to the  flight pa th  

Engine power 

Power required for rotor torque due to profile d rag  

dO 
dx 

Initial value of q 

V ~ 
2 /  

11 



o 

R 

RF 

R, 

$ 

S 

T 

T m  

9A 

V 0 

V 

Vo 

V~ -~ 

Vs 

X, y 

W 

(~11b 

7 

7o 

7~ 

__~ 

P 

(7 

t2 

initial value of O 

Rotor radius 

Resultant rotor force 
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