

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Interference Corrections for Asymmetrically Loaded Wings in Closed Rectangular Wind Tunnels

By
H. C. Garner, B.A., and W. E. A. Acum, A.R.C.S., B.Sc., of the Aerodynamics Division, N.P.L.

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE 1957

Interference Corrections for Asymmetrically Loaded Wings in Closed Rectangular Wind Tunnels

By

H. C. Garner, B.A., and W. E. A. Acum, A.R.C.S., B.Sc., of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. $2948 \dagger$
September, 1953

Summary.-The problem of tunnel interference on a complete lifting wing fitted with ailerons is considered in relation to aerodynamic measurements on a six-component balance. Asymmetric loading introduces corrections to the incidence of the wing, the drag and the rolling, pitching and yawing moments.

The basic theory of wall interference in closed rectangular tunnels is outlined in sections 3 to 5 . In section 6, the tunnel-induced upwash is expressed in terms of the loading on the wing and four quantities dependent on the shape of tunnel. These quantities are evaluated for a duplex tunnel $(b=2 h)$ in Tables 4 to 7 and may be computed for a general rectangular shape with the aid of Tables 1 to 3.

Section 7 describes how the evaluation of tunnel interference is conveniently linked with Multhopp's lifting-surface theory to determine corrections to incidence, pitching moment and rolling moment. A worked example in the case of antisymmetrical loading is given in Appendix II, which concludes with an approximate procedure, suggested as a possible substitute for the lifting-surface method.

The corrections to drag and yawing moment are discussed in detail in section 8. All the corrections are summarized in section 9 and expressed as products of experimental aerodynamic coefficients and theoretically determined quantities, which are evaluated in Table 8 for an arrowhead wing (Fig. 4) with various ailerons in a duplex tunnel.

The corrections to incidence due to symmetrical loading are equivalent to corrections to lift of the opposite signs these vary from -11 to $-5 \frac{1}{2}$ per cent depending on the type of loading. The corresponding corrections to rolling moment due to antisymmetrical loading are about - 2 per cent. Corrections to drag are very roughly +20 per cent. When the spanwise loading is asymmetrical, there arises an induced yawing moment, which may require an interference correction of the order +25 per cent.

1. Introduction.-The present work has arisen in connection with some six-component balance measurements at low speed on a complete model of an uncambered arrowhead wing fitted with various aileron surfaces. The plan-form, shown in Fig. 4, is fairly large in relation to the National Physical Laboratory Duplex Wind Tunnel, in which the tests have been carried out, so that calculations of tunnel-wall interference are required to a fair degree of accuracy. The general theory of tunnel interference due to lift is well known, but the authors are unaware of a ready means of calculating the tunnel-induced rolling moments and yawing moments due to an arbitrary asymmetrical loading on a swept wing of moderately low aspect ratio.
[^0]The corresponding problem of symmetrical loading has been considered in Ref. 1 (Acum, 1950), where tables of parameters δ_{0} and δ_{1} are available for four tunnels of closed rectangular section. Convenient approximate methods of using these tables to compute the interference on symmetrical models with control surfaces or half-models mounted on one wall of a tunnel are described in sections 4.4, 4.5 and 4.6 of Ref. 2 (Bryant and Garner, 1950). The counterpart for antisymmetrical loading is now required. Graham ${ }^{3}$ (1945) has considered this problem for an unswept lifting line with uniform loading along the span of a deflected aileron. Although he has shown that the magnitude of the interference is not large, his representation is not suitable for the present investigation. Reference should also be made to a general survey of wall interference in closed rectangular tunnels by Sanders and Pounder ${ }^{4}$ (1949), who give a full mathematical analysis of the extension of two-dimensional results to three dimensions by means of lifting-line theory.

Without recourse to lifting-surface theory ${ }^{9}$ (Multhopp, 1950), the problem of deducing tunnel interference from balance measurements alone is difficult in the case of antisymmetrical loading. The loading characteristics of a wing must be related to the coefficients of lift, rolling moment and pitching moment, C_{L}, C_{l} and C_{m} respectively, which are assumed to have been measured. From the following table, it will be apparent that, for a given ratio of model span to tunnel breadth the magnitude of the interference and the amount of relevant information vary rather similarly with the arrangement of the model. In the antisymmetrical problem the need for less accuracy, because the interference is not large, is offset by the fact that the single balance measurement C_{l} does not determine the chordwise or the spanwise centre of pressure on one half of the wing. Approximate values of both these co-ordinates are desirable when carrying out calculations of tunnel interference.

Arrangement of model	Relevant balance measurements	Tunnel-wall interference
Half-wing adjacent to tunnel	C_{L}, C_{l}, C_{m},	Rather large
Symmetrically loaded wing	C_{L}, C_{m},	Moderate
Antisymmetrically loaded wing	C_{l},	Rather small

In this report a continuous loading over an arbitrary plan-form will be specified by the local lift and the local chordwise centre of pressure. The tunnel-induced upwash due to the system of images of a bound vortex concentrated along the locus of the local centres of pressure with its wake of trailing vorticity is expressed as a spanwise integral involving the quantities P_{0}, P_{1}, Q_{0} and $Q_{1} . Q_{0}$ and Q_{1} are the differential coefficients of the quantities δ_{0} and δ_{1} tabulated in Ref. 1, but have been obtained here directly. The method of obtaining P_{1} and Q_{1} gives mathematical expressions that are very convenient for computation.

The effect of tunnel-induced upwash is determined on the basis of Multhopp's ${ }^{9}$ lifting-surface theory. When basic calculations by Ref. 9 are available for the particular plan-form, the computation of forces and moments corresponding to the tunnel-induced upwash is more convenient than that envisaged in Refs. 1 and 2. The antisymmetrical problem arising from the tests in the N.P.L. Duplex Wind Tunnel is solved as an illustrative example in Appendix II. This is followed by a suggestion as to what can best be done by approximate means when no liftingsurface theory is available.

The quantities P_{0}, P_{1}, Q_{0} and Q_{1} are tabulated for the Duplex Tunnel, but the general functions in Tables 1,2 and 3 are included, so that corresponding quantities can readily be obtained for any other closed rectangular tunnel.
2. List of Symbols.-

A	Aspect ratio (2s/c)
a_{1}, a_{2}	Equivalent two-dimensional $\partial C_{L} / \partial \alpha, \partial C_{L} / \partial \xi$
b	Tunnel breadth
$C_{D}, C_{D}{ }^{\prime}$	Free stream, measured drag $/ \frac{1}{2} \rho V^{2} S$
$C_{L}, C_{L}{ }^{\prime}$	Free stream, measured lift $/ \frac{1}{2} \rho V^{2} S$
C_{l}, C_{l}^{\prime}	Free stream, measured rolling moment $/ \frac{1}{2} \rho V^{2} S .2 \mathrm{~s}$
$C_{m}, C_{m}{ }^{\prime}$	Free stream, measured pitching moment $/ \frac{1}{2} \rho V^{2} S \bar{c}$
$C_{n}, C_{n}{ }^{\prime}$	Free stream, measured yawing moment $/ \frac{1}{2} p V^{2} S .2 s$
c, c_{0}, \bar{c}	Local, root, mean wing chord
E	Ratio of aileron chord to wing chord
$F(\lambda)$	See equation (5.6) and Appendix I
$f(\lambda)$	See equation (5.2) and Appendix I
$f_{1}, f_{2}, f_{3}, f_{4}$	See equations (6.3), (6.7) and Tables 1 and 2
h	Tunnel height
I, J	See equations (7.1), (8.4), (8.5)
$K(t)$	Strength of basic vortex system (section 3)
K_{0}, K_{1}	Bessel functions (Ref. 10)
l_{2}	Two-dimensional centre of pressure [($\left.\left.x_{\text {c,p. }}-x_{l}\right) / c\right]$
m	Number of wing sections taken into account (Ref. 9)
P_{0}, P_{1}	See equations (6.4), (6.8)
Q_{0}, Q_{1}	See equations (6.5), (6.9)
S	Area of plan-form of wing
s	Semi-span of wing
t	Semi-width of basic vortex system
V	Velocity of free stream
w	Upwash induced by tunnel interference
$X_{\text {c.p. }}$	Local chordwise centre of pressure [($\left.\left.x_{\text {c.p. }}-x_{l}\right) / c\right]$
(x, y, z)	Rectangular co-ordinates, streamwise, spanwise, upwards
$x_{0}(t)$	Locus of lifting line in equation (7.2)
x_{i}, x_{t}	Leading, trailing edge
$y_{a}<y<s$	Spanwise extent of aileron
α	Incidence of wing
Γ	Circulation round wing
γ	Non-dimensional circulation ($\Gamma / 2 s \mathrm{~V}$)
δ_{0}, δ_{1}	See equation (3.1)

List of Symbols-continued.

η	Non-dimensional spanwise co-ordinate, y / b
θ	Angular spanwise co-ordinate, $y=s \cos \theta$
Λ	Angle of sweepback of quarter-chord line
λ	Taper ratio of wing (Appendix II)
λ	Real independent variable, used in definitions of functions and tables
μ	Ratio h / b ($=\frac{1}{2}$ for a duplex tunnel)
μ	Non-dimensional local pitching moment, $c C_{m} / 4 s$ (section 7 and Appendix II)
ξ	Angular deflection of aileron
σ	Non-dimensional semi-span of wing, s / b
τ	Non-dimensional semi-width of basic vortex system, t / b
ϕ_{0}, ψ_{0}	See equations (6.4), (6.5)
ϕ_{1}, ψ_{1}	See equations (6.8), (6.9)
Prefix δ	denotes effect of tunnel interference
Prefix 4	denotes interference correction to be applied
Superscript ${ }^{\text {, }}$	denotes experimental aerodynamic coefficient (corrected for tunnel blockage only)
Superscript'or ${ }^{\prime \prime}$	denotes value of x at solving point (Ref. 9)
Suffix :	denotes value of $\delta \alpha$ at local three-quarter chord
Suffix a	denotes antisymmetrical loading
Suffix	denotes symmetrical loading
Suffix n or *	denotes spanwise station $y_{n}=s \sin \frac{n \pi}{m+1}$ or $y_{v}=s \sin \frac{\nu \pi}{m+1}$.

3. Basic Representation:-Consider a closed rectangular wind tunnel containing a model wing with deflected ailerons such that the spanwise distribution of lift is antisymmetrical with respect to the vertical plane of symmetry of the tunnel. It will be assumed that the wing can be regarded as a vortex sheet in the horizontal plane of symmetry of the tunnel. The co-ordinates are referred to axes $O x$ in the direction of flow, $O y$ spanwise and $O z$ upwards. The elementary vortex system, shown in Fig. 1, is referred to an origin O at the centre of a particular cross-section of the tunnel and consists of trailing vortices along the lines $y= \pm t, z=0$, both of strength $+K(0<x<\infty)$, and a bound vortex. along the line $x=0, z=0$, of strength $-K(-t<y<0)$ and $+K(0<y<t)$.

This vorticity distribution has an abrupt discontinuity at the point O and so is physically unreal. However when a similar system of equal and opposite strength and of width $2(t-\delta t)$ is superposed, the resulting vortex system corresponds to two equal and opposite horse-shoe vortices of width δt and circulation K symmetrically situated in the tunnel. Any antisymmetrical wing loading can be built up from elements of this kind. If, therefore, the tunnel-induced upwash due to the vortex system of Fig. 1 can be determined, it will be possible to calculate the interference for any wing with antisymmetrical lift.

By the usual procedure for rectangular tunnels the interference may be regarded as that due to an image system of vortices outside the tunnel. A doubly infinite array is necessary to give
streamline flow along the walls of the tunnel ; and a cross-section of this system far downstream is shown in Fig. 2. The strengths of the vortices alternate in sign both horizontally and vertically. The interference in the plane $z=0$ due to the basic vortex system is expressed as an angle of upwash

$$
\begin{align*}
\frac{w}{V} & =\frac{w}{V}(x, y ; t, K) \\
& =\frac{4 K t}{V b h}\left\{\delta_{0}(y, t)+\frac{x}{h} \delta_{1}(y, t)+0\left(\frac{h}{x}\right)^{3}\right\}, \quad \ldots \quad \ldots \quad \ldots \tag{3.1}
\end{align*}
$$

where, as in the symmetrical theory of Ref. $1, \delta_{0}(y, t)$ and $\delta_{1}(y, t)$ are the functions to be determined and the terms involving the third and higher powers of x / \hbar are neglected.
4. Formulae for $\delta_{0}(y, t)$. $\quad \delta_{0}(y, t)$ represents the upwash at a point $(0, y, 0)$ due to the image system of the elementary vortex (K, t) in Fig. 1. The well known theorem of Prandtl shows that in the limit as $x \rightarrow \infty$ equation (3.1) becomes

$$
\begin{equation*}
\left(\frac{w}{V}\right)_{\infty}=\frac{4 K t}{V b \hbar}\left\{2 \delta_{0}(y, t)\right\}, \quad . \tag{4.1}
\end{equation*}
$$

which may be evaluated from the image system in Fig. 2 on a two-dimensional basis. Consider the vertical column of vortices of strengths $(-1)^{n} K$ at positions $(y, z)=(t, n h)(-\infty<n<\infty)$. The upwash at the point $(y, 0)$ due to this column is

$$
\begin{aligned}
w & =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty}(-1)^{n} K \frac{y-t}{(y-t)^{2}+n^{2} h^{2}} \\
& =\frac{K}{2 \pi(y-t)}+\frac{K}{\pi h} \sum_{n=1}^{\infty}(-1)^{n} \frac{\lambda}{n^{2}+\lambda^{2}},
\end{aligned}
$$

where $\lambda=(y-t) / h$.
Now \dagger

$$
\cdot \sum_{n=1}^{\infty}(-1)^{n} \frac{\lambda}{n^{2}+\lambda^{2}}=\frac{1}{2}\left\{\pi \operatorname{cosech} \pi \lambda-\frac{1}{\lambda}\right\} .
$$

Hence

$$
\begin{equation*}
w=\frac{K}{2 h} \operatorname{cosech} \frac{\pi(y-t)}{h} . \quad . \quad . . \quad . \quad . . \quad . . \quad . . \tag{4.2}
\end{equation*}
$$

It follows from equation (4.2) that the upwash due to all the vortices, indicated in Fig. 2 and including those inside the tunnel, is

$$
\frac{K}{2 h} \sum_{m=-\infty}^{\infty}(-1)^{m}\left\{\operatorname{cosech} \frac{\pi(y-m b-t)}{h}+\operatorname{cosech} \frac{\pi(y-m b+t)}{h}\right\}
$$

To obtain the upwash due to the image system, the contributions of the two vortices inside the tunnel are removed, so that

$$
\begin{equation*}
\left(\frac{w}{V}\right)_{\infty}=\frac{K}{2 V h}\left[-\frac{h}{\pi(y \pm t)}+\sum_{m=-\infty}^{\infty}(-1)^{m} \operatorname{cosech} \frac{\pi(y \pm t-m b)}{h}\right] \tag{4.3}
\end{equation*}
$$

This follows from the formula $\pi / \sin \pi \lambda=1 / \lambda-2 \lambda \sum_{n=1}^{\infty}(-1)^{n} /\left(n^{2}-\lambda^{2}\right)$, proved in Theory and Application of . Infinite Series by K. Knopp (p. 208).

On equating (4.1) and (4.3), it follows that the antisymmetrical horse-shoe vortex in Fig. 1 causes on the axis $O y$ a tunnel-induced upwash represented by

$$
\begin{equation*}
\delta_{0}(\eta, \tau)=\frac{1}{16 \tau}\left[-\frac{\mu}{\pi(\eta \pm \tau)}+\sum_{m=-\infty}^{\infty}(-1)^{m} \operatorname{cosech} \frac{\pi}{\mu}(\eta \pm \tau-m)\right], \ldots \quad \ldots \tag{4.4}
\end{equation*}
$$

where $\eta=y / b, \tau=t / b, \mu=h / b$.
In the case of a symmetrical horse-shoe vortex, by changing the sign of the appropriate terms a similar analysis gives

$$
\begin{align*}
\delta_{0}(\eta, \tau)= & \frac{1}{16 \tau}\left[-\frac{\mu}{\pi(\eta-\tau)}+\sum_{m=-\infty}^{\infty} \operatorname{cosech} \frac{\pi}{\mu}(\eta-\tau-m)\right. \\
& \left.+\frac{\mu}{\pi(\eta+\tau)}-\sum_{n=-\infty}^{\infty} \operatorname{cosech} \frac{\pi}{\mu}(\eta+\tau-m)\right] . \tag{4.5}
\end{align*}
$$

5. Formulae for $\delta_{1}(y, t)$. $\delta_{1}(y, t)$ represents the gradient of the upwash in the direction of the undisturbed flow at a point $(0, y, 0)$ due to the image system of the elementary vortex (K, t) in Fig. 1. The trailing and bound vorticity will be considered separately.

From the results of Ref. 5, section 12.2, the upwash at a point (x, y, z) due to a vortex of strength K extending along the positive x-axis is

$$
\begin{equation*}
w_{i}=\frac{K y}{4 \pi\left(y^{2}+z^{2}\right)}\left\{1+\frac{x}{\sqrt{ }\left(x^{2}+y^{2}+z^{2}\right)}\right\} . \quad . \quad \ldots \quad . . \tag{5.1}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{w_{t}}{V}\right) & =\frac{K y}{4 \pi V}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \\
& =\frac{K}{4 \pi V} \frac{y}{\left(y^{2}+z^{2}\right)^{3 / 2}}, \text { when } x=0 .
\end{aligned}
$$

For a vertical column of such vortices of alternating sign and containing those at the wing

$$
\left.\begin{array}{rl}
\frac{d}{d x}\left(\frac{w_{1}}{V}\right) & =\frac{K}{4 \pi V}\left[\frac{y}{|y|^{3}}+2 \sum_{n=1}^{\infty}(-1)^{n} \frac{y}{\left(y^{2}+n^{2} h^{2}\right)^{3 / 2}}\right] \\
& =\frac{K}{4 \pi V h^{2}} f(y / h), \quad \ldots \quad \ldots \tag{5.2}
\end{array} \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots c\right) \quad \ldots .
$$

where

$$
f(\lambda)=\frac{\lambda}{|\lambda|^{3}}+2 \sum_{n=1}^{\infty}(-1)^{n} \frac{\lambda}{\left(n^{2}+\lambda^{2}\right)^{3 / 2}}
$$

Then it follows, as in section 4, that the contribution to $d(w / V) / d x$ due to the images of the trailing vorticity is

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{w_{t}}{V}\right)=\frac{K}{4 \pi V h^{2}}\left[-\frac{\mu^{2}(\eta \pm \tau)}{|\eta \pm \tau|^{3}}+\sum_{m=-\infty}^{\infty}(-1)^{m} f\left(\frac{\eta \pm \tau-m}{\mu}\right)\right] \tag{5.3}
\end{equation*}
$$

Now consider one half of the bound vortex along the line $x=0, z=0$ of strength $K(0<y<t)$. From Ref. 5, section 12.2, the upwash due to this vortex at a point (x, y, z) is

$$
\begin{equation*}
w_{1}=-\frac{K}{4 \pi} \frac{x}{x^{2}+z^{2}}\left\{\frac{y}{\sqrt{ }\left\{x^{2}+y^{2}+z^{2}\right\}}-\frac{y-t}{\sqrt{ }\left\{x^{2}+(y-t)^{2}+z^{2}\right\}}\right\} \tag{5.4}
\end{equation*}
$$

Hence, in the limit as $x \rightarrow 0$,

$$
\frac{d}{d x}\left(\frac{w_{1}}{V}\right)=-\frac{K}{4 \pi V} \frac{1}{z^{2}}\left\{\frac{y}{\sqrt{ }\left\{y^{2}+z^{2}\right\}}-\frac{y-t}{\sqrt{ }\left\{(y-t)^{2}+z^{2}\right\}}\right\} .
$$

To obtain the upwash w_{2} corresponding to the other half of the bound vorticity $(-t<y<0)$, y is replaced by $(y+t)$ and the sign of K is changed. Thus

$$
\frac{d}{d x}\left(\frac{w_{2}}{V}\right)=\frac{K}{4 \pi V} \frac{1}{z^{2}}\left\{\frac{y+t}{\sqrt{ }\left\{(y+t)^{2}+z^{2}\right\}}-\frac{y}{\sqrt{ }\left\{y^{2}+z^{2}\right\}}\right\}
$$

Hence the vertical column containing the total bound vorticity at the wing and its images of alternating sign contributes
$\frac{d}{d x}\left(\frac{w e_{6}}{V}\right)=\frac{K}{4 \pi V} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{n^{2} h^{2}}\left\{\frac{y-t}{\sqrt{ }\left\{(y-t)^{2}+n^{2} h^{2}\right\}}+\frac{y+t}{\sqrt{ }\left\{(y+t)^{2}+n^{2} h^{2}\right\}}-\frac{2 y}{\sqrt{ }\left\{y^{2}+n^{2} h^{2}\right\}}\right\}$.
where the term $n=0$ corresponding to the wing itself is infinite when $-t \leqslant y \leqslant t$ and otherwise tends to the finite limit

$$
\frac{K}{4 \pi V}\left\{\frac{y}{|y|^{3}}-\frac{y-t}{2|y-t|^{3}}-\frac{y+t}{2|y+t|^{3}}\right\}
$$

Therefore, from a single column of images,

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{w_{b}}{V}\right)=\frac{K}{4 \pi V h^{2}}\left\{F\left(\frac{\eta-\tau}{\mu}\right)+F\left(\frac{\eta+\tau}{\mu}\right)-2 F\left(\frac{\eta}{\mu}\right)\right\}, \ldots \quad \ldots \quad \ldots \tag{5.6}
\end{equation*}
$$

where

$$
F(\lambda)=-\frac{\lambda}{2|\lambda|^{3}}+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \frac{\lambda}{\sqrt{ }\left(n^{2}+\lambda^{2}\right)}
$$

except that the first term is omitted when the column contains the wing. Then it follows, as in section 4, that the contribution to $d(w / V) / d x$ due to the images of the bound vorticity is

$$
\begin{align*}
\frac{d}{d x}\left(\frac{\varkappa_{b}}{V}\right)= & \frac{K}{4 \pi V h^{2}}\left[\frac{\mu^{2}(\eta-\tau)}{2|\eta-\tau|^{3}}+\frac{\mu^{2}(\eta+\tau)}{2|\eta+\tau|^{3}}-\frac{\mu^{2} \eta}{|\eta|^{3}}\right. \\
& +\sum_{m \infty-\infty}^{\infty}(-1)^{m}\left\{F\left(\frac{\eta-\tau-m}{\mu}\right)\right. \\
& \left.\left.+F\left(\frac{\eta+\tau-m}{\mu}\right)-2 F\left(\frac{\eta-m}{\mu}\right)\right\}\right] . \quad \ldots \quad \ldots \tag{5.7}
\end{align*} . . .
$$

By combining equations (5.3) and (5.7) it may be seen that the image system of the elementary vortex (K, t) in Fig. 1 induces a gradient of upwash

$$
\begin{align*}
\frac{d}{d x}\left(\frac{w}{V}\right)= & \frac{d}{d x}\left(\frac{w_{t}}{\bar{V}}\right)+\frac{d}{d x}\left(\frac{w_{b}}{V}\right) \\
= & \frac{K}{4 \pi V h^{2}}\left[-\frac{\mu^{2}(\eta-\tau)}{2|\eta-\tau|^{3}}-\frac{\mu^{2}(\eta+\tau)}{2|\eta+\tau|^{3}}-\frac{\mu^{2} \eta}{|\eta|^{3}}\right. \\
& +\sum_{m=-\infty}^{\infty}(-1)^{m}\left\{f\left(\frac{\eta \pm \tau-m}{\mu}\right)\right. \\
& \left.\left.+F\left(\frac{\eta \pm \tau-m}{\mu}\right)-2 F\left(\frac{\eta-m}{\mu}\right)\right\}\right] \tag{5.8}
\end{align*}
$$

in the limit as $x \rightarrow 0$. On comparing equations (3.1) and (5.8), it will be seen that

$$
\begin{align*}
\delta_{1}(\eta, \tau)= & \frac{1}{16 \pi \tau}\left[-\frac{\mu^{2}(\eta-\tau)}{2|\eta-\tau|^{3}}-\frac{\mu^{2}(\eta+\tau)}{2|\eta+\tau|^{3}}-\frac{\mu^{2} \eta}{|\eta|^{3}}+\sum_{m=-\infty}^{\infty}(-1)^{m}\left\{f\left(\frac{\eta \pm \tau-m}{\mu}\right)\right.\right. \\
& \left.\left.+F\left(\frac{\eta \pm \tau-m}{\mu}\right)-2 F\left(\frac{\eta-m}{\mu}\right)\right]\right\}, \quad \ldots \tag{5.9}
\end{align*} .
$$

where $\quad \eta=y / b, \tau=t / b$ and $\mu=h / b$.
In the case of a symmetrical wing, by a similar analysis

$$
\begin{align*}
\delta_{1}(\eta, \tau)= & \frac{1}{16 \pi \tau}\left[-\frac{\mu^{2}(\eta-\tau)}{2|\eta-\tau|^{2}}+\sum_{m=-\infty}^{\infty}\left\{f\left(\frac{\eta-\tau-m}{\mu}\right)+F\left(\frac{\eta-\tau-m}{\mu}\right)\right\}\right. \\
& \left.+\frac{\mu^{2}(\eta+\tau)}{2|\eta+\tau|^{3}}-\sum_{m=-\infty}^{\infty}\left\{f\left(\frac{\eta+\tau-m}{\mu}\right)+F\left(\frac{\eta+\tau-m}{\mu}\right)\right\}\right] . \quad . \tag{5.10}
\end{align*}
$$

6. Calculation of P_{0}, P_{1}, Q_{0} and Q_{1}.-For the purpose of calculating tunnel interference, it is assumed that the bound vorticity may be concentrated along the line $x=x_{0}(t)$ through the local centres of pressure, as indicated in Fig. 4. Suppose that the circulation round the wing at any chordwise section is $\Gamma=\Gamma(t)$. When the loading is antisymmetrical, the interference due to the parts of the wing $-(t+\delta t)<y<-t$ and $t<y<(t+\delta t)$ is represented by the equal and opposite pair of horse-shoe vortices shown in Fig. 4. It follows from section 3 that the image system of these vortices contributes

$$
\begin{aligned}
\delta\left(\frac{w}{V}\right)= & \frac{4 \Gamma(t)}{V b h}\left\{(t+\delta t) \delta_{0}(y, t+\delta t)-t \delta_{0}(y, t)\right. \\
& \left.+\frac{x-x_{0}(t)}{h}\left\{(t+\delta t) \delta_{1}(y, t+\delta t)-t \delta_{1}(y, t)\right\}\right\} \\
= & \frac{4 \Gamma(\tau)}{V h}\left[\frac{\partial}{\partial \tau}\left\{\tau \delta_{0}(\eta, \tau)\right\}+\frac{x-x_{0}(\tau)}{h} \frac{\partial}{\partial \tau}\left\{\tau \delta_{1}(\eta, \tau)\right\}\right] \delta \tau+O\left[(\delta \tau)^{2}\right] .
\end{aligned}
$$

Then for an antisymmetrically loaded wing the integrated tunnel-induced angle of upwash is expressed as

$$
\begin{equation*}
\frac{w}{V}=\int_{0}^{\sigma} \frac{4 \Gamma(\tau)}{V h}\left\{P_{0}(\eta, \tau)+\frac{x-x_{0}(\tau)}{h} P_{1}(\eta, \tau)\right\} d \tau, \quad \ldots \quad . . \tag{6.1}
\end{equation*}
$$

where

$$
\sigma=s / b=\text { wing semi-span/tunnel breadth, }
$$

$$
P_{0}(\eta, \tau)=\frac{\partial}{\partial \tau}\left\{\tau \delta_{0}(\eta, \tau)\right\}, \quad \delta_{0} \text {, being given in equation (4.4) }
$$

$$
P_{1}(\eta, \tau)=\frac{\partial}{\partial \tau}\left\{\tau \delta_{1}(\eta, \tau)\right\}, \quad \delta_{1} \text { being given in equation (5.9). }
$$

Similarly for a symmetrically loaded wing

$$
\begin{equation*}
\frac{w}{V}=\int_{0}^{o} \frac{4 \Gamma(\tau)}{V h}\left\{Q_{0}(\eta, \tau)+\frac{x-x_{0}(\tau)}{h} Q_{1}(\eta, \tau)\right\} d \tau, \tag{6.2}
\end{equation*}
$$

where

$$
\begin{array}{ll}
Q_{0}(\eta, \tau)=\frac{\partial}{\partial \tau}\left\{\tau \delta_{0}(\eta, \tau)\right\}, & \delta_{0} \text { being given in equation (4.5) } \\
Q_{1}(\eta, \tau)=\frac{\partial}{\partial \tau}\left\{\tau \delta_{1}(\eta, \tau)\right\}, \quad \delta_{1} \text { being given in equation (5.10). }
\end{array}
$$

The quantities P_{0} and Q_{0} are easily calculated. From equations (4.4) and (6.1)

$$
\begin{aligned}
P_{0}(\eta, \tau)= & \frac{1}{16} \frac{\partial}{\partial \tau}\left[-\frac{\mu}{\pi(\eta-\tau)}+\sum_{m=-\infty}^{\infty}(-1)^{m} \operatorname{cosech} \frac{\pi}{\mu}(\eta-\tau-m)\right. \\
& \left.-\frac{\mu}{\pi(\eta+\tau)}+\sum_{m=-\infty}^{\infty}(-1)^{m} \operatorname{cosech} \frac{\pi}{\mu}(\eta+\tau-m)\right] .
\end{aligned}
$$

Then in terms of the functions

$$
\left.\begin{array}{rl}
f_{1}(\lambda) & =\frac{d}{d \lambda}\{\operatorname{cosech} \pi \lambda\} \\
f_{2}(\lambda) & =\frac{d}{d \lambda}\left\{\operatorname{cosech} \pi \lambda-\frac{1}{\pi \lambda}\right\}
\end{array}\right\}, \begin{array}{lllll}
& \ldots & \ldots & \ldots & \ldots \tag{6.4}\\
. & \ldots & \ldots \\
P_{0}(\eta, \tau) & =\frac{1}{16 \mu}\left\{\phi_{0}(\eta-\tau)-\phi_{0}(\eta+\tau)\right\}, & \ldots & \ldots & \ldots \\
\ldots & \ldots
\end{array}
$$

where

$$
\phi_{0}(\eta)=-f_{2}(\eta / \mu)-\sum_{m=1}^{\infty}(-1)^{m}\left\{f_{1}\left(\frac{\eta-m}{\mu}\right)+f_{1}\left(\frac{\eta+m}{\mu}\right)\right\} .
$$

Similarly from equations (4.5) and (6.2),

$$
\begin{equation*}
Q_{0}(\eta, \tau)=\frac{1}{16 \mu}\left\{\psi_{0}(\eta-\tau)+\psi_{0}(\eta+\tau)\right\}, \quad . \quad . \quad . \quad . \quad . \tag{6.5}
\end{equation*}
$$

where

$$
\psi_{0}(\eta)=-f_{2}(\eta / \mu)-\sum_{m=1}^{\infty}\left\{f_{1}\left(\frac{\eta-m}{\mu}\right)+f_{1}\left(\frac{\eta+m}{\mu}\right)\right\} .
$$

Since $f_{1}(\lambda)$ and $f_{2}(\lambda)$ are even functions of λ, it will be seen that $\phi_{0}(-\eta)=\phi_{0}(\eta)$ and $\psi_{0}(-\eta)=\psi_{0}(\eta)$. Values of $f_{1}(\lambda)$ and $f_{2}(\lambda)$ for positive λ are given in Table 1, whence it is clear that $\phi_{0}(\eta)$ and $\psi_{0}(\eta)$ are in the form of rapidly convergent series. By this means it is simple to calculate $P_{0}(\eta, \tau)$ and $Q_{0}(\eta, \tau)$.

The expressions for $\delta_{1}(\eta, \tau)$ in equations (5.9) and (5.10) are rather complicated. In earlier work ${ }^{6}$ (Brown, 1938), the method of evaluation was to sum the contributions from all the images within a rectangle with the tunnel at its centre and to make a rough estimate of the effect of the remaining images. Among such methods, Ref. 6 and Appendix II to Ref. 2 probably give the most convenient approximations. These methods are not rapidly convergent, especially when the ratio $\mu=h / b$ is rather small. Olver ${ }^{7}$ (1949), has established a transformation which converts the double series into a rapidly convergent and easily computable form ; and a similar transformation is used in section 3.2 of Ref. 4. The functions $f(\lambda)$ and $F(\lambda)$ in equations (5.2) and (5.6) are considered in Appendix I, where by a treatment similar to that of Ref. 7 it is shown that

$$
\begin{equation*}
\lambda \frac{d F}{d \lambda}=f(\lambda)=4 \pi\left\{K_{1}(\pi \lambda)+3 K_{1}(3 \pi \lambda)+5 K_{1}(5 \pi \lambda)+\ldots\right\}, \quad \ldots \quad \ldots \tag{6.6}
\end{equation*}
$$

where K_{1} denotes the modified Bessel function ${ }^{10}$ (Watson). Since these functions of a single variable are readily evaluated, the following method is believed to be the most convenient for general computation of P_{1} and Q_{1}.

From equations (5.9) and (6.1),

$$
\begin{aligned}
P_{1}(\eta, \tau)= & \frac{1}{16 \pi} \frac{\partial}{\partial \tau}\left[-\frac{\mu^{2}(\eta-\tau)}{|\eta-\tau|^{3}}+\sum_{m=-\infty}^{\infty}(-1)^{m}\left\{f\left(\frac{\eta-\tau-m}{\mu}\right)+F\left(\frac{\eta-\tau-m}{\mu}\right)\right\}\right. \\
& -\frac{\mu^{2}(\eta+\tau)}{|\eta+\tau|^{3}}+\sum_{m=-\infty}^{\infty}(-1)^{m}\left\{f\left(\frac{\eta+\tau-m}{\mu}\right)+F\left(\frac{\eta+\tau-m}{\mu}\right)\right] .
\end{aligned}
$$

Then in terms of the functions

$$
\begin{align*}
& f_{3}(\lambda)=\frac{d}{d \lambda}\{f(\lambda)+F(\lambda)\} \\
& \left.f_{4}(\lambda)=\frac{d}{d \lambda}\left\{f(\lambda)+F(\lambda)-\frac{\lambda}{2|\lambda|^{3}}\right\}\right\}, \tag{6.7}\\
& P_{1}(\eta, \tau)=\frac{1}{16 \pi \mu}\left\{\phi_{1}(\eta-\tau)-\phi_{1}(\eta+\tau)\right\}, \quad . \quad . \quad . \quad . \quad . \tag{6.8}
\end{align*}
$$

where

$$
\phi_{1}(\eta)=-f_{4}(\eta \mid \mu)-\sum_{m=1}^{\infty}(-1)^{m}\left\{f_{3}\left(\frac{\eta-m}{\mu}\right)+f_{3}\left(\frac{\eta+m}{\mu}\right)\right\} .
$$

Similarly, for a symmetrically loaded wing, from equations (5.10) and (6.2),

$$
\begin{equation*}
Q_{1}(\eta, \tau)=\frac{1}{16 \pi \mu}\left\{\psi_{1}(\eta-\tau)+\psi_{1}(\eta+\tau)\right\}, \quad . \quad . \quad . \quad . \quad . \tag{6.9}
\end{equation*}
$$

where

$$
\psi_{1}(\eta)=-f_{4}(\eta / \mu)-\sum_{m=1}^{\infty}\left\{f_{3}\left(\frac{\eta-m}{\mu}\right)+f_{3}\left(\frac{\eta+m}{\mu}\right)\right\} .
$$

Both $f(\lambda)$ and $F(\lambda)$ are odd functions of λ; and the even functions $f_{3}(\lambda)$ and $f_{4}(\lambda)$ in equation (6.7) have been calculated from equation (6.6) by the Mathematics Division of the N.P.L. and are given for positive values of λ in Table 2. Like $f_{1}(\lambda)$ in Table $1, f_{3}(\lambda)$ in Table 2 decreases rapidly as λ increases and is negligible when $\lambda>5$. Thus the expressions $\phi_{1}(-\eta)=\phi_{1}(\eta)$ and $\psi_{1}(-\eta)=\psi_{1}(\eta)$ in equations (6.8) and (6.9) are rapidly convergent, so that $P_{1}(\eta, \tau)$ and $Q_{1}(\eta, \tau)$ are easily calculated.

Values of $P_{0}, P_{1}, Q_{0}, Q_{1}$ for a duplex tunnel ($\mu=\frac{1}{2}$) are given in Tables 4, 5, 6;7 respectively. Similar calculations for other values of $\mu=h / b$ might involve interpolation in the values of the functions $f_{1}(\lambda), f_{2}(\lambda), f_{3}(\lambda), f_{4}(\lambda)$ in Tables 1 and 2. f_{1} and f_{2} are readily evaluated from equation (6.3) ; and f_{3} in equation (6.7) is easily obtained by subtracting $1 / \lambda^{3}$ from f_{4}. Table 3 has been prepared so that with the use of second differences the values of $f_{4}(\lambda)$ may be obtained to an accuracy of ± 0.0001 (Appendix I).
7. Evaluation of Tunnel Interference.-In sections 3 to 6, the tunnel interference due to a lifting surface is expressed as an angle of upwash w/ $V=\delta \alpha$, which may be calculated at any position in the supposedly horizontal plane of the model. From equation (6.1), when the spanwise loading is antisymmetrical,

$$
\begin{equation*}
\delta \alpha(x, y)=I+\frac{x}{h} J, \quad . . \quad . \quad . . \quad . . \quad . \quad . \quad . \quad . \tag{7.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& I=\frac{8 s^{2}}{b \bar{h}} \int_{0}^{1} \gamma\left\{\dot{P}_{0}-\frac{x_{0}}{h} P_{1}\right\} d(\tau / \sigma), \\
& J=\frac{8 s^{2}}{b h} \int_{0}^{1} \gamma P_{1} d(\tau / \sigma),
\end{aligned}
$$

x is conveniently measured from the leading apex of the wing (Fig. 4),
$y=b \eta$,
$s=b \sigma$,
$\gamma=\Gamma / 2 s V$ is the non-dimensional circulation at the section $t=b \tau$,
P_{0}, P_{1} are functions of η and τ for a given rectangular tunnel (section 6),
and
$\left(x_{0}, t\right)$ are the co-ordinates of the chordwise centre of pressure.
In the case of the six-component balance measurements on a complete model (section 1), the only experimental quantity relevant to equation (7.1) is $C_{l}{ }^{\prime}$, the measured coefficient of rolling moment corrected only for tunnel blockage (Ref. 2, section 4.1). Provided that $\gamma / C_{l}{ }^{\prime}$ and x_{0} are known as functions of τ / σ, it is possible to evaluate $\delta \alpha / C_{l}^{\prime}$, which is continuous and antisymmetrical about the centre-line of the model. In the corresponding symmetrical problem $\delta \alpha$ is split up into a uniform correction $\Delta \alpha$ to incidence and a residual upwash. Similarly it would be convenient to express most of the antisymmetrical $\delta \alpha$ as a linear twist proportional to y / s, which could be regarded as a uniform rate of roll, but this representation would be unrealistic unless the model were free to roll. Since $\delta \alpha$ is continuous, it would be unsatisfactory to interpret the tunnel interference as a correction to aileron setting and a residual upwash, so that in the case of deflected ailerons the effect of $\Delta \alpha$ must normally be calculated as a whole.

The treatment in Ref. 4 is based on lifting-line theory, which is unsatisfactory for wings of moderately low aspect ratio and inapplicable to swept wings. However a procedure of this kind must be devised if basic calculations by lifting-surface theory are not available. For this purpose the reader is referred to the simplified method illustrated at the end of Appendix II. The deficiencies of the lifting-line theory ${ }^{8}$ (Multhopp, 1938) are partly taken into account by
(i) the device to include sweepback in section 5.2 of Ref. 2,
(ii) the rough formula (II 8) for the chordwise centre of pressure,
(iii) the modified formula (II 9) for C_{l} when $\alpha=y / s$.
δC_{l} is then calculated as that corresponding to an equivalent uniform rate of roll, viz.,

$$
\delta \alpha=\left\{\frac{(\delta \alpha)_{3 / 4}}{y / s}\right\}_{m} \cdot \frac{y}{s},
$$

where the quantity $\left\{(\delta \alpha)_{3 / 4} /(y / s)\right\}_{m}$ is estimated from equation (II 10). In the example considered, a fair degree of accuracy was obtained, but the simplified method of Appendix II is only suggested as a substitute for the lifting-surface method which follows.

It will be seen that Multhopp's ${ }^{9}$ (1950) lifting-surface theory is particularly convenient. The calculated load distribution corresponding to unconstrained potential flow past the given planform with a given aileron setting will normally be different from the actual loading on the model. However, if the theoretical aileron setting is chosen to give the measured $C_{l}{ }^{\prime}$, the calculated loading should approximate to the experimental loading, so that the tunnel interference can be estimated well within the desired accuracy. A solution by Ref. 9 with two chordwise terms determines just the information required in equation (7.1),

$$
\begin{aligned}
\gamma & =\text { local } c C_{L} / 4 s \\
\mu & =\text { local } c C_{m} / 4 s \text { (about local quarter-chord) }
\end{aligned}
$$

at chordwise sections $|t|=s \sin \frac{n \pi}{m+1}\left[n=1,2, \ldots \frac{1}{2}(m-1)\right]$.
The distance of the chordwise centre of pressure from the leading edge $x=x_{i}(t)$ is expressed as a fraction $X_{\text {c.p. }}$ of the local chord $c(t)$, so that

$$
\left.\begin{array}{rl}
x_{0} & =x_{L}+X_{\text {e.p. }} c \tag{7.2}\\
& =x_{L}+c\left(\frac{1}{4}-\frac{\mu}{\gamma}\right)
\end{array}\right\} . \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots
$$

Furthermore it is easy to evaluate $\delta \alpha$ at the $\frac{1}{2}(m-1)$ sections $y=s \sin \{\nu \pi /(m+1)\}$ in terms of the two integrands

$$
\gamma\left\{P_{0}-\frac{x_{0}}{h} P_{1}\right\} \text { and } \gamma P_{1} .
$$

Thus $\delta \alpha$ is obtained for the values of x and y appropriate to a solution by Multhopp's method. A set of linear simultaneous equations then determines the quantities $\delta \gamma$ and $\delta \mu$ at sections $y=s \sin \{\nu \pi /(m+1)\} ; \delta \gamma$ is integrated to give

$$
\begin{align*}
\delta C_{l} & =\frac{1}{2} A \int_{-1}^{1} \delta \gamma \cdot \frac{y}{s} d\left(\frac{y}{s}\right) \\
& =\frac{\pi A}{2(m+1)} \sum_{1}^{\ddagger(m-1)} \delta \gamma_{\nu} \sin \frac{2 \pi v}{m+1} . \quad \ldots \tag{7.3}\\
\ldots & \ldots
\end{align*} \quad \ldots \quad \ldots .
$$

Then the correction $\Delta C_{l}=-\delta C_{l}$ to be applied to the measured $C_{l}{ }^{\prime}$ is given by

$$
\begin{equation*}
-\frac{\Delta C_{l}}{C_{l}^{\prime}}=\frac{\sum_{1}^{\frac{1}{(m n-1)}} \delta \gamma_{v} \sin \frac{2 \pi \nu}{m+1}}{\sum_{1}^{\frac{1}{2(m-1)}} \gamma_{v} \sin \frac{2 \pi v}{m+1}} . \quad . \quad . \quad . . \quad . . \quad . \quad . \tag{7.4}
\end{equation*}
$$

It is envisaged that calculations of this kind will always be carried out for $m=7$; and a worked example in Appendix II explains the procedure in 8 simple steps, which are shown in Tables A1 to 8 respectively:
(1) Interpolation : P_{0} and P_{1} for each (v, n) from the general tables, e.g., Tables 4 and 5 . This is done once for all for a given span of wing.
(2) Evaluation of $X_{\text {c.p. }}$ and x_{0} in equation (7.2) for each n from the known free-stream solution $\left(\gamma_{n}, \mu_{n}\right)$ corresponding to the particular aileron.
(3) Integration : I and J in equation (7.1) for each ν.
(4) Evaluation of $\delta \alpha_{v}^{\prime}, \delta \alpha_{v}^{\prime \prime}$ at the appropriate pivotal points in equation (II 6).
(5) Setting out the basic equations for $\delta \gamma_{\nu}$ and $\delta \mu_{\nu}$. It is assumed that these are already prepared from equations (114) of Ref. 9.
(6) Evaluation of right-hand sides L_{v} and M_{v} from $\delta \alpha_{v}{ }^{\prime}$ and $\delta \alpha_{v}{ }^{\prime \prime}$.
(7) Solution of linear simultaneous equations for $\delta \gamma_{v}$ and $\delta \mu_{v}$.
(8) Evaluation of $\Delta C_{l} / C_{l}^{\prime}$ in equation (7.4).

The corresponding analysis for symmetrical loading follows the same pattern. The tunnel interference is supposed to be independent of the measured $C_{m}{ }^{\prime}$ and is determined from values of $\gamma / C_{L}{ }^{\prime}$ and x_{0}, calculated from Ref. 9 as functions of τ / σ. In equation (7.1), Q_{0} and Q_{1} take the place of P_{0} and P_{1}. Equation (7.2) still holds except in the special case $y=0$; for in the calculation of γ and μ there is a small displacement in the centre-line chord [Ref. 9 , section 5.3 and Table 22], and x_{l}, c have to be modified accordingly. Similarly, at the section $y=0$, some care is needed regarding the values of x for which $\delta \alpha$ is required. From the solutions for $\delta \gamma / C_{L}{ }^{\prime}$ and $\delta \mu C_{L}{ }^{\prime}, \delta C_{L} / C_{L}^{\prime}$ and $\delta C_{m} / C_{L}^{\prime}$ are obtained from equations (133) and (140) of Ref. 9. Corresponding theoretical values of $\partial C_{L} / \partial \alpha$ and $\partial C_{m} / \partial \alpha$ will already be known; and in terms of these values the interference corrections

$$
\left.\begin{array}{rl}
\Delta \alpha & =C_{L}^{\prime} \frac{\delta C_{L}}{C_{L}^{\prime}} / \frac{\partial C_{L}}{\partial \alpha} \tag{7.5}\\
\Delta C_{m} & =-C_{L}^{\prime} \frac{\delta C_{m}}{C_{L}^{\prime}}+\Delta \alpha \frac{\partial C_{m}}{\partial \alpha}
\end{array}\right\}
$$

are applied to the measured incidence and $C_{m}{ }^{\prime}$ respectively. By the definition of $\Delta \alpha$ there is no interference correction to $C_{L}{ }^{\prime}$, and the residual correction ΔC_{m} is independent of pitching axis.

When the rolling moment is measured on a half-model, the spanwise loading is symmetrical as in the preceding paragraph. By considering first of all a complete model in a tunnel of dimensions $2 b \times h$, the tunnel-induced $\delta \alpha$ will be obtained from equation (7.1) when P_{0} and P_{1} ($\mu=h / b$) are replaced by Q_{0} and $Q_{1}(\mu=h / 2 b)$. Equations (7.5) still apply ; and this distributed upwash will also cause an incremental rolling moment given by

$$
\begin{align*}
\delta C_{l} & =A \int_{0}^{1} \delta \gamma v d\left(\frac{y}{s}\right) \quad[c f . \text { equation (7.3)] } \\
& =\frac{\pi A}{8}\left[0 \cdot 0404 \delta \gamma_{0}+0.3440 \delta \gamma_{1}+0.5030 \delta \gamma_{2}+0.3525 \delta \gamma_{3}\right] \tag{7.6}
\end{align*}
$$

where $\delta \gamma_{v}$ is the value of $\delta \gamma$ when $y=s \sin \frac{1}{8} \nu \pi(m=7)$. Then, in addition to equations (7.5) the measured C_{l}^{\prime} will require a residual correction

$$
\begin{equation*}
\Delta C_{l}=-C_{L}{ }^{\prime} \frac{\delta C_{l}}{C_{L}^{\prime}}+\Delta \alpha \frac{\partial C_{l}}{\partial \alpha}, \quad . \quad . \quad . \quad . \quad . \quad . \tag{7.7}
\end{equation*}
$$

where $\partial C_{l} / \partial \alpha$ is defined in the sense of equation (7.6). There may still remain an important factor to apply to ($C_{l}^{\prime}+\Delta C_{l}$), if outboard control surfaces are deflected and the practical condition of antisymmetrical ailerons is required. This determination of rolling power is not so much a problem of tunnel interference as of lifting-surface theory, and is best made by Ref. 9. A shorter approximate treatment, based on a modified lifting-line theory, is given in Ref. 2. If the aileron of a half-model is deflected through an angle ξ, the corrected rolling moment is \dagger

$$
\begin{equation*}
C_{l}=\left(C_{i}^{\prime}+\Delta C_{l}\right)\left(\frac{\partial C_{l}}{\partial \xi}\right)_{a} /\left(\frac{\partial C_{l}}{\partial \xi}\right)_{s}, \ldots \quad \ldots \quad \ldots \quad \ldots \quad . . \tag{7.8}
\end{equation*}
$$

where $\left(\partial C_{l} / \partial \xi\right)_{a}$ for antisymmetrical loading and $\left(\partial C_{l} / \partial \xi\right)_{s}$ for symmetrical loading are found independently.

When the spanwise loading on a complete model is asymmetrical, the tunnel interference on lift, rolling moment and pitching moment are obtained by writing

$$
\begin{align*}
\gamma & =\gamma_{a}+\gamma_{s} \\
& =C_{l}^{\prime} \frac{\gamma_{a}}{C_{l}^{\prime}}+C_{L}^{\prime} \frac{\gamma_{s}}{C_{L}^{\prime}}, \quad . \quad . \quad . \quad . \quad . \quad . . \tag{7.9}
\end{align*}
$$

and by considering the two parts quite separately in equations (7.4) and (7.5).
8. Corrections to Drag and Yawing Moment.-As regards the interference on C_{D}, C_{c} and C_{n}, the coefficients of drag, cross-wind force and yawing moment, there may be corrections to C_{c} and C_{n} due to tunnel-induced sidewash, but \ddagger these are beyond the scope of the present report. There will, however, be corrections to C_{D} and C_{n} due to induced drag. The effect of tunnel walls on yawing moment is considered on the basis of lifting-line theory in Ref. 3. A similar treatment will cater for a lifting line along the locus of the centres of pressure. This involves an assumption about the spanwise location of induced drag, and it is necessary to point out that the assumption is plausible, yet without rigorous justification.

Under tunnel conditions the total induced drag and induced yawing moment \dagger on a wing are given by

$$
\left.\begin{array}{l}
C_{D i}^{\prime}=-A \int_{-1}^{1} \gamma\left(\alpha_{i}+\delta \alpha\right) d(y / s) \tag{8.1}\\
C_{n i}^{\prime}=\frac{1}{2} A \int_{-1}^{1} \gamma\left(\alpha_{i}+\delta \alpha\right)(y / s) d(y / s)
\end{array}\right\}, \quad \cdots \quad \ldots \quad \ldots
$$

where
α_{i}, the induced incidence due to finite aspect ratio, plays no part in the tunnel
interference,
$\delta \alpha$ is the tunnel-induced angle of upwash at the centre of pressure
and

$$
\gamma \text { is given in equation (7.9). }
$$

When $\delta \alpha=\delta \alpha_{a}+\delta \alpha_{s}$ is split into its antisymmetrical and symmetrical parts, the contributions due to tunnel interference from equation (8.1) are

$$
\begin{array}{rlllll}
\delta C_{D} & =-A \int_{-1}^{1}\left(\gamma_{a} \delta \alpha_{a}+\gamma_{s} \delta \alpha_{s}\right) d(y / s), & . & \ldots & \ldots & \ldots \\
. & \tag{8.3}\\
\delta C_{n} & =\frac{1}{2} A \int_{-1}^{1}\left(\gamma_{a} \delta \alpha_{s}+\gamma_{s} \delta \alpha_{a}\right)(y / s) d(y / s), & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

[^1]where each $\delta \alpha_{a}$ and $\delta \alpha_{s}$ is calculated at the position of the chordwise centre of pressure corresponding to the particular γ_{a} or γ_{s} with which it is associated. Thus equation (7.1) gives
\[

\left.$$
\begin{array}{rl}
\text { for } \delta C_{D}, & \delta \alpha_{a}=I_{a}+J_{a}\left(x_{0} / h\right)_{a} \tag{8.4}\\
\delta \alpha_{s}=I_{s}+J_{s}\left(x_{0} / h\right)_{s}
\end{array}
$$\right\} \quad ··· \quad ··· \quad ··· \quad ··· \quad ···
\]

$\left.\begin{array}{ll}\text { and for } \delta C_{n}, & \delta \alpha_{a}=I_{a}+J_{a}\left(x_{0} / h\right)_{s} \\ \delta \alpha_{s} & =I_{s}+J_{s}\left(x_{0} / h\right)_{a}\end{array}\right\}, \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots$
where from equation (7.2)

$$
\left(x_{0} / h\right)_{a}=x_{l} / h+\frac{c}{h}\left(\frac{1}{4}-\frac{\mu_{a}}{\gamma_{a}}\right)
$$

and $\left(x_{0} / h\right)_{s}$ is given similarly. When drag is considered, γ_{a} and γ_{s} are treated separately, but in the case of yawing moment there is no contribution δC_{n} unless both γ_{a} and γ_{s} exist, i.e., the spanwise loading is asymmetrical. It is necessary to consider two conditions of asymmetrical loading
(i) when the wing is at uniform incidence and the ailerons are antisymmetrically deflected
(ii) when the wing is at zero incidence and the ailerons are asymmetrical.

Separate calculations of both $\delta \alpha_{a}$ and $\delta \alpha_{s}$ will be required in the two cases.
By the usual method of integration, as in equation (143) of Ref. 9, equation (8.2) becomes

$$
\begin{equation*}
\delta C_{D}=\left(\delta C_{D}\right)_{a}+\left(\delta C_{D}\right)_{s}, \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{8.6}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(\delta C_{D}\right)_{a} & =-\frac{\pi A}{m+1} \sum_{-\frac{1}{(}(m-1)}^{\frac{1}{(m-1)}}\left(\gamma_{a}\right)_{\nu}\left(\delta \alpha_{a}\right)_{v} \cos \frac{\nu \pi}{m+1} \text { is proportional to }\left(C_{l}^{\prime}\right)^{2}, \\
\left(\delta C_{D}\right)_{s} & =-\frac{\pi A}{m+1} \sum_{-\frac{t}{t}(m-1)}^{\frac{1}{(m-1)}}\left(\gamma_{s}\right)_{v}\left(\delta \alpha_{s}\right)_{v} \cos \frac{\nu \pi}{m+1} \text { is proportional to }\left(C_{L}^{\prime}\right)^{2},
\end{aligned}
$$

and $\left(\delta \alpha_{a}\right)_{v},\left(\delta \alpha_{s}\right)_{v}$ are given in equation (8.4), when $y=s \sin \frac{\nu \pi}{m+1}$.
The measured drag consists of five parts

$$
\begin{equation*}
C_{D}^{\prime}=C_{D \mathbf{0}}+\left(C_{D}^{\prime}\right)_{a}+\left(\delta C_{D}\right)_{a}+\left(C_{D}^{\prime}\right)_{s}+\left(\delta C_{D}\right)_{s}, \quad \ldots \quad \ldots \quad \ldots \tag{8.7}
\end{equation*}
$$

where $C_{D 0}$ is the profile drag. $C_{D i}{ }^{\prime}$ in equation (8.1) is a theoretical estimate of the last four terms ; and $\left(\delta C_{D}\right)_{a}$ and $\left(\delta C_{D}\right)_{s}$ are easily computed from equation (8.6). It is approximately true that $\left(C_{D}{ }^{\prime}\right)_{a}$ is proportional to $\left(C_{l}{ }^{\prime}\right)^{2}$ and that $\left(C_{D}\right)_{s}$ is proportional to $\left(C_{L}^{\prime}\right)^{2}$. C_{l}^{\prime} requires a correction ΔC_{l} from equation (7.4), but by equation (7.5) there is no correction to $C_{L}{ }^{\prime}$. Thus the corrected experimental drag coefficient is

$$
\begin{equation*}
C_{D}=C_{D 0}+\left(1+\frac{\Delta C_{l}}{C_{l}^{\prime}}\right)^{2}\left(C_{D}^{\prime}\right)_{a}+\left(C_{D}^{\prime}\right)_{s} . \ldots \quad \ldots \quad \ldots \quad \ldots \tag{8.8}
\end{equation*}
$$

From equations (8.7) and (8.8) the correction to be applied to $C_{D}{ }^{\prime}$ is

$$
\begin{align*}
\Delta C_{D}= & C_{D}-C_{D}^{\prime} \\
= & \frac{\Delta C_{l}}{C_{l}^{\prime}}\left(2+\frac{\Delta C_{l}}{C_{l}^{\prime}}\right)\left(C_{D}^{\prime}\right)_{a}-\left(\delta C_{D}\right)_{a}-\left(\delta C_{D}\right)_{s} \\
= & 2 \frac{\Delta C_{l}}{C_{l}^{\prime}}\left\{\left(C_{D}{ }^{\prime}\right)_{a}+\left(\delta C_{D}\right)_{a}\right\}-\left(C_{l}^{\prime}\right)^{\prime} \frac{\left(\delta C_{D}\right)_{a}}{\left(C_{l}^{\prime}\right)^{2}}-\left(C_{L}^{\prime}\right)^{2} \cdot \frac{\left(\delta C_{D}\right)_{s}}{\left(C_{L}^{\prime}\right)^{2}} \\
& +(\text { second-order terms }) . \quad \ldots \quad \ldots \quad \ldots \tag{8.9}
\end{align*} . .
$$

The measured $C_{D}{ }^{\prime}$ in equation (8.7) must be split into three parts

$$
C_{D 0}, \quad\left(C_{D}\right)_{a}+\left(\delta C_{D}\right)_{a}, \quad\left(C_{D}\right)_{s}+\left(\delta C_{D}\right)_{s},
$$

the second of which is required. Then from the calculated values of $\Delta C_{l} / C_{l}^{\prime}$ in equation (7.4), $\left(\delta C_{D}\right)_{a} /\left(C_{L}^{\prime}\right)^{2}$ and $\left(\delta C_{D}\right)_{s} /\left(C_{L}^{\prime}\right)^{2}$ in equation (8.6), ΔC_{D} may be evaluated.

The effect of tunnel interference on yawing moment in equation (8.3) becomes

$$
\begin{equation*}
\delta C_{n}=\frac{\pi A}{2(m+1)} \sum_{1}^{k(m-1)}\left\{\left(\gamma_{a}\right)_{v}\left(\delta \alpha_{s}\right)_{v}+\left(\gamma_{s}\right)_{v}\left(\delta \alpha_{a}\right)_{v}\right\} \sin \frac{2 \nu \pi}{m+1}, \quad \therefore \quad \ldots \tag{8.10}
\end{equation*}
$$

where $\delta \alpha_{a}$ and $\delta \alpha_{s}$ are given in equation (8.5). For a given wing with a pair of ailerons there are three types of loading
(a) symmetrical-uniform incidence (ailerons undeflected),
(b) symmetrical-ailerons deflected in the same sense ($\alpha=0$),
(c) antisymmetrical-ailerons deflected in opposite senses.

In the absence of (c) the purely symmetrical loading gives $C_{n}=\delta C_{n}=0$. (a) and (c) combine to give the asymmetrical loading (i) mentioned earlier ; (b) and (c) combine to give the loading (ii). Thus the measured yawing moment can be split into

$$
\begin{equation*}
C_{n}^{\prime}=\left\{\left(C_{n}^{\prime}\right)_{1}+\left(\delta C_{n}\right)_{1}\right\}+\left\{\left(C_{n}^{\prime}\right)_{2}+\left(\delta C_{n}\right)_{2}\right\}, \quad \ldots \quad \ldots \quad \ldots \tag{8.11}
\end{equation*}
$$

where the two parts correspond to loadings (i) and (ii). The measured C_{l}^{\prime} is common, to both, but there are respective contributions $\left(C_{L}{ }^{\prime}\right)_{1}$ and $\left(C_{L}{ }^{\prime}\right)_{2}$ to the measured lift coefficient. From equation (8.10)

$$
\left.\begin{array}{l}
\left(\delta C_{n}\right)_{1} \text { is proportional to }\left(C_{L}^{\prime}\right)_{1} C_{l}^{\prime} \\
\left(\delta C_{n}\right)_{2} \text { is proportional to }\left(C_{L}^{\prime}\right)_{2} C_{l}^{\prime}
\end{array}\right\} .
$$

The corrected experimental yawing-moment coefficient is

$$
\begin{equation*}
C_{n}=\left(1+\frac{\Delta C_{l}}{C_{l}^{\prime}}\right)^{2}\left\{\left(C_{n}{ }^{\prime}\right)_{1}+\left(C_{n}{ }^{\prime}\right)_{2}\right\} . \quad . . \quad . \quad . \quad . . \tag{8.12}
\end{equation*}
$$

From equations (8.11) and (8.12) the correction to be applied to $C_{n}{ }^{\prime}$ is

$$
\Delta C_{n}=2 \frac{\Delta C_{l}}{C_{l}^{\prime}} C_{n}^{\prime}-\left(C_{L}^{\prime}\right)_{1} C_{l}^{\prime} \frac{\left(\delta C_{n}\right)_{1}}{\left(C_{L}^{\prime}\right)_{1} C_{l}^{\prime}}-\left(C_{L}^{\prime}\right)_{2} C_{l}^{\prime} \frac{\left(\delta C_{n}\right)_{2}}{\left(C_{L}^{\prime}\right)_{2} C_{l}^{\prime}}+\text { (second-order terms). }
$$

Then from the calculated values of $\Delta C_{l} / C_{L}^{\prime}$ in equation (7.4), $\delta C_{n} / C_{L}^{\prime} C_{l}^{\prime}$ for loadings (i) and (ii) in equation (8.10), ΔC_{n} may be evaluated.
9. Results and Discussion.-In section 7 and 8 , for a complete wing with control surfaces the interference corrections due to the upwash induced by the tunnel walls were obtained as follows :

$$
\left.\begin{array}{l}
\Delta \alpha=C_{L}^{\prime} \frac{\Delta \alpha}{C_{L}^{\prime}} \\
\Delta C_{L}=0 \\
\Delta C_{l}=C_{l}^{\prime} \frac{\Delta C_{l}}{C_{l}^{\prime}} \\
\Delta C_{m}=C_{L}^{\prime} \frac{\Delta C_{m}}{C_{L}^{\prime}} \tag{9.1}\\
\Delta C_{D}=\left(C_{D}\right)_{a} \cdot 2 \frac{\Delta C_{l}}{C_{l}^{\prime}}-\left(C_{l}^{\prime}\right)^{2} \frac{\left(\delta C_{D}\right)_{a}}{\left(C_{l}^{\prime}\right)^{2}}-\left(C_{L}^{\prime}\right)^{2} \frac{\left(\delta C_{D}\right)_{s}}{\left(C_{L}^{\prime}\right)^{2}} \\
\Delta C_{b}=0 \\
\Delta C_{n}=C_{n}^{\prime} \cdot 2 \frac{\Delta C_{l}}{C_{l}^{\prime}}-\left(C_{L}^{\prime}\right)_{1} C_{l}^{\prime} \frac{\left(\delta C_{n}\right)_{1}}{\left(C_{L}^{\prime}\right)_{1} C_{l}^{\prime}}-\left(C_{L}^{\prime}\right)_{2} C_{l}^{\prime} \frac{\left(\delta C_{n}\right)_{2}}{\left(C_{L}^{\prime}\right)_{2} C_{l}^{\prime}}
\end{array}\right\}
$$

where the experimental coefficients $C_{L}{ }^{\prime}, C_{l}{ }^{\prime}, C_{D}{ }^{\prime}, C_{n}{ }^{\prime}$ are corrected for tunnel blockage only,

$$
\begin{aligned}
& C_{L}{ }^{\prime}=\left(C_{L}{ }^{\prime}\right)_{L}+\left(C_{L}{ }^{\prime}\right)_{2} \text { is explained after equation (8.11) } \\
& C_{D}{ }^{\prime} \bumpeq C_{D 0}+\left(C_{D}\right)_{a}+\left(C_{D}{ }^{\prime}\right)_{s} \text { is explained in equation (8.7) }
\end{aligned}
$$

and the remaining quantities are determined theoretically \dagger :
These corrections are required in the case of a complete model of the arrowhead Wing B , whose plan-form is illustrated and defined in Fig. 4. Six-component balance measurements have been carried out in the N.P.L. Duplex Wind Tunnel on this model with six different pairs of ailerons. For control chord ratios of both $E=0.2$ and $E=0.4$, there are three spans of aileron $0 \cdot \dot{3} \dot{6} s<y<s, 0 \cdot \dot{5} \dot{4} s<y<s, 0 \cdot 7 \dot{2} s<y<s$, and the wing semi-span $s=0.295 b$.

Full details of the calculations of $\Delta C_{l} / C_{l}^{\prime}$ are set out in Appendix II and for each pair of ailerons the corrections reduce C_{l}^{\prime} by about 2 per cent. In the symmetrical problem of uniform incidence $\Delta \alpha / C_{L^{\prime}}=0 \cdot 040$, so that the correction to α is about +11 per cent. The corresponding corrections, $\Delta \alpha / C_{L}^{\prime}$, when controls are deflected symmetrically, are rather less; and the effective ratio

$$
\frac{\delta C_{L}}{C_{L}^{\prime}}=\frac{\partial C_{L}}{\partial \alpha} \overline{C_{L}^{\prime}}
$$

is of the order $6 \frac{1}{2}$ per cent, which is over three times the ratio $\Delta C_{l} / C_{l}^{\prime}$ when the controls are deflected antisymmetrically. Tabulated results will be found in Table 8a; and from these Fig. 5 has been prepared. Curves of $\delta C_{L} / C_{L}^{\prime}$ and $\delta C_{l} / C_{l}^{\prime}$ against the position of the inboard end of the aileron y_{a} / s show
(i) that $\delta C_{L} / C_{L}{ }^{\prime}$ changes a good deal with span of aileron,
(ii) that results for $E=0.4$ are slightly higher than results for $E=0.2$.

The latter is a consequence of the more forward centres of pressure when $E=0.4$.
\dagger In accordance with the footnote to equation (7.8), it should be noted that $\left(\delta C_{n}\right) / C_{L}{ }^{\prime} C_{l}{ }^{\prime}$ is positive.

The dotted curves in Fig. 5 give the ratios
$\delta C_{l} / C_{i}^{\prime}$ for the rolling moment on one half of the wing when the loading is symmetrical, $\delta C_{L} / C_{L}{ }^{\prime}$ for the lift on one half of the wing when the loading is antisymmetrical.

It may be seen that typical results are :

$$
\left.\begin{array}{rl}
\text { symmetrical } \delta C_{L} / C_{L}^{\prime} & =0.065 \\
\text { symmetrical } \delta C_{l} / C_{l}^{\prime} & =0.046 \\
\text { antisymmetrical } \delta C_{L} / C_{L}^{\prime} & =0.025 \tag{9.2}\\
\text { antisymmetrical } \delta C_{l} / C_{l}^{\prime} & =0.021
\end{array}\right\} \ldots \quad \ldots \quad . . \quad . \quad .
$$

Thus the hybrid cases, dotted in Fig. 5, bridge the gap. This is probably a feature of oblong tunnels ($\mu<1$). It will be noted in Table 6 that along the leading diagonal $\eta=\tau, Q_{0}$ falls quite sharply in the range $\eta<0 \cdot 20$, so that for a given symmetrical loading there will be a smaller correction to the rolling moment on the half-wing than to the lift. This is not so for a square tunnel, as may be seen by differencing the columns of Table 2 of Ref. 1.

The orders of magnitude of the symmetrical $\delta C_{L} / C_{L}^{\prime}$ and the antisymmetrical $\delta C_{L} / C_{l}^{\prime}$ in equation (9.2) will now be verified by considering a small model of the arrowhead wing in the Duplex Tunnel. For a very small elliptically loaded wing, it is easily shown from equation (7.1) that

$$
\begin{aligned}
\delta \alpha=I_{s} & =\frac{8 s^{2}}{h b} \int_{0}^{1} \frac{2 C_{L}{ }^{\prime}}{\pi A} Q_{0} \sqrt{ }\left\{1-(\tau / \sigma)^{2}\right\} d(\tau / \sigma) \\
& =\frac{4 C_{L}{ }^{\prime}}{A} \frac{\sigma^{2} Q_{0}}{\mu},
\end{aligned}
$$

so that on substituting for Wing $B, A=2 \cdot 64, \partial C_{L}^{\prime} / \partial \alpha=2 \cdot 732, Q_{0}=0.1368$ from Table 6 , and $\mu=\frac{1}{2}$,

$$
\begin{equation*}
\frac{\delta \alpha}{\alpha}=\frac{\delta C_{L}}{C_{L}^{\prime}}=1 \cdot 13 \sigma^{2}=0 \cdot 098, \text { when } \sigma=0.295 . \quad . \quad . . \tag{9.3}
\end{equation*}
$$

For a very small antisymmetrically loaded wing, the limiting form of P_{0} in equation (6.4) is

$$
P_{0}(\eta, \tau)=-\frac{1}{16 \mu} \cdot 2 \eta \tau\left(\frac{d^{2} \phi_{0}}{d \eta^{2}}\right)_{\eta=0}=3 \cdot 85 \eta \tau \text {, when } \mu=\frac{1}{2} \text {. }
$$

Then

$$
\delta \alpha=I_{a}=\frac{8 s^{2}}{h b} \int_{0}^{1} \frac{16 C_{i}^{\prime}}{\pi A}\{3.85 \eta \tau\} \frac{\tau}{\sigma} \sqrt{ }\left\{1-(\tau / \sigma)^{2}\right\} d(\tau / \sigma)
$$

Hence

$$
\frac{\delta \alpha}{\eta / \sigma}=\frac{8 C_{l}^{\prime}}{A} \frac{3 \cdot 85 \sigma^{4}}{\mu}
$$

so that on substituting for Wing $\mathrm{B}, A=2 \cdot 64, \mu=\frac{1}{2}$, it follows from Appendix II, equation (II 11) that

$$
\begin{equation*}
\delta C_{l} / C_{l}^{\prime}=0 \cdot 225 \frac{3 \cdot 85 \sigma^{4}}{0 \cdot 165}=5 \cdot 25 \sigma^{4}=0 \cdot 040, \text { when } \sigma=0 \cdot 295 . \quad . \quad . \tag{9.4}
\end{equation*}
$$

The equations (9.3) and (9.4) only apply to infinitesimal wings, but they serve to show that, for symmetrical loading, tunnel interference is of order $(s / b)^{2}$, while for antisymmetrical loading it is of order $(s / b)^{4}$. Moreover the ratio

$$
\begin{align*}
\frac{\delta C_{l} / C_{l}^{\prime}}{\delta C_{L} / C_{L}^{\prime \prime}} & =4.6(s / b)^{2} \quad \ldots \tag{9.5}
\end{align*} \quad \ldots \quad . . \quad . \quad . \quad . \quad . \quad . .
$$

compares with the ratio from equations (9.2)

$$
\frac{\delta C_{L} / C_{L}^{\prime}}{\delta C_{L} / C_{L}^{\prime}}=\frac{0.021}{0.065}=0.32
$$

The allusion to a small wing provides a simple demonstration that the magnitude of antisymmetrical wall interference is usually much less than that of symmetrical interference. For a square tunnel ($\mu=1$) for example, it is easily shown that, in place of equations (9.3), (9.4) and (9.5)

$$
\begin{aligned}
& \delta C_{L} / C_{L}{ }^{\prime}=0 \cdot 56 \sigma^{2}=0 \cdot 049 \\
& \delta C_{L} / C_{l}^{\prime}=0 \cdot 77 \sigma^{4}=0 \cdot 006 \\
& \delta C_{l} / C_{l}^{\prime}=1 \cdot 4(s / b)^{2}=0 \cdot 12 \\
& \delta \overline{C_{L} / C_{L}^{\prime}}{ }^{\prime}
\end{aligned}
$$

$$
\}, \quad \ldots \quad \ldots \quad \ldots
$$

10. Concluding Remarks.-(a) The general procedure for computing the interference on a lifting surface in the central horizontal plane of a closed rectangular tunnel has been simplified. For a given shape of tunnel, only four basic quantities $P_{0}, P_{1}, Q_{0}, Q_{1}$ are required as functions of two variables (η, τ). In equations (6.4), (6.8), (6.5), (6.9), these are expressed exactly as rapidly convergent series in terms of four functions $f_{1}, f_{2}, f_{3}, f_{2}$ of a single variable, which are tabulated in Tables 1 to 3 .
(b) It is a simple matter to tabulate $P_{0}, P_{1}, Q_{0}, Q_{1}$ for any rectangular shape, and values for a duplex tunnel are given in Tables 4 to 7 .
(c) In section 7 the evaluation of tunnel interference is conveniently associated with Multhopp's lifting-surface theory. Any other lifting-surface theory could be used, but the worked example in Appendix II shows considerable economy in computation.
(d) The snags that may arise in some other procedures are considered at the end of Appendix II, where a fairly simple, but somewhat speculative, attempt is made to do without a lifting-surface theory.
(e) The calculated interference corrections for specific tests at N.P.L. are as follows (section 9) : equivalent lift $\quad-10.9$ per cent to -5.6 per cent dependent on the symmetrical loading
rolling moment
total centre of pressure
drag
yawing moment
-2.5 per cent to -1.9 per cent for different ailerons
a residual forward movement of $0 \cdot 009 \bar{c}$
a possible +21 per cent
a possible +25 per cent or more.
(f) A physical explanation of the differences in magnitude of the various percentage corrections is that

$$
\delta C_{D} / C_{D i}^{\prime} \text { and } \delta C_{n} / C_{n i}^{\prime} \text { depend on the ratio } \frac{\text { tunnel-induced upwash }}{\text { wing-induced upwash }},
$$

while

$$
\delta C_{L} / C_{L}^{\prime} \text { depends on the ratio } \frac{\text { tunnel-induced upwash }}{\text { geometric incidence }} \text {. }
$$

It is known that

$$
\begin{aligned}
& \frac{\text { wing-induced upwash }}{\text { geometric incidence }} \bumpeq \frac{\text { wing-induced lift }}{\text { lift by strip theory }}=\frac{\partial C_{L} / \partial \alpha}{2 \pi \cos A}-1 \\
& \quad=-0 \cdot 38_{5} \text { for the present wing, }
\end{aligned}
$$

so that percentage corrections to drag and yawing moment would be expected to have opposite sign to the equivalent percentage correction to lift and to have magnitude about $2 \cdot 6$ times as great.
(g) The smaller correction to rolling moment is explained in section 9 by allusion to a small model. It seems that, for a given ratio of wing span to tunnel breadth, the interference due to antisymmetrical loading would be markedly less in a square tunnel than in a duplex tunnel.
(h) As the corrections to drag and yawing moment are so large, it would appear to be essential to estimate these corrections despite the considerable labour of computation.
(i) Unless these corrections can be applied with confidence, there is reason to doubt the validity of tunnel measurements of C_{D} and C_{n} under these conditions. It is desirable to confirm results by means of tests in which the relative size of model to tunnel is varied,
11. Acknowledgements.-The authors wish to acknowledge the assistance of the Mathematics Division of the N.P.L. in the calculation of the functions in Tables 1 and. Miss J. Elliott of the Aerodynamics Division, N.P.L. assisted in the preparation of Tables 3 to 7. Most of the other numerical results given in this report were calculated by Miss E. Tingle of the Aerodynamics Division, N.P.L.

REFERENCES

No. Author

2 L. W. Bryant and H. C. Garner
3 D. J. Graham

4 J. Sanders and J. R. Pounder Wall interference in wind tunnels of closed rectangular section. N.R.C. Canada Report AR-7. 1949. Supplement : N.R.C. Canada. Report AR-11. 1951.
5 H. Glauert The elements of aerofoil and airscrew theory. 2nd edition. Cambridge University Press. 1948.
6 W. S. Brown Wind tunnel corrections on ground effect. R. \& M. 1865. July, 1938
7 F. W. J. Olver Transformation of certain series occurring in aerodynamic interference calculations. Quart. J. Mech. App. Math., Vol. II, Pt. 4, p. 452. 1949.

8 H. Multhopp The calculation of the lift distribution of aerofoils. L.F.F. Vol. 15, No. 4. R.T.P. Translation No. 2392. A.R.C. 8516. 1938.
9 H. Multhopp Methods for calculating the lift distribution of wings. (Subsonic lifting-surface theory.) R. \& M. 2884, January, 1950.
10 G. N. Watson A treatise on the theory of Bessel functions. 2nd edition. Cambridge University Press. 1948.

APPENDIX I

The Functions $f(\lambda)$ and $F(\lambda)$.-Consider the functions

$$
\begin{aligned}
f(\lambda) & =\frac{1}{\lambda^{2}}+2 \sum_{n=1}^{\infty}(-1)^{n} \frac{\lambda}{\left(\lambda^{2}+n^{2}\right)^{3 / 2}}, \text { when } \lambda>0 . \\
& =-f(|\lambda|), \text { when } \lambda<0:
\end{aligned}
$$

and

$$
\begin{aligned}
F(\lambda) & =\frac{1}{2 \lambda^{2}}+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cdot \frac{\lambda}{\sqrt{ }\left(\lambda^{2}+n^{2}\right)}, \text { when } \lambda>0 \\
& =-F(|\lambda|), \text { when } \lambda<0
\end{aligned}
$$

By differentiating term by term it may be seen that $F^{\prime}(\lambda) \equiv f(\lambda) / \lambda$. As $\lambda \rightarrow+\infty, f(\lambda) \rightarrow 0$, and $F(\lambda) \rightarrow-\pi^{2} / 6$.

For small λ,

$$
\begin{aligned}
f(\lambda) & =\frac{1}{\lambda^{2}}+2 \sum_{n=1}^{m}(-1)^{n} \frac{\lambda}{\left(\lambda^{2}+n^{2}\right)^{3 / 2}}+2 \sum_{n=m+1}^{\infty}(-1)^{n} \frac{\lambda}{\left(\lambda^{2}+n^{2}\right)^{3 / 2}}, \quad m \text { being any integer } \\
& =\frac{1}{\lambda^{2}}+2 \sum_{n=1}^{m}(-1)^{n} \frac{\lambda}{\left(\lambda^{2}+n^{2}\right)^{3 / 2}}+2 \lambda\left\{\sum_{n=m+1}^{\infty} \frac{(-1)^{n}}{n^{3}}-\frac{3}{2} \lambda^{2} \sum_{n=m+1}^{\infty} \frac{(-1)^{n}}{n^{5}}+\ldots\right\},
\end{aligned}
$$

but this equation is useless for computing $f(\lambda)$ for large λ.
However, if λ is large, a more convenient expression for $f(\lambda)$ is obtained by considering the function
$\chi(Z)=\frac{1}{\left(\lambda^{2}+Z^{2}\right)^{1 / 2} \sin \pi Z}=\frac{1}{\sin \pi Z} \frac{1}{\left|\left(\lambda^{2}+Z^{2}\right)\right|^{1 / 2}} \exp \left\{\frac{-i}{2}[\arg (Z-i \lambda)+\arg (Z+i \lambda)]\right\}$,
where $Z=X+i Y$. This function has poles at the points $Z=0, \pm 1, \pm 2 \ldots$.
When the integral of $\chi(Z)$ is taken round the contour shown in Fig. 3 and the limit as the small circles shrink to the points $Z= \pm i \lambda$ is considered as $n \rightarrow \infty$ it follows that

$$
\begin{aligned}
\frac{1}{\lambda}+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{ }\left(\lambda^{2}+n^{2}\right)} & =2 \int_{1}^{\infty} \frac{d t}{\sinh \pi \lambda t \sqrt{ }\left(t^{2}-1\right)} \\
& =4 \int_{1}^{\infty}\left\{\mathrm{e}^{-\pi \lambda t}+\mathrm{e}^{-3 \pi \lambda t}+\ldots\right\} \frac{d t}{\sqrt{ }\left(t^{2}-1\right)} \\
& =4\left\{K_{0}(\pi \lambda)+K_{0}(3 \pi \lambda)+K_{0}(5 \pi \lambda)+\ldots\right\}
\end{aligned}
$$

Hence, differentiating,

$$
f(\lambda)=\frac{1}{\lambda^{2}}+2 \sum_{n=1}^{\infty} \frac{(-1)^{n} \lambda}{\left(\lambda^{2}+n^{2}\right)^{3 / 2}}=4 \pi\left\{K_{1}(\pi \lambda)+3 K_{1}(3 \pi \lambda)+5 K_{1}(5 \pi \lambda)+\ldots\right\},
$$

which is a rapidly converging series unless λ is small.
For the purposes of computing tunnel interference the quantities required are

$$
f^{\prime}(\lambda)+F^{\prime}(\lambda)=f^{\prime}(\lambda)+f(\lambda) / \lambda \text { and } \cdot f^{\prime}(\lambda)+f(\lambda) / \lambda+1 / \lambda^{3}
$$

i.e., $f_{3}(\lambda)$ and $f_{4}(\lambda)$ respectively.

These functions have been calculated in the Mathematics Division of the N.P.L. and the values of $f_{3}(\lambda)$ and $f_{4}(\lambda)$ for positive values of λ are given in Table 2. Since $f(\lambda)$ is an odd function. of $\lambda, f_{3}(\lambda)$ and $f_{4}(\lambda)$ are both even functions of λ. The values given in Table 2 may contain errors of up to 3 or 4 in the sixth decimal when $\lambda<0 \cdot 4$, but otherwise they are accurate to within 2 in the sixth decimal. Table 3 has been prepared to facilitate interpolation in the values of $f_{4}(\lambda)$, so that second differences, will give values with an error of not more than one in the fourth decimal place. This accuracy should be ample for the purpose of calculating tunnel interference. When $f_{4}(\lambda)$ is known $f_{3}(\lambda)$ is obtained by subtracting $1 / \lambda^{3}$. For values of $\lambda>2$, interpolation in Table 2 using second differences should give the same accuracy.

APPENDİX II

Worked Example.-To illustrate the methods of calculation, the interference on a complete model of the arrowhead Wing B with deflected ailerons in the N.P.L. Duplex Wind Tunnel is evaluated in detail by the lifting-surface method and by a simplified method.

Wing B has aspect ratio $A=2 \cdot 64$, taper ratio $\lambda=7 / 18$ and angle of sweepback $A=45 \mathrm{deg}$ at the quarter-chord. The origin of co-ordinates is chosen to be the leading apex of the wing, so that

$$
\left.\begin{array}{rl}
\text { the leading edge is } & x_{\imath}(t)=\frac{7}{6} t=\frac{7}{6} s \cos \theta \tag{II1}\\
\text { the trailing edge is } & x_{i}(t)=c_{0}+\frac{1}{2} t=c_{0}+\frac{1}{2} s \cos \theta \\
\text { and the chord is } & c=\bar{c}(1 \cdot 44-0 \cdot 88 y / s)
\end{array}\right\}, \quad . \quad \text {.. } \quad \text {.. }
$$

where $s=4 \cdot 125 \mathrm{ft}, c_{0}=4 \cdot 5 \mathrm{ft}, \vec{c}=3 \cdot 125 \mathrm{ft}$. The Duplex Wind Tunnel is of breadth $b=14 \mathrm{ft}$, and of height $h=7 \mathrm{ft}$.

Lifting-Surface Method.-When the load distribution on the plan-form has been calculated by Multhopp's lifting-surface theory (Ref. 9) with two chordwise terms, this is found to be the most convenient starting point for evaluating tunnel interference. There is then no need to guess the local chordwise centres of pressure; and the tunnel-induced angle of upwash is readily converted into an incremental load distribution. The antisymmetrical wing loading due to deflected ailerons, computed by means of Ref. 9, determines the non-dimensional circulation

$$
\gamma=I / 2 s V
$$

and the chordwise centre of pressure

$$
X_{\mathrm{o} \cdot \mathrm{p} .} \equiv \frac{1}{4}-\frac{\mu}{\gamma}
$$

at spanwise stations $t=s \sin \{n \pi /(m+1)\}(m=7: n=1,2,3)$. The loading is represented by a vortex of strength Γ situated along the locus of the chordwise centre of pressure

$$
x=x_{0}=x_{t}+X_{\text {c.p. }}\left(x_{t}-x_{t}\right)=\frac{7}{6} t+X_{\text {c.p. }}\left(c_{0}-\frac{2}{3} t\right)
$$

and the associated trailing vortex sheet. Then in the Duplex Wind Tunnel

$$
x_{0} / h=\frac{7}{3} \tau+X_{\text {c.p. }}\left(\frac{9}{14}-\frac{4}{3} \tau\right) \quad . \quad . . \quad \text {.. }(\text { II } 2)
$$

is known when

$$
\tau=\tau_{n}=t_{n} / b=\sigma \sin \frac{n \pi}{8} \quad(n=1,2,3)
$$

where

$$
\sigma=s / b=0 \cdot 29464
$$

It is implicitly assumed that these values of x_{0} / h are close enough to the uncorrected experimental conditions. The uncorrected experimental spanwise loading is supposed to be proportional to the calculated values γ_{1}, γ_{2} and γ_{3} at the respective stations $y=0.3827 \mathrm{~s}, 0.7071 \mathrm{~s}$ and 0.9239 s . The corresponding coefficient of rolling moment is

$$
\begin{align*}
C_{l} & =\frac{\pi A}{16}\left(0.7071 \gamma_{1}+\gamma_{2}+0.7071 \gamma_{3}\right) \\
& =0.3665 \gamma_{1}+0.5184 \gamma_{2}+0.3665 \gamma_{3} \tag{II3}
\end{align*}
$$

for the particular Wing B. The calculated tunnel interference will therefore be multiplied by the factor

$$
C_{\imath}^{\prime} /\left(0 \cdot 3665 \gamma_{1}+0.5184 \gamma_{2}+0 \cdot 3665 \gamma_{3}\right),
$$

where C_{l}^{\prime} is the uncorrected experimental coefficient.
From equation (7.1), tunnel interference amounts to a distributed angle of upwash

$$
\begin{equation*}
w / V=\frac{8 s^{2}}{b h}\left(\int_{0}^{1} \gamma\left(P_{0}-P_{1} x_{0} / h\right) d(\tau / \sigma)+\frac{x}{h} \int_{0}^{1} \gamma P_{1} d(\tau / \sigma)\right), \quad \ldots \tag{II4}
\end{equation*}
$$

where γ stands for the uncorrected experimental spanwise loading, x_{0} / h is given in equation (II 2) and the parameters P_{0} and P_{1} are tabulated in Tables 4 and 5 . The two integrals in equation (II 4) are evaluated separately. On writing the integrand as a Fourier series
it may be shown $\sum_{p=1}^{3} a_{2 p} \sin 2 p \theta$,
it may be shown that ${ }^{p=1}$

$$
\begin{align*}
\frac{8 s^{2}}{b h} \int_{0}^{1} W_{n} d(\tau / \sigma) & =\frac{8 s^{2}}{b h} \frac{\pi}{16}\left(2 \cdot 1879 W_{1}+1 \cdot 2610 W_{2}+0 \cdot 8301 W_{3}\right) \\
& =\left(0 \cdot 5967 W_{1}+0 \cdot 3439 W_{2}+0 \cdot 2264 W_{3}\right) . \tag{II5}
\end{align*}
$$

w/V is calculated at the pivotal points required for a solution ($m=7$) by Multhopp's theory. Three spanwise stations are involved

$$
\eta=\eta_{v}=\sigma \sin \frac{\nu \pi}{8}=0.29464 \sin \frac{\nu \pi}{8} \quad(v=1,2,3)
$$

At each of these stations, w/V is required at two chordwise positions $0.9045 c$ and $0.3455 c$, where respectively

$$
\left.\begin{array}{l}
x / h=x^{\prime} / h=0.58146+0.33216 \sin \frac{v \pi}{8} \tag{II6}\\
x / h=x^{\prime \prime} \left\lvert\, h=0.22211+0.55177 \sin \frac{v \pi}{8}\right.
\end{array}\right\} . \quad \ldots \quad \ldots \quad \ldots \quad . .
$$

These six values of w / V are sufficient to determine an antisymmetrical solution on the basis of equations (114) and (115) of Ref. 9 with $m=7$.

Having formulated the problem, the first step is to use Tables 4 and 5 to obtain by interpolation the values of P_{0} and P_{1} when $\tau=\tau_{n}$ and $\eta=\eta_{\nu}(n, \nu=1,2,3)$:

TABLE A 1
V alues of P_{0}

n	τ_{n}	η_{ν}		
		0.11275	0.20834	0.27221
1	0.11275	0.03688	0.05171	0.05357
2	0.20834	0.05171	0.08177	0.09328
3	0.27221	0.05357	0.09328	0.11551

TABLE A 1-continued.

Values of P_{1}				
		η_{ν}		
n		τ_{n}	0.11275	0.20834
				0.27221
1	0.11275	0.07076	0.09514	0.09465
2	0.20834	0.09514	0.14730	0.16427
3	0.27221	0.09465	0.16427	0.20239

It will be noted that τ and η are interchangeable in both tables.
The second step is to copy γ and $X_{\text {c.p. }}$ from Multhopp's theory and to evaluate x_{0} / h from equation (II 2) for each antisymmetrical loading. For the present calculations three spans and two chords of aileron were considered.

TABLE A 2

Aileron span	$0 \cdot \ddot{3} \dot{6} s<y<s$		$0 \cdot \dot{5} \dot{4} s<y<s$		$0 \cdot 7 \ddot{2} s<y<s$	
Chord ratio	$E=0.2$	$E=0 \cdot 4$	$E=0 \cdot 2$	$E=0.4$	$E=0 \cdot 2$	$E=0 \cdot 4$
γ_{1}	0. 12626	$0 \cdot 16666$	0.03539	$0 \cdot 05171$	$0 \cdot 00900$	$0 \cdot 01417$
γ_{2}	0. 19952	0.25782	$0 \cdot 15999$	$0 \cdot 20700$	$0 \cdot 06677$	0.08936
γ_{3}	$0 \cdot 13723$	$0 \cdot 17398$	$0 \cdot 12380$	$0 \cdot 15654$	$0 \cdot 10143$	$0 \cdot 12742$
$\left(X_{\text {c.p. }}\right)_{1}$	$0 \cdot 6952$	0.5748	$0 \cdot 6710$	$0 \cdot 5863$	$0 \cdot 6322$	0.5796
$\left(X_{0 . p,}\right)_{2}$	0. 5952	0.4878	$0 \cdot 6425$	0.5227	$0 \cdot 6809$	$0 \cdot 5588$
$\left(X_{\text {c.p. }}\right)_{3}$	$0 \cdot 5291$	$0 \cdot 4235$	$0 \cdot 5616$	$0 \cdot 4473$	$0 \cdot 6201$	$0 \cdot 4908$
$\left(x_{0} / h\right)_{1}$	$0 \cdot 6055$	$0 \cdot 5462$	0.5936	$0 \cdot 5518$	$0 \cdot 5745$	$0 \cdot 5485$
$\left(x_{0} / h\right)_{2}$	$0 \cdot 7034$	$0 \cdot 6642$	0.7207	$0 \cdot 6769$	$0 \cdot 7347$	$0 \cdot 6901$
$\left(x_{0} / h\right)_{3}$	$0 \cdot 7833$	$0 \cdot 7537$	0•7924	$0 \cdot 7604$	$0 \cdot 8087$	$0 \cdot 7725$

The third step is to evaluate the integrals in equation (II 4) from equation (II 5). Details are set out here for the particular aileron of chord ratio $E=0.2$ and span $0.54 s<y<s$:

TABLE A 3

The fourth step is to obtain $\delta \alpha=w / V$ at the six points specified in equation (II 6)

TABLE A 4

ν	y / s	$x_{v}{ }^{\prime} / h$	$x_{v}{ }^{\prime \prime} / h$	$\delta \alpha_{v}{ }^{\prime}$	$\delta \alpha_{v}{ }^{\prime \prime}$	$\left(\delta \alpha_{v}\right)_{3 / 4} \dagger$
1	0.3827	0.7086	0.4333	0.00501	0.00242	0.00429
$\mathbf{2}$	0.7071	0.8164	0.6123	0.00954	0.00653	0.00871
3	0.9239	0.8884	0.7319	0.01215	0.00954	0.01143

The fifth step is to copy the equations (114) of Ref. $9(m=7)$, which are already available for Wing B:

TABLE A 5

where the right-hand sides

$$
\begin{aligned}
L_{v} & =a_{\nu p}\left[l_{v}^{\prime}\left(\delta \alpha_{\nu}^{\prime}\right)-l_{v}^{\prime \prime}\left(\delta \alpha_{\nu}^{\prime \prime}\right)\right], \\
M_{\nu} & =a_{v p}\left[m_{v}^{\prime \prime}\left(\delta \alpha_{\nu}^{\prime \prime}\right)-m_{v}{ }^{\prime}\left(\delta \alpha_{v}^{\prime}\right)\right] .
\end{aligned}
$$

The quantities $a_{v v}, l_{v}{ }^{\prime}, l_{v}{ }^{\prime \prime}, m_{v}{ }^{\prime \prime}, m_{v}{ }^{\prime}$ are already available, and the sixth step is to compute the right-hand sides L_{v} and M_{v} :

TABLE A 6

ν	$a_{v \nu}$	$l_{v}{ }^{\prime}$	$l_{v}{ }^{\prime \prime}$	$m_{\nu}{ }^{\prime \prime}$	$m_{v}{ }^{\prime}$	L_{v}	M_{v}
1	0.4619	0.4637	-0.0333	0.2470	0.1838	0.00111	-0.00015
2	0.3536	0.6597	-0.0370	0.2426	0.1810	0.00164	-0.00005
3	0.1913	0.4955	-0.0018	0.2827	0.2062	0.00116	0.00004

The seventh step is the solution of the six equations in Table A 5 with the right-hand sides from Table A 6, which determine

TABLE A 7

$$
\begin{array}{ll}
\delta \gamma_{1}=0.00178, & \delta \mu_{1}=-0.00032 \\
\delta \gamma_{2}=0.00278, & \delta \mu_{2}=-0.00016 \\
\delta \gamma_{3}=0.00208, & \delta \mu_{3}=0.00010
\end{array}
$$

Hence from equation (II 3), the corresponding tunnel-induced coefficient of rolling moment is $\delta C_{l}=0 \cdot 00286$. The assumed spanwise loading in Table A 2 gives $C_{l}=0.1413$. Therefore the correction to be applied to the measured $C_{l}{ }^{\prime}$ is

$$
\left(\Delta C_{\imath}\right)=-\frac{0 \cdot 00286}{0 \cdot 1413} C_{\imath}^{\prime}=-0 \cdot 0202 C_{\imath}^{\prime}
$$

[^2]The calculated interference for the different ailerons is as follows :
TABLE A 8

Aileron span	$0 \cdot \dot{3} \dot{6} s<y<s$		$0 \cdot \dot{5} \dot{4} s<y<s$		$0 \cdot \ddot{7} \dot{2} s<y<s$	
Chord ratio	$E=0.2$	$E=0.4$	$E=0 \cdot 2$	$E=0.4$	$E=0.2$	$E=0 \cdot 4$
$\delta \gamma_{1}$	$0 \cdot 00294$	0.00412	$0 \cdot 00178$	$0 \cdot 00252$	$0 \cdot 00086$	$0 \cdot 00123$
$\delta \gamma_{2}$	$0 \cdot 00446$	0.00619	$0 \cdot 00278$	0.00388	$0 \cdot 00137$	$0 \cdot 00193$
$\delta \gamma_{3}$	$0 \cdot 00327$	$0 \cdot 00450$	$0 \cdot 00208$	$0 \cdot 00288$	0.00104	$0 \cdot 00146$
δC_{l}	$0 \cdot 00459$	$0 \cdot 00637$	$0 \cdot 00286$	0.00399	0.00141	0.00197
C_{t}	$0 \cdot 2000$	$0 \cdot 2585$	$0 \cdot 1413$	$0 \cdot 1836$	0.0751	$0 \cdot 0982$
- $\left(\Delta C_{l}\right) / C_{l^{\prime}}$	$0 \cdot 0230$	0.0246	$0 \cdot 0202$	0.0217	$0 \cdot 0188$	$0 \cdot 0201$

Provided that preliminary free-stream calculations for the plan-form, i.e., Table A 5 and most of Tables A 2 and A 6, have been obtained by Multhopp's theory (Ref. 9), the amount of additional work in the evaluation of tunnel interference outlined above is comparatively small. In the absence of these calculations, antisymmetric interference corrections can probably be estimated to sufficient accuracy by the following simplified method.

Simplified Method.-A two-dimensional lift slope $2 \pi \cos \Lambda^{\prime}$ is chosen in accordance with Ref. 2 (section 5.1 and equation (44)), such that

$$
\begin{equation*}
\tan \Lambda^{\prime}=\left(1-\frac{0 \cdot 8}{A(1+\lambda)}\right) \tan \Lambda=0 \cdot 7818, \ldots \quad . . \quad . \quad . . \quad . \tag{II7}
\end{equation*}
$$

i.e.,
$\cos \Lambda^{\prime}=0.7878$ for Wing B.
Multhopp's lifting-line theory (Ref. 8) is then used with

$$
a_{1}=2 \pi \cos \Lambda^{\prime}=4.950
$$

and the two-dimensional ratio $a_{2} / a_{1}=0.5498$ for $E=0 \cdot 2$. The particular antisymmetrical solution for a deflected aileron of span $0 \cdot \dot{5} \dot{4} s<y<s$ determines in place of the values in Table A 2

$$
\gamma_{1}=0 \cdot 04560, \gamma_{2}=0 \cdot 17637, \gamma_{3}=0 \cdot 12502,
$$

for which equation (II 3) gives $C_{l}=0 \cdot 1540$. In order to compute tunnel interference it is necessary to guess values of $X_{\text {c.p. }}$, which cannot be deduced from experimental balance measurements. The best general method that can be suggested here is to assume that at all sections

$$
\begin{equation*}
X_{\text {a.p. }}=l_{2}+\frac{3 \cdot 5(1+3 \lambda)}{A(2+2 \lambda)+3 \cdot 5(1+3 \lambda)}\left(1-E+\frac{E(1-\lambda)(2 \pi-4)}{3 \pi-4+4 \lambda}-l_{2}\right), \tag{II8}
\end{equation*}
$$

where l_{2}, the value from Glauert's two-dimensional hinged plate theory, is given in Ref. 2, equation (8). The quantity

$$
1-E+\frac{E(1-\lambda)(2 \pi-4)}{3 \pi-4+4 \lambda}
$$

is the chordwise centre of pressure determined for a full-span control on a cropped delta wing by R. T. Jones' slow-aspect-ratio theory. The interpolation factor

$$
\frac{3 \cdot 5(1+3 \lambda)}{A(2+2 \lambda)+3 \cdot 5(1+3 \lambda)}
$$

is based on Multhopp's lifting-surface theory for antisymmetrical loading, and apparently changes little with sweepback and the dimensions of the aileron. The value of $X_{\text {c.p. }}$ from equation (II 8) may be ± 0.03 different from its best mean value, but this is not significant in the determination of tunnel interference. In the present example, $A=2 \cdot 64, \lambda=7 / 18, E=0 \cdot 2$. Hence

$$
\begin{aligned}
X_{\text {c.p. }} & =0.4353+0.508(0.8400-0.4353) \\
& =0.641(\text { for } n=1,2, \text { and } 3) .
\end{aligned}
$$

When the calculations of Tables A 2, A 3 and A 4 are repeated with, these values of γ and $X_{\text {c.p. }}$, the tunnel-induced angle of upwash at three-quarter chord is obtained:

TABLE A 9

ν	y / s	$\frac{8 s^{2}}{b h} \int_{0}^{1} W d(\tau / \sigma)$ for $W=$		$\frac{\left(x_{\nu}\right)_{3 / 4}}{h}$	$\left(\delta \alpha_{\nu}\right)_{3 / 4}$
		$\gamma_{n}\left[P_{0}-\left(x_{0} / h\right)_{n} P_{1}\right]$	γP_{1}		
1	$0 \cdot 3827$	-0.00180	0.01038	0.6325	0.00477
2	$0 \cdot 7071$	-0.00271	$0 \cdot 01617$	0.7599	$0 \cdot 00958$
3	0.9239	-0.00295	0.01827	$0 \cdot 8451$	0.01249

Now a simple procedure is needed to evaluate δC_{l}. The most convenient method is to use the modified lifting-line theory with $a_{1}=4.950$ to estimate the rolling moment due to an antisymmetrical incidence $\alpha=y / s$. This is readily achieved from the equations of Table 4 b of Ref. 8 using \dagger

$$
\left.\begin{array}{rlr}
‘ b / c_{\nu} t_{\nu} ’ \equiv 4 s / a_{1} c_{\nu}=0 \cdot 8081 s / c_{\nu}: & =\alpha_{1}=0.3827 \\
3 \cdot 1317 \gamma_{1}-0.7654 \gamma_{2} & -\gamma_{3}=\alpha_{2}=0.7071 \\
-\gamma_{1}+4 \cdot 1328 \gamma_{2} & -1 \cdot 8477 \gamma_{2}+6.9275 \gamma_{3}=\alpha_{3}=0.9239
\end{array}\right\}
$$

whence $\gamma_{1}=0.1872, \gamma_{2}=0.2658, \gamma_{3}=0.2043$ and from equation (II 3), $\left(C_{2}\right)_{11}=0.2813$. Some correction to this value is necessary to allow for the deficiencies of the lifting-line theory. The recommended formula is

$$
\begin{equation*}
C_{l}=1 \cdot 15\left(C_{l}\right)_{1.1 .}-0 \cdot 15\left(C_{l}\right)_{\mathrm{s.t} .}, \quad . . \quad . . \quad . \quad . . \quad . \tag{II9}
\end{equation*}
$$

where the factors $1 \cdot 15$ and $0 \cdot 15$ are roughly independent of plan-form and $\left(C_{2}\right)_{\text {s.t. }}$ is obtained on the basis of two-dimensional strip theory, viz.,

$$
\begin{aligned}
\left(C_{l}\right)_{s . t} & =2 \pi \cos \Lambda^{\prime} \int_{0}^{1} \alpha(y / s)(c / 2 \bar{c}) d(y / s) \\
& =4.950 \int_{0}^{1}(y / s)^{2}(0.72-0.44 y / s) d(y / s) \\
& =4.950 \times 0.13=0.6435
\end{aligned}
$$

Hence

$$
\begin{aligned}
C_{l} & =1 \cdot 15 \times 0.2813-0.15 \times 0.6435 \\
& =0.225 .
\end{aligned}
$$

fit should be noted that the suffix ν is different in Ref. 8 and Ref. 9 . The definitions here (equation II 2) correspond to Ref. 9.

TABLE 1
Functions $f_{1}(\lambda), f_{2}(\lambda)$ for Evaluating P_{0}, Q_{0}

λ	$-f_{1}(\lambda)$	$f_{2}(\lambda)$	λ	$-f_{1}(\lambda)$	$f_{2}(\lambda)$
$0 \cdot 00$	∞	-0.523599	$2 \cdot 00$	$0 \cdot 011734$	+0.067844
0.05	- $127 \cdot 843051$	$0 \cdot 519097$	$2 \cdot 05$	$0 \cdot 010028$	$0 \cdot 065715$
$0 \cdot 10$	$32 \cdot 336810$	$0 \cdot 505821$	$2 \cdot 10$	$0 \cdot 008570$	$0 \cdot 063609$
$0 \cdot 15$	$14 \cdot 631548$	$0 \cdot 484442$	$2 \cdot 15$	$0 \cdot 007324$	$0 \cdot 061537$
$0 \cdot 20$	$8 \cdot 413747$	$0 \cdot 456000$	$2 \cdot 20$	$0 \cdot 006260$	$0 \cdot 059507$
$0 \cdot 25$	5.514765	-0.421807	$2 \cdot 25$	$0 \cdot 005350$	+0.057526
$0 \cdot 30$	3.920105	$3 \cdot 383328$	$2 \cdot 30$	$0 \cdot 004572$	$0 \cdot 055600$
$0 \cdot 35$	$2 \cdot 940517$	$0 \cdot 342069$	$2 \cdot 35$	$0 \cdot 003907$	$0 \cdot 053731$
$0 \cdot 40$	$2 \cdot 288904$	$0 \cdot 299467$	$2 \cdot 40$	0.003339	$0 \cdot 051923$
0.45	$1 \cdot 828717$	$0 \cdot 256817$	$2 \cdot 45$	$0 \cdot 002854$	$0 \cdot 050176$
$0 \cdot 50$	$1 \cdot 488454$	-0.215214	$2 \cdot 50$	0.002439	$+0.048490$
$0 \cdot 55$	$1 \cdot 227797$	$0 \cdot 175533$	$2 \cdot 60$	$0 \cdot 001782$	$0 \cdot 045306$
$0 \cdot 60$	$1 \cdot 022614$	$0 \cdot 138420$	$2 \cdot 70$	0.001301	$0 \cdot 042363$
-0.65	$0 \cdot 857705$	$0 \cdot 104309$	$2 \cdot 80$	$0 \cdot 000950$	$0 \cdot 039650$
$0 \cdot 70$	$0 \cdot 723060$	$0 \cdot 073448$	$2 \cdot 90$	$0 \cdot 000694$	$0 \cdot 037155$
0.75	$0 \cdot 611814$	-0.045930	$3 \cdot 00$	$0 \cdot 000507$	$+0.034861$
$0 \cdot 80$	$0 \cdot 519083$	$0 \cdot 021724$	$3 \cdot 10$	$0 \cdot 000370$	$0 \cdot 032752$
$0 \cdot 85$	$0 \cdot 441275$	-0.000707	$3 \cdot 20$	$0 \cdot 000271$	$0 \cdot 030814$
$0 \cdot 90$	$0 \cdot 375668$	$+0.017307$	$3 \cdot 30$	$0 \cdot 000198$	$0 \cdot 029032$
$0 \cdot 95$	$0 \cdot 320151$	$0 \cdot 032547$	$3 \cdot 40$	$0 \cdot 000144$	0.027391
$1 \cdot 00$	$0 \cdot 273047$	$+0.045263$	$3 \cdot 50$	$0 \cdot 000105$	$+0.025879$
$1 \cdot 05$	$0 \cdot 233003$	0.055713	$3 \cdot 60$	$0 \cdot 000077$	0.024484
$1 \cdot 10$	$0 \cdot 198913$	$0 \cdot 064153$	3•70	$0 \cdot 000056$	$0 \cdot 023195$
$1 \cdot 15$	$0 \cdot 169862$	$0 \cdot 070826$	$3 \cdot 80$	$0 \cdot 000041$	$0 \cdot 022003$
$1 \cdot 20$	$0 \cdot 145084$	$0 \cdot 075964$	$3 \cdot 90$	$0 \cdot 000030$	$0 \cdot 020898$
$1 \cdot 25$	$0 \cdot 123941$	$+0.079777$	$4 \cdot 00$	$0 \cdot 000022$	+0.019872
$1 \cdot 30$	$0 \cdot 105891$	0.082458	$4 \cdot 10$	$0 \cdot 000016$	$0 \cdot 018920$
$1 \cdot 35$	$0 \cdot 090478$	$0 \cdot 084178$	$4 \cdot 20$	$0 \cdot 000012$	0.018033
$1 \cdot 40$	0.077313	$0 \cdot 085090$	$4 \cdot 30$	$0 \cdot 000009$	0.017207
1-45	$0 \cdot 066066$	$0 \cdot 085330$	$4 \cdot 40$	$0 \cdot 000006$	$0 \cdot 016435$
$1 \cdot 50$	$0 \cdot 056457$	+0.085014	$4 \cdot 50$	$0 \cdot 000005$	$+0.015714$
$1 \cdot 55$	$0 \cdot 048247$	$0 \cdot 084244$	$4 \cdot 60$	$0 \cdot 000003$	$0 \cdot 015040$
$1 \cdot 60$	$0 \cdot 041232$	0.083108	$4 \cdot 70$	$0 \cdot 000002$	$0 \cdot 014407$
$1 \cdot 65$	$0 \cdot 035237$	$0 \cdot 081681$	$4 \cdot 80$	$0 \cdot 000002$	$0 \cdot 013814$
1.70	$0 \cdot 030114$	$0 \cdot 080028$	$4 \cdot 90$	$0 \cdot 000001$	$0 \cdot 013256$
1.75	0.025736	$+0.078202$	$5 \cdot 00$	$0 \cdot 000001$	+0.012731
$1 \cdot 80$	$0 \cdot 021995$	$0 \cdot 076249$	$5 \cdot 10$	$0 \cdot 000001$	0.012237
$1 \cdot 85$	$0 \cdot 018797$	$0 \cdot 074208$	$5 \cdot 20$	$0 \cdot 000001$	$0 \cdot 011771$
1.90	$0 \cdot 016065$	$0 \cdot 072110$			
1.95	$0 \cdot 013729$	$0 \cdot 069981$			
$f_{2}(\lambda)=\frac{1}{\pi \lambda^{2}}$ for $\lambda>5 \cdot 2$					

TABLE 2

Functions $f_{3}(\lambda), f_{4}(\lambda)$ for Evaluating P_{1}, Q_{1}

λ	$f_{3}(\lambda)$	$f_{4}(\lambda)$	λ	$f_{3}(\lambda)$	$f_{4}(\lambda)$
$0 \cdot 00$	- -	$-3 \cdot 606171$	$2 \cdot 00$	-0.036186	+0.088814
0.05	8003.577147	$3 \cdot 577147$	$2 \cdot 05$	$0 \cdot 030559$	0.085516
$0 \cdot 10$	$1003 \cdot 491715$	$3 \cdot 491715$	$2 \cdot 10$	$0 \cdot 025814$	0.082166
$0 \cdot 15$	$299 \cdot 650915$	$3 \cdot 354619$	$2 \cdot 15$	$0 \cdot 021812$	$0 \cdot 078808$
$0 \cdot 20$	128•173170	3-173170	$2 \cdot 20$	$0 \cdot 018435$	$0 \cdot 075479$
0.25	-66.956485	$-2 \cdot 956485$	$2 \cdot 25$	-0.015585	
$0 \cdot 30$	$39 \cdot 751635$	$2 \cdot 714598$	$2 \cdot 30$	$0 \cdot 013178$	
$0 \cdot 35$	$25 \cdot 781221$	$2 \cdot 457606$	$2 \cdot 35$	$0 \cdot 011146$	
$0 \cdot 40$	$17 \cdot 819928$	$2 \cdot 194928$	$2 \cdot 40$	$0 \cdot 009429$	
0.45	$12 \cdot 908721$	1.934784	$2 \cdot 45$	$0 \cdot 007978$	
$0 \cdot 50$	$-9 \cdot 683870$	-1.683870	$2 \cdot 50$	-0.006752	
0.55	$7 \cdot 457769$	$1 \cdot 447251$	$2 \cdot 60$	$0 \cdot 004838$	
$0 \cdot 60$	$5 \cdot 858043$	$1 \cdot 228413$	2.70	$0 \cdot 003470$	
$0 \cdot 65$	$4 \cdot 670753$	$1 \cdot 029424$	$2 \cdot 80$	$0 \cdot 002490$	
$0 \cdot 70$	$3 \cdot 766619$	$0 \cdot 851167$	$2 \cdot 90$	$0 \cdot 001788$	
0.75	-3.063956	-0.693585	$3 \cdot 00$	-0.001284	
$0 \cdot 80$	$2 \cdot 509057$	$0 \cdot 555932$	$3 \cdot 10$	$0 \cdot 000923$	
$0 \cdot 85$	$2 \cdot 065316$	$0 \cdot 436983$	$3 \cdot 20$	$0 \cdot 000664$	
$0 \cdot 90$	$1 \cdot 706963$	$0 \cdot 335221$	$3 \cdot 30$	$0 \cdot 000478$	
0.95	$1 \cdot 415333$	$0 \cdot 248982$	$3 \cdot 40$	$0 \cdot 000344$	
$1 \cdot 00$	$-1 \cdot 176562$	- -0.176562	$3 \cdot 50$	-0.000248	
$1 \cdot 05$	$0 \cdot 980130$	-0.116292	$3 \cdot 60$	$0 \cdot 000178$	
$1 \cdot 10$	$0 \cdot 817912$	-0.066597	$3 \cdot 70$	$0 \cdot 000129$	
$1 \cdot 15$	0.683535	-0.026019	$3 \cdot 80$	$0 \cdot 000093$	
$1 \cdot 20$	$0 \cdot 571942$	+0.006762	$3 \cdot 90$	$0 \cdot 000067$	
1.25	-0.479077	+0.032923	$4 \cdot 00$	-0.000048	
$1 \cdot 30$	$0 \cdot 401664$	0.053502	$4 \cdot 10$	$0 \cdot 000035$	
$1 \cdot 35$	$0 \cdot 337037$	$0 \cdot 069405$	$4 \cdot 20$	$0 \cdot 000025$	
1.40	$0 \cdot 283016$	$0 \cdot 081415$	$4 \cdot 30$	$0 \cdot 000018$	
$1 \cdot 45$	$0 \cdot 237811$	$0 \cdot 090206$	$4 \cdot 40$	$0 \cdot 000013$	
1.50	-0.199947	+0.096349	$4 \cdot 50$	-0.000010	
1.55	$0 \cdot 168205$	$0 \cdot 100332$	$4 \cdot 60$	$0 \cdot 000007$	
1.60	$0 \cdot 141574$	$0 \cdot 102567$	$4 \cdot 70$	$0 \cdot 000005$	
$1 \cdot 65$	$0 \cdot 119216$	$0 \cdot 103396$	$4 \cdot 80$	$0 \cdot 000004$	
$1 \cdot 70$	0-100432	$0 \cdot 103110$	$4 \cdot 90$	$0 \cdot 000003$	
1.75	-0.084644	+0.101945	5.00	-0.000002	
$1 \cdot 80$	$0 \cdot 071365$	$0 \cdot 100103$	$5 \cdot 10$	$0 \cdot 000001$	
$1 \cdot 85$	$0 \cdot 060191$	0.097746	$5 \cdot 20$	$0 \cdot 000001$	
$1 \cdot 90$	$0 \cdot 050784$	$0 \cdot 095010$	$5 \cdot 30$	$0 \cdot 000001$.
1.95	$0 \cdot 042861$	$0 \cdot 092003$	$5 \cdot 40$	$0 \cdot 000001$	

TABLE 3
Values of $f_{4}(\lambda)$
$\lambda=0(0 \cdot 025) 2 \cdot 100$

λ	$f_{4}(\lambda)$	λ	$f_{4}(\lambda)$	λ	$f_{4}(\lambda)$
0	-3.606 171	$0 \cdot 700$	-0.851167	$1 \cdot 400$	+0.081 415
$0 \cdot 025$	$3 \cdot 598889$	0.725	0.769825	1.425	0.086175
$0 \cdot 050$	$3 \cdot 577147$	0.750	$0 \cdot 693585$	1.450	0.090206
$0 \cdot 075$	$3 \cdot 541253$	0.775	$0 \cdot 622335$	$1 \cdot 475$	0.093576
$0 \cdot 100$	$3 \cdot 491715$	$0 \cdot 800$	0.555932	$1 \cdot 500$	0.096349
$0 \cdot 125$	$3 \cdot 429220$	0.825	$0 \cdot 494209$	1.525	$0 \cdot 098583$
$0 \cdot 150$	$3 \cdot 354619$	$0 \cdot 850$	0.436983	1.550	$0 \cdot 100332$
$0 \cdot 175$	$3 \cdot 268901$	$0 \cdot 875$	$0 \cdot 384056$	1.575	$0 \cdot 101645$
$0 \cdot 200$	$3 \cdot 173170$	0.900	$0 \cdot 335221$	1.600	$0 \cdot 102567$
$0 \cdot 225$	$3 \cdot 068616$	0.925	$0 \cdot 290268$	$1 \cdot 625$	$0 \cdot 103138$
$0 \cdot 250$	$2 \cdot 956485$	$0 \cdot 950$	$0 \cdot 248982$	$1 \cdot 650$	0.103396
$0 \cdot 275$	$2 \cdot 838053$	0.975	$0 \cdot 211151$	$1 \cdot 675$	$0 \cdot 103377$
$0 \cdot 300$	$2 \cdot 714598$	1.000	$0 \cdot 176562$	1.700	$0 \cdot 103110$
$0 \cdot 325$	$2 \cdot 587378$	1.025	$0 \cdot 145009$	$1 \cdot 725$	$0 \cdot 102624$
$0 \cdot 350$	$2 \cdot 457606$	$1 \cdot 050$	0.116292	$1 \cdot 750$	$0 \cdot 101945$
$0 \cdot 375$	$2 \cdot 326431$	1.075	$0 \cdot 090217$	$1 \cdot 775$	$0 \cdot 101098$
$0 \cdot 400$	$2 \cdot 194928$	$1 \cdot 100$	$0 \cdot 066597$	$1 \cdot 800$	$0 \cdot 100103$
$0 \cdot 425$	$2 \cdot 064083$	$1 \cdot 125$	$0 \cdot 045254$	1.825	0.098980
$0 \cdot 450$	1.934784	$1 \cdot 150$	$0 \cdot 026019$	$1 \cdot 850$	0.097746
0.475	1.807818	$1 \cdot 175$	-0.008 731	1.875	0.096418
0.500	1.683870	$1 \cdot 200$	+0.006 762	1.900	0.095010
$0 \cdot 525$	$1 \cdot 563520$	$1 \cdot 225$	0.020602	1.925	0.093534
$0 \cdot 550$	1.447251	$1 \cdot 250$	0.032923	1.950	0.092003
$0 \cdot 575$	$1 \cdot 335449$	$1 \cdot 275$	$0 \cdot 043851$	1.975	$0 \cdot 090426$
$0 \cdot 600$	$1 \cdot 228413$	$1 \cdot 300$	0.053502	$2 \cdot 000$	0.088814
$0 \cdot 625$	$1 \cdot 126357$	$1 \cdot 325$	$0 \cdot 061986$	$2 \cdot 025$	0.087175
$0 \cdot 650$	1.029424	$1 \cdot 350$	$0 \cdot 069405$	$2 \cdot 050$	0.085516
$0 \cdot 675$	0.937689	$1 \cdot 375$	$0 \cdot 075852$	$2 \cdot 075$	0.083845
$0 \cdot 700$	-0.851167	1.400	$+0.081415$	$2 \cdot 100$	+0.082 166

TABLE 4

$P_{0}(\eta, \tau)$ for Duplex Tunnels (Antisymmetrical)

τ	η								
	0	$0 \cdot 05$	$0 \cdot 10$	$0 \cdot 15$	$0 \cdot 20$	$0 \cdot 25$	$0 \cdot 30$	$0 \cdot 35$	$0 \cdot 40$
0	0	0	0	0	0	0	0	0	0
0.05	0	$0 \cdot 009047$	$0 \cdot 016566$	$0 \cdot 021602$	$0 \cdot 024035$	$0 \cdot 024438$	0.023746	$0 \cdot 022939$	0.022875
$0 \cdot 10$	0	$0 \cdot 016566$	$0 \cdot 030650$	$0 \cdot 040601$	$0 \cdot 046041$	0.047781	$0 \cdot 047377$	$0 \cdot 046622$	0.047223
$0 \cdot 15$	0	$0 \cdot 021602$	$0 \cdot 040601$	$0 \cdot 055088$	0.064347	$0 \cdot 068980$	0.070656	$0 \cdot 071661$	0.074491
$0 \cdot 20$	0	0.024035	$0 \cdot 046041$	$0 \cdot 064347$	$0 \cdot 078027$	$0 \cdot 087222$	$0 \cdot 093264$	$0 \cdot 098525$	- 106169
$0 \cdot 25$	0	$0 \cdot 024438$	$0 \cdot 047781$	$0 \cdot 068980$	$0 \cdot 087222$	0.102311	0.115091	$0 \cdot 127771$	0. 144140
$0 \cdot 30$	0	$0 \cdot 023746$	0.047377	$0 \cdot 070656$	$0 \cdot 093264$	0.115091	0.136818	0-160706	0.191733
$0 \cdot 35$	0	$0 \cdot 022939$	$0 \cdot 046622$	$0 \cdot 071661$	$0 \cdot 098525$	$0 \cdot 127771$	$0 \cdot 160706$	0.200781	0. 256546
$0 \cdot 40$	0	$0 \cdot 022875$	$0 \cdot 047223$	$0 \cdot 074491$	0-106169	$0 \cdot 144140$	0.191733	0.256546	$0 \cdot 358616$

TABLE 5
$P_{1}(\eta, \tau)$ for Duplex Tunnels (Antisymmetrical)

τ	η								
	0	$0 \cdot 05$	$0 \cdot 10$	$0 \cdot 15$	$0 \cdot 20$	$0 \cdot 25$	$0 \cdot 30$	$0 \cdot 35$	$0 \cdot 40$
0	0	0	0	0	0	0	0	0	0
$0 \cdot 05$	0	0.017921	0.032391	$0 \cdot 041355$	$0 \cdot 044711$	0.043895	$0 \cdot 041019$	0.038147	0.037006
$0 \cdot 10$	0	0.032391	0.059276	$0 \cdot 077102$	$0 \cdot 085251$	0.085730	$0 \cdot 082042$	$0 \cdot 078025$	$0 \cdot 077226$
$0 \cdot 15$	0	0.041355	0.077102	$0 \cdot 103172$	$0 \cdot 118121$	$0 \cdot 123398$	$0 \cdot 122736$	$0 \cdot 121122$	$0 \cdot 124019$
$0 \cdot 20$	0	$0 \cdot 044711$	$0 \cdot 085251$	$0 \cdot 118121$	$0 \cdot 141319$	$0 \cdot 155127$	$0 \cdot 162477$	0. 168730	$0 \cdot 181362$
$0 \cdot 25$	0	$0 \cdot 043895$	$0 \cdot 085730$	$0 \cdot 123398$	$0 \cdot 155127$	0.180398	0.201121	$0 \cdot 222717$	0.255375
$0 \cdot 30$	0	0.041019	$0 \cdot 082042$	$0 \cdot 122736$	$0 \cdot 162477$	$0 \cdot 201121$	$0 \cdot 240638$	$0 \cdot 287766$	0.358833
$0 \cdot 35$	0	$0 \cdot 038147$	0.078025	$0 \cdot 121122$	$0 \cdot 168730$	$0 \cdot 222717$	$0 \cdot 287766$	$0 \cdot 376754$	0.524771
$0 \cdot 40$	0	0.037006	$0 \cdot 077226$	$0 \cdot 124019$	$0 \cdot 181362$	$0 \cdot 255375$	$0 \cdot 358833$	0.524771	0.853355

TABLE 6
$Q_{0}(\eta, \tau)$ for Duplex Tunnels (Symmetrical)

τ	η								
	0	$0 \cdot 05$	$0 \cdot 10$	$0 \cdot 15$	$0 \cdot 20$	$0 \cdot 25$	$0 \cdot 30$	$0 \cdot 35$	$0 \cdot 40$
$\stackrel{0}{0.05}$	$0 \cdot 136778$	$0 \cdot 132625_{5}$	$0 \cdot 121077$	0.104520	$0 \cdot 086030$	0.068555	$0 \cdot 054415_{5}$	$0 \cdot 045210$	$0 \cdot 042008$
$0 \cdot 05$	$0 \cdot 1326255$	0.128927	$0 \cdot 118573$	$0 \cdot 103554$	$0 \cdot 086537$	0.070223	$0 \cdot 056882_{5}^{5}$	$0 \cdot 048212$	$0 \cdot 045439$
$0 \cdot 10$ 0.15	0.121077	0.118573	$0 \cdot 111404$	0.100590	$0 \cdot 087746$	$0 \cdot 074865$	$0 \cdot 064019$	0.057111_{5}	$0 \cdot 055808$
0.15 0.20	0.104520	$0 \cdot 103554$	$0 \cdot 100590$	$0 \cdot 095597$	$0 \cdot 088918$	$0 \cdot 081542_{5}$	$0 \cdot 075094$	0.071615	$0 \cdot 073350$
$0 \cdot 20$ 0.25	0.086030 0.068555	0.086537 0.070223	0.087746 0.074865	$0 \cdot 088918$	0.089393	$0 \cdot 089147$	$0 \cdot 0891388_{5}$	$0 \cdot 091332_{5}$	$0 \cdot 098558$
$0 \cdot 30$	$0 \cdot 054415_{5}$	${ }_{0}^{0 \cdot 070223}$	0.074865 0.064019	0.081542_{5} 0.075094	0.089147 0.089138	0.096989 0.105385	0.105385	0.116081	$0 \cdot 132523$
$0 \cdot 35$	$0 \cdot 045210$	$0 \cdot 048212$	0.057111_{5}	$0 \cdot 071615$	$0 \cdot 091332_{5}$	0-116081	$0 \cdot 146576$	0.146576 0.185820	0.177970
$0 \cdot 40$	$0 \cdot 042008$	$0 \cdot 045439$	$0 \cdot 055808^{5}$	$0 \cdot 073350$	$0 \cdot 098558$	$0 \cdot 132523$	0.177970	${ }_{0} \cdot 242061{ }^{5}$	$0 \cdot 242061$ $0 \cdot 344541$

TABLE 7
$Q_{1}(\eta, \tau)$ for Duplex Tunnels (Symmetrical)

τ	η								
	0	$0 \cdot 05$	$0 \cdot 10$	$0 \cdot 15$	$0 \cdot 20$	$0 \cdot 25$	$0 \cdot 30$	$0 \cdot 35$	$0 \cdot 40$
0	0. 292737	$0 \cdot 283965$	$0 \cdot 259668$	$0 \cdot 225073$	$0 \cdot 186698$	0.150467	$0 \cdot 120689$	$0 \cdot 100012$	0.090005
$0 \cdot 05$	0. 283965	0. 276203	$0 \cdot 254519$	- $0 \cdot 223183$	$0 \cdot 187770$	0-153694	$0 \cdot 125240$	$0 \cdot 105347$	$0 \cdot 095996$
$0 \cdot 10$	$0 \cdot 259668$	0-254519	0-239718	$0 \cdot 217216$	$0 \cdot 190178$	0-162543	0-138352	$0 \cdot 121223$	$0 \cdot 114286$
$0 \cdot 15$	$0 \cdot 225073$	$0 \cdot 223183$	$0 \cdot 217216$	$0 \cdot 206713$	0. 191989	0-174837	$0 \cdot 158526$	$0 \cdot 147291$	0-145909
$0 \cdot 20$	0.186698	$0 \cdot 187770$	0-190178	0-191989	$0 \cdot 191371$	0.187972	0-183776	0.183212	0. 193038
$0: 25$	$0 \cdot 150467$	$0 \cdot 153694$	0•162543	$0 \cdot 174837$	$0 \cdot 187972$	$0 \cdot 200310$	$0 \cdot 212658$	$0 \cdot 229523$	$0 \cdot 260434$
$0 \cdot 30$	0.120689	$0 \cdot 125240$	$0 \cdot 138352$	$0 \cdot 158526$	$0 \cdot 183776$	$0 \cdot 212658$	$0 \cdot 246057$	$0 \cdot 289880$	$0 \cdot 359885$
$0 \cdot 35$	0. 100012	$0 \cdot 105347$	$0 \cdot 121223$	$0 \cdot 147291$	0-183212	$0 \cdot 229523$	$0 \cdot 289880$	$0 \cdot 376420$	0.523737
$0 \cdot 40$	$0 \cdot 090005$	$0 \cdot 095996$	$0 \cdot 114286$	- 145909	0•193038	$0 \cdot 260434$	$0 \cdot 359885$	0.523737	0.851703

TABLE 8a
Calculated Interference for the Arrowhead Wing in N.P.L. Duplex Wind Tunnel. Lift, Rolling Moment and Pitching Moment

- $\frac{\left(\Delta C_{i}\right)}{C_{l}^{\prime}}$ for antisymmetrical loading (Appendix II, Table A 8) $\frac{(\Delta \alpha)}{C_{L}{ }^{\prime}}, \frac{\left(\Delta C_{m}\right)}{C_{L}{ }^{\prime}},-\frac{\left(\Delta C_{l}\right)}{C_{L}{ }^{\prime}}[$ equations (7.5) and (7.6)] $]$

$$
\frac{\left(\delta C_{L}\right)}{C_{L}^{\prime}}=\frac{\partial C_{L}}{\partial \alpha} \frac{(\Delta \alpha)}{C_{L}^{\prime}}=2.732 \frac{(\Delta \alpha)}{C_{L}^{\prime}}
$$

$$
\frac{\left(\delta C_{l}\right)}{C_{l}^{\prime}}=\frac{C_{L}}{C_{l}}\left\{\frac{\partial C_{l}}{\partial \alpha} \cdot \frac{(\Delta \alpha)}{C_{L}^{\prime}}-\frac{\left(\Delta C_{l}^{\prime}\right)}{C_{L}^{\prime}}\right\}
$$

$$
=\frac{2 s}{\bar{y}^{\prime}}\left\{0 \cdot 596 \frac{(\Delta \alpha)}{\dot{C}_{L}^{\prime}}-\frac{\left(\Delta C_{l}^{\prime}\right)}{C_{L_{L}^{\prime}}^{\prime}}\right\}
$$

Control span	$0 \cdot \dot{3} \dot{6} s<y<s$		$0 \cdot \dot{5} \dot{4} s<y<s$		$0 \cdot \dot{7} \dot{2} s<y<s$		
Chord ratio	$E=0.2$	$E=0.4$	$E=0.2$	$E=0.4$	$E=0.2$	$E=0.4$	
$-\left(\Delta C_{b}\right) / C_{l}{ }^{\prime}$	$0 \cdot 0230$	$0 \cdot 0246$	$0 \cdot 0202$	$0 \cdot 0217$	$0 \cdot 0188$	$0 \cdot 0201$	Uniform incidence
$\begin{array}{r} (\Delta \alpha) / C_{L^{\prime}}^{\prime} \\ -\left(\Delta C_{m}\right) / C_{L^{\prime}}^{\prime} \\ -\left(\Delta C_{z}\right) / C_{L}^{\prime} \end{array}$	$\begin{aligned} & 0.0272 \\ & 0.0098 \\ & 0.00065 \end{aligned}$	$\begin{aligned} & 0.0296 \\ & 0 \cdot 0096 \\ & 0.00060 \end{aligned}$	$\begin{aligned} & 0.0229 \\ & 0.0095 \\ & 0.00085 \end{aligned}$	$\begin{aligned} & 0.0252 \\ & 0.0094 \\ & 0.00080 \end{aligned}$	$\begin{aligned} & \hline 0.0205 \\ & 0.0093 \\ & 0.00095 \end{aligned}$	$\begin{aligned} & 0 \cdot 0227 \\ & 0 \cdot 0093 \\ & 0 \cdot 00090 \end{aligned}$	$\begin{aligned} & 0.0397 \\ & 0.0083 \\ & 0.00010 \end{aligned}$
$\begin{aligned} & \frac{\left(\delta C_{L}\right) / C_{L}^{\prime}}{y^{\prime} / s} \\ & \left(\delta C_{b}\right) / C_{i}^{\prime} \end{aligned}$	$\begin{aligned} & 0 \cdot 0742 \\ & 0.570 \\ & 0.0591 \end{aligned}$	$\begin{aligned} & 0.0809 \\ & 0.559 \\ & 0.0653 \end{aligned}$	$\begin{aligned} & 0.0625 \\ & 0.647 \\ & 0.0448 \end{aligned}$	$\begin{aligned} & 0.0688 . \\ & 0.633 \\ & 0.0500 \end{aligned}$	$\begin{aligned} & 0.0560 \\ & 0.724 \\ & 0 \cdot 0364 \end{aligned}$	$\begin{aligned} & 0.0621 \\ & 0.707 \\ & 0.0409 \end{aligned}$	$\begin{aligned} & 0 \cdot 1085 \\ & 0 \cdot 436 \\ & 0 \cdot 1090 \end{aligned}$

TABLE 8b
Calculated Interference for the Arrowhead Wing in N.P.L. Duplex Wind Tunnel. Drag and Yawing Moment

$$
\begin{aligned}
& \left(\delta C_{D}\right)=\left(\delta C_{D}\right)_{a}+\left(\delta C_{D}\right)_{s}[\text { equation (8.6)] } \\
& \left(\Delta C_{D}\right)=-\left(\delta C_{D}\right)+2\left\{\Delta C_{l} / C_{l}^{\prime}\right\}\left(C_{D}^{\prime}\right)_{a}[\text { equation (8.9)] } \\
& \left(\Delta C_{n}\right)=-\left(\delta C_{n}\right)_{1}-\left(\delta C_{n}\right)_{2}+2\left\{\Delta C_{l} / C_{l}^{\prime}\right\} C_{n}^{\prime} \text { [equation (8.13)] }
\end{aligned}
$$

For $\left(\delta C_{n}\right)_{1}, \gamma_{s}$ corresponds to uniform incidence and γ_{a} to antisymmetrically deflected ailerons:
For $\left(\delta C_{n}\right)_{2}, \gamma_{s}$ and γ_{a} correspond to symmetrically and antisymmetrically deflected ailerons respectively.

Control span	$0 \cdot \dot{3} \dot{6} s<y<s$		$0 \cdot \dot{5} \dot{4} s<y<s$		$0 \cdot \dot{7} \dot{2} s<y<s$		
Chord ratio	$E=0.2$	$E=0: 4$	$E=0.2$	$E=0.4$	$E=0 \cdot 2$	$E=0.4$	
$-\left(\delta C_{D}\right)_{a} /\left(C_{l}{ }^{\prime}\right)^{2}$	$0 \cdot 179$	0-180	0-159	$0 \cdot 161$	$0 \cdot 150$	$0 \cdot 151$	Uniform incidence
$-\left(\delta C_{D}\right)_{s} /\left(C_{L}{ }^{\prime}\right)_{2}$	$0 \cdot 0248$	0.0248	0.0221	$0 \cdot 0223$	$0 \cdot 0220$	$0 \cdot 0221$	$0 \cdot 0255$
$\begin{aligned} & \left(\delta C_{n}\right)_{1} /\left(C_{L}^{\prime}\right)_{1} C_{l}^{\prime} \\ & \left(\delta C_{n}\right)_{2} /\left(C_{L}\right)_{2} C_{2} C_{l}^{\prime} \end{aligned}$	$\begin{aligned} & 0.0449 \\ & 0.0435 \end{aligned}$	$\begin{aligned} & 0.0437 \\ & 0.0433 \end{aligned}$	$\begin{aligned} & 0.0437 \\ & 0.0437 \end{aligned}$	$\begin{aligned} & 0 \cdot 0426 \\ & 0 \cdot 0433 \end{aligned}$	$\begin{aligned} & 0 \cdot 0427 \\ & 0 \cdot 0456 \end{aligned}$	$\begin{aligned} & 0.0418 \\ & 0.0450 \end{aligned}$	

Fig. 1. Elementary vortex for antisymmetrical loading in a rectangular tunnel.

Fig. 2. Image system of antisymmetrical trailing vorticity.

Fig. 3. Contour used for integration in Appendix 1 .

Fig. 4. Plan of the arrowhead wing with vorticity due to deflected ailerons.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 5os. (51s. 9d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64 s . 9d.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, 'Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (515.9 d.)
194I Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63 s. ($64 s .9$ d.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 9 d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (49s. 3d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (8is. 9d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. gos. (92 s. 6d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (86s. $3^{\text {d. }}$)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (86s. $3^{\text {d. }}$)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. I30s. (I32s. 6d.)
Vol. II. Aircraft, Airscrews, Controls. 130s. (r32s. 6 d.)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 1305 ($132 s .3$ d.)
Vol. IV. Stability, Structures, Wind tumels, Wind Tunnel Technique. 130 s. (132 s .3 d .)
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELYApril, 1950 - - - - R. \& M. No. 2600. 2s. 6d. (2s. 8d.)
AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-1909-January, 1954 - - - R. \& M. No. 2570. 15 s. (15s. 6d.)

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-
December 1, 1936-June 30, 1939. R. \& M. No. 1850 is. 3 d. (rs. $5^{\text {d. })}$
July I, 1939 - June 30, 1945. - R. \& M. No. 1950. is. (1s. 2d.)
July I, I945-June 30, 1946. - R. \& M. No. 2050. is. (1s. 2d.)
July I, I946-December 3x, 1946. R. \& M. No. 2150 . is. 3 d. (rs. $5^{\text {d. }}$)
January I, 1947 - June 30, 1947. - R. \& M. No. 2250 . Is. 3 d. (Is. $5^{\text {d. })}$
PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-
Between Nos. 225I-2349. - $\quad-\quad$ R. \& M. No. 2350. is. 9 d. (Is. 11d.)
Between Nos. 2351-2449. - - R. \& M. No. 2450.
Between Nos. $245 \mathrm{I}-2549$. - \quad R. \& M. No. 2550.
Between Nos. 2551-2649. - - R. \& M. No. 2650.
2s. (2s. 2d.)
$2 s .6 d .(2 s .8 d$.
2s. 6d. (2s. 8d.)
Prices in brackets include postage
HER MAJESTY'S STATIONERY OFFICE

[^0]: \dagger Published with the permission of the Director, National Physical Laboratory.

[^1]: \dagger As the axes used in Fig. 1 do not conform to the standard axes of an aircraft, the sign of the aileron setting ξ has been chosen to give the usual positive C_{l} / ξ. It should also be noted that the sign of $C_{n i}{ }^{\prime}$ in equation (8.1) is consistent with the standard negative theoretical value of $C_{n i} / C_{L} C_{7}$.
 \ddagger This aspect of tunnel interference is considered by R. S. Swanson in A.R.C. Report 6969 (N.A.C.A. ARR February, 1943), entitled 'Jet-boundary corrections to a yawed model in a closed rectangular wind tunnel'.

[^2]: \dagger In Table A4, $\left(\delta a_{\nu}\right)_{3 / 4}$ denotes the values of w / V at three-quarter chord which are only required for comparison with the simplified method.

