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Summary.--The general theory of longitudinal stability and control for a single-rotor helicopter is presented in a 
form similar to that for fixed-wing aircraft. It  is shown to be possible to establish for the helicopter in forward flight, 
in the same way as for fixed-wing aircraft, stick-fixed static and manoeuvre margins, on which the stability and handling 
qualities depend to a marked extent. If the static margin K~ > 0 the helicopter is mathematically statically stable, 
and the pilot requires a forward stick displacement to hold increased speed and conversely. If the manoeuvre margin 
Hm > 0, the helicopter is unlikely to be subject to rapid divergence in a disturbance, and the pilot requires a backward 
stick displacement for positive normal acceleration in a pull-out. Theoretical relations are derived for K,~ and H,,,, 
in a general form covering the case of a tailplane linked to the rotor control. Relations are given also for determining 
K,, and H~.~ from measured control changes to trim. 

An analysis is giveia of the growth of acceleration in a pull-'out and assessment of estimated acceleration curves in 
terms of the National Advisory Committee for Aeronautics ' divergence requirement ' suggests that the latter may be 
satisfied if H,~ has a small positive value. Further evidence on this point will be obtained in tests now being made on 
a number of helicopters to study the correlation of stability and control characteristics and pilots' impressions of the 
handling qualities. 

Extension of the theory to stick-free longitudinal stability depends on knowledge of the rotor forces on the control 
plane and the analysis of these forces is being considered. 

1. I~4troductio~c.--Increased attention has been given recently to the definition of desirable 
handling qualities for helicopters and to the development of stability theory in a form suitable 
for application in design. Methods of assessing the handling qualities of helicopters in flight 
tests have also been under consideration. 

Work on ttiese subjects at N.A.C.A. in America has led to the formulation of criteria for 
satisfactory stick-fixed longitudinal manoeuvre stability, defined in terms of the shape of the 
acceleration-time curve in a pull-out (Ref. 1); acceptable handling characteristics are claimed 
to depend on satisfying a 'divergence requfrement '  that  the normal acceleration-time curve 
must become concave downwards within 2 seconds of the control displacement to initiate the 
pull-out, and an ' anticipation requirement ' that  the slope of the curve must be  positive until 
the maximum acceleration is achieved. Recently the 'divergence requirement '  has been 
theoretically analysed and put in terms of relations between the aerodynamic characteristics, 
for the guidance of designers (Ref. 2). This first a t tempt  to assess helicopter manoeuvre qualities 
in quantitative terms marks a definite advance both for design and test purposes. The criteria 
employed, however, are complex in comparison with that,  for example, for the absence of 
divergent instability on a fixed-wing aircraft, namely that  the manoeuvre margin should be 
positive (Ref. 3). 

*A.A.E.E. Report Res/280, received 29th July, 1954. 
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I t  appears desirable to assess the handling qualities of an aircraft by the simplest adequate 
tests, starting with steady trimmed flight, following with steady accelerations in a pull-out or 
turn, and proceeding only to study the variation of acceleration with time in a pull-out, or 
finally full dynamic stability, if these are found to be required. This line of thought has led 
to an investigation being made to determine how far the static and manoeuvre margin theory 
can be applied to a single rotor helicopter. The theory has now been brought to a practical 
form for stick-fixed forward flight conditions and is given ill this report. 

An investigation is being made in flight tests of different helicopters to establish the correlation 
between the values of the static and manoeuvre margins and pilots' impressions of the handling 
qualities. Sufficient results from these tests are not yet available for definite conclusions to be 
drawn, but an indication of the correlation is obtained by using the N.A.C.A. test (which is 
based on pilots' impressions) to assess estimated curves of the growth of acceleration with time, 
for a range of values of the manoeuvre margin. 

A list of symbols is given at the end of the report. 

2. General Theory for Longitudinal Motion.--The motion is considered for a single-rotor 
helicopter with hinged blades. A diagram of the rotor layout in the pitching plane is given in 
Fig. 1. The blades are mounted on flapping hinges offset by a small distance, e, from the centre 
of the hub of rotation. The longitudinal cyclic pitch application is determined by the longitudinal 
tilt, B~, of the control plane relative to the plane normal to the axis of rotation, forward tilt being 
produced by forward movement of the pilot's azimuth stick ; the no-feathering axis of the blades 
is normal to the control plane. The blades flap up relative to the control plane at forward speed, 
and the tip-path plane is tilted back due to flapping by an angle a~, the value of al depending 
on the rotor operating conditions. The rotor thrust is assumed to be approximately perpendicular 
to the tip-path plane and to act through the centre of the rotor hub. The rotor thrust in a given 
flight state depends on the collective pitch, 0, of the rotor blades and the  rotor speed, ~, which 
are determined by the pilot's collective pitch and throttle controls. 

The analysis of the longitudinal motion of the helicopter is made on generally the same basis 
as for a fixed-wing aircraft in R. & M. 2075 (Ref. 4). A system of axes is taken with the origin 
at the centre of gravity, which is at a distance, h, below the hub and h forward of the hub axis. 
The x-axis is forward along the wind direction in the equilibrium condition and fixed in the 
helicopter during the disturbed motion ; the z-axis is downwards in the plane of symmetry of 
the helicopter and perpendicular to the x-axis, while the y-axis is to starboard. 

In the equilibrium condition the aircraft is moving with velocity Ve( > 0) along the x-axis 
at an angle ;~ to the horizontal, x~ being positive in climbing flight. The disturbance velocities 
(for the longitudinal plane only) are u, w, along the x- and z-axes respectively, and an angular 
velocity q about the y-axis. It  is assumed that  the longitudinal motion can be considered 
separately from that  in the lateral and directional planes; in practice control action may be 
necessary by the pilot to prevent disturbances developing in the other planes. 

• The incidence of the helicopter is specified by the angle of incidence, ~, of the plane normal 
to the rotational axis to the flight path. This plane is selected as datum in preference to the 
control plane which is commonly used, because it appears to simplify consideration of control 
plane displacements ; it also appears more suitable for analysis of stick-free conditions, in which 
a fixed aircraft datum is preferable to the floating control plane. The angle of incidence in the 
equilibrium condition is ~, and in a disturbance (~e q-wiVe). The angle of incidence of the 
control plane also occurs in the analysis in connection with the determination of the aerodynamic 
characteristics of the rotor and this is %°(----~0- BI~) in the equilibrium condition and 
(ob~ -- BI ,~-  wiVe) in the disturbed motionj where B~a is the angular displacement of the control 
plane from the value B~ in the equilibrium condition. 
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The aerodynamic forces may be expressed generally in the s tandard form. Account is taken 
of velocity but  not of acceleration derivatives, and of the effect of changes in B1 and 0 ; the rotor 
speed however is assumed to be constant (the adequacy of this assumption is discussed in section 
3.2) and no terms in X2 are included. Thus 

X = X.  @ X ~  @ X~w @ Xqq @ X nlBl~ @ XoO 

Z = Ze + Z~u + Z~w + Zqq + ZB~B~ d + ZoO 

M = M~ + M~u + M~w + Mqq + Me 1B~ + MoO 

where X~, Ze, Me are the values of X, Z, M in the equilibrium conditions and X,  represents 
~X/3u and so on. The terms in B1 d and 0 represent the forces or moments due to changes from the 
equilibrium values, of the control plane angle and collective blade pitch. For example, Me ~ B~d 
represents the moment applied by displacement of the control plane, which (unlike elevator 
displacement on a fixed-wing aircraft) also has a significant effect on X and Z. The effects of a 
control plane displacement can be more clearly understood by considering firstly the effect of the 
change in B~ at constant control plane incidence, and secondly the effect due to the change in 
control plane incidence. Thus 

Since ~ep = ~ ( ~ -  B1), (M~p)B1 = Ms and O~p/~B~ = -- 1. 

Hence M ~  = (MB~)~p -- Mo . . . . . . . . . . . . . .  (1) 
In the same way, neglecting the effect of fuselage incidence changes (at constant control plane 
incidence) on X and Z, 

X m = - - X ~ ;  Z B ~ = - - Z ~ .  

The relations above are directly applicable only to  the stick-fixed condition, but a similar 
development is possible for the azimuth stick-free case (the collective pitch control is normally 
irreversible and fixed) when the rotor and control system are mass balanced, using the condition 
that  there is zero hinge moment on the control plane: There is as yet  little information on rotor 
control force characteristics, but  on the simplest general basis the control plane hinge-moment 
coefficient would be expressed as a l inear function of the relevant parameters, itmluding B1 
and f, where f is a tr immer or bias spring setting. From tile condition that  this coefficient should 
be zero, B1 can Be expressed in terms of f, and M~I in terms of M I and M,. 

For generality all the derivatives included in the forms given for X, Z and M are retained at 
this stage in considering the motion, but Several are not normally significant and could be 
neglected in most cases. The equations of motion are obtained by equating the sum of the 
inertia, gravity and aerodynamic forces or moments to zero, and by subtracting the corresponding 
equations for the equilibrium conditions. The final equations are of similar form to those for 
fixed wing aircraft with the substitution of the B~ and 0 terms for the elevator contributions* ; 
they  can be expressed in a similar non-dimensional form, taking S to be the rotor area and the 
representative distance (on fixed-wing aircraft the distance from the c.g. to the tailplane) to be 
the rotor radius, R. Assuming u, w, and q are proportional to e~5, where ,, the aerodynamic 
time, = tpSV,/m, m being the helicopter mass, it follows from the equations that  the motion 
depends on the roots of a stabili ty quartic in tile standard form, 

~ + B~ 3 + C~ ~ + D~  + E = 0 . . . . . . . . . .  (2) 

Where, with controls fixed (Bx, 0 = 0), the coefficients B, C, D, E are corresponding functions 
of the inertia and aerodynamic characteristics to those defined in Ref. 4. The fundamental  
mathematical  conditions for a stable dynamic motion are that  the coefficients B, C, D and E 
should be positive and that  the Routhian discriminant 

= B C D -  D ~ -  B~E . . . . . . . . . . . . . .  (3) 
should be positive. 

* I t  should be noted tha t  there would be an additional equation if rotor  speed variat ion were included in the analysis: 
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The coefficient E is of importance for static stability, the condition for the latter being simply 
that  E should be positive, while the coefficient C is of special importance in manoeuvrability 
and in the response to disturbances. I t  is with the evaluation of these two coefficients for heli- 
copters in stick-fixed conditions, and the consideration of their significance for stability and 
control, that  the remainder of this report is mainly concerned. The basic approach to the subject 
and the method of analysis are generally similar to those adopted by Gates and Lyon for fixed- 
wing aircraft in R. & M. 2027 (Ref. 3) and in parts the phraseology is freely borrowed from the 
latter work. 

3. Static Stability.--3.1. Conditions for Static Stabi l i tv . --Stat ic  stability depends on the sign 
of E, which following Ref. 4, assuming ;~ small and in adctition that  the lift force is approximately 
equal to the rotor thrust (in effect, assuming % to be small), is given by 

E = - -  

iE 2 
where 

Alternatively, 

For stick-fixed 

/ z  1 = 

I =  

Z , /pSV ,  ; m~ = M~/pSRV,  ; and so on 

m/pSR ; iE = I /mR2;  Cr T/~p V~S. 

pitching moment of inertia. 

E -- ~ CT 
iE 2(psv )2R X,,&). 

conditions in steady near-level flight, since 

Z = -- T + W = 0 approximately, 

d V  
Thus since o~ = b% + w/V,,  

MwZ,, --  M,Zw -- 

- - 0 .  

Z~ d M  

V~dV " 

Now dCr/dV ---= -- 2Cr/V in steady flight, and for trimmed conditions, therefore, (CM = 0), 

dV --  --  CrpSV~R \ d C r j  .l, ° 

M 
where C~ = ½pV 2S R . 

Hence, with Za = -- ½pV,2S aCt 

where both the derivatives ac /a  and dCM/dCr are measured with B1 and 0 constant. 

This is of similar form to the expression for E for fixed-wing aircraft. In general aCr/a~ is 
positive and so dCM/dCT must be negative for positive static stability. From the pilot's stand- 
point the degree of static stability determines the change of stick position to trim in steady 
flight {with constant 0) at a speed differing from the trimmed speed. This will be shown (section 
3.3) to be proportional to the out-of-balance pitching moment which would occur if the stick 
position could be kept constant at the changed speed ; that  is, it depends on, 

dC ~ 2Cr dC ~ 
- -  , 

d V  V d C r  
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Thus the value of (-- dC~/dCr) may be taken as a measure of the degree of static stabil i ty at 
a given speed or Cr, and the static margin for a helicopter can be defined in the same way as for 
a fixed-wing aircraft as, 

(dCM~ 
K .  = - \ ~ 2 . , , o  = - 

subject to the relationship, 

d V  V 
- -  • I 

dCr 2Cr 

~CM de ~C,. dV 
e dCr OV dCr 

3.2. Static Margin Analysis.--The forces and moments on the helicopter determining the 
pitching moment are shown in Fig. 1. T h e y  include the rotor thrust  T, normal to the t ip-path 
plane ; the thrust  vector  is tilted forwards by  an angle B~ because of longitudinal pitch control 
application, and backwards by an angle a~ because of blade flapping. There is also a transverse 
force H in the plane of the rotor and a rotor pitching moment, ½bJe(B~ -- al), where b is the 
number of blades and J is the centrifugal force on a blade. The fuselage drag is taken to act 
through the centre of gravity and to be independent of fuselage incidence, but  in the general 
case a fuselage and tailplane pitching moment is assumed in the form 

M~ = ½pV~SR{C~ -- ar 17r (e + ~r -- e)} 
CB = fuselage body pitching-moment coefficient 

ar = slope of the tailplane lift-coefficient curve 

ITr = tail volume coefficient SrL/SR, L being the distance of the tailplane from 
the c.g., and Sr the tailplane area 

~r = tailplane setting to the fuselage 

e = allowance for rotor downwash effect 

If the tailplane is linked to the cyclic pitch control, so that  

then 

Cp 0 = Cz -- arlTrvo, where CFo is the fuselage and tailplane pitching-moment coefficient for 
B1 = 0. Thus 'put t ing e = ep + B1, 

MF = ½pV2SR[CFo- a r l T r { o9 -  ~ + (1 + vJB~}]. 
Putt ing C,  = H/½p V2S and C~ = ½bJ/½p V~S, the pitching-moment equation is therefore 

c ~  = o = - c ~  (B1 - -  a l ) -~  + + C~-~  - -  C: -~  (B1 - -  ad + C ~o 

- a ~ ¢ ~ { ~  - ~ + (1 + ~ )  B j  

h,  k h 
= -- B,Cr ~ + a,Cr-~ -- Cr-~ + C~ ~ + C~o -- a37r (~, -- ~) . .  (4) 

where 
he h C: e 
R -- R + Cr R 



For stick-fixed conditions, B1 and 0 are constant. Thus differentiating 

h, k h 
- a ; .c~ .  ~ + ~ - c~,' -~ + a~.TT~(~,' - ~ ' ) .  . .  (s) 

The values of the aerodynamic derivatives to be used in determining the static margin depend 
on the rotor operating conditions. For stick-fixed stability, the cyclic pitch and the collective 
pitch are constant, and strictly, the throttle setting should also be constant. With constant 
throttle setting, however, the rotor speed varies to some extent with the flight state, and although 
N.A.C.A. estimates (Ref. 2) have shown the effect in, for example, a pull-out to be small (partly 
due to the effect of rotor inertia), it is more satisfactory to assume in the analysis that the rotor 
speed is kept constant by throttle adjustments made either manually by the pilot or by an 
automatic throttle governor. The assumption of constant rotor speed has the advantage that 
although the small changes in engine torque due to throttle action will not have a marked effect 
on the aerodynamic derivatives, a more straightforward comparison is possible between steady 
flight states in which the speed, or normal acceleration, differ because of  control d{splacement. 

The values of the aerodynamic derivatives are considered in the Appendix for a simple rotor 
system with blades of constant chord and angle along their length ; blade and controi circuit 
distortion and unsteady aerodynamic effects are neglected. In particular, it is shown that 
Cj' = Cj/Cr, and eliminating B1 by means of (4), 

R c . '  c-;h-; < • 

If there is no tailplane and the fuselage.pitching moments are small, this reduces to, 

1 = - - a ~ R -  ~, C~'-- 

It is shown in the Appendix that, for a rotor with blades of constant chord and angle, 

a l  1 -- if2 .. a l  t - -  

2CT I + ff2 

where 

Thus 

[~_~ 3 ~ C ~  1 
C~' C~ ( 2 - - - b  2) + ~ j  (2 +~ff2) 

Ca is the mean blade profile-drag coefficient, 

a = bc/~R, the rotor solidity, c being the blade chord. 

- - 2 R 1  + i f "  -[-R' CT(1 +3f f  2)-4CT(1 +{ff2)J 

Formulae for al and C~ are given in the Appendix. 

3.3. Static Margin in Terms of Control Changes to T r i m . - - I n  steady trimmed flight, the rate 
of change of pitching moment, with controls fixed, due to variation of speed and incidence, 
must be balanced by the rate of change of pitching moment due to control application, which 
ma,y include changes in both control plane angle and collective pitch. The steady flying qualities 



of the helicopter however are normally assessed with constant collective pitch, and the effect 
of control plane displacement only is considered for determination of the static margin. Thus, 

( ~ )B.~,o- ~B, \dc~/%.=o,o=~o°~°~ 
and so from (4), 

Ko = - C~.-R \dC~./~, .o . . . . . . . . . . . .  (6) 

The static margin can therefore be determined from flight measurements of cyclic pitch to 
trim. The value of hJR can be found from the difference, dB~, in control position to trim in 
level flight at the same weigh( and speed, With two differing longitudinal centre of gravity 
positions, at h and (k + Ok). If the variation of fuselage drag with incidence is neglected, it 
follows from the pitching moment equation (% being unchanged) that  

h. ~k/R 
R ~B1 " 

Thus 
( klR (dBq 

K,, = C~: \ aB, , / \dC:U~, , .o"  

Equation (6) may also be written in the form 

riB1 2 K~ 
dV V h  C: e 

R ~ CwR + ( 1 + ~ ) -  
' where C w  = W/½pv~s. 

aTVT 
Cw 

This relation gives the rate of change of longitudinal cyclic pitch application with speed in terms 
of the static margin. The corresponding azimuth stick control movement depends on the gear 
ratio between the control stick and the rotor control plane. Forward movement of the stick 
corresponds to increasing B1, and it will be seen that  a positive static margin results in a forward 
stick displacement for a higher speed. 

4. Approximate Theory of Response to Control in a Pull-out.--4.1. Condition for Stability in 
a Pull-out Manoeuvre.--Attention is now turned to a pull-out manoeuvre to determine the 
relationship between the pilot's control action and the normal acceleration developed in the 
pull-out. I t  is assumed that  the manoeuvre is made at constant speed in near level flight and 
that  the change in the normal c6mponent of weight during the manoeuvre is insignificant. 
The effect of both cyclic and collective pitch applications is considered in the first instance. 
With the system of axes defined in section 2, the equations of motion at constant speed for 
which u, ~2 are zero and Zq is neglected, are 

- ~ (~  - V,q) + & w  + ZBB1 + ZoO = 0 

- -  I~ + M~w + Mqq + MBBI + MoO = 0 .  
Assuming w, q proportional to e ~* shows the motion with controls fixed t obe  governed by the roots  
of the equation, 

~ + B ~ + C = 0  
where B and C are effectively the same as the corresponding coefficients in the stability quartic, 
and are given by 

~7/q 
B :  - - z ~ + _ _  
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Assuming the motion approaches a steady condition, this is a steady circle in whlch 

Z~ = -- m V , ~  . .. 

Thus, 

C = -- I dm \ o S V J  

( 7 )  . 

This is of a similar form to that  for a fixed-wing aircraft. I t  can also be shown from the above 
analysis that  a pitching divergence is not to be expected in a quick manoeuvre if C is positive, 
and it is reasonable therefore to define the manoeuvre margin for a helicopter in the standard 
form, 

_ _ q )  H,,,-- L 7c~.],~1,o 
with the equilibrium condition for the steady circle at constant speed, from (7), 

dq Y ,  1 
d C r -  R 2ff~ 

4.2. Manoeuvre Margin AnaZysis.--The manoeuvre margin can be obtained from the pitching- 
moment equation (4) in the same way as the static margin. Thus 

" " ;"[ - -  ~ "aclVI aCM ~ . ~ l  
= - + aq ,~u:,-j 

where 
dq V, 1 pSV~ 

dCT R 2ff~ 2m 

As in the case of the static margin, the rotor speed is assumed to be constant. The derivatives 
for the conditions in the pull-out are determined in the Appendix for a rotor with blades of 
constant chord and angle ; in particular, 

~al 16 
Oq yX2 

where ), = ;acRYlic, the blade inertia number, I0 being the blade moment of inertia about the 
flapping hinge. 

Also C:' = 0 and ~r/~q = LIVe, 0~r being the tailplane incidence. 

Thus differentiating (4) and eliminating B1, the controls-fixed manoeuvre margin is found to be 

( l+~ , )a rTZT crh~FSal 8pSV] k ( h) h [ C~h] 
H,~ = -- a, C~. . # L Yd-~ ~E-d j + ~ 1 - # ,  - - ~  c,,' c~.#, 

CFo h [ h ~p -- e + fSL]  
+ c-7h-; +a~¢~ ( ~ / - e ' ) q  h, c~ ~ J  

If there are no fuselage or tailplane pitching moments this reduces to, 
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From the Appendix, for blades of constant chord and length, 

_ • c #  e 0 ( a  + 
~Cr a~ a~ j 

where a is the slope of blade lift-coefficient curve. 

4.3. Manoeuvre Margin in Terms of Control Changes to T r i m . - - F o r  the steady manoeuvre 
state, the change of pitching moment with controls fixed due to variation in the thrust and the 
rate of pitch must be balanced by a pitching moment due to control application, including possibly 
changes in both B~ and 0. Thus 

and so from (4) neglecting variation in tile downwash ~, 

H ' =  --  Cr R \dC-r/%=o + ~-~ Cr f~ -~ aO R 

From the Appendix, for blades of constant chord and  angle, 

O a~ 4 tt . O C I~ a a 

dO 

aa j 

~% 2 
3 (1 - 

It  will be noted that  .all parts of ~C~/aO are positive except part of the second term ; this is less 
however than the first term, for practical values of ~, so that  OCM/OO is positive. 

The manoeuvre margin can therefore be determined from flight measurements of cyclic and 
collective pitch values to trim for a range of steady accelerations in pull-outs at the same speed. 
I t  also follows since Cr = (1 + n)Cw t h a t  

H,,, = - -  (1 + n) ~ k,, dn 2%=o [_~T (1 + n) if, Jr- aO R Cw -~OJk,~Jc~=o" 

This relation gives the rate of change of longitudinal cyclic pitch and collective pitch applica- 
tions at constant speed in terms of the manoeuvre margin. 

I t  will be seen that  at constant collective pitch, a positive H,, results in a backwards control 
movement (decreasing B1) for positive normal acceleration; alternatively (since aCM/aO > 0) 
an increase in collective pitch is required if the cyclic pitch is constant. A study is required of 
the common type of pull-out manoeuvre in which both cyclic and collective pitch control changes 
are made by the pilot, to determine effective and acceptable combinations of control displace- 
ments. As already noted in connection with the static margin, however, the steady flying 
qualities of the helicopter depend more on the characteristics for constant collective pitch. The 
stick-fixed characteristics of the helicopter are of a similar nature whether the manoeuvre is 
initiated by use of one control only or by an equivalent combination of both, and for simplicity, 
further analysis, much of which is concerned with the growth of acceleration in a pull-out, is 
confined to the case of motion for constant collective pitch. The relation of the manoeuvre 
margin to the rate of change of trim with acceleration at constant collective pitch then takes 
the simpler form 

. H,,, = -  CwR+(I+ B) w \ d 2%=0" 
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In pull-out tests to determine the manoeuvre margin,  it is possible for the rate of growth of 
acceleration to be so slow that  the steady acceleration corresponding to a given control displace- 
ment is difficult to achieve. I t  may be easier to determine the trim changes for the steady 
acceleration in a turn, and the manoeuvre margin can be determined by comparing stick positions 
in the turn and in straight flight at the same speed. 

The difference between the stici~ position in the turn and in steady straight pull-out with the 
same normal acceleration arises from the difference in the rate of pitching in the two states. To 
eliminal:& some of the secondary pit;ching-moment effects from the main and tail rotors it is 
convenient to take mean values for B1 from turns in near-level flight, made in both directions. 
If the flight pa th  deviates markedly from level flight it may be necessary to make allowance 
for inertia couples (ReI. 3). 

In a steady pull-out with normal acceleration ng, q = ng/V. 

In a turn with normal acceleration ng, q = v n + 1 
n +  

It follows from the pitching-moment equation (4), using the values of ~al/Oq and ~c~r/0q from 
section 4.2, that  

[he 16g n arl?r R Lg n t 
(Bd,u,,.ou~= (B~) ,~+  . ~ r n V n +  1 + Cw h,V 2 (n+ 1)~" 

Thus the manoeuvre margin may be determined from the trim curves in turns from the 
relationship, 

h~ F(dBI~ (h~ 16g l arlPrRLg ( 1 -  n) t 1 

4.4. Growth of Acceleration in the Pull-out.--A positive value for the manoeuvre margin ensures 
that  the helicopter is not subject to a rapid divergence and that  a stable control movement is 
required to develop a steady acceleration. I t  is important also, however, to have some knowledge 
of the growth of the acceleration to ensure that  sufficient time is allowed to reach the steady 
acceleration in pull-out tests. In addition, there is evidence (Ref. 1) tha t  pilots consider tha t  
the general flying characteristics of a helicopter depend t o a  marked extent on the ghape of the 
acceleration-time curve in a manoeuvre, and the fuller significance of the manoeuvre margin Call 
be judged by the influence the value of H~,, has on the way in which the growth of acceleration 
O c c u r s .  

From the equations of motion at constant speed, it follows as in section 4.1, assuming w, q 
proportional to e ~ (using t in preference t o ,  for a particular application) that  the motion with 
controls fixed depends on the roots of the equation, 

z + + c '  = 0 . . . . . . . . . . . .  (9) 

where B' ---- -- (-M/- + = \m("Z~M--qZ M~V~) } . . . . . . . . . . .  (10) 

In studying the effect of H,~ on the motion it is useful to note that  

c ' =  - q) 
I d~z 

RTaH,~. 
I 
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The steady acceleration in the ultimate state of tile motion can be determined in terms of 
H,, as in section 4.3 ; putt ing ~Cr = nsC~, and aB1 = Bs where n,g is the steady increment in 
the acceleration and Bs is the fixed control .displacement, ns is given, for constant collective 
pitch, by  

1 8CM Bs . . . . . . . .  (11) 
n ,  - -  Cw aBI H,. . . . . . . . . .  

The significance of the analysis in section 2 of the MB1 term in the equations of motion can be 
seen from an alternative derivation of this relation (11), from the  equations of motion in the 
steady state for which z0 = (~ = 0. Eliminating w from the equations it is found that  

V,q Z ,  (M,~ + MR1) 
m s - -  g mg (dM/doc)B~ B s .  

Now from (1), 
M.~ = (M.~)o~-  Mo 

= (M,l)c r --  Ma at constant speed, 
and, as before, 

1 8CMBs 
n, --  Cw 8B~ H,,~ 

Tl~e derivative OCz~/OBI depends on Cr, and a mean value is taken corresponding to the mean 
acceleration n,,g, so that,  

n~ h,. 1 

where 

h,,~ _ (1 + h _ c_j _e a ~ G  (1 + ,TB). (12) 
R '~") K' q CwR + ~ . . . . . . . .  

For a positive value of the manoeuvre margin, the roots of the quadratic (9) may be both 
real and negative, or may both consist of negative real and imaginary parts. For real roots 
B '~ --  4C' > 0, so that  

I 
0 < H,,, < 4RT----~ B'~ 

If the roots are--  b'/2 4- ~, where $ = ½(B'~--4C') ~/~, the growth of the acceleration, from an initial 
steady condition in which w = q = 0, following the instantaneous displacement of the control 
plane by the angle B~, is given by the relation, 

Bs -- W--~- W- sinh et + V~ \ T ~  RH~, 1 sinh et + cosh et RH~, " 

I _,~ B'  B'~) "~. When H~ > 4R--T/3 , tile roots are of the form -- 4- i¢, where ¢ = ½(4C' -- The 

growth of acceleration is given by 

Bsn _ T"e-'"~WV,$ sin ¢t + g.  ~ . ~  ~ .  1 sin ¢t + ¢ cos Ct RH.~ " 

For H .  4 0, tile motion is divergent and does not at tain a steady state. When H,. = 0, the 
growth of the acceleration is given by, 

n T . ~ ( W h . ,  Tg ) (1 _ e_..,) Wh,, , t l  To 
B s  - W B '  Lk B'Z + W ~ .  z w 

l l  



Estimates of the acceleration have been made, using these relations, for a single-rotor helicopter, 
for three values of B' covering a range of aerodynamic derivatives and speed conditions, and a 
range of values of H,,. The variation in H,,~ may be assumed to arise mainly through changes in 
M~, which does not affect B' ; for simplicity h~/R is assumed to be constant, though this might 
normally vary with H,,~ and Ms. The characteristics assumed for the helicopter are : 

W = 5 , 0 0 0 1 b . ;  I = 7 , 0 0 0 s l u g - f t  ~; X 2 = 2 8 . 3 r a d n / s e e ;  ~ = 9 . 3 5 ;  

R = 24 ft ; h~/R = 0- 155 ; gT~/W = 120 ft/sec ~ 

Curves of n/B, against time are plotted in Fig. 2, for values of H,,, from 0 to 0.015 for the case 
of B' = 1.2, and in Fig. 3 for selected values of H,~ for B' = 0.8 and 2.0. There is in all cases 
an instantaneous build-up of acceleration to -- T~B,/m corresponding to the assumed immediate ' 
increase in thrust when control is applied. This is followed by a slight decrease in n, before the 
main trend of the growth of acceleration becomes apparent. For H,~ = 0, the motion is a 
divergence and this would be more rapid for H,, < 0. For 0 < H,, < IB'~/4RT~, the motion 
is steadily asymptotic, after the initial stage, to the ultimate acceleration value, while for 
H,, > IB'~/4RTo, the curve achieves a maximum value in a time decreasing as H,, is increased. 

The early decrease in acceleration is clearly an undesirable feature, and as stated in the 
N.A.C.A. ' anticipation requirement '  (Ref. 1), the slope of the curves should remain positive 
until the maximum acceleration is attained. The fall-off in acceleration is due to rapid damping 
of the initial acceleration and the damping can only be reduced at the expense of the charac- 
teristics later in the motion. The effect may be less marked, as suggested in Ref. 5, with a linked 
rotor and tailplane control system, because due to the additional control power, a smaller rotor 
tilt is required for a given acceieration; there is in consequence a smaller initial acceleration 
and the reduction is relatively smalle r compared to the final value. In terms of the above 
analysis, if n = n0 at t = 0, it can be shown that  (providing H,,, > 0), 

no To R H~,~" 

It is apparent from (12) that  the addition of the ~7~ term for the linked tailplane can:have a 
considerable effect on h,~ and if, as appears possible from (8), H,,~ is not greatly affected by the 
~B terms, no/n~ will be appreciably reduced. In practice there would of course be a less marked 
fall-off in acceleration than estimated because the control action and thrust increase would not 
be instantaneous in the manner assumed in the analysis. 

The shape of the acceleration-time curves following the reduction stage shows that  the ultimate 
acceleration is approached relatively slowly for H., < 0.01 ; it would be difficult in such cases 
to establish the steady state in pull-out tests and the  manoeuvre margin should be determined 
from trim changes in turns. An assessment can be made of the shape of the curves in terms of 
the N.A.C.A. divergence requirement that the shape of the curve should become concave down- 
wards within 2 seconds, which is equivalent to the condition that d"n/dt ~ should become negative 
before ~ = 2.0. The variation of d~n/dt ~ with H,,~ at t = 2.0 for the set of curves in Fig. 2 is shown 
in Fig. 4. The value of H,,~ to meet the requirement varies with B', the largest value being 
Hm = 0.0085 for B' = 0"8. N.A.C.A. specify that  the requirement is to be met at higher 
speeds, which correspond to lower values of B', since the second (and normally dominant) part 
in the form given in (10) is equal to T//mV,. 

These results suggest that  an assessment of the manoeuvre s~tability equivalent to the N.A.C.A. 
test may be obtained from the simpler criterion that  the manoeuvre margin should be greater 
than a small positive value. Further evidence on this point will be obtained from flight tests 
now being made on a number of helicopters, to establish their general stability and control 
characteristics for con'elation with pilots' impressions of the handling qualities. An analysis 
is also to be made of American test data (Ref. 1) for a helicopter without and with a tailplane, 
either fixed or linked to the rotor control. 
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5. Dynamic Stabiiity.--Since the theory of the longitudinal motion of a helicopter has been 
presented in a similar form to that  for a fixed-wing aircraft, many of the general arguments 
used in, for example, Ref. 3 to show the significance of the static and manoeuvre margins with 
reference to the dynamic stability, can also be applied to the helicopter. I t  is important,  however, 
to remember the approximate assumptions in the development of the theory for a helicopter 
for both static and manoeuvre margins;  these included the assumption of near-level flight 
(z small) and that  the rotor thrust can  be equated to the lift force normal to the flight path  
(% small). The theory can therefore be expected to be tess accurate at lower Speeds and  the 
following discussion is to be taken to apply only to flight states in which the approximations 
are valid. 

I t  appears, from the form of the aerodynamic derivatives in the coefficient B in the complete 
quartic (2) governing the dynamic stability motion, that  B is large and positive for a helicopter 
(as well as for a fixed wing aircraft). The coefficient D, which is approximately equal to 
½l~lm,Cr/i~, is small, while E and C are approximately proportional to the static and manoeuvre 
margins respectively. The conditions for a stable dynamic motion are that  all the coefficients 
and the Routhian discriminant should be positive. Following the argument in Ref. 3, it may be 
said tha t  if all the coefficients are positive except E, there is a divergence which is relatively 
slow because it depends on speed changes which take time to develop. On a helicopter however 
if E is negative it is probably because of.a large positive value of OC~±/~, so tha t  C also may be 
negative and the resultant divergence is likely to be rapid because it is a pitching divergence 
which can occur without change of speed. 

I t  is also p0ssible, if OC~/OV is large, for a positive static margin or E to be combined with a 
very small or negative manoeuvre margin or C.  In this case there may be an unstable oscillation 
associated with a negative value of the Routhian discriminant (3). Neglecting the small term 
in D 2, the discriminant condition shows instability to occur when (CD -- BE) <~ 0 and N may 
therefore be negative while C and D are positive, if E is still positive. If C is negative there will 
be a more unstable oscillation or a rapid divergence (combined with a slower one, since there 
must be two positive roots When E > 0). A negative manoeuvre margin is therefore a definite 
indication of serious instability. 

These qualititative arguments provide a useful indication of the general significance of the 
values of K.  and H,, for the dynamic stability motion. More definite information is desirable 
on the relative magnitudes of the coefficients, and of the effect of, for example, a fixed or controlled 
tailplane, and detailed estimates of the motion for representative helicopter types are to be made. 

6. Discussio~ and Comlusio~s.--Summarising the course of the analysis, in the first place, 
the theory of the longitudinal motion of a single rotor helicopter in forward flight has been 
presented in the standard form for fixed-wing aircraft. It  has been shown possible to establish 
for the helicopter, forms of the stick-fixed static and manoeuvre margins. 

The static margin K,~ is proportional to the coefficient E in the stability quartic and the heli- 
copter is statically stable if K,~ > 0 ; to the pilot a positive value of K~ means that  (for constant 
collective pitch) a forward stick displacement (proportional to K,,) is required to hold an increased 
speed and conversely. 

The manoeuvre theory is based on an approximate analysis of the motion in a pull-out, in 
which changes in speed and in the normal component of gravity are neglected. The manoeuvre 
margin, H,n, is approximately proportional to the coefficient C in the stability quartic ; a rapid 
divergence is unlikely to occur in a disturbance if H,,, > 0 and H,,, is therefore some measure of 
the stability following control application for a pull-out. In addition, to the pilot, a positive 
value of H,,~ ensures that  a stable (backwards) stick displacement proportional to H,,, is required 
(for constant collective pitch) to produce positive normal acceleration. 

13 



Theoretical relations have been derived in a general form for a helicopter with a tailpiane, 
for both K,  and H,,, and relations are given for determining them in terms of measured control 
changes to trim ; for constant collective pitch and rotor speed, K,  is related to the change of stick 
position with speed, and H,~ to the change of stick position with steady acceleration at the 
same speed. 

Estimates made of the growth of acceleration in a pull-out for a range of helicopter charac- 
teristics have confirmed the motion to be divergent for H,,, ~< 0. Also the ultimate steady 
acceleration is attained only slowly for possible small values Of H,~; it appears preferable there- 
fore to rely on the trim changes in steady turns for determination of H,,. 

The estimated acceleration-time curves have been considered in relation to the N.A.C.A. 
' divergence requirement ' (essentially that  d~n/dt 2 should become negative in less than 2 seconds) 
and it has been found that  the requirement is met in all the cases considered for a small value 
of H,,. This suggests that  the manoeuvre margin might replace the N.A.C.A. test as a near- 
equivalent and simpler alternative measure of the stabili ty in a pull-out. 

The importance of the manoeuvre margin is confirmed by general consideration of its signifi- 
cance in relation to the dynamic stabili ty of the helicopter. A negative static margin is 
undesirable because of unstable trim changes with speed, but will lead only to a relatively slow 
divergence, whereas a large divergence in pitch can be developed only when H,, ~< 0. 

Flight tests are being made on a number of helicopters to establish the stabili ty and control 
characteristics, including the stick-fixed static and manoeuvre margins, and to determine how 
the quanti tat ive assessments compare with the pilots' views of desirable longitudinal handling 
qualities. An analysis is to be made also of American test data (Ref. 1) for a helicopter with 
and without a tailplane, either fixed or linked to the rotor control. Consideration is being given 
to the definition of criteria for satisfactory handling characteristics in hovering and low speed 
flight. 

Extension of the theory is required for stick-free longitudinal stability. I t  appears that  a 
similar method of analysis can be used if the characteristics of the rotor forces on the control 
plane are known;  attention is being given to the analysis of these forces. Extension of t h e  
theory is required also for rotor wing combinations and for tandem rotor helicopters. 
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A P P E N D I X  

Stabil i ty Funct ions  and Derivatives 

1. Genera l . - -The  theory of the longitudinal motion is developed with the aerodynamic functions 
and derivatives in a general form, and it can be applied to particular configurations using 
appropriate values for these quantities. As an illustration, approximate values are given here 
for a simple rotor system with blades of constant chord and constant angle along their length. 
The formulae can be applied also to tapered and twisted blades if the chord and blade angle are 
assumed to be the mean equivalent values for untapered and untwisted blades. 

2. Stabil i ty F u n c t i o n s . - - T h e  quantities in the stabili ty analysis from which values are required 
(for given values of Cr and if), are the blade flapping angle a,, the control-plane incidence %, 
the transverse force coefficient CH, the blade centrifugal force coefficient C:, and the downwash 
angle at the tailplane e. An analysis has been made of the flight of a helicopter in R. & M. 1730 
(Ref. 6) assuming uniform induced flow over the rotor and neglecting tip and root losses; it 
follows from this work, assuming that  excessive blade stalling does not occur over the retreating 
blades, and neglecting terms of if4 and over, tha t  

T ? 0 ( 1 - - f f ~ ) -  ~ ( 1 -  ½ff~)l 
aapS O2R2 - 4 1 + -~ff~ 

where 

Thus, for V > 0, 

v - -  Vs in (0%+a~)  
~R, 

T 

v being the mean induced velocity at the rotor. 

a~ §0(1 -- ff~) -- v(1 -- ½if2) 
c~ = }p g ,  S = 2ff~ 1 + ~t, ~ 

Also from Ref. 6, 

a l = { t * l  +{ff~ . . . . . . .  

Eliminating v from (A.1) and (A.2) 

a l = ~  1 + ~  0 + a¢ A " "" 

From the momentum theory formula for the thrust  

v _ Cr approximately. 
V 4 

Thus, with ff = V~ 9 R  for small rotor-plane incidence, 

v = ffE}Cr - -  sin (% + al)] 

and from (A. 1) 
• C~[ 8 f f  20] 

sin ( % + a , )  = ~  a a +  (1 - -2 f f  2 ) -3 f f (1  +½if=) " 

. . . . . . . .  ( A . 1 )  

. . . . . . . . . .  (A.2) 

. . . . . . . . . .  (A.3) 

. . . . . . . .  (A.4) 

This relation determines % as a function of CT, ff and 0 since al is given as a function of these 
quantities in (A.3). Similarly, since 

H ~ C~ + av (1 1 - -  - -  3 . . .  2 f |  ' 
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eliminating 

Generally ff~ terms and higher orders have been neglected in the above formulae except where 
simpler derivatives result from retaining them. For accuracy a t  high tip speed ratios, it may 
however be necessary to retain #~ terms throughout. 

The rotor inertia moment is {bJe(B1 -- a 0 where J is the centrifugal force on a blade. For a 
blade of constant chord of weight Wb, 

Wb ~2 2R b Wb 
- -  and Cj . . . . . . . . . . . . . .  (A.6) J - -  g pSRff ~ 

Little quantitative information is available on the downwash conditions in the vicinity of the 
tail on a helicopter. An approximate indication of the downwash angle is given by the mean 
value at the rotor, so that  

v C T  

e ~ V -  4 . . . . . . . . . . . . . . . .  (A.7)  

3. Stability Derivatives.--Throughout the analysis of the longitudinal motion, the rot:or speed 
is assumed to be constant and the stability derivatives are determined for this condition ; blade 
and control circuit distortion and unsteady aerodynamic effects are neglected. 

Static margin derivatives.--In the static margin analysis, B1, O, and X2 
CT.lpV2S = W. Thus from (A.3) 

are constant and 

dal al 1 - -  ff~ 
a,' --  dC~ -- 2Cr 1 + ff~ . . . . . . . . . . . . .  (A.8) 

Also from (A.4) and (A.8) 

f f  0 1 
ao(1 + - - 

% ' = - a / + } +  

From (A.5) 

~ + f f  0 1 
- -  ~ a ~  3 f r e T  (1 -}- aft2)" 

I 3ffaCD 1 1 C .  (1 - -  ~f~2) + 

From (A.6) and (A.7) 

C I .  
C j  ! - -  C T  ' 

t _ _  i 

4. Manoeuvre Margin Derivatives.--In the manoeuvre margin analysis, B~, 0, ~2 and V are 
constant ; the condition for a steady circle at constant speed is, 

dq V, 1 pSV, 
dCr R 2ffl 2m " 

In this case 
dal 8al 8al dq 
dCr 8Cr 8q dCr " 
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From (A.3) 
~a~ 4 #  3 

~ C r -  aa 

I t  has been shown by analysis of blade flapping motions (ReI. 7) that  the approximate lag of 
the rotor behind the shaft due to a rate of pitch q, is 16q/;, D. In addition al is affected by the 
linear velocity, hq, resulting from the fact that  the pitching occurs about the helicopter centre 
of gravity ; this effect however is small and is neglected here. Thus 

Oal 16 
~q -- ~ D approximately. 

From (A.4), 

where 

From (A.5), 

From Ref. 3 

d% ~c~p ~a~ dq 

~P' = dCr = ~C---~ --  ~q dCr 

a ~  1 2__~_~ 

rOT - 4 + a~ ' 

c. '  = - ~ 0(1 + ~) aa j 

~ r  L 
~q V0 

From (A.6) and (A.7), C /  = 0 and ~' = ¼. 

In the analysis to determine the manoeuvre margin in terms of the control changes to trim, 
the derivatives are required With respect to 0 of al, ~p and C~ for given CT and ~. From the 
relations in section 2 of this Appendix 

aa~ 4 
~0 = 5 1 + ~ 

3o~p 2 
30 - -  3 / , ( 1  - -  §/,~) 
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