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Theoretical Load Distribution on a W i n g  with 
Vertical Plates 

By 

j. W~.B~R, DR.R~.mNAT. 

Reports and Memoranda _Tgo, 296 o* 

Marc7 , 1954 

Summary.--The spanwise load distribution is calculated for wings with plates normal to the wing and parallel to the 
main stream, or inclined to it at a small angle. The calculations are made for configurations having minimum induced 
drag. The results are used to obtain an approximation for wings of any plan-form (where the condition of minimum 
induced drag no longer applies), including wings with sweepback. 

Wings with plates of equal height on the upper and lower surfaces of the Wing, and wings with plates on the upper 
surface only, are considered. Charts and tables for the additional load distribution with plates of various heights, 
0 < h/b <. 0" 3, at the spanwise positions : bl/b = 0.2, 0-4, 0.6, 0-8, 0.9, 1-0 are given. Side-force distributions on 
the plates, as well as integrated side-forces and the moments of the side-force, are calculated. 

In the Appendix, a method of calculating the load distribution on wings with a discontinuity in chord, sectional lift 
slope, or geometric incidence is described. 

1. I~4troductio~.--This report considers the case of thin wings, with or without sweep, with 
two plates placed symmetrically about the centre-line at any given spanwise station. The plates 
are normal to the wing surface, and parallel or nearly parallel to the main flow (see Fig. 1). 

A study of the flow around wings with plates has been previously made mainly with a view to 
its application to tailplane arrangements with twin fins. In this case the height of the vertical 
plates is of the same order as the span of the wing. More recently, similar plates have been used 
as ' fences'  to improve the pitching-moment behaviour of swept wings; in this case, the height 
of the plates is much smaller than the wing span. Mangler's end-plate theory I was developed for 
application to fin-tail arrangements and is not particularly suitable for fences, or other  plates of 
small height. A simpler method of calculation is obtained in a different way for the case of 
symmetrical wing-plate arrangement, i.e., where the plates are of equal height above and below 
the wing .  This report also gives results for plates on the upper surface only. 

Vertical plates added to a wing alter the spanwise load distribution because the system of 
trailing vortices is modified. Trailing vortices are shed from the plates as well as from the wing. 
In the case of minimum induced drag, which forms the basis of the present method, a cross-section 
through the wake has the same shape as a cross-section through the wing-plate configuration 
itself. Such a wake produces a downwash field which differs from tha t  of the wing alone, so the 
vortex distribution over the wing and in the wake, and therefore the wing load, must be rearranged 
to meet the given boundary conditions. 

Fences on swept wings also affect the chordwise loading owing to the partial  reflection effect 
which they exercise on the bound vortices, as has been pointed out in Ref. 2. I t  will be shown 
below--and this is supported by the experimental evidence given in Ref. 3 - - t ha t  the change in 
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spanwise loading, which is caused by fences, is associated mainly with the particular shape of the 
wake and its associated downwash field. This impIies tha t  the results given in this report should 
lead to a reasonably good approximation for the spanwise loading. The chordwise loading and 
the pressure distribution over the surface of the wing must subsequently be determined by taking 
account of the reflection effect. 

The theory given in this report also offers a possible step in the calculation of the effect of part- 
span vortex sheets which exist on wings with different types of flow along the spai1 (see Ref. 2). 
This is a much more difficult problem because the shape of the vortex sheet is not known and 
has to be determined from the condition tha t  it cannot sustain any forces. However, tile trailing 
vortices in the Trefftz-plane behind th~ wing are probably very like those produced by  solid plates 
and the method given here can be used to calculate the  downwash field from such trailing vortex 
sheets. With this possible application in mind plates of greater height thai1 those normally used 
as fences have been included in the calculated examples. 

The load distributions are calculated for arrangements giving minimum induced drag, i.e., 
for configurations producing such systems of trailing vortices as induce a constant downwash 
along the span and zero sidewash along the plates. The problem then reduces to an investigation 
of flow in the Trefftz-plane, around simple geometric configurations as shown in Fig. 1. In the 
case of plates of equal height above and below the wing, the calculation has been considerably 
simplified by using a conformal transformation of the Trefftz-plane proposed by Betz*. Because 
of this different approach, and to simplify matters for the reader, the method of calculation is 
explained ill full, no detailed reference being made to Mangler's workL 

The results obtained by  using configurations with minimum induced drag can be used to obtain 
an estimate for the additional load distribution caused by  plates on any wing, where the induced 
drag is not a minimum. In addition to the load distribution on tile wing, the side-force distribution 
on tile plates and the moment of the side-force are calculated. The present report does not give 
any  comparison With experimental results (but see Ref. 3 for the case of fences on a swept-back 
wing). 

In the appendix, Multhopp's method for calculating the load distribution over a wing alone is 
extended to include ~'wings with a discontinuity in incidence, chord or sectional lift slope. This 
method, which was suggested for straight wings by I. WeissingeP ,6 can also be applied to the 
case of a swept wing. Such discontinuities occur, for instance, when the reflection effect of fences 
is considered, and the sectional lift slopes on either side of the fence are therefore different. 

The method is presented for incompressible flow only. I t  can easily be applied to subcritical 
compressible flow by means of the Prandtl-Glauert  analogy (see, e.g., Ref. 7), within the limitations 
of tha t  theory. 

2. Plates of Equal Height Above and Below the Wi~cg.--2.1. The Pote~ctial Fumtiort in the 
Tmfftz-plam.--The load distribution over the wing and the distribution of the side-forces over 
the plates are determined from the difference of the potential function on the two surfaces of the 
vortex sheet far down stream (i.e., in the so-called Trefftz-plane). The induced drag is assumed 
to be a minimum and it is assumed that  the wake does not change its shape and moves downwards 
with the constant velocity v, ~. In this case, the problem reduces to determining the two- 
dimensional flow in the Trefftz-plane around the wake contour which has the shape of a cross- 
section through the wing and plates, see Fig. 1. T h e  flow around the contour of the moving wake 
can be determined as the flow around the contour of the fixed wake in a parallel stream of velocity 

- -  v, co, superimposed upon a parallel flow of velocity v, o~. 
¢ 

The flow around the contour of the fixed wake will be found by a series of conformal trans- 
formations. The case of plates of equal height above and below tile wing is dealt with separately, 
since we use transformations different from those for plates above the wing only. The present 
method, which was suggested by A. Betz*, makes use of the symmetry  of the wake with regard 
to the wing plane and leads to simple relations. 



A rectangular co-ordinate system x, y, z is chosen with x along wind, y spanwise, z positive 
downwards and the origin at the point of symmetry of the wake contour (see Fig. 2). All linear 
dimensions are referred to the wing semispan (b/2 = 1). The spanwise distance between the 
plates is bl, their total  height h. For simplicity we call the traces of the wing and the plates in 
the wake simply the wing and the plates. 

To determine a flow which satisfies the boundary condition of zero velocity normal to the 
fixed wake contour, the contour is transformed into a slit along the  vertical axis in the ¢cplane. 
This transformation is done in several steps. Advantage is taken of the symmetry of the wake 
about the z-axis to transform the right half of the C-plane (y > 0) 

c = z + i y  . . . . . . . . . . . . . . . . .  

into the full ¢l-plane 

Cl = ZI "-~ iYl  . . . . . . . . . . . . . . . .  (2-2) 

by the transformation 

C, = -- iC 2 . . . . . . . . . . . . . . . . .  (2-3) 

With this transformation the wing remains a s t ra ight  line and 'the plate becomes an arc of a 
parabola. Then this parabola is replaced by an arc of a circle through the points B,, C,, G,, in 
the el-plane which correspond to ]3, C, G in the C-plane, see Fig. 2. This means that  the original 
straight plates are replaced by slightly curved ones; this has .a negligible effect for the small 
plates in which we are interested. This can be seen by comparing the results given in Ref. 8 for 
straight end-plates with those obtained by the present method for end-plates which ai-e slightly 

• curved so as to give a circular arc in the ¢,-plane. The difference between the curved plates and 
the assumed straight plates decreases with increasing spanwise distance bU2 and decreasing 
height h of the plates. A few values of the maximum difference y -- b~/2 are given below to 
illustrate that  the effect is small: 

b,12 hi2 (y - -  bl/2) . . . . .  

0.2 0.2 0.0040 
O. 6 O- 2, ' O. 0002 
0.6 O. 4 O. 0030 
1.0 O. 4 O. 0007 

The co-ordinates of certain interesting points along the wake in the various planes of transforma- 
tion are listed in Table 1. 

I n  the next step the arc of the circle through the points C1, Bi, G1 is transformed into a full 
circle, whilst the wing remains a straight line. This transformation is given by the relation 

hence 

[ el(b;?_ + 
C~=½ ~1-- L ' , , 2 )  

The centre of the circle is 

a n d  the radius 

'__i Irfhbm 
- W Lk Z-) + 
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Next, the  circle and the  straight  line corresponding to the  wing are t ransformed into a slit 
along the  y3-axis : 

, "~ \~ )  • ~. \2 . . . . . . . . . . . . .  (2-5) 
~ - -  i . ½  

Finally, the  full s l i t ted $3-plane is t ransformed into the  r ight  half of the  ~-plane  by  the  trans- 
formation 

cA = V E i ( C 3 -  ~.~)] = v r i c ~  + ~3] . . . . . . . . . . . .  (2 -6)  
where 

l ( h ~  2 1 \ 2 ./ + 
ea = e~ - -  ~\-2) + -x ! ( h ' ~  . . . . . . . . . . . .  (2-7) 

e , , -  ~k,~) 

Corresponding points on the  wing surface, ~ = iy ,  and the z4-axis are given by  the  relations : 

Yl = V  ~ . . . . . . . . . . . . . . . . . . . . .  (2-9) 

wi th  

Y2 < 0 for 0 ~ y  <_bl 
2 

bl y ~ > 0 f o r ~ < y <  1 

(hb y 
2J +(D' l (h '~ 2 1 

y~ =y~ -- ~ \~)  + ~. 
Y 2 -  1(~"~ . . . . . . . . . . . .  (2-11) 

~\~J 
z, = =F ~ / E e , -  y~] . . . . . . . . . . . . .  .. . .  (2-12) 

As s ta ted  above, the  s traight  plates have been replaced by  slightly curved ones. If points  
wi th  the  same z-co-ordinate are correlated, then  we find corresponding points on the  plates and 
the  %-axis by  the  relat ions:  

y~ = e~ --  z~ ~ . . . . . . . . . . . . . . . . . . .  (2-13 

/ r ( n b l f  . . . . . . . . . . . .  z~ = 4- ½~/L 2 4 - (~ ) ' - - y~ ]  (2-14) 

z~--- z~ 1 + (b~] ~ ~(h .~  . . . . . . . . . . . .  (2-15) 

= ~ ~ . . . . . .  (2-16) b ~ "  ° * o , ° . • • . o o . 
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At large distances away from the wake contour, i.e., for C-+o0, 

C~ = C2---- ¢a . . . . . . . . . . . . . . . .  (2-17) 
and 

C4 = ~,/(iC1)= C . . . . . . . . . . . . . . . .  (2-i8) 

This means that  the parallel flow with velocity -- v, ~ in the c-plane corresponds to a parallel 
flow with the same velocity in the Ccplane. In the C4-plane the transform of the wake is a vertical 
plate, which does not present an obstacle to the parallel flow, and we are left with parallel flow 
everywhere. The complex potential  FI(C) of the flow around the fixed wake contour is therefore: 

• b ( 2 - 1 9 )  _F~(c) = ¢ l ( z , y )  + i ~ ( ~ , y )  = - v , + c ~ ( c )  ~ . . . . . . . .  

and the  total potential for the moving wake is" 

F ( ¢ )  = F1(¢)  + v~ ~ ¢ ~  = - -  v. ~ C~ C) - - C  ~ . . . . . . .  

The potential  for points on the wing or the plates is thus 

[ . . . . . .  ¢ ( z , y )  = - v~ ~ z ~ ( z , y )  - z ~ . . . . . .  

where &(z,y) is to be calculated by equations (2-9) to (2-16). 

2.2. The Load Distribution on the W i n g . - - T h e  local lift coefficient on the wing is related to the 
difference of the potential function on the upper and lower surfaces of the vortex sheet in the 
Trefftz-plane by 

CL -- 2 (¢us -- ¢Ls) . . . . . . . . . . . .  . .  (2-22) 
cVo 

where c is the local wing chord, used as reference chord for the local lift coefficient CL, and V0 is 
the velocity of the main flow. 

We obtain from equation (2-21) 

CL(y) c(y) = 4 v,__=__ I ( ~l ~ ,~b (2-23) 
• v , ~ , . y . ,  . . . . . . . . . . . . .  

• t p  

The coefficient 0L of the overall lift over the wing is obtained by integration. CL is referred 
to the wing area bg, where g is the mean wing chord. I t  is 

where 

=A v~°I 

b A - -  g 

is the aspect ratio of the wing, and 
1 /./ y 

, =  . . . . . . .  

I is a function of h/b and bl/b but  is independent of the aspect ratio. 

The shape of the spanwise load distribution is given by the relation 

CJy). c(y) _ 2]zJy ) [  
CS I " " 

Again, this is only a function of h/b and bib.  

( 4 2 8 0 )  

, ° ° ° ° ° , • • • 

A few examples are given in Fig. 3. 

5 
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To determine the actual load requires a knowledge of the total lift coefficient CL which is 
determined by equations (2-24) and (2-25) except for the factor vz,/Vo. The next task is, therefore, 
to determine the downwash velocity v,o~/Vo. This is done b y  relating the conditions in the wake 
to those on the wing. 

The local lift coefficient is equal to the sectional lift slope a(y), as defined in Ref. 7, multiplied 
by the effective incidence ~e, which is equal to the geometric incidence ~ reduced by the induced 
incidence cq: 

c L ( y ) o :  - = 1 - . . .  . . . . . . .  (2-27) 

The incidence ~ which the trailing vortices induce at the wing is proportional to the downwash 
far downstream" 

V z a~ Vzo  a 

c~;- Vo -- 2 ~00" . . . . . . . . . . . . . .  (2-28) 

The value of co depends mainly on the aspect ratio of the w i n g ;  ~o = 1 for wings of large aspect 
ratio and o) = 2 for A - +  0. A method for calculating a~ has been given by  D. Ktichemann 7. 
The problem is now reduced to finding c~i, which depends on the plan-form and sectional properties 
of the wing. 

The sectional lift slope a(y) is a function of the aspect ratio and, for swept wings, of the angle 
of sweep and the spanwise positio n (see Ref. 7). Plates on a swept wing have a further effect 
on the load distribution besides the one on the trailing vortices. They act on the bound vortices 
as partial reflection plates and change the chordwise load distribution (see Refs. 2 and 3) and 
hence the sectional lift slope. Plates on a swept-back wing increase a(y) inboard of the plate as 
in the centre-section of a swept-forward wing and reduce it outboard of the plate. What  per- 
centage of the full reflection effect of a large p]ate is achieved by a small plate depends on the 
height of the plate and the chordwise extent (see Ref. 3). 

Since we consider wing-plate arrangements which produce a constant induced incidence and 
thus a constant effective incidence along the span, it follows from equation (2-27) that  the span- 
wise variation of  the sectional lift slope means that  the local lift coefficient Cr(y) varies along 
the span. Only for unswept wings does CL(y) = CL: The spanwise load distribution, as given 
by  equation (2-26), does not depend on the sweep of the wing, which means tha t  the minimum 
induced drag configuration must have a chord distribution which depends on the angle of sweep 
and the aspect ratio of the wing. The chord distribution can-be determined by combining 
equations (2-23), (2-27) and (2-28) : 

o(y) s 
b/2 

z (y) I 
a) 1 - -  ( o @ z )  a(y) (2-29) 

For unswept wings, by  equations (2-26) and (2-29) : 

4 y ) _  I 
- -  e s/2 " " 

For swept wings, where a is a function of y, 

, .  ' . . . . . . . . .  (2-30) 

o(y) 
I o(y)l 
a(y) 

d v 

6 
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Integrating c(y) of equation (2-29) along the span gives the required relation for tile unknown 
~;/~ if the values of A, co, a(y), h/b, bl/b are known" 

o b/2 = b T 2 -  A 

~o 1 - -  ( o @ : ) ' J o  a ( y )  

c@z ~ 1 
. . .  . . . . . . . .  

Jo k b / 2 / a ( y )  

When ~; is known the downwash at infinity can be determined by equation (2=28), and (hence 
the overall lift slope from equation (2-24), which gives 

CL __ 2 o~; A I  (2-33) 
• ° ° .  • • • . . . .  ° • , • • 

The difficulty lies in finding the value of a(y), and therefore the value of the integral in equation 
(2-32). The spanwise variation of a(y) can be taken into account correctly by an iteration process. 
The sectional lift slope a is a function of the distances from the centre, the tip and the ptates, 
measured in terms of the local .chord c(y). 'c(y) can be determined by equation (2-31), assuming 
a first approximation of a(y) ; with the known c(y) new values of a(y) can be found. 

A simplified though only approximate formula for ~/~ can be found. By definition 

CLc~ --  rio C,(y)cz c(Y)c: d ( ~ 2 )  

- - - - ( 1 -  ~)floa(Y> c(y)~_ d(8@2) .'. . . . . . . . .  (2-34) 

which again contains the unknown a(y). The sectional lift slope on a swept wing near mid- 
semispan is tha t  of the corresponding two-dimensional sheared wing a~ ; at  the centre the value 
is smaller than as and at the tips it is larger. The increase of the sectional lift slope near the 
tips is usually greater than the decrease near the centre. This difference is reduced by the greater 
values of c(y)/g at the centre for the ordinary tapered wings. The reflection effect of the plates 
causes a change in the sectional lift slope which is of opposite sign inboard and outboard of the 
plate, so whenever there is a spanwise position a t  which a is greater than a,, there is also another 
at  which a is less t h a n  as. A reasonable approximation is therefore . 

a(y) c(y) d = as = ao cos 9 • ° . . . . . . . . . . .  * 

o C 

where ao is the two-dimensional lift slope of the aerofoil section (a, = 2~ for a th in  flat plate). 
With this approximation, we obtain by equations (2-33) and (2-34) 

O~i/(X _ _  CO a s 

1 - -  (~do:) 2 A I  
and 

~ s  
c~i __ 2A I 
c~ 1"@ coa~ 

2A I 

. . . . . .  ( 2 - 3 6 )  



This is an approximation to equation (2-32), and is the same as that  obtained by replacing 
a(y) by as in equation (2-32). This means that  for unswept wings equation (2-36) is exactly true. 
The overall lift slope is given by equations (2-33) and (2-36)" 

CL a 

~o a .. (2-37) 1 + ~ - -  " . . . . . . . . . . .  
uA 

with 

~ ~s  

-- 2 I  . . . . . . . . . . . . . . . . . .  (2-38) 

Equation (2-37) is similar to Prandtl 's  well-known relation for wings with elliptic span loading, 
extended to include wings of small aspect ratio, see Ref. 7, where the effect of the plates is taken 
into account by u. Calculated u-values are plotted in Fig. 4. 

The factor u also gives the reduction of the induced drag of the wing with plates as compared 
with the induced drag of the wing without plates : 

- 3z 7 - 
CL 2 

= z - ~ .  • . . . . . . . . . . . . . . .  (2-39) 

Finally, we estimate the effect of plates on the spanwise load distribution of wings of any 
plan-form. A simple approximation is obtained by subtracting from the load distribution of the 
minimum induced drag configuration the load distribution of the wing without plates which has 
minimum induced drag, and which has the same A, ~ and a. This procedure is not strictly 
correct since the plan-forms of the wing with plates and the wing alone differ from one another, 
but  it has been proved to give a reasonable estimate in similar cases. 

The spanwise distribution of the additional load is" 

_ o 4 j {  

CL[CLc y ~ 7 4,/{!- }J 
+A-CL4J{l-(b~2f}c~ . . . . . . . . . .  (2-40) 

where Cz 0 is the overall lift coefficient for the wing without plates. 
The change A CL/~ in the overall lift slope due to the plates is given by the relation" 

a , a  

ooa 1 + o~a 
1 + ~ ~ A  ~A" 

__ Cro 
(X 

1 + ~ A  1 
o96~ 

09 

- - ( 1 -   )SA 
a 

~A 

eL 0 
• , ° ° 

0~ 
(2-41) 
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so tha t  
A C L _  (1 -- ~) ~o CLo . . . . . . .  (2-42) 
Ca ~ - A  ~ . . . . .  

With small plates at inboard positions A CL/~ is small so tha t  the second term in equation (2-40) 
can be neglected. The function Ca(y) • c(~)/CLg is known by equation (2-26). 

The difference 
21   y)l 

is plotted in Figs. 5 to I0 and tabulated in Table 2. 

To check the accuracy of the additional load distribution given by equation (2-40), one can 
calculate the load distribution of that  wing alone which gives, with the plates, a minimum induced 
drag configuration. By determining the difference between the load distribution of the wing- 
plate arrangement of equations (2-26), (2-32) and (2-33) and the load distribution of the wing 
alone one obtains the exact change in the load distribution caused by adding the t)lates. We 
shall do this calculation for a few examples. The height of the plates chosen in the following 
examples is greater than with fences on practical wings. The greater height shows the effects 
more clearly since, e.g., the differences in plan-form are increased. 

For unswept wings, the chord distribution of the wing which, with the plates added, gives a 
minimum induced-drag configuration, is given by equation (2-30). With zd(Dd] v ~ zd(Bd) (see 
Fig. 2) this plan-form has a discontinuity at the position of the plate. This discontinuity produces 
a discontinuity in the induced incidence which means that  it cannot be determined by the usual 
methods. I. Weissinger 5' 6 has extended the method of H. Multhopp for calculating the load 
distribution over wings with a discontinuity in the geometric incidence to cover wings with a 
discontinuity in the chord. The same procedure can be applied if there is a discontinuity in 
the sectional lift Slope a(y). The method is described in the Appendix. 

For the unswept wing of aspect ratio 4 which, with two symmetrical plates of height h = 0.2b 
at y : 4- 0.6b/2, gives a minimum induced drag configuration (see Fig. 11) the load distribution 
has been calculated by this method taking a = 2~, m = 1. The overaU lift slope Ca0/~ of the 
.wing is 4.16 whilst the approximation of equation (2-37) gives for the wing alone CL0/~ = 4.19. 
With ~ = 0.960 from Fig. 4, we get by  equation (2-37) a total lift slope CL/~ = 4.25 for the 
wing-plate arrangement. This is also the exact value, since equation (2-37) is exactly true for 
minimum induced-drag configurations of unswept wings where the sectional lift slope is constant. 
Following the proposed approximate procedure, we obtain by equation (2-41) a ACa/o~ = 0-06. 
Adding this value to the lift slope Ca6/~ of the wing alone, in this case equal to 4-16, gives for 
the total lift slope the approximate value CL/~ = 4.22, i.e., about 1 per cent less than the exact 
value of 4.25. This error is negligible. The change in the spanwise load distribution which the 
plates produce is plotted in Fig. 11 together with the approximation of equation (2-40). The 
comparison shows that  equation (2-40) gives an estimate which will be sufficiently accurate in 
most cases. 

With swept wings, the chord distribution of the wing, which with the plates added is a minimum 
induced drag configuration, varies with the angle of sweep, the magnitude of the reflection effect 
and the aspect ratio, since these quantities determine the spanwise variation of a(y) (see equation 
(2-31)). The increase of a(y) inboard, and the decrease outboard of the plates due to the reflection 
effect on swept-bac k wings counteracts the discontinuity of z~(y), so that  with not too high a 
reflection effect the discontinuity of the chord is reduced compared with the straight wing. 
There are cases where .the discontinuity in a(y) fully cancels the discontinuity in z4(y). Such an 
example is shown in Fig. 12, where the chord distribution of a 45-deg swept-back wing of aspect 
ratio 4 with plates of height h = 0.2b at the spanwise positions y = 4- 0.6b/2 is plotted. The 

9 



chord distributions have been calculated for 40 per cent and for full reflection effect. They have 
been determined under the simplifying assumption that  a(y) is a function of y/g instead of y/c(y). 
The chord distribution of the wing with 40 per cent reflection effect does not differ much from the 
chord distribution of the 45-deg swept-back wing of aspect ratio 4 which is, without plates, a 
minimum induced-drag wing as shown by the comparison in Fig. 13. In other words, the 
difference between thg plan-forms of the minimum induced-drag configurations of a wing with 
plates and without plates is less than for the unswept wing (see Fig. 11), which further justifies 
the procedure leading to equation (2-40). A reflection effect of 40 per cent has been measured 
on a 45-deg swept wing with fences of a size used in practice. For plates with very large reflection 
effect, the discontinuity of the chord is of opposite sign to that  on straight wings. 

The load distribution over the wing alone has been calculated for the two chord distributions 
corresponding to 40 per cent and full reflection effect taking co = 1 and the sectional lift slope 
of the two-dimensional wing to be a0 = 2~. The overall lift slope of the wing alone corre- 
sponding to full reflection (wing I in Fig. 12) is 3.18, for the wing with 40 per cent reflection 
(wing II  in Fig. 12) it is 3.20. The approximate value from equation (2-37) for both wings I and 
II  is 3.28. For the wing with plates the overall lift slope calculated from equations (2-32) and 
(2-33) for wing I, corresponding to full reflection, is equal to 3.28 and for wing II, corresponding 
to partial reflection, it is 3 .25.  The approximate value from equation (2-37) is 3.32 for both 
wings. By the approximate procedure of calculating A(2L/~ from equation (2-41), and adding 
the value to the lift s!ope of the wing alone, we get for wing I C~/~ = 3.22 and for wing II  
CL/e = 3.24 compared with the exact values of 3.28 and 3.25 respectively. In the practical case 
of a wing with fences, the reflection effect is of the order of 40 per cent of .full reflection, in which 
case the error in the overall lift slope is less than 1 per cent. The exact additional spanwise load 
distribution has been obtained by subtracting the calculated load distribution of the wing alone 
from that  with the plates present, determined by equation (2-26) and the to ta l  lift slope. These 
distributions are plotted in Fig. 12 together with the approximation resulting from equation (2-40). 
The approximation is the same for wings I and II. In the extreme case of full reflection equations 
(2-40) and (2-41) underestimate the plate ~effect inboard of the plates. With partial reflection, 
the approximation (2-40) is good inboard. Outboard, equation (2-40) somewhat overestimates 
the plate effect in all examples considered. With a wing of aspect ratio 4, plates situated inboard 
of the tips of height h/b = 0.2, i.e., h/g = 0.8 are for some applications a rather extreme case. 
It  can therefore be concluded that  equations (2-41) and (2-40) will give a sufficiently accurate 
estimate for  most practical cases. 

As stated above, the change in the spanwise load distribution produced by plates on a swept 
wing is due to the combined effect of a change of the trailing vortex sheet and the reflection of 
the bound vortices. To determine the contribution of each of these effects to the total change, 
we have calculated--by the method given in the Appendix-- the load distribution of the wing 
alone with the discontinuous sectional lift slope distribution of the wing with plates for 40 per cent 
reflection effect, and subtracted the load distribution of the wing alone calculated with the a(y) 
distribution of the wing alone. The difference is plotted in Fig. 14 together with the total 
additional load distribution. This comparison shows that  the change in the shape of the trailing 
vortex sheet is mainly responsible for the additional load distribution. I t  confirms the assumption 
made at the beginning that  the change in spanwise loading, which is caused by fences, is associated 
mainly with the particular shape of the wake and the downwash field therefrom. However, the 
reflection effect does change the chordwise loading. 

2.3. The Side-force or~ the Plates.--Some of the bound vortices Of the wing continue along the 
plates. These bound vortices in the main flow of velocity V0 produce a force normal to the plates. 
This side-force is directed inwards on the upper part of the plate and outwards on the lower part. 
The total  sum of the side-forces is zero, but  they produc'e a f inite moment. In the following, 
we calculate the distribution of the  side-force along the upper half of the plate at y = bl/2, the 
resultant side-force on the upper part, and the arm of its moment. 
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The force is proportional to the difference of the potential function between two points of the 
same height inside and outside the vortex sheet far downstream in the wake ; cf. equation (2-22/• 

__ F r  2 
C y  - -  1.pV02 c = o N ;  (¢inside - -  ¢outside) . . . . . . . . .  (2-43) 

Fr is defined to be positive when directed inwards. With  equation (2--21) • 

Cy(z).c(y) = 2 v= ~ b 

= 2 ~=1 ( ) I V =  ~ b . . . . . . . . . . . . .  (2-44) 

From equations (2-13) to (2-16) the function z(z~) can be calculated and from this one can 
determine [A&(z)[ graphically. 

Referring the coefficient of the local side-force to the total lift coefficient, as has been done for 
the local lift coefficient in equation (2-26), we obtain 

Cyc _ I ~z~(z) [ 
CLg I . . . . . . . . . . . .  "" (2-45) 

Side-force distributions are plotted in Fig. 15. We will show in the next section tha t  for plates 
of small height situated inboard of the tip the distribution of the side-force is elliptic. This is 
approximately true for plates with bib < O. 3. 

The total  side-force F y  on the upper part  of the plate referred to the wing area bC is obtained 
by  integration" 

Fv - -  A v~oo Ir  (2-46 
G - }p v0~ba G . . . . . . . . . . . .  

where 

The ratio of the side-force Fy  to the total lift is therefore 

G _ _ S .  

CL I . . . . . .  

This ratio is plotted in Fig. 16. 

. . . .  (2-47 

. . . .  (2-48 
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0 

z . . . . . . . . . .  (2-50) 4@ 
z0 is plotted in Fig. 17. With elliptic side-force distribution, 

4 h  
z0 - 3~ b . . . . . . . . . . . . . . . . .  (2-51) 

Fig. 17 shows that  equation (2-51) gives a sufficient approximation for all cases considered. 

From the known distribution of the side-force, equation (2-45), both the moment M of the 
side-force with respect to the plate-wing junction and the arm zo. b/2 of the side-force can be 
determined" 

__ ft,/2 
M . Frz dz 

- - '  dO 

b Fv (2-49) z .~0z ~ . . . . . . . . . . . . . . . . .  



When the system of trailing vortices considered is produced by a wing with solid plates, the 
plates must be placed at a certain angle to the main flow to produce the required system of bound 
vortices, and with it the side-force. This has already been pointed out by K. W. Mangier 1. 

For unswept wings of not too small an aspect ratio we can assume that  the chordwise load 
distributions inboard and outboard of the plates are those of the two-dimensional wing with the 
sectional lift slope a. The chordwise side-force distribution on the plate may, however, be different, 
except for the wing-plate junction. A plate of small height is comparable with a wing of small 
aspect ratio and it is known (see Ref. 7) tha t  the chordwise load distribution of a straight small 
aspect ratio wing varies with the aspect ratio. I t  is not possible to determine the distribution of 
the side-force by assuming that  the plate is isolated, since the presence of the wing vortices will 
affect the vortex distribution on the plate. 

With swept wings matters are further complicated by the fact that  the chordwise load distribu- 
tion on the wing is altered by the plate, and in a different manner inboard and outboard of the 
plate. 

To obtain an estimate of the angle between the plate and the direction of the main flow, two 
extreme cases are now considered. First it is assumed that  the chordwise side-force distribution 
is the same as the load distribution on the wing with the same sectional slope a. In this case, 
the side-force, integrated along the chord, is a times an effective angle ¢7~, corresponding to ~0 in 
equation (2-27). Only those arrangements ill which the trailing vortex system produces zero 
v<velocity in the wake are considered: this implies that  the .trailing vortices do not induce a 
v<velocity at the  plate. The angle /3 must therefore be produced by inclining the plate on the 
upper surface so that  the trailing edge of the plate is farther outboard on the wing, by an amount 
A y ,  than the leading edge of the plate:  

~ y ( z )  _ v ,  _ 1 C y ( z )  
c Vo a 

_ Cyc  CLI~ 1 (2-52) 
--°:CLg a cl~ . . . . . . . . . . . . . . .  

(OL/oc)/a is known from equation (237),  and it will be shown in the next section that  for small 
inboard plates 

Hence 

A y ( z )  _ c~ 1 - -  - ~ o o a c ~ "  . .  (2-54) 

Another estimate is obtained by making the extreme assumption that  the chordwise side-force 
distribution is similar to the load distribution of a small aspect ratio wing, with A p l a t  ~ = h/c. 
Then for the slope a,l~to we obtain, see Ref. 7: 

a°------2~ J { @ )  

A /  h 

Using again equation (2-37) and the above approximation for C y c l C S ,  equation (2-52) gives 

 y(z) _ 

12 

(2-55) 



Ay(z)/c. varies with z in both these expressions, being zero for the top of the plate (z = h/2), and 
greatest at the wing-plate junction. However, the maximum deflection is small for fences in 
any practical case, and can usually be ignored, so tha t  the calculation can be applied to fences, 
whether or not they are inclined to the main stream. 

2.4. The  L i m i t  h ~ 0. - -When determining the effect of small plates, as in the case of fences 
of small height, and when interpolating for heights other than those calculated, it is useful to 
know the lowest-order term, with respect to h, of the various quantities. 

Consider first the case of plates situated inboard of the tip b~/2 # 1 and assume: 

hbl < < 1 - - ( ~ ) 2  

h < < 1 
',,2 / " 

For simplicity h and bl are used instead of h/½b and bx/½b. 

By equations (2-7) and (2-8), the power series for e~ with respect to h begins" 

= ,  _ _ . . . . . . .  (2-5~) 

At the position of the plate, y = b~/2 + O, by equations (2-10), (2-11) and (2-12) 

hb~ y~=_+ ~ - + . . .  
and 

For y # 1 .~b~, differentiate Y2 and Y3 with respect to h 

aY2 

h hbl 2 

ay~ ~y~ h ~t 2 " + 2 

ah = a~--T~ + ~ Y~-- ½ 

ay~ h 

+ 
2 

[ ~Y:-½ 2 ] 
2 " 

The right-hand sides contain a constant term only for y = bl/2. This means tha t  y3 -- e3 and 
z4 do not contain a term proportional to h. Hence by  equations (2-25) and (2-38) 

I 76 : ~ + c h  ~ + . . .  

z = 1 - -  Clh ~ + . . . . . . . . . . . . . . . .  (2-57) 

ACrc bl 
CLe - -  C~h~ + ' for y ~ ~ . . . . . . . . . . .  (2 -58)  
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bl 
A CLc 4 2 h bl 
CLg --7-}:-/{~, 1--\2/('b1"~2/~+''" f o r y = ~ - ~ 0  . . . . .  (2-59) 

Equations (2-57) to (2-59) show that small plates situated inboard of the tips have a negligible 
effect on the overall lift coefficient and change the load distribution only in the neighbourhood 
of the plate, as is to be expected. 

For points on the plates, [y~ ]<  hbl/2, and therefore by equations (2-15) and (2-16) 

zl bl 
Z 2  - -  - -  g 

2 2 
and by equation (2-14) 

hb~ /Ii (±?i 
Y~=--+-f f~  i - - \ h / 2 / J  

and 
z0 = ~ / ( <  - yl )  

Y3 
= x / ~ -  { v %  

, ~, l l i  _ ( + ; }  
= v %  ~: v %  4 ~/ t 

bl 

~ ~(~)__ J { '  - ,~ ~, ~ <~t ~ j { ,  _ ( & )  ~ } -  . . . . . . . . .  (~_~o~ 

For small plates the distribution of the side-force along the plate is elliptic and the local side- 
force coefficient is proportional to h/b. The latter can be obtained by combining equations (2-45) 
and (2-60), giving equation (2-53) which has been used above. Integration of equation (2-60) 
gives for the integral Iv, equation (2-47) 

b~ 

1 \ ~ / j  

and the coefficient of the side-force on the upper part of the plate is given by 

bl 
Cr _ 2 (h~ 2 . (2.61) 
C~ J{1 @)~}½\~; . . . . . . . . .  

With elliptic distribution of the side-force, the arm Z0, equation (2-50), is given by equation (2-51). 

We consider now the case of end-plates, bd2 = 1. By equations (2-7) and (2-8) 

e~= h +  . . .  

At the position of the plate, y = 1 -- 0, by equations (2-10) and (2-11) 

Y a =  - -  h +  . . .  
and 

= :~ v ' ( 2 h )  + . . . . . . . . . . . . . . .  2-~2~ 
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F o r y  ~ 1, by equations (2-9), (2-10) and (2-11) 

Thus 

and by equation (2-25) 

y= = - ( 1  - y = )  + h=( . . . .  ) .  

~ = T V ( e 3 -  y=) 
h 
2 

I z ,  I = ,v ' (1  - 9 )  + V(  1 
3'" 

h 
I = f f + f f ~  

~ ( 1  + h )  =~ 

~/2 1 
i - - l + h  

1 

1+2  h 
b 

(2-63) 

Fig. 4 shows that  this is a good approximation even if h/b is not very small. 
(2-26), (2-62) and (2-63) the additional load at the plate is  given by 

A CLc~) _ 
~ / y  = 1 

4 V~(2h) 
~ l + h  

s v'(h#;) 
It" 1+2-  6 

By equations 

. . . .  (2-64) 

The additional load away from 

y 2 

CS 

the plate is given from equation (2-40), by 

(S 4 h/b 2 - 1 

+ 
(2-65) 

3. Plates on the Upper Surface of the Wing.--3.1. The Potential Function in the Trefftz-plane. 
Of all wing-plate arrangements with varying ratios of tile heights of the plates on tile upper and 
lower surfaces of tile wing, the extreme case of plates on the upper surface only is the simplest, 
having the smallest number of ' corners ', and we consider such an arrangement in this section. 

To determine the load distribution over the wing, the potent ia l funct ion of tile flow around the 
fixed wake contour is again calculated. The conformal transformations used are similar to those 
given by W. Mangier 1 for the general case of arbitrary ratio of the heights of the plates on the 
two surfaces. Let the plates be of height h. 

As in the case where the plates are of equal height above and below the wing, the fight half 
of the ~-plane (y > 0) is transformed into the full ~l-plane by the transformation 

~ = -- i~ = . . . . . . . . .  • . . . . . . . .  (3-1) 
(see Fig. i8). 
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The parabola, into which the plate is transformed, is again replaced by the arc ot the circle 
through the points B~ and C1 and with its centre on the axis z = 0. The radius is 

R = 2  -¢-~ 

and the centre is at 

r(b,)~ y ,= -L~  +~]. 
The circle also intersects the y-axis at the point H~ : 

~, =-~: E~(~) ~+ 4 .  
In the next step, the circle and the y-axis are transformed into straight lines. This is achieved 

by a linear transformation which transforms the point H~ into y~--~ -- oo : 

~ I  1 + 3(b~)~+ h ~] 

¢2 . . . . . . . . . . . . .  . ~ .  ( 3 - 2 )  
h a 

The points A, B, C, D, E ( s e e  Fig. 18) are transformed into t hepo in t s :  

As " ~a = 0 

2 /  

C a  ° ' 3  - -  

+ i  

3P< +h~ 1 i l + \~- /  

4(~)  ~ + ~ 

?(~; + 4[  ~ + (~)~+ 4 
b~ 4(~)2 + ha 

2 /  

4(b~a h~ 
\ i f /  + 

E2 : '3 = i . 

The infinity in the ~-plane, G, is transformed into 

The boundaries in the ~a-plane form a polygon, s e e  Fig. 18; the outside of which can be trans- 
formed into the upper half of the ~3-plane by a Schwarz-Christoffel transformation : 

~3 (t + ¢aa)(t + ¢a~)(t - ¢) ~2 C1 + ca 0 ~/((t + i~l)(t + ia~)}t ~ dt . . . . . . . .  (3=3) 

where -- i a l ,  - -  i a 2 ,  - -  i a 3 ,  - -  i a ~ ,  correspond to B3, C~, D3, E3. The infinity in the ~-plane, H2, 
is transformed into ¢3 ---- 0, and the point G2 into ~3 = i. 

Following the procedure used by W. Mangler, the integral in equation (3-3) can be written as 
an algebraic function: 

i , , • • • 
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Differentiat ing equat ions (3-3) and (3-4) wi th  respect to ¢3 and comparing the  coefficients of 
similar powers of ~3, we obtain the  following equations : 

q = - -  ,ts . . . . . . . . . . . . . . . .  ( 3 - 5 )  

~3 = ;Ls asa~ . .  • . . . . .  . . . . . . . .  (3-6) 
ala3 

az + aa = 2(as 4- a~ --  1) . . . . . . . . . . . .  (3-7) 

a~ + a3 = 2 ala3 [as + a~ - -  asa~] . . . . . . . . . . .  (3-8) 
asa~ 

In t roducing  the  abbreviat ions 
¢ 

A =24-a~4-aa 2 . . . . . . . . . . . . . .  (3-9) 

B = a ~ a s  a ~ 4 - a ~ + 2  . . . . . .  (3-20) 
al  4-  aa 4 -  2alaa . . . . . .  

as and a~ can be calculated from a~ and a3" 

as = ½{A + V ( A  s -  4B)} . . . . . . . . . . . .  (3-11) 
a~ = ½{A --  ~/(A s -  4 B ) }  . . . . . . . . . . .  (3-22) 

Equat ions  for the  unknown coefficients ~ ,  ,~s, a~, a3 are obta ined from the  known positions of 
the  points  Bs, Cs, Ds, Es, Gs in the (s-plane. 

~3 = - -  ia~ and ¢3 = --  iaa correspond to 

~ _  ~, = ( ~ 7 [ '  + ~(~)~ + ~ ] .  . . . .  . . . .  ~_,~) 
4(~)~ + ~ 

~3 = - -  ias  corresponds to 

!-2 

i 

¢~ = - -  i a ,  corresponds to 

¢3 = i corresponds to 

r<u  + ~][, + ~(~:)~ + ~,] 
_ . ~ + i h  L 2 _ _ _  

G _  / 
2 : 21 - -  ;ts(1 - - - -  

7 \ 
as )V((a l -  a,)(a3- a,)} 

a l a j  

C S - l + i  3@) s+  hs= a l -  as( l+ 

By equat ions (3-13), (3-14) and (3-16)" 

- ( ,  + as~:),/{/a, + ,)(a~ + 2)} 
alaa/ " 

(3-14) 

(z-is) 

(3-17) 
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and by equat ions (3-13), (3-15) and (3-16) • 

Using the abbrevia t ion 

D =  

we obtain 

1 - -  - -  

a2a4  a 1 -@ 1)} 

3-1s) 

1 -- --- 

~2~4 5~1 
3-19) 

( b l ~ =  1 -- D " , 3-20) 
. ,  . . . . . . . .  

\ 5 /  1 + 3 D + 4 D  ~- 

The constants  al and a~ have to be chosen so t ha t  the  required values of h and b~ are obta ined 
from equat ions (3-9) to (3-12), (3-17), (3-19) and (3-20). This has to be done numerica l ly  by  
va ry ing  al and a~. 

The case of end-plates,  bl/2 = 1. O, is simpler since a3 ---- a~. Then  equat ions (3-7) and (3-8) 
give the relat ion 

ala3 _ 1.0 . . . . . . . . . . . . . . . . .  (3-21/ 
~ 2  

Ins tead  of equat ions (3-11) and (3-12) we have  

2 + a~ . . . . .  (3-22) c7 2 - - - -  a I . . . . . . . . .  
2~q + 1 

2 + a~ . . . . . . . .  (3-23) 
2al + 1 

a n d  equat ion 3--17) is replaced b y  

h l ( a l - - 1 1 ) ~  / { ( 2 +  al)(2al + 1)} . . . . .  (3-24) 
2 3 ai + 3al " " " 

By  equat ions (3 -13 )and  (3-16) 

3 + h ~ 
~ _-- _ ~ . 1 . .  (3-25) 

(~)~ (1 +ala~)%/{( + 1)(a3 + 1)) 

The final relat ions between points  on the  y3-axis a n d t h e  wake contour are thus  known. 
on the y~-axis wi th  y~ < -- al or y~ > -- a~ correspond to points  on the  wing" 

Y 2 = ~ I 1  T {3(~)2 + /¢} {1-t a~a4. 1 / + + 
+ a~a, I l)(a~ 1)} ] 

\ 2  ) [ a~a~ j 
and 

3(b Y --y~ + 1 + + h ~ 

Points 

(3-26) 
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In equation (3-26) the negative sign holds for ya < -- al, and the positive sign for ya > -- a3. 
Points  with -- a, < Ya < - -  a3 correspond to points on the plates : 

3 + h 2 1 ff a ,aayd  V/{(a~ + V3)(-- v, --aa)} (3-28) 

To determine the potential function in the G-plane, we will proceed to show that  a parallel 
flow in the C-plane with the velocity -- v. ~ parallel to the z-axis corresponds, in the G-plane, 
to the flow of a doublet at the point G = i, which corresponds to the point at infinity in the C-plane. 
The axis of the doublet is parallel to the y3-axis. 

For points in the neighbourhood of G = i 
-- 

~ - -  1 -q- 3 + h" + C ( G  - -  i) ~ q- . . . . . . . . .  ( 3 - 3 0 )  
i " 

since by equations (3-3) and (3-4) 

g ( ~ / i )  _ 2 c ( ~  - i) + . . .  
dG 

with 
C -- "~= (i + a.)(l + a,) (3-31) 

2 V{(I  + <)(I  + a~)} . . . . . . . . . . .  

By equations 3-1), (3-2) and (3-30) for C-+ oa 

=~[_ll+3(~-*)'+h'II3(~)'+h'l] _i 
--C G --1 

Since the y3-axis is a streamline in the doublet flow the complex potential function for the flow 
around the fixed wake contour is given by the potential of the doublet only 

FI(~) = ¢dz , y )  + iwl(z,y)  

5 ~ . . . . . . .  (3-32) = V Z o  o . . . . .  

2 G 1 
- - 7  - -  

where 

.. (3-33) 

and the total potential for the moving wake contour is 

F(¢) = FI(C) + v,~¢ 5 .  
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For points on the wing or the plates, the potential is 

~[y t* + zib (3-34) ¢ ( z , s )  = v~ : ( z , ~  - 1 ~ . . . . . . . . . .  

where the function y~(z,y) is determined by equations (3-26) to (3-29). 

3.2. The Load Distribution on the Wing.--From the known potential function, equation (3-34), 
we may obtain the load distribution along the wing by equation (2-22)" 

v~o, [-f 1 b 

= 2_gZ~(_v~  \y~ _1 ~)w,n~ ~b . . . . . . . . . . .  (3-3S), 

The difference A (y~ -1 1)w~n¢ 

has to be determined graphically. 

with 

for corresponding points on the upper and lower surface of the wing 

The coefficient CL of the overall lift is as in equation (2-24), 

C~ = A v,~o Z ' . .  . .  . .  (~36 )  
" ~ 0  • • • • • • ° • 

--~ = / £ ; 1 1 (  1 1)Vqing d ( ~ / 2  ) . . . . . . . . . . .  (3-37} 
O \ ~ 3  - -  

The method of determining the downwash is the same as in section 2.2 for the wing with plates 
of equal heights above and below the wing. For constant sectional lift slope, or with the assump- 
tion of equation (2-35), equations (2-37) and (2-38) hold, where ~ is now calculated with the 
value of I given by equation (3-37). Some ~ values are plotted in Fig. 19. The results show that 
with plates of the same total height, the plates on the upper surface have a somewhat larger effect 
than plates of equal height above and belov¢ the wing. There should be no difficulty in inter-  
polating results for other wing-plate arrangements. . 

The spanwise load distribution is given by 

c(y) _ (y  1 ) . . . . . . .  (3-3s), 
CL ? I 3 -  1 W i n g  . . . . . .  

The additional load distribution is again determined by equation (2-40), where CLc/CLg is given 

by equation (3-38). Values of CLc 4 # { 1 - -  ( Y )2} CL~ b~  are plotted in Figs. 20 to 22 and 

tabulated in Table 3. 

A comparison of the additional load distribution for plates of equal height above and below the 
Wing and plates on the upper surface only, see Fig. 23, shows that the spanwise loading and in partic- 
ular the values at thewing-plate junction are not much different in the two cases, so that it is possible 
tb interpolate the values for plate arrangements witha ratio of the heights of the plates on the 
upper and lower surfaces of the wing different from the two extreme cases calculated. With 
plates on the outboard part of the span the additional load decreases in nearly the same Way 
for the two cases, whilst with plates well inboard the additional load decreases more slowly 
with plates on the upper surface only. 
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3.3. The Side-force on the Plates.--The side-force on the plates is determined from the known 
difference of the potential function inside and outside the plate. By  equations (2-43) and (3-34) 

v~o~ [-/ 1 b 
Cr(z) . c ( y ) =  9,~lz[_~ya__ 1)I.~id~ -- (ya 1- 1)o~t~id~] '2 

v,~ d f  1 b (3-39) 
- -  %_ . . . . . . . . . . .  

The local side-force coefficient referred to the total  lift coefficient is 

Cyc 
/ ~ a (  1 1)Plat e. . . . . . . . . . . . .  (3--40) CLg -- I Ya -- 

Side-force distributions are plotted in Fig. 24. A comparison with Fig. 15 shows tha t  the side-force 
coefficients on plates on tile upper surface are about twice as large as on the upper part  of plates 
above and below the wing of the same total  height. This is to be expected as the area above the 
wing in the former case is twice that  in tile latter. 

The coefficient of the  total  side-force on one plate is written as in equation (2-46) 

with 

Cy = A v,~ Iy . .. (a-41) 
" ~ 0  " " * " ° " * " " " ° 

y3 - i P,~to g/2 . . . .  

. . . . . . . .  (3-43) 
Cy irr 

CL I . . . . . .  

The ratio Cy/CL is plotted in Fig. 25. 
The moment M of the side-foEe with respect, to the plate-wing junction has been determined 

from the side-foEe distribution in equation (3-40), see equation (2-49), and from this the arm 

b M 
z0 2 -- Fy  

has been calculated and plotted in Fig. 26. The approximation, equation (2-51), resulting from 
elliptic side-force distribution, is still of sufficient accuracy. 

4. Practical Examl~le.--This section gives a description of the actual calculation procedure. 
From the known plan-form of the wing*, the mean sectional lift slope a = a0 cos ~ is determined 
as well as the value of the downwash factor (o, as explained in Ref. 7. From the given position 
and height of the plates, values of the factor x can be read from Fig. 4 for plates of the same 
height on the upper and lower surfaces of the wing and from Fig. 19 for plates on the tipper 
surface only. The change in the overall lift slope due to the plates is determined from the relation 

[ l + ~ a  ] 
d_dL dL0[ _ 7 ~ A  1 . . . . . . . . . . .  (4-1) 

CL 0/~ is the lift slop~ of the wing alone, which can be obtained either from a complete calculation 
according to Ref. 7, or from the approximate relation 

CL0 a 
- -  • . . . . . . . . . . . . . .  ( 4 - 2 )  

aA 
* If tile calculation is to be performed for a given subcritical Mach number, the plan-form of the analogous wing must 

be used (see Ref. 7). 
21 

( 4 2 8 0 )  B 



The overall lift' slope of the wing with plates is then given by 

C~ = C~. + ~ C__ z 

The additional spanwise load distribution is given by 

( )}] 2{ (Y;t _ y ~ ACL 4 1,-- . (4-3) ACL(y)m c(y)g CLc~ LCS FCLc 1 -- ~/2 @ --;m ~ , 

In most cases of practical importance A C~/~ is small compared with CL/~, so the second term in 
equation (4-3) can be neglected. 

Then from values of CLc 1 1 which are given in Figs. 5 to 10 and 20 to 23, 

~q(y) c(y) and in Tables 2 and 3, and from CL/c~, we can calculate 
# 

The distribution of the side-force along the plate is nearly elliptical; some distributions are 
plotted in Figs. 15 and 24. Total values of the side-force on the part  of the plate on the upper 
surface of the wing are given in Figs. 16 and 25. The moment of the side-force with respect to 
the wing-plate junction may be obtained from Figs. 17 and 26. 

As an illustration, we will calculate the load distribution of a swept wing with fences of varying 
spanwise position b~/2 and various heights h. Let the wing be of aspect ratio 3, taper ratio 1 • 3, 
and let the sweep of the quarter-chord line be ~oc/~ = 50 deg. The lift distribution of the wing 
alone, which has been calculated in Ref. 11 using the method of Ref. 7, is plotted in Fig. 27. 
Let the maximum height of the fences, h, be 0.2 and 0.4 times the local wing chord c(y), i.e., 

0.2} × 0-27 × [o.s- b1/27 " 

? = 0.4 A- = 0 . 4 J  a b/2J 

Let the fences be of the same height on the upper and lower surfaces of the wing. 
From Fig. 4 we get ~ = 0.970 for b#2 = 0.8b/2 and h/c = 0-4 (i.e., h/b = 0.093). The 

values of the sectional lift slope a of the sheared wing, and of ~o, for the wing alone are a = 4-4, 
co = 1.04. The overall lift slope of the wing alone is CL0/~ = 2.86. With these values we may 
calculate the change of the total  lift slope by equation (4-1) 

~C~ _ 0.03 
o~ 

AC~ _ 0 .01 .  
C~ 

With smaller fences, or fences farther inboard on the wing, the value of A CL/CL is still smaller. 

The additional lift, by  equation (4-8), is 

l (Y ;t] ' C L = c(~ LCL a ~ b~ 

+ . . .  . . . . . . .  

In the example chosen, the second term in equation (4.4) can be neglected. Values of 

CLc 4 # { 1  _ ( ~ ) 2 }  for  the given ~/~ and h/b are interpolated between those given in Figs. 
CS 
5 to 7 and Table 2. Adding the A CL(y)/CL to those of the wing alone leads to the lift distributions 
plotted in Fig. 27. 
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LIST OF SYMBOLS 

Rectangular system of co-ordinates, x in the wind direction, y spanwise, 
z positive downwards, see Fig. 2. 

z + / y ,  complex co-ordinates in the Trefftz-plane. 
z~ + / y ,  complex co-ordinates in transformed Trefftz-planes, see Figs. 2 

and 18. 
Local wing chord. 
Mean chord of the wing. 
Wing span. 
Total height of the plates. 
Spanwise distance of the plates. 
b _, aspect ratio. 
c 
Angle of sweep of mid-chord line. 
Geometric incidence. 
Induced angle of incidence. 
Effective angle of incidence. 
Velocity of the main flow. 
Downwash velocity in the Trefftz-plane. 
Potential function. 
Local lift coefficient. 
Overall lift coefficient. 
Local lift coefficient of wing alone. 
Overall lift coefficient of wing alone. 
Q -  CL0 
eL-  eL0 

Fy local side-force coefficient. 
i ^ TT 2, -,~ 

P~ 
½P~o~b~, coefficient of the total side-force on the part of the plate on the 

upper surface of the wing. 
Moment of the side-force on the upper part of the plate. 
M 

- -  "moment arm. 
b' FY 

Q,  sectional lift slope, see Ref. 7. 
Cg e 

Lift slope of the two-dimensional aerofoil. 

c~ downwash factor, see Ref. 7. 
½v~ o21Vo' 

21 
See equations (2-24), (2-25) and (3-37). 
See equations (2-46), (2-47) and (3-42). 
Strength of doublet in ¢3-plane, see equations (3-32) and (3-33). 
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APPENDIX I 

The Load Distribution on Wings with a Discontinuity in Chord, 
Sectional Lif t  Slope or Geometric Incidence 

The local lift is determined by the equation 

_ _ - . . . . . . . . .  ( A - l )  

2b 2b " o 

where ~ y/½b, b is the wing span, a(fl) is the sectional lift slope, c(~) is the local chord, and 
c~(~) is the geometric incidence. The induced incidence, c~ = m~;o (~), is a function of the trailing 
vortex sheet . 

1 f+l  dr d~' . . . . . . . . . . . .  (A-2) = ""  

o~/2 is the ratio between the induced downwash at the wing and that  far downstream in the wake ; 
co = 1 for wings of large aspect ratio and co ~ 2 as A --+ 0 (see Ref. 7). 

The spanwise load distribution y (n) is always a continuous function, but the induced incidence 
~(~) can be discontinuous. Such a discontinuous ~ exists for a discontinuity in the geometric 
incidence ~(~) or the chord c(~) or the sectional lift slope a(~). 

When the incidence distribution ~(n) has a discontinuity, the induced incidence has the same 
discontinuity. For this case H. lViulthopp has solved equation (A-l) by calculating y(~) as the 
sum of two terms 

= + . . . . . . . . . . . . . . . . .  ( A - a )  

The first term, yr(~), depends only on the amount and the position of the discontinuity. The 
second term, y*(~), belongs to a continuous ~(~) distribution and can be calculated by the usual 
methods. 

With  a discontinuity in the chord the method has to be altered since the amount of the 
discontinuity of ~, is not k n o w n  beforehand. The distribution 7z which takes account of the 
discontinuity, depends On the unknown value of the total  y at the position of the discontinuity. 
An extension of Multhopp's method for calculating the load distribution over a wing which has a 
discontinuity in the chord has been given by J. WeissingerL 

The Multhopp-Weissinger method can be extended to swept wings and to wings of small aspect 
ratio by using a method similar to that  used by D. Kfichemann for ordinary swept wings, z.e., 
by introducing a sectional lift slope a(,/) which depends on sweep and varies along the span, and 
by using the downwash factor o~ which depends on the aspect ratio of the wing. In the following, 
the calculation procedure will be written down for the general case of a discontinuity in incidence, 
chord and lift slope. The latter may not exist in practice but  only in approximate representations. 
To simplify matters for the reader, we repeat here the  work of Weissinger. 

Since the position of the discontinuity will not in general coincide with one of the fixed pivotal 
points of Multhopp's calculation procedure, it is advisable t0 extend this calculation so as to 
allow the calculation of the load distribution at one further arbitrary point along the span. 
Multhopp approximates the r-function by the interpolation function 

9(#) -- n4 + 1 y~ sinff#,, sinff# . . . . . . . . . .  
n = l  t*=l 

where 
r/ ~ COS # 

7, = 7(#,) with #,, -- - -  
r e + l "  
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Let 

Q~ = COS e ,  

be the position of the arbitrary point. The function 

r(e) = f(e)  + ~(e,) -- f(e,) sin (m + 1) 
sin (m + 1) #~ 

has the values 

Now 

7 ( e , )  = ~(e,,) = ~ 

y(es) = ~,, .  

1 F d7 de '  
~ 0 ( e ) = ~  0 de '  cos #'  -- cos e 

This gives 

2~ 0 d e ' c o s e  - - c o s e  + s i n ( m +  1)#~ 

where b~ and b,~ are the coefficients given by Multhopp. 
the positions ~ is not affected by the additional point ~s. 

The induced incidence at ~ is 

1 S dp de '  
~ °(#') = ~ o de '  cos # '  -- cos #, 

This is equal to 

cz~ o(Os) = b s , r ,  - -  ~ b, , ,r , ,  . .  . .  
n = l  

where 

b,~ m + l  
= 2 sin #; "" 

(m + 1) sin (m + 1)e 
2 sin e 

This means that  the calculation of y at 

m + l  
+ [y~ -- f(e,)] 2 sin #s 

. . . . . . .  . . . . .  (A-5) 

. . . . . . . . . . . .  (A-6) 

1 
b , . = ( m +  1) s i n ~  ( m +  1 - -  ~) sin ~#. sin #v% 

/z=l  

as,, sin e,, 
(m + 1)(cos #~ =- cos el) ~ (A-7) 

i s i n  (m + 1)#s 2 

a,~ = (m + 1)e,  
cos" 2 

n even 

n odd.  
(A-S)  

The value y, can be determined from the equation 

ys - ~(~,) C(~s) [~(~,) _ ~ ,  (~s)] 2b 0 . .  (A-9) 
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by  insert ing equat ion (A-5). This is a bet ter  approximat ion  for ~, t han  the  value y (G) obta ined 
from equat ion (A-4), since it is based on the values a(~,), C(~s), ~(~,). In  the case of symmetr ica l  
load distr ibutions 

m + l  

with 

. . . . . .  (A-10) 

B . ,  = bs,, + b ..... +,_ , ,  . . . . . . . . . . . . . .  (A-11) 

Bs ,,, + , = bs ,,~ +, . . . . . . . . . . . . . . . . . . .  (A-12) 
' 2  2 

I t  is now assumed that ,  at  the  spanwise positions -1- ~,, the incidence; the chord and the sectional 
lift slope have discontinuities,  bu t  t ha t  they  are continuous everywhere else. 

Defining 
---- ~z(n,  + 0 )  - -  ~z(~,  - -  0 )  . . . . . . . . . . . .  ( A - 1 3 )  

and 

T. = 
2b 2b 

a ( ~  - O)c(~ - o) a ( ~  + O)c(~s + OI 

= 2b a ( ~  + O)c(~s+ o) , -  a(~, - O)c(~s - o) 
a(~, + 0)c(~  + 0) a ( ~  - 0)c(~  - o) " 

(A-14) 

Since the load dis t r ibut ion must  be continuous everywhere,  the following equat ion mus t  hold 

7 ( ~ ,  + o )  = ~( ,7 ,  - o )  = ~ ,  

= a(~s + 0)c(~ + 0) [~(~ + o) - ~ , o ( ~  + o/] 
2b 

= a ( ~ -  o ) ~ ( ~ ,  - o )  [ ~ ( ~ ,  _ 0 )  - ~ . ¢ o ( ~ s  - 0)~ 
2b 

This demands a d iscont inui ty  of the induced incidence 

Multhopp has shown tha t  the load dis t r ibut ion 

y,(~) _ ~ s  + r(~)  . . . . . . . . .  . . . . . .  (A-15) 

with 

[ sin ½(~ + G) 1 F0?) = ~2 (cos vq -- cos 4s) in sin ½[4 --  ~s] q- (cos ~9 q- cos G) in COScos ½(0 ½(~ q=- V~s)0.,) if- 2G sin v~ 

O = cos -1 ~ , . . . . . . . . . . . . . . . . . . .  (A-16) 

produces the required discont inui ty  in the induced incidence 

~ 0 for 0 ~<~ < ~ s  
co~,i o i = . . . . . . . . . . . .  (A-17/ 

~ T s q = ~ f O r ~ s < ~  ~< 1 

7(~) can again be determined as the  sum of yz(~) and  a fur ther  te rm 7"(~), equat ion (A-3). 
where ~*(~) has to sat isfy the equat ion 

Y I ( ~ )  . 2b 1 ,~(~1 .c(~) o,~*io(,7) . . . . .  

( A - 1 8 )  
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Since the remaining induced incidence ~occ*~ 0(~) is a continuous function, it can be approximately 
represented in the usual way by a sum of the load coefficients at certain points 

m+ 1 
2 

oC*~o~ = b~,~*~ - -  ~ '  B~,#*~ 
~ b =  J, 

m +  1 
2 

~b = l 

I t  follows from 

7 , - -  , F, + ~*s 
gO 

for o -- ,F~ # 0 

that  

hen ce 

.. (A-19) 

.. (A-20) 

~'~ = ~o)~*~ + aF~ • . . . . . . .  (A-21) 
(z) - -  T £ ~ s  . . . . . . . .  

r~(~) - ~ + w*, ~o -- ~ F(~) . . . . . . . . . . . .  • . . . .  (A-22) 
/ 

Inserting equations (A-17), (A-19), (A-20) and (A-22) into (A-18) we obtain, as the final equations 
for ~*~ and ~*~" 

m + l  

w h e r e  

_~_-I-_~)'*,F~ 2b for 0~<rj < r j ,  
o - -  T ~  s ¢o~vC v 

_ a + ~ , * , C l + F "  2 v j  for ~ , < ~ . < . 1  
~ o - ~ -  T f s  co~vC ~ 

~ * s  bs~ + ~ _ ~ - K  ~ a ( ~  - 0 ) c ( ~  ~ 0 )  

A~ 

A~ 

m+ 1 

9) = - -  -4- 2 B~,y*,~ a F~ . .  (A-24) 
, )  

2b 
. = 1  ~ - ~ F s  ' ~ a ( w  - -  0 ) c ( v ,  - -  0 )  " .. , 

The equations (A-23) and (A-24) are solved by an iteration process. When z ¢ 0, a first 
approximation for y,(o) (~) is determined by assuming ~/0) (~) and in particular ~<o) and calculating 
y(0) (,~) by equation (A-15) and 7 *`0) (~) by equation (A-3). Having calculated 7"(~) and in 
particular ~*~, ~.~ is calculated by equation. (A-21), rz(~) by equation (A-15) and r (v) by equation 
(A-3). 
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T A B L E  1 

Position of Certain Points in the Various ¢-planes, for the Case of Plates of Equal Height Above and Below the Wing 
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of C4 y) 
CL 

T A B L E  2 

b/2 
b = 0.05 0.1 

0 0.002 
0.1 0.004 
0.15 0.006 

~ ( 1 0 . 0 1 4  
u ' z  ~- -0 .013 
0.25 [--0. 005 
o.3 I-O.OO3 
0.35 

0 '4  --0-001 

0"45 
0.50 --0-001 
0.55 

0.6 0 

~i 012 
015  :o19 
029 

--0.024 - :o14 
009 

003 

002 

0"65 
0"7 
0"75 

0"8 

0"85 

0"90 

0"95 
1-0 

0 --0.002 

0 --0"001 

0 --0"001 

° o oOOO, 

b l / b = 0 " 4  " b l / b = 0 " 6  

0"2 0"3 0"05 0"1 0"2 0 '3  0 '05  0"1 0"2 0"3 

0.044 
0-049 
0.055 
0.067 

--0.047 
--0.036 
--0.027 

--0.017 

- 0 . 0 1 2  

0.091 0.002 
0.096 0.002 
0.104 
0.115~ 

--0.073J 0.004 
--0.061 
--0"050 0"007 

0'013 
0'028 

--0"035 - 0 '028 
0'012 

-0-025 ~ 0.007 

--0"009 --0-019 --0"004 

--0'006 --0-015 --0"002 

- -0 '005 --0-011 --0"001 

--0"003 --0"007 --0"001 

- - 0 " 0 0 2 - - 0 " 0 0 4 0  

0.009 ~'038 
0"011 "041 

0"014 0-051 

0.024 0-071 
0.034 0-089 
0.056 0-113 

--0.055 0-110 
--0"033 
--0"023 

0-086 
0"067 

- .0.013 0.044 

--0.009 0.031 

--0"006 --0"022 

--0"004 --0"014 

~ ' 0 0 3  --~'010 

~ .078 0.001 
'082 0'001 

0"096 0.O02 

0 1 2 3  0'003 
0141 
0 1 6 8  

----~ 137164 0'005 

- - 0 1 1 7  0.011 
0.021 
0.047 

--0 386 -0"048 
'--0.023 

i--0.063 --i.013 
--0-046 .007 

--0.030 --0.003 

0 .005  
0-006 

0:008 

0.011 

0.018 

0.035 
0.052 
0.091 

--0.097 
--0.058 
--0.041 

--0"022 

--0.013 

--0.008 
0 

bl/b = O" 2 

~i 020 
022 

O. 028 

0.039 

0-059 

0-097 
0-126 
0"169 
0"191 
0"148 
0"117 

0"074 

0 '044 

--~.030 

0"041 
0"045 

O' 055 

O' 073 

O' 104 

O" 154 
O" 188 
0"233[ 

--0.276] 
--0.231 
--0. 195 

--0- 135 

--0-084 
--0.057 

0 

b/2 
= 0 . 0 5  

0 ~ i . 0 0 3  
0.1 .003 
0.15 

0.2 .002 

0"25 
0 '3  i - -0 '001  
0'35 

0.4 0.001 

0.45 
0.50 0.003 
0.55 

0-6 0-008 

0.65 
0-7 0.019 
0-75 0.035 

~ (I 0.081 
u.~ / [_0 .084  
0.85 --0.037 

0 '90 --0'021 

0"95 --0"012 
I ' 0  0 

bl/b = 0 . 8  bl/b = O. 9 bl/b = 1 .0  

0"1 0 '2  0.1 0.2 0"3 0.05 0'1 0"2 0.3 

-oOO oo  
--0.006 --0.018 

0.3 0.05 

--0.040 --0.012 
--0.037 --0.011 

--0"028 --0"010 

--0'011. --0"009 

0.014 !--0.007 

--0.107 
--0.103 

--0.094 

--0.079 

--0.050 

--0.010 

:--0"055 ~'098 
--0"054 ~ "096 

--0"051' 0"09 ! 

--0.047 0-083 

--0.040 0.070 

--0.030 0.052 

--0.017 0.027 

0.002 0.010 

0-031 0.067 

0.088 0.179 

0-160 0.295 
0.517 0.675 

--0.003 

0.002 

0.010 

0"024 

0-057 
0-087 
0-154 

--0"163 
--0.095 

--0-060 

--~.034 

I 

--0-008 

0.007 

0.031 

0.071 

0.141 
0.193 
0.269 

--0.289 
--0-211 

--0-151 

--~-089 

0.053 --0.003 

0.112 0.003 

0.200 0-012 
0.264 
0.337' 

- -0 .377  0-032 
--0.296 

--0.223~ 

- -0 .146  
0 

0.063 
0.129 

--0.117 
--0.051 

0 

oo 11111 
--0"030 

--0.028 

--0-023 --0.055 

--0.017 --0"037 

--0.007 --0-011 

0.009 0-027 

0"034 0.087 

0.086 0"187 

0"138 0.265 
0-239 0.377 

--0-209 --0.312 
--~. 103 --~. 189 

0-045 

0.130 

0.249 

0"326 
0"449) 

-o.368f 
--~.236 

:o  

--0 

--0 

158 
156 

146 

131 

--0- 109 

--0.  377 

--0.  333 

O. 330 

O. 126 

0-291 

0.434 
0'827 

--0.197 
--0" 193 

--0.181 

--0.161 

--0.132 

--0" 090 

--0-032 

0-048 

O- 166 

O- 353 

0- 504 
0-899 

The values for h/b = 0.05 are obtained by graphical interpolation. 
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Values of --=CL(Y) c(y) 
CL g 

TABLE 3 

4~  { 1 - -  \~/2Jf Y "~21J for Slates on u25per surface of wing 

Y 
b/2 

b l / b = 0 "  2 

h, -b=o.1 

bl/b - -  0"4 

0.1 0.2 

bl/b = 0"6  

0-1 0-2 

bl/b - -  0 "8  

0.1 0.2 0"05 

bl/b = 1 "0 

0.1 0.2 

0 0.023 
O- 1 0.026 
O- 15 0"029 
0.2 f 0.033\ 

3 - - 0 . 0 2 6 J  
0-25 --0.020 
0-3 --0.017 
0-35 

0.4 - - 0 ' 0 1 1 {  

0.45 
0.50 --0.007 
0.55 

0-6 --0.004 

0.65 
0.7 --0.003 
0.75 

0-8 --0.002 

0-85 
0-9 --0.001 
0.95 
1-0 0 

0.017 
0"018 

0"020 

0.030 
0.041 
0.060 

--0"051 
--0.039 
--0.030 

--0.020 

--0.013 

--0.009 

--0.006 

0 

0.071 
0-076 

0-084 

0.098 
0.106 
0"118"/ 

-o.113f 
--0.102 
--0.092 

- - 0 . 0 7 3 {  

--0"057 

--0.042 

--0"027 
--0"018 

0 

0.013 
0.013 

0-014 

0"018 

0.029 

0.051 
0-067 
0.086 

--0.098 
--0.078 
--0.062 

--0.038 

--0' 023 
--0.016 

0 

0-040 --0-014 
0-041 --0.013 

0-045 -=0.011 

0.056 --0.008 

0-076 --0.001 

0-104 0-013 
O. 122 
O" 148-~ 

- -0  1 9 4 f  0-040 
--0.168 
--0" 145 0"082 

0.110 
O. 147 

--0.104 --0.150 
--0.112 

--0.062 --0.081 
- -0 '040  --0.055 

0 0 

--0"028 
--0" 027 

--0.021 

--0"009 

0.010 

0-041 

0 -084 

O- 140 
O- 177 
o.222\ 

-o.258f 
--0"210 
--0" 163 
--0.110 

0 

--0.056 
--0.055 

--0.053 

--0.048 

--0.042 

--0- 032 

--0.018 

0-004 

0"039 

O" 109 
0 '  177 
0"450 

--0.101 
--0.099 

--0.093 

--0.084 

- -0 .070 

--0..051 

--0.024 

0-014 

0.077 

0.190 
0.290 
0.575 

--0"156 
--0" 153 

--0" 142 

--0.125 

--0.101 

--0" 068 

--0" 022 

0.041 

O. 128 

0"270 
0"390 
O. 700 
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