R &M.No.2960

‘ (16, 817)
‘A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL :
S REPORTS AND MEMORANDA

f*’»z_"Theoretlcal Load DlStl‘lbllthIl on a
| ng w1th Vertlcal Plates .
_ ] WEBER, EDR.'RE'R.NA']'.". '
| LlBRARY

ROVY'AL AIRCRAFT ESTABLIS‘-IMENT

| o ‘-'Cro‘wr; Capyrigé;vkes:r’wd a

LONDON HER MAJESTY’S STATIONERY OFFICE
| s S

o PRICE IIS 6a’ NET




Théoretical Load Distribution on a Wing with
Vertical Plates
By

J. WeBer, DRr.RER.NAT.

Repores and Memoranda No. 2960_*
March, 1954

Summary—The spanwise load distribution is calculated for wings with plates normal to the wing and parallel to the
main stream, or inclined to it at a small angle. The calculations are made for configurations having minimum induced
drag. The results are used to obtain an approximation for wings of any plan-form (where the condition of minimum
induced drag no longer applies), including wings with sweepback.

Wings with plates of equal height on the upper and lower surfaces of the wing, and wings with plates on the upper
_ surface only, are considered. Charts and tables for the additional load distribution with plates of various heights,
0 < A/b < 0-3, at the spanwise positions: b,/b'=0-2, 0-4, 0-6, 0-8, 0-9, 1-0 are given. Side-force distributions on
the plates, as well as integrated side-forces and the moments of the side-force, are calculated.

In the Appendix, a method of calculating the load distribution on wings with a discontinuity in chord, sectional lift
slope, or geometric incidence is described.

1. Introduction.—This report considers the case of thin wings, with or without sweep, with
two plates placed symmetrically about the centre-line at any given spanwise station. The plates
are normal to the wing surface, and parallel or nearly parallel to the main flow (see Fig. 1).

A study of the flow around wings with plates has been previously made mainly with a view to
its application to tailplane arrangements with twin fins. In this case the height of the vertical
~ plates is of the same order as the span of the wing. More recently, similar plates have been used
as ¢ fences ' to improve the pitching-moment behaviour of swept wings; in this case, the height
of the plates is much smaller than the wing span. Mangler’s end-plate theory* was developed for
application to fin-tail arrangements and is not particularly suitable for fences, or other plates of
small height. A simpler method of calculation is obtained in a different way for the case of
symmetrical wing-plate arrangement, 7.c., where the plates are of equal height above and below
the wing. This report also gives results for plates on the upper surface only.

Vertical plates added to a wing alter the spanwise load distribution because the system of
trailing vortices is modified. Trailing vortices are shed from the plates as well as from the wing.
In the case of minimum induced drag, which forms the basis of the present method, a cross-section
through the wake has the same shape as a cross-section through the wing-plate configuration
itself. Such a wake produces a downwash field which differs from that of the wing alone, so the
vortex distribution over the wing and in the wake, and therefore the wing load, must be rearranged
to meet the given boundary conditions. :

Fences on swept wings also affect the chordwise loading owing to the partial reflection effect
which they exercise on the bound vortices, as has been pointed out in Ref. 2. It will be shown
below—and this is supported by the experimental evidence given in Ref. 3—that the change in

* R.A.E. Report Aero. 2500—received 31st May, 1954.
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spanwise loading, which is caused by fences, is associated mainly with the particular shape of the
wake and its associated downwash field. This implies that the results given in this report should
lead to a reasonably good approximation for the spanwise loading. The chordwise loading and
the pressure distribution over the surface of the wing must subsequently be determined by taking
account of the reflection effect.

The theory given in this report also offers a possible step in the calculation of the effect of part-
span vortex sheets which exist on wings with different types of flow along the span (see Ref. 2).
This is a much more difficult problem because the shape of the vortex sheet is not known and
has to be determined from the condition that it cannot sustain any forces. However, the trailing
vortices in the Trefftz-plane behind the wing are probably very like those produced by solid plates
and the method given here can be used to calculate the downwash field from such trailing vortex
sheets. With this possible application in mind plates of greater height than those normally used
as fences have been included in the calculated examples. ‘

The load distributions are calculated for arrangements giving minimum induced drag, i.e.,
for configurations producing such systems of trailing vortices as induce a constant downwash
along the span and zero sidewash along the plates. The problem then reduces to an investigation
of flow in the Trefftz-plane, around simple geometric configurations as shown in Fig. 1. In the
case of plates of equal height above and below the wing, the calculation has been considerably
simplified by using a conformal transformation of the Trefftz-plane proposed by Betzt. Because
of this different approach, and to simplify matters for the reader, the method of calculation is
explained in full, no detailed reference being made to Mangler’s work?.

The results obtained by using configurations with minimum induced drag can be used to obtain
an estimate for the additional load distribution caused by plates on any wing, where the induced
dragisnot a minimum. In addition to the load distribution on the wing, the side-force distribution
on the plates and the moment of the side-force are calculated. The present report does not give
any comparison with experimental results (but see Ref. 3 for the case of fences on a swept-back
wing). -

In the appendix, Multhopp’s method for calculating the load distribution over a wing alone is
extended to include ‘wings with a discontinuity in incidence, chord or sectional lift slope. This
method, which was suggested for straight wings by I. Weissinger®® can also be applied to the
case of a swept wing. Such discontinuities occur, for instance, when the reflection effect of fences
is considered, and the sectional lift slopes on either side of the fence are therefore different.

The method is presented for incompressible flow only. It can easily be applied to subcritical
compressible flow by means of the Prandtl-Glauert analogy (see, e.g., Ref. 7), within the limitations
of that theory. .

2. Plates of Equal Height Above and Below the Wing—2.1. The Potential Function in the
Trefftz-planc.—The load distribution over the wing and the distribution of the side-forces over
the plates are determined from the difference of the potential function on the two surfaces of the
vortex sheet far down stream (¢.¢., in the so-called Trefftz-plane). The induced drag is assumed
to be a minimum and it is assumed that the wake does not change its shape and moves downwards
with the constant velocity v, .. In this case, the problem reduces to determining the two-
dimensional flow in the Trefftz-plane around the wake contour which has the shape of a cross-
section through the wing and plates, see Fig. 1. The flow around the contour of the moving wake
can be determined as the flow around the contour of the fixed wake in a parallel stream of velocity

— ¥, », Superimposed upon a parallel flow of velocity v, . ,

The flow around the contour of the fixed wake will be found by a series of conformal trans-
formations. The case of plates of equal height above and below the wing is dealt with separately,
since we use transformations different from those for plates above the wing only. The present
method, which was suggested by A. Betz*, makes use of the symmetry of the wake with regard
to the wing plane and leads to sumple relations.
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A rectangular co-ordinate system x, y, z is chosen with x along wind, v spanwise, z positive
downwards and the origin at the point of symmetry of the wake contour (see Fig. 2). All linear
dimensions are referred to the wing semispan (b/2 = 1). The spanwise distance between the
plates is b,, their total height 4. For simplicity we call the traces of the wing and the plates in
the wake simply the wing and the plates.

To determine a flow which satisfies the boundary condition of zero velocity normal to the
fixed wake contour, the contour is transformed into a slit along the vertical axis in the {,-plane.
This transformation is done in several steps. Advantage is taken of the symmetry of the wake
about the z-axis to transform the right half of the Z-plane (y > 0) .

t=z4+1y .. . .. . .. .. .. .. (2-1)
into the full {,-plane ' '
, =2+ .. .. . . .. (29
by the transformation '

L= —1t*. .. .. e .. . .. .. .. (2-3)

With this transformation the wing remains a straight line and the plate becomes an arc of a
parabola. Then this parabola is replaced by an arc of a circle through the points B,, C,, G, in
~ the ¢;-plane which correspond to B, C, G in the ¢-plane, see Fig. 2. This means that the original
straight plates are replaced by slightly curved ones; this has-a negligible effect for the small
plates in which we are interested. This can be seen by comparing the results given in Ref. 8 for
straight end-plates with those obtained by the present method for end-plates which are slightly
_curved so as to give a circular arc in the Z;-plane. The difference between the curved plates and
the assumed straight plates decreases with increasing spanwise distance 6,/2 and decreasing
height % of the plates. A few values of the maximum difference y — b,/2 are given below to
illustrate that the effect is small:

b2 W2 (= 02
0-2 0-2 0-0040
0-6 0-2 - 0-0002
0-6 0-4 0-0030
1-0 0-4 0-0007

The co-ordinates of certain interesting points along the wake in the various planes of transforma-
tion are listed in Table 1.

In the next step the arc of the circle through the points C,, B'l,' G, is transformed into a full
circle, whilst the wing remains a straight line. This transformation is given by the relation

. 22 1
&y — Wy = Cz‘l‘_%- z

e - @[l Q- Q-] - e

The centre of the circle is '

amil)

‘and the radius

-1J[)+@]

hence
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Next, the circle and the straight line corresponding to the wing are transformed into a slit

along the Ys-axis: 5
( ) +(5)

A A O

Finally, the full slitted ¢s-plane is transformed into the right half of the {,-plane by the trans-
formation

(2-5)

fo= V[i(Ls — Ea)] = Vil + &) .. .. .. e 29

iy 0
O Ty ;
ORIORN [ECRICIRC) IS

Corresponding pomts on the wing surface ¢ =1y, and the z,-axis are given by the relations:

where

(2-7)

€2

|

1
2

yy = y* . . .. . .. (2-9)
RO I oy ey
with '
y2<0f0r0<y<—[22-1
b

y2>0for_2!<y<1

&0
@

Zy= T 4/[es — V5] . .. . . o (2-12)

As stated above, the straight plates have been replaced by shghtly curved ones. If points
with the same z-co-ordinate are correlated, then we find corresponding points on the plates and
the z,-axis by the relations:

J{%—\/[@)@()H<*Z4l<\/l@3+J[(hb +< N

Vs = €3 — 2 . .. (2—13)

5= 4} \/(M’l —I—<h>—y3} L L (21
N 3
T zf)u%(g)ya

5

h 2
Vs =Y: — % 2) +i——— (2-11)

(2-15)

2= (2-16)

noj=



At large distances away from the wake contour, <.e., for { —co,
=0 =105 .. .. .. .. .. .. .o (2-17)

L= Ai8) =0 oo el (2118

This means that the parallel flow with velocity — v, in the {-plane corresponds to a parallel
flow with the same velocity in the ¢,-plane. . In the Z,-plane the transform of the wake is a vertical
plate, which does not present an obstacle to the parallel flow, and we are left with parallel flow
everywhere. The complex potential F,(¢) of the flow around the fixed wake contour is therefore:

F(D) = 4i(ey) +imley) = — w8l 2 o .. (219

and

and the total potential for the moving wake 1s:
~ The potential for points on the wing or the plates is thus

¢(z,y)=—vm|:z4(z,y)—z}g L e

where z,(2,v) is to be calculated by equations (2-9) to (2-16).

2.2. The Load Distribution on the Wing.—The local lift coefficient on the wing is related to the
difference of the potential function on the upper and lower surfaces of the vortex sheet in the
Trefftz-plane by ' : '

b
5" (2-20)

9 .
CL=WD(¢US—¢LS) .. .. .. .. .. .o (2-22)
where c¢ is the local wing chord, used as reference chord for the local lift coefficient C;, and V, is
the velocity of the main flow. : :
" We obtain from equation (2-21)

CL(y).c(y)=4vz°°~|z4(y)|g. e (228

[}

The coefficient C; of the overall lift over the wing is obtained by integration. C, is referred
. to the wing area b¢, where ¢ is the mean wing chord. It is

c.= [ o)

— A UV: (2-24)
where
4=":
¢
is the aspect ratio of the wing, and .
I— 2j:|z4(y)|d<b3/}—2>. O )
I is a function of 4/b and 4,/b but is indepéndent of the aspect ratio.
The shape of the spanwise load distribution is given by the relation
CL(y%L'EC(y)zmzfl(y)[. L (29
Again, this is only a function of 4/b and 61/5. A few examples are given in Fig. 3.

5

(4280) ' ' A%



To determine the actual load requires a knowledge of the total lift coefficient C, which is
determined by equations (2-24) and (2-25) except for the factor v,,,/V,. The next task is, therefore,
to determine the downwash velocity v,,/V,. This is done by relating the conditions in the wake
to those on the wing.

The local lift coefficient is equal to the sectional lift slope a(y), as defined in Ref. 7, multiplied
by the effective incidence o, which is equal to the geometric incidence « reduced by the induced
incidence «;:

giﬁ:g(y)%:a(y)‘[l—%].‘ U 1)

o 04

The incidence «; which the trailing vortices induce at the wing is proportional to the downwash
far downstream : : .

UV 0 Uy ‘ .
V=7 g . .. . .. .. ..o (2-28)

0(1.:

The value of @ depends mainly on the aspect ratio of the wing; o = 1 for wings of large aspect
ratio and o = 2 for A— 0. A method for calculating o has been given by D. Kiichemann’.
The problem is now reduced to finding «;, which depends on the plan-form and sectional properties
of the wing.

The sectional lift slope a(y) is a function of the aspect ratio and, for swept wings, of the angle
of sweep and the spanwise position (see Ref. 7). Plates on a swept wing have a further effect
on the load distribution besides the one on the trailing vortices. They act on the bound vortices
as partial reflection plates and change the chordwise load distribution (see Refs. 2 and 3) and
hence the sectional lift slope. Plates on a swept-back wing increase a(y) inboard of the plate as
in the centre-section of a swept-forward wing and reduce it outboard of the plate. What per-
centage of the full reflection effect of a large plate is achieved by a small plate depends on the
height of the plate and the chordwise extent (see Ref. 3). ,

Since we consider wing-plate arrangements which produce a constant induced incidence and
thus a constant effective incidence along the span, it follows from equation (2-27) that the span-
wise variation of the sectional lift slope means that the local lift coefficient C,(y) varies along
the span. Only for unswept wings does C;(y) = C,. The spanwise load distribution, as given
by equation (2-26), does not depend on the sweep of the wing, which means that the minimum
induced drag configuration must have a chord distribution which depends on the angle of sweep
and the aspect ratio of the wing. The chord distribution can-be determined by combining
equations (2-23), (2-27) and (2-28): : o ' -

e(y) wle|u(y)] | < - (2-29)

2T al) T

For unswept wings, by equations (2-26) and (2-29) :
o) _laWdl o (280)

z 12

For swept wings, where « is a function of y,

() o)
c(y oaly . ‘
—_— = . . .. . .. . .o (2—31)
Haaly) | o v
i Jo a(y) d(b/Z



Integrating ¢(y) of equation (2-29) along the span gives the required relation for the unknown
a;fo if the values of 4, o, a(y), /b, b,/b are known: :

J 0%‘) d(by72> Wcz = %
g 1 f"/(i/a) J : 1248)) | ”Z(%Q>
oo o 1 '

T— (wfo) 44 [z N e e (282
(ot Jolig))ld(%é _ S (2-32)

When «, is known the downwash at infinity can be determined by equation (2-28), and thence
the overall lift slope from equation (2-24), which gives

|

I

Co_ 2ey7, PP (. )

o w &

The difficulty lies in finding the value of a(y), and therefore the value of the integral in equation
(2-32). The spanwise variation of a(y) can be taken into account correctly by an iteration process.
The sectional lift slope a is a function of the distances from the centre, the tip and the plates,
measured in terms of the local chord ¢(y). ¢(y) can be determined by equation (2-31), assuming
a first approximation of a(y) ; with the known ¢(y) new values of a(y) can be found.

A simplified though only approximate formula for «;/x can be found. By definition

G Sl )

o e

':(1_%”:@@)0(7”(1(%2) S (23

which again contains the unknown a(y). The sectional lift slope on a swept wing near mid-
semispan is that of the corresponding two-dimensional sheared wing a,; at the centre the value
is smaller than @, and at the tips it is larger. The increase of the sectional lift slope near the
tips is usually greater than the decrease near the centre. This difference is reduced by the greater
values of ¢(y)/¢ at the centre for the ordinary tapered wings. The reflection effect of the plates
causes a change in the sectional lift slope which is of opposite sign inboard and outboard of the
plate, so whenever there is a spanwise position at which a is greater than a,, there is also another
at which  is less than a,. A reasonable approximation is therefore :

J:a(y)g(él)d<zjliz — 0, = 4, C0S® .. .- .. .. (2-85)

where a, is the two-dimensional lift slope of the aerofoil section (as = 2z for a thin flat plate).
With this approximation, we obtain by equations (2-33) and (2-34)

wla  __ wa
1 — (afa) 241
and
o, ‘
%@z.ﬁ-?‘qia. L (238
o s
1+2AI'



This is an appfoximation to equation (2-32), and is the same as that obtained by replacing
a(y) by a,in equation (2-32). This means that for unswept wings equation (2-36) is exactly true.
The overall lift slope is given by equations (2-33) and (2-36) : :

C, a
« wa .. .. . . .. . .o (2-37)
1—{—%7;Z
with
a = a,
=7 .. .. .. .. .. .. .. .. (2-38
"Tor , (2-38)

Equation (2-87) is similar to Prandtl’s well-known relation for wings with elliptic span loading,
extended to include wings of small aspect ratio, see Ref. 7, where the effect of the plates is taken
mto account by ». Calculated »-values are plotted in Fig. 4.

The factor » also gives the reduction of the induced drag of the wing with plates as compared
with the induced drag of the wing without plates: -

=2 . .. . .. .. .. .. (2-39)

Finally, we estimate the effect of plates on the spanwise load distribution of wings of any
plan-form. A simple approximation is obtained by subtracting from the load distribution of the
minimum induced drag configuration the load distribution of the wing without plates which has
minimum induced drag, and which has the same A, ® and @. This procedure is not strictly
correct since the plan-forms of the wing with plates and the wing alone differ from one another,
but it has been proved to give a reasonable estimate in similar cases.

The spanwise distribution of the additional load is:
100 o) GG Gt Jly (23]
s b2

o ¢ icC_Lg :
=2 WG]
+ASL§«/[1_<57“2>2} e (240

where C, , is the gverall lift coefficient for the wing without plates.
The change 4C, [« in the overall lift slope due to the plates is given by the relation :
ACL - CL CLO

e Red 08 ‘
- a o a )
wa wa
1+H l_l_azA
wa
Y B B
o wa
“|“”n—
=(l—w 2% Cun. L (2441
7 wa o
1+%'ﬂ



so that

Ayl L (249

C, zd «

With small plates at inboard positions 4C,[e is small so that the second term in equation (2-40)
can be neglected. The function C,(y) . ¢(y)/C,¢ is known by equation (2-26).

o -G =" - G

is piotted in Figs. 5 to 10 and tabulated in Table 2.

The difference

To check the accuracy of the additional load distribution given by equation (2-40), one can
calculate the load distribution of that wing alone which gives, with the plates, a minimum induced
drag configuration. By determining the difference between the load distribution of the wing-
plate arrangement of equations (2-26), (2-32) and (2-33) and the load distribution of the wing
alone one obtains the exact change in the load distribution caused by adding the plates. We
shall do this calculation for a few examples. The height of the plates chosen in the following
examples is greater than with fences on practical wings. The greater height shows the effects
more clearly since, e.g., the differences in plan-form are increased.

For unswept wings, the chord distribution of the wing which, with the plates added, gives a
minimum induced-drag configuration, is given by equation (2-30). With z,(D.) # z(B,) (see
Fig. 2) this plan-form has a discontinuity at the position of the plate. This discontinuity produces
a discontinuity in the induced incidence which means that it cannot be determined by the usual
methods. 1. Weissinger>® has extended the method of H. Multhopp for calculating the load
distribution over wings with a discontinuity in the geometric incidence to cover wings with a
discontinuity in the chord. The same procedure can be applied if there is a discontinuity in
the sectional lift slope a(y). The method is described in the Appendix.

For the unswept wing of aspect ratio 4 which, with two symmetrical plates of height 7 = 0-2b
at y = - 0-65/2, gives a minimum induced drag configuration (se¢ Fig. 11) the load distribution
has been calculated by this method taking @ = 2, @ = 1. The overall lift slope C, o/« of the
-wing is 4- 16 whilst the approximation of equation (2-37) gives for the wing alone Crofa = 4-19.
With » = 0-960 from Fig. 4, we get by equation (2-87) a total lift slope C,/a = 4-25 for the
wing-plate arrangement. This is also the exact value, since equation (2-37) is exactly true for
minimum induced-drag configurations of unswept wings where the sectional lift slope is constant.
Following the proposed approximate procedure, we obtain by equation (2-41) a AC,[a = 0-086.
Adding this value to the lift slope C;, [a of the wing alone, in this case equal to 416, gives for
the total lift slope the approximate value C,/a = 4-22, ¢.c., about 1 per cent less than the exact
value of 4-25. This error is negligible. The change in the spanwise load distribution which the
plates produce is plotted in Fig. 11 together with the approximation of equation (2-40). The
comparison shows that equation (2-40) gives an estimate which will be sufficiently accurate in
most cases. '

With swept wings, the chord distribution of the wing, which with the plates added is a minimum
induced drag configuration, varies with the angle of sweep, the magnitude of the reflection effect
and the aspect ratio, since these quantities determine the spanwise variation of a(y) (see equation
(2-31)). The increase of a(y) inboard, and the decrease outboard of the plates due to the reflection
effect on swept-back wings counteracts the discontinuity of z(y), so that with not too high a
reflection effect the discontinuity of the chord is reduced compared with the straight wing.
There are cases where the discontinuity in a(y) fully cancels the discontinuity in z,(y). Such an
example is shown in Fig. 12, where the chord distribution of a 45-deg swept-back wing of aspect
ratio 4 with plates of height # = 0-2b at the spanwise positions y = -+ 0-65/2 is plotted. The

9



chord distributions have been calculated for 40 per cent and for full reflection effect. They have
been determined under the simplifying assumption that a(y) is a function of y[¢ instead of y/c(y).
The chord distribution of the wing with 40 per cent reflection effect does not differ much from the
chord distribution of the 45-deg swept-back wing of aspect ratio 4 which is, without plates, a
minimum induced-drag wing as shown by the comparison in Fig. 13. In other words, the
difference between the plan-forms of the minimum induced-drag configurations of a wing with
plates and without plates is less than for the unswept wing (see Fig. 11), which further justifies
the procedure leading to equation (2-40). A reflection effect of 40 per cent has been measured
on a 45-deg swept wing with fences of a size used in practice. For plates with very large reflection
effect, the discontinuity of the chord is of opposite sign to that on straight wings.

The load distribution over the wing alone has been calculated for the two chord distributions
corresponding to 40 per cent and full reflection effect taking w = 1 and the sectional lift slope
of the two-dimensional wing to be a, = 2. The overall lift slope of the wing alone corre-
sponding to full reflection (wing I in Fig. 12) is 318, for the wing with 40 per cent reflection
(wing Il in Fig. 12) it is 3-20. The approximate value from equation (2-87) for both wings I and
Il is 3-28. For the wing with plates the overall lift slope calculated from equations (2-32) and
(2-33) for wing I, corresponding to full reflection, is equal to 3-28 and for wing 11, corresponding
to partial reflection, it is 3-25." The approximate value from equation (2-37) is 3-32 for both
wings. By the approximate procedure of calculating 4C,/a from equation (2-41), and adding
the value to the lift slope of the wing alone, we get for wing I C,ja = 3-22 and for wing 11
C,jo = 3-24 compared with the exact values of 3-28 and 3-25 respectively. In the practical case
of a wing with fences, the reflection effect is of the order of 40 per cent of full reflection, in which
case the error in the overall lift slope is less than 1 per cent. The exact additional spanwise load -
distribution has been obtained by subtracting the calculated load distribution of the wing alone
from that with the plates present, determined by equation (2-26) and the total lift slope. These
distributions are plotted in Fig. 12 together with the approximation resulting from equation (2-40).
The approximation is the same for wings I and II. In the extreme case of full reflection equations
(2-40) and (2-41) underestimate the plate effect inboard of the plates. With partial reflection,
the approximation (2-40) is good inboard. Outboard, equation (2-40) somewhat overestimates
the plate effect in all examples considered. With a wing of aspect ratio 4, plates situated inboard
of the tips of height 4/b = 0-2, i.e., #/¢ = 0-8 are for some applications a rather extreme case.

It can therefore be concluded that equations (2-41) and (2-40) will give a sufficiently accurate
-estimate for most practical cases.

As stated above, the change in the spanwise load distribution produced by plates on a swept
wing is due to the combined effect of a change of the trailing vortex sheet and the reflection of
.the bound vortices. To determine the contribution of each of these effects to the total change,
we have calculated—by the method given in the Appendix—the load distribution of the wing
alone with the discontinuous sectional lift slope distribution of the wing with plates for 40 per cent
reflection effect, and subtracted the load distribution of the wing alone calculated with the a(y)
distribution of the wing alone. The difference is plotted in Fig. 14 together with the tofal
additional load distribution. This comparison shows that the change in the shape of the trailing
vortex sheet is mainly responsible for the additional load distribution. It confirms the assumption
made at the beginning that the change in spanwise loading, which is caused by fences, is associated

mainly with the particular shape of the wake and the downwash field therefrom. However, the
reflection effect does change the chordwise loading.

2.3. The Svde-force on the Plates.—Some of the bound vortices of the wing continue along the
plates. These bound vortices in the main flow of velocity V, produce a force normal to the plates.
‘This side-force is directed inwards on the upper part of the plate and outwards on the lower part.
The total sum of the side-forces is zero, but they produce a finite- moment. In the following,
we calculate the distribution of the side-force along the upper half of the plate at y = 5,/2, the
resultant side-force on the upper part, and the arm of its moment. - : .
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The force is proportional to the difference of the potential function between two points of the
same height inside and outside the vortex sheet far downstream in the wake; ¢f. equation (2-22):

= = 2 (s — b 943
Y ™ %PVOTC - E‘[/—‘o (qsmstde ¢outsxde) . .. .« . .. .. ( )

Fy is defined to be positive when directed inwards. With equation (2-21):

C

Crle) - oly) = 2 %2 [— uEDawe — (= 2] .
ﬁz2%ﬂAM@@. O .y

From equations (2-13) to (2-16) the function z(z,) can be calculated and from this one can
determine |4z,(z)| graphically.
Referring the coefficient of the local side-force to the total lift coefficient, as has been done for
the local lift coefficient in equation (2-26), we obtain ?
Cye | 4dz(2)]
== 5. . v . . . oo (24
C.c I : - (2-45)
_Side-force distributions are plotted in Fig. 15. We will show in the next section that for plates
of small height situated inboard of the tip the distribution of the side-force is elliptic. This is
approximately true for plates with %/b6 < 0-3.

The total side-force F', on the upper part of the plate referred to the wing area bZ, is obtained
by integration : .

= F v '
Cy = Y =4 2=2] .. .. .. .. .. .. 2—
| T A A A 249
where A
» 1Y)
1 ultfs i -
Z}~2J0]A%®|%w9.. L @4@
The ratio of the side-force F, to the total lift is therefore
c, I, : : : o
Y X, .. .. .. .. .. .. .. .. 2-48
ot (2-48)

This ratio is plotted in Fig. 16. -

From the known distribution of the side-force, equation (2-45), both the moment M of the
side-force with respect to the plate-wing junction and the arm z,.5/2 of the side-force can be

determined :
hf2

M= Fyzdz
0
b

zzOQFY . . ce . .. . .o (2-49)
Wit 2 2
[ A@@EEdQE>
0T T I p T . - (2-50)
[, a@d()
% 1s plotted in Fig. 17. With elliptic side-force distribution,
4 h
= .. . . . .. .. oo (2
W= g AR ‘ (2-51)

Fig. 17 shows that equation (2-51) gives a sufficient approximation for all cases considered.
11



When the system of trailing vortices considered is produced by a wing with solid plates, the
plates must be placed at a certain angle to the main flow to produce the required system of bound
vortices, and with it the side-force. This has already been pointed out by K. W. Mangler?.

For unswept wings of not too small an aspect ratio we can assume that the chordwise load
distributions inboard and outboard of the plates are those of the two-dimensional wing with the
sectional lift slope a. The chordwise side-force distribution on the plate may, however, be different,
except for the wing-plate junction. A plate of small height is comparable with a wing of small
aspect ratio and it is known (see Ref. 7) that the chordwise load distribution of a straight small
aspect ratio wing varies with the aspect ratio. It is not possible to determine the distribution of
the side-force by assuming that the plate is isolated, since the presence of the wing vortices will
affect the vortex distribution on the plate.

With swept wings matters are further complicated by the fact that the chordwise load distribu-

tion on the wing is altered by the plate, and in a different manner inboard and outboard of the
plate. '

To obtain an estimate of the angle between the plate and the direction of the main flow, two
extreme cases are now considered. First it is assumed that the chordwise side-force distribution
is the same as the load distribution on the wing with the same sectional slope @. In this case,
the side-force, integrated along the chord, is @ times an effective angle 8,, corresponding to «, in
equation (2-27). Only those arrangements in which the trailing vortex system produces zero
v,-velocity in the wake are considered: this implies that the trailing vortices do not induce a
v,-velocity at the plate. The angle g must therefore be produced by inclining the plate on the
upper surface so that the trailing edge of the plate is farther outboard on the wing, by an amount
Ay, than the leading edge of the plate: ‘

c Vs
_ CyeCila 1
= & = 7=
C,c a cft »
(Cpfa)/a is known from equation (2-37), and it will be shown in the next section that for small
inboard plates
Cye  |Az(z)| 4

6 _3 1oy

(2-52)

= blo b (2]
C.e I vv\/{l_(%)] b\/{ <h/2>}

Ay(z) _ h J [ (i)] 4 b 1 1 L (2-54)
c bN 1T \BJ2 ﬂJ;1_<bl>2 | 4 Lot
-G
Another estimate is obtained by making the extreme assumption that the chordwise side-force

distribution is similar to the load distribution of a small aspect ratio wing, with A, = A/c.
Then for the slope a,,, we obtain, see Ref. 7: ,

e = 27 J {érzl_}
=2 [zl (@)

Using again equation (2-87) and the above approximation for C,¢/C,¢, equation (2-52) gives

20 JO =G A e 9

NEGIEEET

(2-53)

Hence

12



Ay(2)[c varies with z in both these expressions, being zero for the top of the plate (z = %/2), and
greatest at the wing-plate junction. However, the maximum deflection is small for fences in
any practical case, and can usually be ignored, so that the calculation can be applied to fences,
whether or not they are inclined to the main stream.

2.4. The Limit h —0.—When determining the effect of small plates, as in the case of fences
of small height, and when interpolating for heights other than those calculated, it is useful to
know the lowest-order term, with respect to %, of the various quantities.

Consider first the case of plates situated inboard of the tip 4,/2 % 1 and assume:
M<<1-(3)

2 _ bl ’
<<1—(g).
For simplicity % and &, are used instead of 4/4b and b,/3b.
By equations (2-7) and (2-8), the power series for ¢; with respect to / begins:

a0
Sy

At the position of the plate, y = 8,/2 + 0, by equations (2-10), (2-11) and (2-12)

<2>+ o (2-56)

po= My

1 — - b, L 4 J
SN ey
For y £ 1b,, differentiate y, and v, ‘With respect to 4
OROIE T
JIb-@ + @1+ ()]
hblz 4+ 9 < > ayz h

—i Kkb> T (2) ] [ . (hﬂz

The right-hand sides contain a constant term only for ¥ = /2. This means that y; — ¢, and
z; do not contain a term proportional to 4. Hence by equations (2-25) and (2-38)

and

I:g—l—ChH-...

w=1—Ch+ ... .. AU .. .. ... (2-57)
ACLC 2 bl

CLC—Ch—[—...fory;éz .. .- T (2-58)

13



by

2
[{_ (b 2}
AL ) |
Equations (2-57) to (2-59) show that small plates situated inboard of the tips have a negligible

effect on the overall lift coefficient and change the load distribution only in the neighbourhood
of the plate, as is to be expected.

For points on the plates, |y;| < 4b,/2, and therefore by equations (2-15) and (2-16)

h 4___b1 | .
Q—F...fory—g—_l—o. . .. (2-59)

'ACLc 4
C.e =T

A4 b
)
and by equation (2-14) .
kb 2\
| n=g 1 -G
and
2= /(& — ¥s)
— _ 1Y
= 4/e3 vy
1 kb, [y (2N
~\/3$\/e3‘4 {1 (h/Z }
b _
dzal2) :_2_6_th{1 —(}5?)) R I 1)
: \/{1 o <,‘Z> ]

For small plates the distribution of the side-force along the plate is elliptic and the local side-
force coefficient is proportional to /b. The latter can be obtained by combining equations (2-45)
and (2-80), giving equation (2-53) which has been used above. Integration of equation (2-60)
gives for the integral I,, equation (2-47) : ‘

Iy = \7{—1?@ 5) i

and the coefficient of the side-force on the upper part of the plate is given by

_ \ -
L—_\/{I—— ?_1)2}'%\_2-/. .. .. ce e .. (2-81)
2
With elliptic distribution of the side-force, the arm 2,, equation (2-50), is given by equation (2-51).

We consider now the case of end-plates, 4;/2 = 1. By equations (2-7) and (2-8)

es=h -+ ... ,
At the position of the plate, y = 1 — 0, by equations (2-10) and (2-11)
yg _ h + e .
and
%= \/(53—3/3)
=T A2k +... . .. . . . . oo (2-82)
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- Fory # 1, by equations (2-9), (2-10) and (2-11)
ys=— (1 =)+ R2(...).
= T V(e — )

Thus

al= V01 -y

and by equation (2-25)

— . e (283

Fig. 4 shows that this is a good approximation even if %/b is not very small. By equations
(2-26), (2-62) and (2-63) the additional load at the plate is given by ‘

(Eh),.. =5

8V ey
”1+2%

The additional load away from the plate is given from equation (2-40), by

2<L>2 1
LC 4 4 hlb b2 g
\/[ <b/2 } 1_1_2 [1_(53/;_2>2]' o e " o (2-65)

3. Plates on the Upper Surface of L‘he Wing.—3.1. The Potential Function in the Treffiz-plane.
Of all wing-plate arrangements with varying ratios of the heights of the plates on the upper and
lower surfaces of the wing, the extreme case of plates on the upper surface only is the simplest,
having the smallest number of < corners ’, and we consider such an arrangement in this section.

To determine the load distribution over the wing, the potential function of the flow around the
fixed wake contour is again calculated. The conformal transformations used are similar to those
given by W. Mangler® for the general case of arbitrary ratio of the heights of the plates on the
two surfaces. Let the plates be of height 4.

As in the case where the plates are of equal height above and below the wing, the right half
of the ¢-plane (y > 0) is transformed into the full {,-plane by the transformation

N = — 4L .. .. .- . ce . (3-1)
(see Fig. 18). ' :
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The parabola, into which the plate is transformed, is again replaced by the arc of the circle
through the points B, and C, and with its centre on the axis 2 = 0. The radius is

RO

I VAN hz}
n==@) +3)
The circle also intersects the y-axis at the point H,:
2
= —i [3(%) + hﬂ .

In the next step, the circle and the y-axis are transformed into straight lines. This is achieved
by a linear transformation which transforms the point H; into y, — — oo

ey o

and the centre is at

¢, . (3-2)
s b] z 2
i+ 3(2) +
The points A, B, C, D, E (see Fig. 18) are transformed into thelpoints:
A, =90

gy o B+
O

o)+ ][+ o) + ]

C 2:—@ .
TR Ty
sy o
@+
E, :¢t,=1. ‘

The infinity in the ¢-plane, G, is- transformed into
Gy @ li— ¢[1 + 3(bl>2 + h}
2 . Gg — “2— .

The boundaries in the Z,-plane form a polygon, see Fig. 18; the outside of which can be trans-
formed into the upper half of the {;-plane by a Schwarz-Christoffel transformation :

_ 8 (¢ + 4ap) (£ + dag) (£ — 9)
= C: + C, J N ml)(;‘: ms)}; @ .. (39

where — ¢a,, — 1a@,, — ta;, — ia,, correspond to B;, C;, D;, E;.  The infinity in the Z,-plane, H,,
is transformed into ¢; = 0, and the point G, into {; = 7.

Following the procedure used by W. Mangler, the integral in equation (3-8) can be written as
an algebraic function:

- _i,_zz 2a - (A i0 Clg)\/{—»(ml Foeias L)Yy, .. .. (3-4)
| 16




Differentiating equations (3-8) and (3-4) with respect to ¢, and comparing the coefficients of
similar powers of {,, we obtain the following equations:

Co=—12y, .. .. .. .. . . .. (3-5)
=220 0 (38
@,y
a, + a3 = 2(a, + a, — 1) .. .. .. .. .. .. (3-7)
a, + a; = 9 4hts [a, + a, — a.a,] . .. .. .. .. . (3-8)
Introducing the abbreviations
A=1+“”2Lﬁ"’ DR )
B=ag Bt L (3-10)

a, + as + 2aa,

a, and a, can be calculated from a, and a,:
a, = ${A + /(A* — 4B)}.. .. .. .. .. .o (3-11)
a, =44 — /(4> — 4B)}. .. .. .. .. o (8-12)

Equations for the unknown coefficients 1,, 4,, 4,, 4, are obtained from the known positions of
the points B,, C;, D,, E,, G, in the ,-plane.

{3 = — 2a; and {3 = — 74, correspond to
bl 2 l:l bl 2 2
OV 1 4 g0 & h]
NROIE O] -
)+
{3 = — 14, corresponds to '
o)+ ][+ + ]
‘.5:2 Z. M h 2 \2
T (Y 4
2) +
- \2
g — (1 = B _ _ (3
— mz(l alas)‘/{(“l @)(az )} . LT (3-14)
{3 = — 1a, corresponds to
%= =2, — 12<1 _ a?:z?,)‘/{(“l —a)am—a). .. - .. (3-15)

3 = 1 corresponds to

Dot 8(5Y = — a1+ )@ + Dies + 1} (316
By equations (3-13), (3-14) and (3-16):

p (et

B+ ) e + (g + 1)

A3
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and by equations (3-18), (3-15) and (3-16):

o) (1 A i — e — )

= il . (3-18)
1+ 3(5) +r (1+ ﬂz_;)\/{(al T 1)(a + 1))
Using the abbreviation
{ — “4 — 0£4)}
D= a1ﬂ3> (3_19)

(1 + Z)vila + i+ 1)

b D B v _
(l>—1+3D+4D<Z>27 . .. .. (8-20)

The constants @, and a, have to be chosen so that the required values of » and b, are obtained
from equations (3-9) to (3-12), (3-17), (3-19) and (3-20). This has to be done numerically by
varying a, and a,. ‘

The case of end-plates, 61/2 = 1-0, is simpler since a; = a,. Then equations (3-7) and (3-8)
give the relation

we obtain

N ¢ 55,/
as .
Instead of equations (3-11) and (3-12) we have
_ 24 a . l
24 a, _
as S0 1 (3-23)
and equation (3-17) 1s rep]aced by 7 ,
ozl — (24 a)(2a, + 1) .
1)\/{ s } R &
By equations (3-13) and (3 16) ,
LK) |
Ay = : . .. (8-25)

(2> (1 + d2a4>\/{(“1 + 1)(as + 1)}

The final relations between points on the y,-axis ‘and the wake contour are thus known. Points
on the yy-axis with y; << — @, or y;, > — a, correspond to points on the wing:

[3(3) -+ ) {1+ 5= yl} V(@ + y)ay

" 11[1 ’ <%1>2 {1 -+ %} Vi{la + 1)(as i 31)3)}}] (3_26)'
and ., e
y=/y= y2[3<2_1) i h} | 1 (3-27)

—ser 143Gy |
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In equation (3-26) the negative sign holds for yy << — a,, and the positive sign for y; > — as.
Points with — a, << vs << — a, correspond to points on the plates:

[2) +7] {1 - %‘iﬁ;}’ i e

TN ) e £
I

51 b 2 [ by 2 :|2
o 1+3<2_>+h I

To determine the potential function in the I,-plane, we will proceed to show that a parallel
flow in the ¢-plane with the velocity — v,,, parallel to the z-axis corresponds, in the {,-plane,
to the flow of a doublet at the point ; = <, which corresponds to the pomt at infinity in the {-plane.
The axis of the doublet is parallel to the y;-axis.

For points in the neighbourhood of {3 = ¢
Co _ » bl 2 2 - 2 .
?_1+3<§>+]¢+C(,3—z)—|—... .. (3-30)

since by equations (3-3) and (3-4)

(dz/:) 20(5, — i) + .
with
_ (+“2)( +“4) P 7 - 1)

By equations (3-1), (3-2) and (3- 30) for cj—->oo |
) o]
C =)
],
—C 51
P

Since the ys;-axis is a streamline in the doublet flow the complex potential function for the flow
around the fixed wake contour is given by the potential of the doublet only

Fi(8) = $1lzy) + 1wa(2y)

b u |
=0, s —— .. .. .. .. .. .. (832
25 (3-32)

p

2[4.( ) +h2M1 +“2“4}(a1+ 1) (as 1})]
” :\/ [ B e O ) o e

and the total potential for the moving wake contour is

F(¢) = Fy(2) + vmc,g.

where
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For points on the wing or the plates, the potential is

_ - # 0
¢(z,y)__vm[W+zE L (339

where the function y,(z,y) is determined by equations (3-26) to (3-29).

3.2. The Load Distribution on the Wz'ng.——From the known potential function, equation (3-34),
we may obtain the load distribution along the wing by equation (2-22):

— oY 1 — 71 b
CL(.}) . C(:V) - ZV—O’uli 5}—;:—1>US Vg — 1>LS} .Q

1 b '
O e '
VU M y3 - 1>Wing 2 (3_35)

The difference A(y_l_l ~ for corresponding points on the upper and lower surface of the wing
3 — L/ Wing ‘

has to be determined graphically.

The coefficient C, of the overall lift is as in equation (2-24),

Co=A%e1 .. L L (339
~ with
| 1:424 r}_ 1>wmgd(5y/§). N X

The method of determining the downwash is the same as in section 2.2 for the wing with plates
of equal heights above and below the wing. For constant sectional lift slope, or with the assump-
tion of equation (2-35), equations (2-87) and (2-38) hold, where x is now calculated with the
value of I given by equation (8-37). Some » values are plotted in Fig. 19. The results show that
with plates of the same total height, the plates on the upper surface have a somewhat larger effect
than plates of equal height above and below the wing. There should be no difficulty in inter--
polating results for other wing-plate arrangements. ‘

The spanwise load distribution is given by

Colyyely) _p 40 1 ) o
CL ¢ I y3 — 1 Wing

(3-38)

The additional load distribution is again determined by equation (2-40), where C,c/C,¢ is given
by equation (3-38). Values of Z2f _ 4 {1 _ (%2)} are plotted in Figs. 20 to 22 and

C,c =
tabulated in Table 3.

- A comparison of the additional load distribution for plates of equal height above and below the
wing and plates on the upper surface only, see Fig. 23, shows that the spanwise loading and in partic-
ular the values at thewing-plate junction are not much different in the two cases, so that it is possible
to interpolate the values for plate arrangements with a ratio of the heights of the plates on the
upper and lower surfaces of the wing different from the two extreme cases calculated. With
plates on the outboard part of the span the additional load decreases in nearly the same way

for the two cases, whilst with plates well inboard the additional load decreases more slowly
with plates on the upper surface only.
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3.8. The Side-force on the Plates—The side-force on the plates is determined from the known
difference of the potential function inside and outside the plate. By equations (2-43) and (3-34)

0V 1 o 1 b
CY(Z) ) C(y) - 2 Vo M[(y;; — .].)Inside y3 — 1>0ut5ide] Q
Y 1 b
=% Al 2. .. .. .. .. .. 3-39
2 VO a (y;; — 1>Plate2 ( 3 )
The local side-force coefficient referred to the total lift coefficient is

Cve _p g1 3-40
ce=1 <ﬁm' ce e (340)

Side-force distributions are plotted in Fig. 24. A comparison with Fig. 15 shows that the side-force
coefficients on plates on the upper surface are about twice as large as on the upper part of plates
above and below the wing of the same total height. This is to be expected as the area above the
wing in the former case is twice that in the latter.

The coefficient of the total side-force on one plate is written as in equation (2-46)

ComAer, R - A
[
with
110 1 2
— 1 . .. .. .. —
IY - ZMJO A(y3 - 1>Plate d(b/2> o (3 42)
Cy _ Iy 343
E=7 . L . . (3-43)

The ratio Cy/C, is plotted in Fig. 25.

The moment M of the side-force with respect to the plate-wing junction has been determined
from the side-force distribution in equation (3-40), see equation (2-49), and from this the arm

b M

Zog = 7
has been calculated and plotted in Fig. 26. The approximation, equation (2-51), resulting from
elliptic side-force distribution, is still of sufficient accuracy.

4. Practical Example—This section gives a description of the actual calculation procedure.
From the known plan-form of the wing*, the mean sectional lift slope @ = a, cos ¢ is determined
as well as the value of the downwash factor o, as explained in Ref. 7. From the given position
and height of the plates, values of the factor » can be read from Fig. 4 for plates of the same
height on the upper and lower surfaces of the wing and from Fig. 19 for plates on the upper
surface only. The change in the overall lift slope due to the plates is determined from the relation

T I
A0y _Cao) __=d y N )
o o 1_{_%a)0l .

m A

Cy ofo Is the lift slopé of the wing alone, which can be obtained either from a complete calculation
according to Ref. 7, or from the approximate relation '

Coo a
o wa
14+ 2=
T mA
* If the calculation is to be performed for a given subcritical Mach number, the plan-form of the analogous wing must
be used (see Ref. 7).
21
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The overall lift slope of the wing with plates is then ‘gi\fen by

%:CL0+4_C”_L_

0.8 o

The additional spanwise load distribution is given by
AC(y) e(y) _ Cy [CLC 4 { _ (Y 2” 4aC, 4 { A 2} 4.3
B S AN A Ll € H RV L € N R

In most cases$ of practical importance 4C,/« is small compared with C,/«, so the second term in
equation (4-3) can be neglected. ' :

Cice 4 ¥\ . . . . :
Then from values of =% — = /11 — <—> } which are given in Figs. 5 to 10 and 20 to 23,
L W b/2 :
and in Tables 2 and 8, and from C /o, we can calculate M) ﬂ) .

o 4

The distribution of the side-force along the plate is nearly elliptical ; some distributions are
plotted in Figs. 15 and 24. Total values of the side-force on the part of the plate on the upper
surface of the wing are given in Figs. 16 and 25. The moment of the side-force with respect to
the wing-plate junction may be obtained from Figs. 17 and 26. L

As an illustration, we will calculate the load distribution of a swept wing with fences of varying
spanwise position ,/2 and various heights z. Let the wing be of aspect ratio 3, taper ratio 1: 3,
and let the sweep of the quarter-chord line be ¢,, = 50 deg. The lift distribution of the wing
alone, which has been calculated in Ref. 11 using the method of Ref. 7, is plotted in Fig. 27.
Let the maximum height of the fences, 4, be 0-2 and 0-4 times the local wing chord ¢(y), i.e.,

h_ 0-2 e 0.21 y [0_5 B %51/2}
b 0:4 4 0-4 b2
Let the fences be of the same height on the upper and lower surfaces of the wing.
From Fig. 4 we get » = 0-970 for 5,/2 = 0-85/2 and Ajc = 0-4 (i.e., A/b = 0-093). The

values of the sectional lift slope @ of the sheared wing, and of w, for the wing alone are a = 4-4,

» = 1-04. The overall lift slope of the wing alone is C, ,/a = 2-86. With these values we may
calculate the change of the total lift slope by equation (4-1)

AC,

— 0-03
o4
A€, _ g.01.
C,

With smaller fences, or fences farther inboard on the wing, the value of 4C,/C; is still smaller.
The additional lift, by equation (4-3), is

o vl th-Gl
f%é\/[l'_(_b%)z)},.. N

In the example chosen, the second term in equation (4-4) can be neglected. Values of

Cro 4 {1 — <b_3/}_2_ 2} “for the given bb_l//§2 and %/b are interpolated between those given in Figs.

Cie =
5o 7 and Table 2. Adding the 4C,(y)/C, to those of the wing alone leads to the lift distributions
plotted in Fig. 27. '
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LIST OF SYMBOLS
Rectangular system of co-ordinates, x in the wind direction, Y spanwise,
z positive downwards, see Fig. 2.
z 4 7y, complex co-ordinates in the Trefftz-plane.

z, + %y,, complex co-ordinates in transformed Trefftz- planes see Figs. 2
and 18.

Local wing chord.

Mean chord of the wing.

Wing span.

Total height of the plates
Spanwise distance of the plates.

2, aspect ratio.
¢

Angle of sweep of mid-chord line. -
Geometric incidence.

Induced angle of incidence.

Effective angle of incidence.

Velocity of the main flow.

Downwash velocity in the Trefftz-plane.

" Potential function.

Local lift coefficient.
Overall lift coefficient.
Local lift coefficient of wing alone.
Overall lift coefficient of wing alone.
Cr— Cuo
Co— Cu

Fy
3P Ve

local side-force coefficient.

T‘%—g’ coefficient of the total side-force on the part of the plate on the
PV o
upper surface of the wing.

Moment of the side-force on the upper part of the plate.
M

~—— _,moment arm.

~ D
F. 2
Y9

ZL sectional lift slope, see Ref. 7.
&, .
Lift slope of the two-dimensional aerofoil.

i downwash factor, see Ref. 7.

,%’U o/ Vo
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See equations (2-24), (2-25) and (3-37).

See equations (2-46), (2-47) and (3-42).

Strength of doublet in {,-plane, see equations (3-32) and (3-33).
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APPENDIX 1

The Load Distribution on Wings with a Discontinuity in Chord,
Sectional Lift Slope or Geometric Incidence

The local lift is determined by the equation

pin) = S cl) ) Cl) (o) — waoa)) .. . (AD

where % = y/b, b is the wing span, a(y) is the sectional lift slope, ¢(4) is the local chord, and
«(n) is the geometric incidence. The induced incidence, «; = wa; (1), 1s a function of the trailing
vortex sheet ' o
_ 1 rtdy dn’ _
oci[,(n)-—g—n AT .. .. .. .. .. .. (A-2)

/2 is the ratio between the induced downwash at the wing and that far downstream in the wake;
o = 1 for wings of large aspect ratio and @ — 2 as 4 — 0 (se¢ Ref. 7).

The spanwise load distribution v(n) is always a continuous function, but the induced incidence
a,(n) can be discontinuous. Such a discontinuous «; exists for a discontinuity in the geometric
incidence «(n) or the chord ¢(y) or the sectional lift slope a(7).

When the incidence distribution «(7) has a discontinuity, the induced incidence has the same
discontinuity. For this case H. Multhopp has solved equation (A-1) by calculating y(») as the
sum of two terms ' :

y(n) = y.(n) + »*@) . .. .. .. . .. o .. (A-3)

The first term, y,(y), depends only on the amount and the position of the discontinuity. The
second term, y*(), belongs to a continuous «(y) distribution and can be calculated by the usual
methods. ’

With a discontinuity in the chord the method has to be altered since the amount of the
discontinuity of «; is not known beforehand. The distribution y, which takes account of the
discontinuity, depends on the unknown value of the total y at the position of the discontinuity.
An extension of Multhopp’s method for calculating the load distribution over a wing which has a
_ discontinuity in the chord has been given by J. Weissinger®.

The Multhopp-Weissinger method can be extended to swept wings and to wings of small aspect
ratio by using a method similar to that used by D. Kiichemann for ordinary swept wings, ¢.e.,
by introducing a sectional lift slope a(n) which depends on sweep and varies along the span, and
by using the downwash factor o which depends on the aspect ratio of the wing. 1In the following,
the calculation procedure will be written down for the general case of a discontinuity in incidence,
chord and lift slope. The latter may not exist in practice but only in approximate representations.
To simplify matters for the reader, we repeat here the work of Weissinger.

Since the position of the discontinuity will not in general coincide with one of the fixed pivotal
points of Multhopp’s calculation procedure, it is advisable to extend this calculation so as to
allow the calculation of the load distribution at one further arbitrary point along the span.
Multhopp approximates the y-function by the interpolation function

. 2 " w . .
P9 = —" > p, > sinud, sinud .. . .. .. .. A4
(%) m + 121 zl (A-4)
where
7 = cos & '
— »(#,) with 8, = "
714 - y #n 7 m —I“ 1 N
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Let
' ny = COS B,

be the position of the arbitrary point. The function

. y(9,) — 7(9,)
y(9) = 7(9) —l—msm (m =+ 1)

has the values

y(9s) = Vs o
Now
L1 dy a9’
% of2) _%Jchosﬁ’——cosﬁ
_Llpd  ay L y—5(8)  (me D singmt )9
2z J)odd cos 9 —cos @ | sin (m + 1)8, 2 sin ¢ '
This gives

ki)

o 0(79’v) - bwyw - z’ bvnyn
n=1

where 8,, and b,, are the coefficients given by Multhopp. This means that the calculation of y at
the positions 7, is not affected by the additional point 7,.

The induced incidence at 7, is

. I ay’ - m + 1
% o(Bs) = 2 J'o d®' cos & — cos 9, + b = 7(2)] 2sin 9,
This is equal to
o o(0) = buye — > boys .. .. . o Y
=] .
where
_m+1 _
b”*ZSinﬁs .. .. .. .. .. .. .. .. (A-6)
1 " . . )
=_ - — ? P
by CESIETE MZI (m 4+ 1 — p) sin ud, sin ud,
—_ Asy Sin ﬁn _
~ (m = 1)(cos ¥, — cos ¥, (A7)
rsin2 W+—21)m % even
a, = .. .. .. . .. .. (A-8)
cost 18 4q. '
2
The value y, can be determined from the equation
Yo = a{1.) c(ns) [a(n,) — wot; o ()] - .. .. .. .. o0 (A-9)
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by inserting equation (A-5). This is a better approximation for y, than the value 7(#,) obtained
from equation (A—4), since it is based on the values a(z,), ¢(,), (). In the case of symmetrical
load distributions

m-l-l
&; D(’f}s) - Ssyss z Bsnyn .« .. s .. .. . .. (A—lO)
n=1
with :
. ,Bm:bsn_l—bs,m-kl—n . .. .. - . . .. (A—ll)
- P /- 1

5 9

It isnow assumed that, at the spanwise positions -+ #,,the incidence, the chord and the sectional
lift slope have discontinuities, but that they are continuous everywhere else.

Defining ‘ A
= a(n, + 0) — a(y, — 0) . . .. . o (A-18)
and
;- 2b B 2b
a(,’//s - O)C(ns — 0) “(775 _I_ O)C(T/s —|_ 0)
b a(n, + 0)e(n,+ 0) — a(n, — O)c(y, — 0) - L (A1)

“(773 _I_ 0)0(773 _I_ O) “(773 - O)C(ns - O) .
Since the load distribution must be continuous everywhere, the following equation must hold
v(ns +0) =y(n, — 0) =,

a(n, + 02)2(775 +0) [e(n, + 0) — wayo(n, + 0)]

_ (s‘— O)C(S—O)
= T T [l — 0) — @y, — 0)].

This demands a discontinuity of the induced incidence
w[“io(m + O) - “50(773 - O)] = TYs -l_ a .
Multhopp has shown that the load distribution '

Mmzzgﬁﬁw G e (A1)
with '
2 . o + 9, cos 3(& + 9,) }
F(n)_;g[(cosﬁ cqsﬁ)ln %“l_ﬁ ﬁl—}—(cosﬁ—l—cosﬁ)l (ﬁ_ﬁ)—[—Zﬁ sin ¢
$ =cost'n, .. .. .. .. . . .. o .. (A-16)
produces the required discontinuity in the induced incidence
0 for 0 <7 <n, ' |
W07 =— .. . . . o .. (A—17\
Ty, + o fory, <n <1

y(n) can again be determined as the sum of y,(s) and a further term y*(5), equation (A-3),
where y*(57) has to satisfy the equation

%) — @mn) . cn) o yim) . 2D
Y (77) = %[“(W) W&o Z(?;;——)

-¢(n
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Since the remaining induced incidence wa*, o(7) is a continuous function, it can be approximately
represented in the usual way by a sum of the load coefficients at certain points

m—!—l
1(),,—ZJm,yv—z B,y*, .. .. . .. .. .. .. (A-19)
n=1 .
tnil V .
2
Wiy = by, — > Buyta. . .o ... oL (A20)

=1

It follows from
Y = ? Fo A4 p*,
for o —tF, # 0

that .
_oy* ok ~
Vs —ﬁFs (A 21)
hence .
g 4 wy%,
vi(n) = w—rFF() .. .. .. .. .. (A22)

Inserting equations (A-17), (A-19), (A~20) and (A— 22) into (A—18) we obtain, as the final equations
for y*, and ¢*,:

) b | o 2 o . ‘
% ——id ! Y — . .. .. .. .. .. . —
v b + w%} =24 3 Bt — 4, (A-23)
where
' R 2b
4, = w —1F, F, wa,c, for 0 <n <,
A, = o 4 % [1—]—1*] 26} for-m<n<1
w — T.F U
w 25 '
v [b R wa(y, — 0)c(y, — 0)}
| w1
_afp, — 0) < By g F. 2b _
- C() ‘ + nzl sny 2 » — 'L'Fs s wa(ﬂs - 0) (775 . 0) b (A 24)

The equations (A-23) and (A-24) are solved by an iteration process. When 7 £ 0, a ﬁrst
appro*amatlon for y*© () is determined by assuming ¢ (r) and in particular y,® and calculatmg
v, () by equatlon (A-15) and y*% () by equation (A-3). Having calculated y*(y) and in
particular y*, y, is calculated by equation (A-21), () by equation (A-15) and y () by equation
(A=3).
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TABLE 1

Position of Certain Points in the Various t-planes, for the Case of Plates of Equal Height Above and Below the Wing
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Values of CL_UL) f@ _4 \/ {1 — (bj/)_2>2} Jor plates of equal height above and below the wing*

TABLE

2

* The values for 4/b = 0-05 are obtained by graphical interpolation.

30

C, c 7
” byfb = 0-2 byfb =04 - byfb=0-6
?)7_2 h
5=005 01 0-2 0-3 0-05 0-1 0-2 03 0-05 0-1 0-2 0-3
0 0-002 | 0-012 | 0-044 | 0-091 | 0-002 | 0-009 | 0-038 | 0-078 | 0-001 0-005 | 0-020 | 0-041
0-1 0-004 | 0-015 | 0-049 | 0-096 | -0-002 | 0-011 | 0-041| 0-082 | 0-001 | 0-006 | 0-022 | 0-045
0-15| 0-006| 0:019| 0-055| 0-104 ,
0-014 | 0-029 | 0-087 | 0-115 ) ) ] . . ) _
0-2 {_0,013 0024 |—0.047 _0_073} 0-004 | 0-014 | 0-051| 0-096| 0-002 | 0:008| 0-028! 0-055
0:25 |—0-005 |—0-014 |—0-036 |—0-081 1
0:3 |—0-008 |—0-009 |—0-027 |—~0-050 | 0-007 | 0-024 | 0-071 | 0-123 | 0-003 | 0-011 | 0-039| 0-073
0-35 ' 0-013 | 0-034 | 0-080 | 0-141
_ ) , ) , 0-028 | 0-056 | 0-113 | 0-168}| ) ) i
0-4 |—0-001 |—0-005 |—0-017 |—0 035{ —0-028 | —0-055 |—0-110 |—0- 164, 0-005 | 0-018 | 0-059 | 0-104
0-45 . —0-012 |—0-083 |—0-0868 |—0-137 ‘
0-50 |—0-001 |—0:003 |—0-012 |—0-025 |—0-007 |—0-023 |—0-0687 |—0-117 | 0-011 | 0-035 | 0-097 | 0-154
0-55 . 0-021 | 0-052| 0-126| 0-188
) ) ] ' ) ) 0-047 | 0-091 | 0-169 | 0-233
0-6 0 —0-002 |—0-009 |—0-019 |—0-004 |—0-013 |—0-044 |—0 086{ —0-048 |—0.097 |—0-191 _0_276}
0-65 —0:023 1—0-058 | —0-148 |—0-231
0.7 0 —0-002 |—0-006 |—0-015 |—0-002 |—0-009 |—0-031 |—0-063 |—0-013 |—0-041 |—0-117 |—0-195
0-75 ‘
0-8 0 —0-001 |—0-005 |—0-011 |—0-001 |—0-006 |—0-022 |~0-046 |—0-007 |—0-022 |—0-074 |—0-135
0-85 '
0-90 | 0 —0-001 |—0-003 '—0-007 |—0-001 {—0-004 |—0-014 |—0-030 |—0-003 |—0-013 |—0-044 |—0-084
0-95] 0 —0-001 |—0-002 |—0-004 | 0O —0-003 |—0-010 |—0-020 |—0-002 |—0-008 |—0-030 |—0-057
1-0 0 0 0 0 0 0 0 0 | 0 0 0 0
y by/b=0-8 byfb =09 by/b =10
5/_2 h
7=005 01 0-2 0-3 0-05 0-1 0-2 0-3 005 | 0-1 0-2 03
0 —0-003 |—0-009 |—0-026 |—0-040 |—~0-012 |—0-031 {—0-075 |—0-107 |—0-055 |—0-098 |—0-158 |—0-197
0-1 |—0-003 |—0-008 |—0-024 |—0-037 |—0-011 |—0-030 |—0:073 |—0-103 |—0-054 |—0-096 |—0-156 |—0-193
0-15
0-2 |—0-002 |—0-006 |—0-018 |—0-028 |—0-010 |—0-028 —0-066 |—0-094 |—0-051 —0-091 |—0-146 |—0-181
0-25 :
0-3 1—0-001"1—0-003 |—0-008 |—0-011 |{—0-009 |—0-023 |—0:055 |—0-079 |—0-047 | —0-083 |—0-131 |—0-161
0-35 ,
0-4 ¢ 0-001, 0-002| 0-007| 0-014 |~0-007 [—0-017 |—0-037 |{—0-050 |—0-040 |—0-070 |—0-109 |—0-132
0-45
0-50 | 0-008 | 0-010 | 0-031 | 0-053 |—0-003 |—0-007 |—0-011 |—0-010 |—0-030 |—0-052 |—0-077 |—0-090
0-55
0-6 0-008 | 0-024  0-071 | 0-112 | 0-003| 0-009 | 0-027 | 0-045 |—0-017 |—0-027 |—0-033 |—0-032
0-65 .
0-7 0-019 | 0-057 | 0-141 | 0-200 | 0-012 ] 0-034 | 0-087 | 0-130 | 0-002| 0-010 | 0-030 | 0-048
0-75 | 0-035| 0-087 | 0-193 | 0-264 .
0-081 | 0-154 | 0-269 | 0-337
0-8 {_0,084 —0-163 |—0-289 |—0-377(| 0032 | 0-086 | 0-187 | 0-249 | 0-031 | 0-067 | 0-126 | 0-166
0-85 |—0-037 |—0-095 |-—0-211 |—0-296 | 0-063 | 0-1381 0-285 | 0-326
on 1. . . _0.003)| 0129 0-239 | 0:377 | 0-449)| _ ) )
0-90 {—0-021 |—0-060 |—0-151 |—0 223\ 0117 |—0-209 |—0-312 | —0-368] 0-088 | 0-179 | 0-291 | 0-353
0-95 |—0-012 |—0-034 |—0-089 |—0-146 |—0-051 |—0-103 |—0-189 |—0-236 | 0-160 | 0-295 | 0-434 | 0-504
1-0 0 0 0 0 0 0 0 0 0-517 | 0-675 | 0:827 | 0-899



Values of QL__(X)
Cr

cy) 4

c 7T

TABLE 3
J {1 — (53//—2>2} for plates on upper surface of wing

bfo=0-2| byfb=0-4 byfb = 0-6 byfb=0-8 byb=1-0

Y .
iz [

| 3=0-1 | 01 0-2 0-1 0-2 0-1 02 | 005 01 0-2
0 0-023 | 0-017 | 0-071 | 0-013 | 0-040 |—0-014 |—0-028 |-0:056 |—0-101 |—0-156
0-1 0-026 | 0-018 | 0-076 | 0-013 | 0-041 |—0-013 |—0-:027 |—0:055 |—0-099 |—0-153
0-15 | 0-029

L S| 00 . | | ois loon oot |o-058 |—0-093 |_o-
02 {|_00%L o-020 | 0084 0014 | 0-045 |-0:011 |—0-021 |—0:053 | =0-098 |~0-142
0-25 ~|—0-020 ‘

0-3  |—0-017 | 0-030 | 0-098 | 0-018 | 0-056 [—0-008 |—0-009 |—0-048 |—0-084 |—0-125
0-35 0-041 | 0-106

04 |0 011{ _ o060 __8:{}2} 0-020 | 0-076 |—0-001 | 0-010 |—0-042 [—0:070 |—0-101
0-45 ~0-039 |—0-102

050 |—0-007 |—0-030 |—0-092 | 0-051 | 0-104 | 0-013 | 0-041 |—0-082 |—0-051 |—0-068
0-55 0-067 | 0-122

o oot o e f| 0086 | 0148\ . st oo o |
06 |-0:004 |~0:020 |—0-073{| 0038 | 01os | 0040 | 0:08& —0-018 —0:024 |-0-022
0-65 —0-078 |—0-168
07 |—-0-003 |-0-013 |—0-057 |—0-062 |—0-145 | 0-082 | 0-140 | 0-004 | 0-014 | 0-041
075 | 0-110 | 0-177 '

. . | | s |ouioad| 0147 | 0-222Y] o | .
08  |—0:002 |—0-009 |-0:042 |—0-038 |—0-104{| 1150 | (log p 0:039 | 0:077 | 0-128
0-85 —0-112 |—0-210
0-9  |—0-001 |—0-006 |—0-027 |—0.023 |—0-062 |—0-081 |—0-163 | 0-109 | 0-190 | 0-270
0-95 "0-018 |—0-016 |—0:040 |—0:055 |—0-110 | 0-177 | 0-290 | 0-390
10 | 0 0 0 0 0 0 0 0450 | 0-575 | 0-700
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Plates on upper surface of wing.
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Fic. 20. Additional load distributions.
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F1c. 21. Additional load distributions. Plates on upper surface of wing.
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Fic. 22.  Additional load distributions. Plates on upper surface of wing.
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F1c. 23. Additional load distributions.
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F1c. 24. Side-force distributions. Plates on upper surface

of wing.
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