

By

L. E. Fraenkel

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE
1957

$$
\text { PRICE } 11 \mathrm{~s} 6 d \text { NET }
$$

Calculations of the Pressure Distributions and Boundarylayer Development on a Body of Revolution with Various Parabolic Afterbodies at Supersonic Speeds

By
L. E. Fraenkel
Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

> Reports. and Memoranda No. $2966 \dagger$
> February, 1953

Summary.-Detailed calculations are made of the flow over a series of bodies at Mach numbers of 1.2, 1.4 and 1.6 and Reynolds numbers of 48 to 72 millions. The bodies consist of a basic forebody and parallel portion to which are added truncated parabolic afterbodies of three different thickness ratios. The calculations are in three main parts:
(i) Calculation of the inviscid flow over the bodies, mainly by the method of characteristics.
(ii) Calculation of the boundary-layer properties by what is essentially an extension to compressible flows of the method of Squire and Young.
(iii) Calculation of the pressure distribution on the ' modified ' afterbodies which result from adding the displacement thicknesses to the original profiles, by Ferri's method of linearized characteristics.

The results indicate that the slender body' and quasi-cylinder theories predict the flow over afterbodies with only very limited accuracy for the thickness ratios and Mach numbers occurring in practice, but that the linearized similarity law remains a useful means of generalizing the particular results of exact inviscid-flow calculations. The boundary layers are seen to thicken very rapidly towards the rear of the afterbodies and this causes pressure changes of as much as 12 per.cent of the peak suction. The skin-friction results agree extremely well with those for the equivalent flat plate.

1. Introduction.--This report is part of an experimental and theoretical investigation of afterbody drag and base drag. These two problems are intimately related, for analysis of the flow in the vicinity of the base, whether theoretical or experimental, can at most hope to formulate a law relating the base pressure to the pressure, flow direction, and boundary layer immediately ahead of the base ${ }^{1}$. Further, conditions in the neighbourhood of the base affect the pressures towards the rear of the afterbody by propagating disturbances upstream through the boundary layer : this effect is most serious at low Reynolds numbers.

In a first approach to the overall problem it seems reasonable to concentrate on moderate boat-tail angles and flows at high Reynolds numbers, so that a well-developed turbulent boundary layer approaches the base; the effect of the flow behind the base on the afterbody pressures may then be expected to be small (in particular it is hoped that separation of the boundary layer ahead of the base will be avoided), and experimental evidence ${ }^{1}$ also shows that for such flows the relation between the base pressure and the pressure ahead of the base is not particularly sensitive to changes of Reynolds number. It is also desirable initially to consider low supersonic Mach numbers in order to keep heat-transfer effects to a minimum. Fortunately it is this problem of flows with moderate boat-tail angles, at large Reynolds numbers and at low supersonic Mach numbers, which is also the most pressing from the viewpoint of the aircraft designer.

[^0]The present report is an attempt to calculate the pressure-distributions and boundary-layer properties on a related series of afterbodies subject to these conditions. It seems worthwhile to take considerable pains in performing such calculations because firstly they should provide more detailed and accurate information of afterbody drag than exists at the present time, and secondly they should indicate, when the accompanying experiments are made, whether more or less conventional methods of calculation can determine accurately the pressure and boundary layer immediately ahead of a base.

The calculations consist of three main parts :
(i) Calculation of the pressure distributions on the bodies in inviscid flow.
(ii) Calculation of the boundary-layer displacement thickness (and of other boundary-layer properties, in the process).
(iii) Calculation of the changes in the afterbody pressure distributions due to the addition of the displacement thicknesses to the body profiles.
These are of course only the initial steps of what should ideally be an iterative process; however, it is doubtful whether further iterations are worthwhile in view of the approximate nature of the boundary-layer calculations, and in any case one would expect the results to converge fairly rapidly.

The bodies of revolution for which the calculations were made are shown in Fig. 1. They consist of a basic forebody and parallel portion to which are added three afterbodies of parabolic profile and various thickness ratios t (maximum radius/length of the afterbody continued to a point). A small cone angle and a long parallel portion were chosen in order to make the flow outside the boundary layers immediately ahead of the afterbodies virtually isentropic and uniform, afterbody effects being thus separated from the interference effects of the forebody. Nine such bodies are to be tested by the ground-launched technique; they have the same basic shape as those in Fig. 1, but are truncated to have shorter afterbodies of various lengths. On the flight models the cone shoulder will also be rounded off to avoid local separation of the boundary layer.

Mach numbers of $1 \cdot 2,1 \cdot 4$ and $1 \cdot 6$ were taken in the calculations, and sea-level conditions were considered : Reynolds numbers, based on body length, were in the range of 48 to 72 millions. Zero incidence was assumed throughout.
2. The method of Calculating the Pressure Distributions in Inviscid Flow.-2.1. Calculation of Pressures Due to the Conical Head.- The velocity on the cone surface was taken from Ref. 2, and the pressure computed therefrom. Because of the small cone angle the inviscid flow is effectively isentropic throughout the field, the total pressure ratio across the cone shock being $1 \cdot 00000$ in all cases.

The pressures along the parallel portion were calculated by a modified form of the slenderbody theory which is compared with exact theory in Fig. $2 \dagger$. The ordinary slender-body theory ${ }^{3}$ gives the following expression for the pressure on a parallel portion behind a conical head (this pressure coefficient is also the 'interference pressure coefficient' of Ref. 4):

$$
\begin{equation*}
C_{p}\left(\frac{l_{F}}{R}\right)^{2}=2 \log \frac{x_{1}+1}{x_{1}}-\frac{2 l_{F}}{\beta R} U\left(\frac{x_{1} l_{F}}{\beta R}\right), \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{2.1.1}
\end{equation*}
$$

where l_{F} is the length of the cone, R is its maximum radius, x_{1} is $\left(x-l_{F}\right) / l_{R}, \beta$ is $\sqrt{ }\left(M_{0}{ }^{2}-1\right)$,

[^1]and U is a function tabulated in Refs. 4 and 5. The disadvantage of this formula is its logarithmic singularity at the cone shoulder ($x_{1}=0$), but this can easily be overcome by the following modification. Since the effect represented by the logarithmic term is by far the smaller one in (2.1.1) we replace it by a quadratic function in an initial interval of $x_{1}\left(0<x_{1} \leqslant 0.4\right.$ was taken here) and choose the constants of this function to give C_{p} its exact value at the shoulder ($x_{1}=0$), and to fair it into the curve of (2.1.1), with continuity of slope, at the end of the interval ($x_{1}=0.4$). The exact value of C_{p} at the shoulder can of course be calculated from Ref. 2 and Prandt1-Meyer expansion tables. The resulting expression is
where
\[

$$
\begin{equation*}
C_{p}\left(\frac{l_{F}}{R}\right)^{2}=b_{0}+b_{1} x_{1}+b_{2} x_{1}^{2}-\frac{2 l_{F}}{\beta R} \dot{U}\left(\frac{x_{1} l_{F}}{\beta R}\right), \quad 0<x_{1} \leqslant 0 \cdot 4, \quad . \quad . \tag{2.1.2}
\end{equation*}
$$

\]

$$
\begin{aligned}
& b_{0}=\left.C_{p}\right|_{x_{1}=0+} \cdot\left(\frac{l_{F}}{R}\right)^{2}+\frac{2 l_{F}}{\beta R}, \\
& b_{1}=16 \cdot 099-5 b_{0} \\
& b_{2}=-24 \cdot 588+6 \cdot 250 b_{0} .
\end{aligned}
$$

The other flow parameters required for the boundary-layer calculations (local Mach number, temperature, etc.) were computed from the pressure coefficient by means of the exact relationships for isentropic flow, which are tabulated in Ref. 6 and elsewhere. In particular, the relationship

$$
C_{p}=\left\{\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{\nu}{\nu-1}}-\frac{p_{0}}{p_{t}}\right\} \frac{p_{t}}{\frac{1}{2} p_{0} V_{0}^{2}},
$$

where ($)_{i}$ denotes total or stagnation and ($)_{0}$ denotes free-stream conditions, leads to the following expression for the velocity gradient :

$$
\frac{1}{V} \frac{d V}{d x_{1}}=\frac{1}{M\left(1+\frac{\gamma-1}{2} M^{2}\right)} \frac{d M}{d x_{1}}=-\frac{1}{2} \frac{d C_{p}}{d x_{1}} \frac{M_{0}^{2}}{M^{2}} \frac{\left(p_{0} \mid p_{t}\right)}{\left(p / p_{t}\right)} .
$$

Here $d C_{p} / d x_{1}$ may be calculated from (2.1.1), (2.1.2), (the derivative of the U-function is tabulated in Refs. 5 and 7), and the other quantities are tabulated functions of the free-stream and local Mach numbers.
γ was taken as $1 \cdot 400$ throughout the present calculations, the only inconsistency being that the values of velocity on the cone surface given in Ref. 2 were used, and these are based on $\gamma=1 \cdot 405$ (this accounts for the discrepancy in the values of C_{p} at $x_{1}=0$ in Fig. 2).
2.2. Calculation of Pressures on the Afterbodies.-In the calculation of the afterbody flow fields it was assumed throughout that at the end of the parallel portion the disturbance from the cone had completely decayed, so that the flow immediately ahead of the afterbodies was uniform and at free-stream Mach number : in actual fact the Mach number varies, in the worst case, from $1 \cdot 604$ on the surface of the body to $1 \cdot 600$ at infinity.

The method of characteristics was used to calculate the flow fields: one of the characteristics networks is shown in Fig. 3. The particular form of equations used may be relevant.
The equations of the characteristic curves are of course

$$
\begin{equation*}
\text { for } C_{1} \quad \frac{d y}{d x}=\tan (\theta+\alpha), \quad . \tag{2.2.1}
\end{equation*}
$$

and for $C_{2} \quad \frac{d y}{d x}=\tan (\theta-\alpha), \quad . \quad$
where C_{1} and C_{2} denote characteristics of the first and second families, respectively, θ is the inclination of the velocity vector, and α is the Mach angle. The survey of Ref. 8 shows that for
wholly numerical calculations of high accuracy by far the most convenient form of the compatibility equations for axially symmetric, isentropic flow is that due to Guderley. This may be written

$$
\text { for } C_{1} \quad \frac{d l}{d y}=\frac{90}{\pi} \frac{\sin \theta \sin \alpha}{\sin (\theta+\alpha)} \frac{1}{y} \text {, where } l=\frac{1}{2}(v-\theta), \quad . \quad . \quad . \quad \ldots
$$

and for $C_{2} \quad \frac{d m}{d y}=\frac{90}{\pi} \frac{\sin \theta \sin \alpha}{\sin (\theta-\alpha)} \frac{1}{y}$, where $m=\frac{1}{2}(\nu+\theta), \quad . \quad . \quad . \quad . \quad$.
ν being the Prandtl-Meyer angle. l, m, ν, θ are all in degrees, and l and m are of course curvilinear co-ordinates of the epicycloids in the hodograph plane of two-dimensional flows. The relationship between v and α is carefully tabulated in Ref. 9 .

The equations in this form are not only simpler than those in terms of the velocity V, but they also permit a sound 'initial guess ' to be used in the step-by-step solution at points where the flow is nearly two-dimensional, for at such points one may write initially $d l \bumpeq \sim 0, d m \bumpeq 0$.

In the present problem the equation of the afterbodies is most simply written

$$
\begin{equation*}
y_{2}=t\left(1-x_{2}^{2}\right), \quad . . \quad . \tag{2.2.5}
\end{equation*}
$$

where

$$
\frac{x_{2}}{x-l_{F}-l_{p}}=\frac{y_{2}}{y}=\frac{1}{l_{A}},
$$

so that the boundary condition becomes

$$
\theta=\tan ^{-1}\left(-2 t x_{2}\right),
$$

on the body.
Some details of the numerical solution of these equations are given in Appendix I \dagger.
3. The Method of Calculating the Boundary-Layer Properties.-3.1. An Approximate Theory for Turbulent Boundary Layers in Axially Symmetric, Compressible Flow.- The theory outlined below is essentially a simple extension to compressible flows of the method of Squire and Young ${ }^{10,11}$; it should be noted, however, that in referring several parameters to conditions at the wall it differs from the extension tentatively suggested by Young himself in Ref. 12.

For the steady, axially symmetric flow of a compressible fluid the boundary-layer momentum equation may be written (see, for example, Ref. 12)

$$
\begin{equation*}
\frac{d \vartheta}{d \xi}+\left[\frac{1}{y} \frac{d y}{d \xi}+\frac{1}{\rho_{1}} \frac{d \rho_{1}}{d \xi}+\frac{H+2}{V_{1}} \frac{d V_{1}}{d \xi}\right] \vartheta=\frac{\tau_{w}}{\rho_{1} V_{1}^{2}}, \quad . \quad \ldots \quad \ldots \tag{3.1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\vartheta= & \text { momentum thickness }=\int_{0}^{\delta} \frac{\rho V}{\rho_{1} V_{1}}\left(1-\frac{V}{V_{1}}\right)\left(1+\frac{\eta \cos \theta}{y}\right) d \eta \\
\delta^{*}= & \text { displacement thickness }=\int_{0}^{\delta}\left(1-\frac{\rho V}{\rho_{1} V_{1}}\right)\left(1+\frac{\eta \cos \theta}{y}\right) d \eta \\
H= & \delta^{*} \mid \vartheta, \\
(\xi, \eta) & \text { are co-ordinates along and normal to the body profile, } \\
y(\xi) \quad & \text { is the body radius, }
\end{aligned}
$$

[^2]$\theta(\xi) \quad$ is the inclination of the profile,
$\tau_{w} \quad$ is the shear stress at the wall,
and ($)_{1}$ denotes local conditions outside the boundary layer.
Now the equation of motion along a streamline gives
$$
\frac{d p_{1}}{d \xi}=-\rho_{1} V_{1} \frac{d V_{1}}{d \xi},
$$
so that $\quad \frac{1}{\rho_{1}} \frac{d \rho_{1}}{d \xi}=\frac{1}{\rho_{1}} \frac{d \rho_{1}}{d p_{1}} \frac{d p_{1}}{d \xi}=-\frac{1}{\rho_{1}} \frac{1}{a_{1}^{2}} \rho_{1} V_{1} \frac{d V_{1}}{d \xi}=-\frac{M_{1}^{2}}{V_{1}} \frac{d V_{1}}{d \xi}$;
and the energy equation gives
$$
\frac{1}{V_{1}} \frac{d V_{1}}{d \xi}=\frac{1}{M_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)}-\frac{d M_{1}}{d \xi}
$$
so that (3.1.1) becomes
\[

$$
\begin{equation*}
\frac{d \vartheta}{d \xi}+\left[\frac{1}{y} \frac{d y}{d \xi}+\frac{H+2-M_{1}{ }^{2}}{M_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)} \frac{d M_{1}}{d \xi}\right] \vartheta=\frac{\tau_{w}}{\rho_{1} V_{1}{ }^{2}} . \quad . \quad . \tag{3.1.2}
\end{equation*}
$$

\]

In order to be able to solve this differential equation we must obtain expressions for H and τ_{w} in terms of known quantities and ϑ, and so we make the usual basic assumptions:
(A1) That the static pressure across the boundary layer is constant normal to the surface (this is already implicit in the momentum equation), and
(A2) That the effects of pressure gradient and of the axially symmetric nature of the flow on the boundary-layer profile characteristics can be neglected; i.e.; that at any point on the body H and the relation between ϑ and τ_{w} are the same as for a flat plate with the same local conditions outside the boundary layer. Neglecting the effect of the axially symmetric nature of the flow on the profile characteristics is equivalent to treating as unity the factor ($1+\eta \cos \theta \mid y)$ in the definitions of displacement and momentum thickness.

To solve the flat-plate problem we follow the approach of Cope ${ }^{13}$ and Monaghan ${ }^{14}$ and make the initial assumptions:
(A3) That the profile in the compressible turbulent boundary layer on a flat plate, with or without heat transfer, is given by

$$
\begin{equation*}
\frac{V}{V_{\tau w}}=\frac{1}{k} \log \frac{\eta \cdot V_{\tau w}}{a v_{w}}, \quad . \quad \therefore \quad . . \quad . \quad . . \quad . . \quad . \quad . \tag{3.1.3}
\end{equation*}
$$

where

$$
V_{\tau w}=\sqrt{\left(\frac{\tau_{w}}{\rho_{w}}\right)},
$$

()$_{w}$ denotes conditions at the wall, the constants k and a have the same values as in incompressible flow ($k=0.400, a=0.111$), and the logarithm is natural. Monaghan has provided some experimental justification for this assumption.
(A4) That Reynolds' analogy between momentum and heat exchange is valid, so that the temperature distribution in the boundary layer is given by

$$
\begin{equation*}
\frac{T}{T_{w}}=1-c_{1} \frac{V}{V_{1}}-c_{2} \frac{V^{2}}{V_{1}^{2}}, \quad . \quad . . \quad . \quad . . \quad . \quad . \tag{3.1.4}
\end{equation*}
$$

where

$$
c_{1}=1-\frac{T_{t 1}}{T_{w}}, \cdot \text { and } c_{2}=\frac{T_{t 1}}{T_{w}} \cdot \frac{M_{1}^{2}}{M_{1}^{2}+2 /(\gamma-1)} .
$$

These assumptions lead to the approximate relations (see Appendix II) :

$$
\begin{equation*}
\frac{\vartheta V_{1}}{v_{w}}=C \exp \left(D \frac{V_{1}}{V_{\tau w}}\right), \quad . \quad \therefore \quad . \quad . \quad . \quad . \tag{3.1.5}
\end{equation*}
$$

where

$$
C=a / k \text { and } D=k,
$$

and

$$
\begin{equation*}
\frac{H}{H_{i}}=\frac{T_{w}}{T_{1}}+\frac{\gamma-1}{2} M_{1}{ }^{2}, \quad . \quad . . \quad . \quad . . \quad . . \quad . . \tag{3.1.6}
\end{equation*}
$$

where H_{i} is the value given by the equivalent incompressible theory with the values V_{1}, ρ_{1}. The error in both these equations is given by a factor $\left[1+O\left(V_{\tau w} / V_{1}\right)\right]$.

We now modify equations (3.1.5) and (3.1.6) in the light of experimental results.
(i) Because of the terms neglected in the derivation of (3.1.5) we evaluate C and D not from the known constants a and k but to give best agreement with the formula

$$
\begin{equation*}
C_{F w}=0.455\left(\log _{10} R_{e w} \frac{T_{1}}{T_{w}}\right)^{-2.58}, \quad . \quad . . \quad . . \quad . \quad . . \tag{3.1.7}
\end{equation*}
$$

which is the extension of Prandtl's well-known formula in incompressible flow and for which Monaghan has also given experimental justification. Now it may be shown (Appendix II) that the same constants C and D which give the best agreement between

$$
\frac{\vartheta V_{1}}{v}=C \exp \left(D \frac{V_{1}}{V_{\tau}}\right) \text { and } C_{F}=0.455\left(\log _{10} R_{c}\right)^{-2.58}
$$

in the incompressible case, also give the best agreement between (3.1.5) and (3.1.7) in the compressible case, and so we may take Squire and Young's values $C=0.2454$ and $D=0.3914$.
(ii) Reynolds' analogy gives for zero heat transfer at the wall $T_{w}=T_{i 1}$, i.e.,

$$
\frac{T_{w}}{T_{1}}=1+\frac{\gamma-1}{2} M_{1}{ }^{2}
$$

Better agreement with experiment for this case is given by Squire's formula

$$
\begin{equation*}
\frac{T_{w}}{T_{1}}=1+\frac{\gamma-1}{2} \sigma^{1 / 3} M_{1}^{2}, \quad . . \quad . \quad . . \quad . . \quad . \quad . . \quad . \tag{3.1.8}
\end{equation*}
$$

where σ is the Prandtl number. This suggests rewriting (3.1.6) as.

$$
\begin{aligned}
& \qquad \frac{H}{H_{i}}=\frac{T_{w}}{T_{1}}+\frac{\gamma-1}{2} \sigma^{1 / 3} M_{1}{ }^{2}, \quad . \quad \ldots \quad . . \\
& \text { which also gives better agreement with experiment than (3.1.6). }
\end{aligned}
$$

We now make our final assumption :
(A5) That there is zero heat transfer at the wall.

We may then use (3.1.8) throughout, and we have for substitution into (3.1.2)

$$
\begin{equation*}
\frac{H}{H_{i}}=1+(\gamma-1) \sigma^{1 / 3} M_{1}^{2}, \quad . \quad . \quad . \quad . . \quad . \quad \text {.. } \tag{3.1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{V_{\tau w}^{2}}{V_{1}{ }^{2}}=\frac{\tau_{w}}{\rho_{w} V_{1}{ }^{2}}=\frac{D^{2}}{\log ^{2}\left(\frac{\vartheta V_{1}}{C \nu_{w}}\right)} . \quad . \tag{3.1.11}
\end{equation*}
$$

Thus (3.1.2) becomes

$$
\begin{align*}
& \frac{d \vartheta}{d \xi}+\left\{\frac{1}{y} \frac{d y}{d \xi}+\frac{H_{i}+2+\left[H_{i}(\gamma-1) \sigma^{1 / 3}-1\right] M_{1}^{2}}{M_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)} \frac{d M_{1}}{d \xi}\right\} \vartheta \\
= & \frac{T_{1}}{T_{w}} \frac{D^{2}}{\log ^{2}\left(\frac{\vartheta V_{1}}{C v_{w}}\right)}, \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{3.1.12}
\end{align*} \quad \ldots \quad . \quad .
$$

where T_{1} / T_{w} is given by (3.1.8). If the external flow field is known this differential equation can be integrated numerically, step by step \dagger.
3.2. Application of the Approximate Theory to the Present Problem.-3.2.1. Values of the constants.-The following constants were used in the approximate theory above.

$$
\begin{array}{rlr}
H_{i} & =1 \cdot 400 \\
\gamma & =1 \cdot 400 \\
\sigma & =0.715 \quad & \\
C & =0.2454 \quad & D=0.3914
\end{array}
$$

After this work had been completed Professor A. D. Young pointed out that in problems of axially symmetric flow it is important to work with the displacement and momentum areas,

$$
A_{\delta^{*}}=2 \pi y \delta^{*} \text { and } A_{\vartheta}=2 \pi y \vartheta
$$

Thus equation (3.1.12) may be written

$$
\begin{aligned}
\frac{d A_{v}}{d \xi} & +\frac{H_{i}+2+\left[H_{i}(\gamma-1) \sigma^{1 / 3}-1\right] M_{1}^{2}}{M_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)} \frac{d M_{1}}{d \xi} A_{\vartheta} \\
& =2 \pi y \frac{T_{1}}{T_{w}} \frac{D^{2}}{\log ^{2}\left(\frac{A_{\theta} V_{1}}{2 \pi y C v_{w}}\right)}
\end{aligned}
$$

and, unlike ϑ, A_{ϑ} remains bounded as $y \rightarrow 0$.
Further, it is not the displacement thickness δ^{*} which should be added to the body profiles, but the ' effective displacement thickness ' $\delta_{1}{ }^{*}$, which corresponds exactly to the displacement area and is therefore defined by

$$
\begin{array}{ll}
& A_{\delta^{*}}=\pi \sec \theta\left[\left(y+\delta_{1}^{* *} \cos \theta\right)^{2}-y^{2}\right] \\
\text { or } & \delta_{1}^{*}=\sec \theta\left[-y+\sqrt{ }\left(y^{2}+2 y \delta^{*} \cos \theta\right)\right] .
\end{array}
$$

δ^{*} and $\delta_{1}{ }^{*}$ are equal to first order in $\left(\delta^{*} \mid y\right)$, so that one might expect that the error of adding δ^{*} instead of $\delta_{1}{ }^{*}$ to the profiles would not have too great an effect in the present work. Estimates have in fact indicated that this effect is of profiles would not order of magnitude as the error introduced by the use of linearized characteristics but of opposite sign.
-Viscosity was evaluated from Sutherland's formula, which, using the values given in Ref. 15, may be written

$$
\mu=3 \cdot 0997 \cdot \frac{T^{3 / 2}}{T+117} \cdot 10^{-8} \text { slugs } / \mathrm{ft}-\mathrm{sec}
$$

where the temperature T is in degrees Kelvin.
3.2.2. The boundary layer on the cone and the transition point.-To start the boundary-layer calculations the following assumptions were made:
(i) That the transition point occurred at the cone shoulder.
(ii). That the momentum thickness was continuous through the transition point.

These assumptions were made because of the difficulty of predicting the transition point accurately, because the initial boundary layer was expected to have only a small effect on that over the afterbodies, and for the sake of convenience ; they may, however, be unnecessarily crude.

To calculate the laminar boundary layer on the cone the result ${ }^{16}$ was used that for a flat plate and a cone with the same external flow

$$
\vartheta(\text { cone })=\frac{1}{\sqrt{ } 3} \vartheta(\text { flat plate })
$$

This relation again treats as unity the factor $(1+\eta \cos \theta / y)$ in the definition of the momentum thickness on a body of revolution. For calculation of the laminar boundary layer on the equivalent flat plate the analysis of Ref. 17 was used.
3.2.3. The practical form of the differential equation for ϑ.-The differential equation (3.1.12) forms the basis of calculation of the turbulent boundary layer on the parallel portion and afterbodies, but its solution is more convenient if the variables x_{1} and x_{2} are introduced in place of ξ. We have for the parallel portion

$$
\frac{d \xi}{d x_{1}}=\frac{d x}{d x_{1}}=l_{F}
$$

and for the afterbodies

$$
\begin{aligned}
\frac{d \xi}{d x_{2}} & =\frac{d \xi}{d x} \frac{d x}{d x_{2}}=\sqrt{ }\left(1+4 t^{2} x_{2}^{2}\right) l_{4} \\
\frac{1}{y} \frac{d y}{d \xi} & =-\frac{2 x_{2}}{1-x_{2}^{2}} \frac{d x_{2}}{d \xi}
\end{aligned}
$$

Hence (3.1.12) may be written

$$
\begin{equation*}
\frac{d \vartheta}{d X}=\frac{\ddots g(X)}{\log ^{2}[\vartheta(X) j(X)]}-h(X) \vartheta(X), \quad . \quad . \quad . \quad . \quad . \tag{3.2.1}
\end{equation*}
$$

where for the parallel portion

$$
\begin{aligned}
X & =x_{1} \\
g\left(x_{1}\right) & =l_{F} \frac{T_{1}}{T_{w}} D^{2} \\
j\left(x_{1}\right) & =V_{1} C / \nu_{w} \\
h\left(x_{1}\right) & =\frac{H_{i}+2+\left[H_{i}(\gamma-1) \sigma^{1 / 3}-1\right] M_{1}^{2}}{M_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)} \frac{d M_{1}}{d x_{1}}=\frac{3 \cdot 4000-0 \cdot 4992 M_{1}^{2}}{M_{1}\left(1+0 \cdot 2 M_{1}^{2}\right)} \frac{d M_{1}}{d x_{1}},
\end{aligned}
$$

and for the afterbodies

$$
\begin{aligned}
X & =x_{2} \\
g\left(x_{2}\right) & =l_{A} \sqrt{ }\left(1+4 t^{2} x_{2}^{2}\right) \frac{T_{1}}{T_{w}} D^{2} \\
j\left(x_{2}\right) & =V_{1} C / v_{w} \\
h\left(x_{2}\right) & =-\frac{2 x_{2}}{1-x_{2}^{2}}+\frac{3 \cdot 4000-0 \cdot 4992 M_{1}^{2}}{M_{1}\left(1+0 \cdot 2 M_{1}^{2}\right)} \frac{d M_{1}}{d x_{2}} .
\end{aligned}
$$

The functions g, j, and h of course depend only on the external flow and on the equation for the wall temperature (3.1.8). Details of the numerical integration are given in Appendix I.
3.2.4. Skin friction.-Equation (3.1.11) gives the local skin-friction coefficient as

$$
C_{f}=\frac{\tau_{w}}{\frac{1}{2} \rho_{1} V_{1}^{2}}=2 \frac{T_{1}}{T_{w}} \frac{D^{2}}{\log ^{2}\left(\frac{\vartheta \dot{V}_{1}}{C v_{w}}\right)} .
$$

For the parallel portion this may be written

$$
C_{f}=\frac{2}{l_{F}} \frac{g\left(x_{1}\right)}{\log ^{2}\left[\vartheta\left(x_{1}\right) j\left(x_{1}\right)\right]},
$$

and for the afterbodies

$$
C_{f}=\frac{2}{l_{A} \sqrt{ }\left(1+4 t^{2} x_{2}^{2}\right)} \frac{g\left(x_{2}\right)}{\log ^{2}\left[\vartheta\left(x_{2}\right) j\left(x_{2}\right)\right]} .
$$

Thus C_{f} follows immediately from integration of the differential equation.
The total skin-friction coefficient for the parallel portion is given by

$$
\begin{equation*}
C_{F}=\frac{1}{A_{1}} \int_{0}^{2 \cdot 0} \frac{2 g\left(x_{1}\right)}{\log ^{2}\left[\vartheta\left(x_{1}\right) j\left(x_{1}\right)\right]} \frac{\rho_{1} V_{1}^{2}}{\rho_{0} V_{0}^{2}} 2 \pi R d x_{1}, \quad \ldots \quad . . \quad . \quad . \tag{3.2.2}
\end{equation*}
$$

and that for the parallel portion and an afterbody together by

$$
\begin{align*}
C_{F}=\frac{1}{A_{1}+A_{2}} & \left\{\int_{0}^{2 \cdot 0} \frac{2 g\left(x_{1}\right)}{\log ^{2}\left[\vartheta\left(x_{1}\right) j\left(x_{1}\right)\right]} \frac{\rho_{1} V_{1}^{2}}{\rho_{0} V_{0}^{2}} 2 \pi R d x_{1}\right. \\
& \left.+\int_{0}^{0.648} \frac{2 g\left(x_{2}\right)}{\log ^{2}\left[\vartheta\left(x_{2}\right) j\left(x_{2}\right)\right]} \frac{\rho_{1} V_{1}^{2}}{\rho_{0} V_{0}^{2}} 2 \pi R\left(1-x_{2}^{2}\right) d x_{2}\right\} \ldots \tag{3.2.3}
\end{align*} .
$$

where A_{1} and A_{2} are the wetted areas of the parallel portion and afterbody, respectively, so that

$$
\begin{aligned}
A_{1}= & 32 \pi R^{2}, \\
A_{2}= & \int_{0}^{0 \cdot 648} 2 \pi R\left(1-x_{2}^{2}\right) \sqrt{ }\left(1+4 t^{2} x_{2}^{2}\right) l_{A} d x_{2} \\
= & 2 \pi t l_{A}^{2}\left[(1 + \frac { 1 } { 1 6 t ^ { 2 } }) \left(\frac{x_{2}}{2} \sqrt{\left.\left(1+4 t^{2} x_{2}^{2}\right)+\frac{1}{4 t} \sinh ^{-1} 2 t x_{2}\right)}\right.\right. \\
& \left.-\frac{x_{2}}{16 t_{2}}\left(1+4 t^{2} x_{2}^{2}\right)^{3 / 2}\right]\left.\right|_{x_{2}^{2}=0 \cdot 648}
\end{aligned}
$$

and
4. The Method of Calculating Pressure Distributions on the Modified Afterbodies.-4.1. The Geometry of the Modified Afterbodies.-Integration of the differential equation (3.2.1) left us with values of ϑ and $d \vartheta / d x_{2}$ at the integration stations. The modified afterbodies were then defined by

$$
\begin{equation*}
y=R\left(1-x_{2}^{2}\right)+\delta^{*} \sqrt{ }\left(1+4 t^{2} x_{2}^{2}\right) \tag{4.1.1}
\end{equation*}
$$

where

$$
\delta^{*}=H_{i}\left[1+(\gamma-1) \sigma^{1 / 3} M_{1}^{2}\right] \vartheta,
$$

and their slope was given by

$$
\frac{d y}{d x}=\frac{1}{l_{A}}\left[-2 R x_{2}+\frac{4 t^{2} x_{2}}{\sqrt{ }\left(1+4 t^{2} x_{2}^{2}\right)} \delta^{*}+\sqrt{ }\left(1+4 t^{2} x_{2}^{2}\right) \frac{d \delta^{*}}{d x_{2}}\right],
$$

where

$$
\begin{equation*}
\frac{d \delta^{*}}{d x_{2}}=\frac{d \vartheta}{d x_{2}} H_{i}\left[1+(\gamma-1) \sigma^{1 / 3} M_{1}^{2}\right]+2 \vartheta H_{i}(\gamma-1) \sigma^{1 / 3} M_{1} \frac{d M_{1}}{d x_{2}} \tag{4.1.2}
\end{equation*}
$$

For the work of the following section the co-ordinates of the modified afterbodies were multiplied by $t\left[\left[R+\left.\delta^{*}\right|_{x_{2}=1}\right]\right.$, in order that their boundaries should start at the same points as those of the original bodies in the characteristics diagrams (Fig. 3). Thus variables x_{3}, y_{3} were introduced, comparable to x_{2}, y_{2}, such that

$$
\frac{x_{3}}{x-l_{F}-l_{p}}=\frac{y_{3}}{y}=\frac{1}{l_{A}\left[1+\left(\left.\delta^{*}\right|_{x_{2}=0} / R\right)\right]}=\frac{1}{l_{A}(1+\varepsilon)},
$$

and the equations of the modified bodies in the characteristics diagrams became

$$
\begin{equation*}
y_{3}=\frac{1}{1+\varepsilon}\left\{t\left[1-x_{3}^{2}(1+\varepsilon)^{2}\right]+\sqrt{ }\left\{1+4 t^{2} x_{3}^{2}(1+\varepsilon)^{2}\right\} \frac{\delta^{*}}{l_{A}}\right\} . \tag{4.1.3}
\end{equation*}
$$

For the presentation of results, however, the modified bodies were scaled up again by the factor $(1+\varepsilon)$, and account was taken of the fact that the pressure had been assumed constant in the boundary layer along lines normal to the body surface, and not along lines $x_{2}=$ constant.
4.2. The Method of Linearized Characteristics.-To calculate the change in the pressure distributions on the afterbodies due to the presence of the boundary layers Ferri's method of linearized characteristics ${ }^{18}$ was used. The essential basis of this method is as follows.

Consider perturbations superposed upon a known flow field such that the original velocities $\left(u_{0}, v_{0}, 0\right)$ are changed to $\left(u_{0}+u_{1}, v_{0}+v_{1}, w_{1}\right)$, where $\left(u_{1}, v_{1}, w_{1}\right)$ are small. By writing down the exact differential equation of supersonic flow first in terms of $\left(v_{0}+u_{1}, v_{0}+v_{1}, v_{1}\right)$ and then in terms of ($u_{0}, v_{0}, 0$), subtracting the two equations, and neglecting terms of higher order than the first in $\left(u_{1}, v_{1}, w_{1}\right)$, Ferri obtained a differential equation for $\left(u_{1}, v_{1}, w_{1}\right)$ whose characteristic curves are those of the original flow field, that is

$$
\begin{equation*}
\frac{d y}{d x}=\tan \left(0_{0} \pm \alpha_{0}\right) \tag{4.2.1}
\end{equation*}
$$

$$
\because \quad . . \quad . \quad \text {.. } . . \quad \text {.. }
$$

(It is important that the characteristic curves of the differential equation for the complete new flow ($u_{0}+u_{1}, v_{0}+v_{1}, w_{1}$) are not those of the original field.) Ferri went on to develop the compatibility equations of the perturbation field; however; he worked with variables which were not considered to be the most convenient for the present problem. His compatibility equations for isentropic axially symmetric flow lave therefore been transformed into the following form (Appendix III) :
for C_{1}

$$
\begin{equation*}
\frac{d \alpha_{1}}{d y}+D_{1} \frac{d \theta_{1}}{d y}-\left(D_{1} F_{1}+E_{1}\right) \theta_{1}-\left(\dot{G_{1}} \frac{d \alpha_{0}}{d y}+E_{1}\right) \alpha_{1}=0, \quad . \tag{4.2.2}
\end{equation*}
$$

and for C_{2}

$$
\begin{equation*}
\frac{d \alpha_{1}}{d y}-D_{2} \frac{d \theta_{1}}{d y}+\left(D_{2} F_{2}+E_{2}\right) \theta_{1}-\left(G_{2} \frac{d \alpha_{0}}{d y}+E_{2}\right) \alpha_{1}=0 \tag{4.2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{1}=D_{2}=\frac{2 \sin ^{2} \alpha_{0}+\gamma-1}{2 \cos ^{2} \alpha_{0}} \\
& E_{1}=\left(\frac{d \alpha_{0}}{d y}\right)_{(2)} \frac{2 \sin \left(\theta_{0}-\alpha_{0}\right)}{\sin 2 \alpha_{0} \sin \left(\theta_{0}+\alpha_{0}\right)} \quad E_{2}=\left(\frac{d \alpha_{0}}{d y}\right)_{(1)} \frac{2 \sin \left(\theta_{0}+\alpha_{0}\right)}{\sin 2 \alpha_{0} \sin \left(\theta_{0}-\alpha_{0}\right)} \\
& F_{1}=\frac{\sin \left(\theta_{0}-\alpha_{0}\right)}{\sin \left(\theta_{0}+\alpha_{0}\right)} \frac{1}{y} \\
& G_{1}=G_{2}=\tan \alpha_{0} \frac{2(\gamma+1)}{2 \sin ^{2} \alpha_{0}+(\gamma-1)}
\end{aligned}
$$

$\left(d \alpha_{0} / d y\right)_{(1)}$ and $\left(d \alpha_{0} / d y\right)_{(2)}$ are total derivatives along the first and second family characteristics, respectively. Because the coefficients are all known no iteration is required in the solution of these equations. A convenient form of procedure for solving the equations is given in Appendix III.

Calculations by the method of linearized characteristics were made in the present work only for the four cases $t=0 \cdot 1, M_{0}=1 \cdot 2,1 \cdot 6$ and $t=0 \cdot 2, M_{0}=1 \cdot 2,1 \cdot 6$. For the other five cases the results in the form $\Delta C_{p}| | C_{p \min \mid}$ were interpolated linearly with respect to M_{0} and t, for $x_{2}>0$. The systematic variation both of the changes in the boundary condition and of the results for $\Delta C_{p}| | C_{p \min } \mid$ (see Fig. 5) suggested that very little accuracy was lost by this interpolation. The two-dimensional pressure jumps at $x_{2}=0$, which are discussed in section 5.2 , were calculated exactly for all nine cases.
5. Results.-5.1. General.-The principal results of the calculations are presented in Tables 1 to 4. The results for inviscid flow, with the exception of the parameter $d V_{1} / V_{1} d x$ for the afterbodies, are considered to be accurate in general to the number of places shown, but they are of course subject to the assumptions of the theory used. In the results depending on the boundary-layer calculations, and in the values of $d V_{1} / V_{1} d x$ for the afterbodies, the last figure has probably little or no absolute significance, even within the assumptions of the theory; it has been included because in certain cases it is believed to be significant in indicating the change in a parameter between adjacent points (e.g., in the values of δ^{*} over the initial part of the afterbodies).

Where they illustrate points of interest, the results have also been presented as graphs : these figures are mainly self-explanatory, but certain features of them are discussed below.
5.2. Pressure Distributions and Wave Drag Coefficients.-The complete pressure distributions on the bodies in inviscid flow are shown in Fig. 4. The changes in afterbody pressure due to the presence of boundary layers are shown in Fig. 5, and the afterbody pressure distributions, with and without this effect, are shown in Fig. 6. It is apparent that the boundary layers can cause pressure changes of the order of 12 per cent of the peak suction. The changes in pressure at the beginning of the afterbodies are two-dimensional pressure jumps, resulting from the slope of the modified afterbodies at $x_{2}=0+$; in practice these discontinuities would of course be rounded off, but some remnant of the pressure change might still appear, distributed over a finite interval.

Results obtained by exact characteristics theory are compared with those of the linearized characteristics method in Fig. 6c for the case $t=0 \cdot 2, M_{0}=1 \cdot 6$, which was expected to be the worst case from this viewpoint \dagger.

[^3]In Fig. 7 the pressure and drag coefficients predicted by the slender-body ${ }^{3,5}$ and quasi-cylinder ${ }^{5,7}$ solutions of the linearized equation are compared with the results of the present calculations for inviscid flow. The two cases shown are the best and worst from the viewpoint of linearized theory : it is apparent that for a given value of βt the slender body theory is rather less accurate for afterbodies than it is for forebodies and that the quasi-cylinder theory fails to predict recompression towards the rear of the bodies. The apparent discrepancy in Fig. 7a, where the quasicylinder theory underestimates the magnitude of the pressure coefficient but overestimates the drag coefficient over the initial part of the afterbody, is due to the approximate expression which this theory uses for the derivative of the cross-sectional area. The slender body formulae are ${ }^{4}$:
and

$$
C_{p}=4 t^{2}\left[\left(3 x_{2}^{2}-1\right) \log \frac{2 x_{2}}{\beta t\left(1-x_{2}^{2}\right)}-\frac{11}{2} x_{2}{ }^{2}\right],
$$

,

$$
C_{D}=4 t^{2} l_{2}{ }^{2}\left[2\left(1-l_{2}{ }^{2}\right) \log \frac{2 l_{2}}{\beta t\left(1-l_{2}{ }^{2}\right)}-\frac{10}{3} l_{2}{ }^{4}+\frac{11}{2} l_{2}{ }^{2}-1\right],
$$

where l_{2} is the ratio of the truncated body length to pointed body length.
In the quasi-cylinder theory the choice of mean radius is always arbitrary: for the pressure distributions of Fig. 7 arithmetic means of the radii at $x_{2}=0$ and $x_{2}=0.648$ were used, but for the drag coefficients arithmetic means of the radii at $x_{2}=0$ and $x_{2}=l_{2}$ were used. The resulting formulae are ${ }^{4}$:

$$
C_{p}=-2 t^{2}\left(2-l_{2}^{2}\right) U_{1}\left[\frac{2 x_{2}}{\beta t\left(2-l_{2}^{2}\right)}\right], \quad l_{2}=0 \cdot 648
$$

and

$$
C_{D}=t^{2} \cdot \frac{\beta^{2} t^{2}}{2}\left(2-l_{2}^{2}\right)^{4} T\left[\frac{2 l_{2}}{\beta t\left(2-l_{2}^{2}\right)}\right],
$$

where U_{1} and T are functions tabulated in Ref. 4.
While the accuracy of these theories leaves something to be desired where practical applications are concerned, the supersonic similarity law, which is also based on the linearized equation, provides a useful means of generalizing results for quite large values of βt and for all x_{2} and l_{2}, This law states that for geometrically similar bodies C_{p} / t^{2} and C_{D} / t^{2} are functions of x_{2} (or l_{2}) and βt only \dagger; it is particularly useful because for moderately slender bodies at high Mach numbers it goes over into the hypersonic similarity law ${ }^{19,20,21}$.

The extent to which the law holds is illustrated by Figs. 8 and 9 ; the results shown are of course those for inviscid flow. It may be noted that although the results for different bodies do not ' collapse' completely into a single curve, the error of the law is systematic and nearly always in the same direction ; that is, if the curve for some particular thickness ratio (or some particular Mach number) is assumed to be unique, it will always overestimate the drag for larger thickness ratios (or lower Mach numbers), and underestimate the drag for smaller thickness ratios (or higher Mach numbers). This trend also appears in other applications of the similarity law ${ }^{22}$. Thus if it should be required to use the law to obtain results of really high accuracy, this could be done by plotting known results for $t=$ constant (or $M_{0}=$ constant) according to the law, and by then applying a small correction when this data is applied to unknown flows. This correction would be of the form

$$
\left.\frac{\partial}{\partial t}\left(\frac{C_{D}}{t^{2}}\right)\right|_{\substack{\beta t=\text { constant } \\ h_{2}=\text { constant }}} . \Delta t \quad \text { or }\left.\quad \frac{\partial}{\partial M_{0}}\left(\frac{C_{D}}{t^{2}}\right)\right|_{\substack{p t=\text { constant } \\ l_{2}=\text { constant }}} . \Delta M,
$$

and the value of the partial derivatives could be estimated from such results as those of Fig. 9.

[^4]The present results for the pressures and drags on parabolic afterbodies have been generalized by means of the similarity law and presented in a form suitable for design use in Ref. 22.
5.3. The Boundary Layers.-Fig. 10 shows the growth of the boundary-layer momentum and displacement thicknesses along the bodies ; the effect of Mach number is illustrated in Fig. 11.

Over the rear half of the parallel portion, where the pressure gradient is negligible, a good approximation to the boundary-layer growth is given by

$$
\vartheta=K \cdot R_{c x}{ }^{-1 / 5} \cdot x
$$

where x is measured from the effective starting point of the turbulent boundary layer (obtained by extrapolation to $\vartheta=0$) and $R_{e x}$ is based on free-stream Mach number. Values of K obtained from the present results are compared with those predicted by the $1 / 7$ power law for the velocity profile on a flat plate ${ }^{13,14}$ in the following table.

	K (from present results)	(flat plate)
	K 1.2	0.0375

The increased values of K here are of course due to the initial adverse pressure gradient.
The rapid thickening of the boundary layer towards the rear of the afterbodies is due principally to the axially symmetric nature of the flow: since mass is conserved between adjacent stream surfaces, these surfaces must diverge appreciably when the radius of the body becomes sufficiently small. In the boundary-layer momentum equation this effect is realized by the term $d y / y d \xi$, which becomes the dominant one.

The marked growth of the boundary-layer displacement thickness is of course responsible for the appreciable pressure changes encountered above.

Total skin-friction coefficients are presented in Table 4 : the corresponding values of flat-plate skin friction, as predicted by Cope's log law ${ }^{13}$, are also given for the sake of comparison. The effect of pressure gradients is seen to be negligible, but it must be remembered that the boundary layers on the bodies were assumed to have flat-plate profiles of the type used in Cope's theory.
6. Conclusions.-The emphasis in this work has been on the presentation of quantitative data in a systematic form, suitable for comparison with experiment ; consequently there is little of a new or startling nature in the conclusions below. They are, however, felt to be fairly generally valid for the afterbody problem.
(i) The slender body and quasi-cylinder solutions of the linearized equation do not predict the inviscid flow over afterbodies as accurately as they do the flow over forebodies and parallel portions ; the slender body theory gives good accuracy only for extremely small values of the parameter βt (for $\beta t>0.07$ the error is more than 10 per cent), and the quasi-cylinder theory fails to predict recompression towards the rear of the bodies.
(ii) The supersonic similarity law, which is also based on the linearized equation, is a useful tool for generalizing particular inviscid flow results ; if the pressure and drag coefficients on bodies with maximum slopes up to 0.4 are plotted according to the law, the maximum deviation from a mean curve is about 5 per cent, and this error is nearly always a systematic one for which allowance could be made.
(iii) As at subsonic speeds the boundary layer towards the rear of an afterbody thickens extremely rapidly. On the modified afterbody which results from adding the displacement thickness to the body profile, suctions were reduced by as much as 12 per cent of the maximum in the present calculations, and towards the rear of the body this effect is increasing rapidly.
(iv) The effect of pressure gradients and of axially symmetric flow on the total skin-friction drag of a turbulent boundary layer appears to be negligible.

LIST OF SYMBOLS

(Symbols which appear only once in the text and are defined there are not included in this list.)
a Constant in the equation of the turbulent boundary-layer profile (3.1.3) and (II.1)
$C \quad$ Constant used by Squire and Young, equation (3.1.5)
$C_{1} \quad$ Characteristic curve of the first family
$C_{2} \quad$ Characteristic curve of the second family
$C_{D} \quad$ Wave drag coefficient based on maximum cross-section area
$C_{F} \quad$ Total skin-friction coefficient, based on $\frac{1}{2} \rho_{0} V_{0}{ }^{2}$
$C_{f} \quad$ Local skin-friction coefficient, $\tau_{w} / \frac{1}{2} \rho_{1} V_{1}{ }^{2}$
$C_{p} \quad$ Pressure coefficient $\left(p-p_{0}\right) / \frac{1}{2} \rho_{0} V_{0}{ }^{2}$
$c_{1} \quad 1-T_{i 1} / T_{w}$
$c_{2} \quad T_{i 1} M_{1}{ }^{2} / T_{w}\left[M_{1}{ }^{2}+2 /(\gamma-1)\right]$
$D \quad$ Constant used by Squire and Young, equation (3.1.5)
Coefficients in the compatibility equations of the linearized characteristics, equations (4.2.2), (4.2.3) or (III.8), (III.9)
$g \quad$ Function appearing in the boundary-layer momentum equation (3.2.1)
$H \quad \delta^{*} / \vartheta$
$h \quad$ Function appearing in the boundary-layer momentum equation (3.2.1)
$j \quad$ Function appearing in the boundary-layer momentum equation (3.2.1)
k. Constant in the equation of the turbulent boundary-layer profile (3.1.3) and (II.1)
$l_{2} \quad$ Length of truncated afterbody/length of afterbody continued to a point
$l_{A} \quad$ Length of afterbody continued to a point
$l_{F} \quad$ Length of forebody
$l_{p} \quad$ Length of parallel portion
$M \quad$ Mach number
$p \quad$ Static pressure

LIST OF SYMBOLS-continued

$R \quad$ Maximum radius of body
$R_{e} \quad$ Reynolds number based on body or plate length
$S \quad$ Cross-section area
$t \quad$ Thickness ratio R / l_{A}
$V \quad$ Velocity (inside the boundary layer in section 3.2 and Appendix II)
$V_{\tau w}=\sqrt{ }\left(\tau_{w} / \rho_{w}\right)$
$x \quad$ Axial co-ordinate (inches) measured from the nose
$x_{1}=\left(x-l_{F}\right) / l_{F}$
$x_{2}=\left(x-l_{F}-l_{p}\right) / l_{A}$
$x_{3} \quad$ See equation (4.1.3)
y Radial co-ordinate (inches)
$y_{2}=y / l_{A}$
$y_{3} \quad$ See equation (4.1.3)
$\alpha \quad$ Mach angle
$\beta=\sqrt{ }\left(M_{0}{ }^{2}-1\right)$
$\gamma \quad$ Ratio of the specific heats of air
δ. Boundary-layer thickness
$\delta^{*} \quad$ Boundary-layer displacement thickness
$\zeta=V_{1} / V_{\tau \pi}$
$\eta \quad$ Co-ordinate normal to the body surface
$\theta \quad$ Angle between the velocity vector and the x-axis
$\vartheta \quad$ Boundary-layer momentum thickness
$v \quad$ Kinematic viscosity
$\xi \quad$ Co-ordinate along the body surface
$\rho \quad$ Density
$\sigma \quad$ Prandtl number
$\tau \quad$ Shear stress
() Conditions in the free stream or, in the linearized characteristics method, conditions in the original flow field
() Conditions outside the boundary layer or, in the linearized characteristics method, perturbations in the flow field
()$_{i} \quad$ Conditions in an equivalent incompressible problem
() Total or stagnation conditions
() Conditions referred to the density, viscosity, or temperature at the wall

REFERENCES

REFERENCES-continued

APPENDIX I

Some Details of Various Numerical Problems

I.1. Application of the Exact Method of Characteristics.-The differential equations (2.2.1) to (2.2.4) were replaced by difference equations, of the form
for $C_{1} \quad \frac{\Delta y}{\Delta x}=\tan (\bar{\theta}+\bar{a})$

$$
\frac{\Delta l}{\Delta y}=\frac{90}{\pi} \frac{\sin \bar{\theta} \sin \bar{a}}{\sin (\bar{\theta}+\bar{a})} \frac{1}{\bar{y}}
$$

where $(-)$ denotes the arithmetic mean for the characteristic increment in question, and these equations were solved by iterating until no significant change appeared in the values at a new point.

Calculations were made for two different mesh sizes, Δx_{2} along the initial characteristic (Fig. 3) being taken as 0.1 and 0.05 , and the results were extrapolated to zero mesh size by means of the 'deferred approach to the limit,' given by

$$
f(0)=f(0 \cdot 05)+\frac{1}{3}[f(0 \cdot 05)-f(0 \cdot 10)] .
$$

The correction $f(0)-f(0 \cdot 05)$ had of course to be interpolated at those points which had only been calculated with the smaller mesh.
I. 2 Integration of the Boundary Layer Equation.-The stations used for integrating the differential equation (3.2.1) were:

$$
\begin{aligned}
& x_{1}=0,0 \cdot 05,0 \cdot 10,0 \cdot 15,0 \cdot 20 ; 0 \cdot 40,0 \cdot 60,0 \cdot 80 ; 1 \cdot 20,1 \cdot 60,2 \cdot 00 \\
& x_{2}=0,0 \cdot 054,0 \cdot 108,0 \cdot 162,0 \cdot 216 ; 0 \cdot 324,0 \cdot 432,0 \cdot 540,0 \cdot 648
\end{aligned}
$$

The values of x_{1} were of course chosen to suit the pressure gradient over the parallel portion. The reason for choosing the values of x_{2} was as follows.

The characteristics calculations gave values of α (and therefore of M, C_{p}, etc.) at unequal intervals along the body profiles, the intervals of x_{2} being of the order of $0 \cdot 1$: the equally-spaced points $x_{2}=0,0 \cdot 108, \ldots, 0 \cdot 648$, were chosen because they seemed the best means, towards the rear of the bodies, of the x_{2}-values at which the data was given.

Values of M at these points were obtained by means of Newton's interpolation formula for unequal intervals. Further values at $x_{2}=0.054$ and 0.162 were then obtained so that the effect of the strong initial pressure gradient could be carefully observed.

The derivative $d M_{1} / d x_{2}$ was obtained by means of the four-strip formulae of Ref. 23. The equation (3.2.1) was integrated by using first the forward integration formulae and then the four-strip and three-strip formulae of Ref. 24 , and iterations were made until no significant changes in ϑ and $d \vartheta / d x_{1}$ or $d \vartheta / d x_{2}$ appeared.

The total skin-friction integrals in equations (3.2.2) and (3.2.3) were also evaluated by the four-strip and three-strip formulae of Ref. 24.
1.3. Evaluation of Afterbody Wave Drag Coefficients.-The afterbody wave drag coefficient is defined by

$$
\begin{aligned}
C_{D} & =\int_{0}^{l_{2}} C_{p} \frac{S^{\prime}\left(x_{2}\right)}{S(0)} d x_{2} \\
& =-\int_{0}^{l_{2}} C_{p} 4 x_{2}\left(1-x_{2}^{2}\right) d x_{2}
\end{aligned}
$$

This coefficient, and the corresponding increment ΔC_{D} due to the displacement effect of the boundary layer were both calculated by means of the four-, five- and six-strip formulae of Ref. 24, the integration stations being $x_{2}=0,0 \cdot 108, \ldots, 0 \cdot 648$.
I.4. The Numerical Procedure in Applying the Method of Linearized Characteristics.-In the linearized characteristics calculations, Δx_{2} along the initial characteristic was taken as 0.05 . In order to reduce the amount of labour by exploiting to the full the work of the original calculations, the original results for $\Delta x_{2}=0.05$ were used, and not those depending on the deferred approach to the limit: the resulting error was certainly less than the error of $O\left(\alpha_{1}^{2}\right)$ due to the linearized method.

A great deal of interpolation of values at unequal intervals was required in these calculations, because the new boundary condition had to be applied at points off the original body (Fig. 3), so that $\left(\theta_{0}+\theta_{1}\right)$ had first to be extrapolated slightly onto the original body, and at the end of the calculations $\left(\alpha_{0}+\alpha_{1}\right)$ had to be interpolated back onto the modified body. These interpolations were performed by means of the Newton formula for unequal intervals along characteristics of the second family, as many strips, up to four, being used as were available : this procedure was consistent because initially, where only one or two strips were available, θ_{0}, θ_{1}, and the distance over which we were interpolating, were all extremely small.

Interpolation of the boundary condition along the modified body was also required. For this Bessel's formula for equal intervals was used, the coefficients being tabulated in Ref. 25.

APPENDIX II

Derivation of Log Law Formulae for the Turbulent Boundary Layer

The assumptions of section 3.1 regarding the compressible, turbulent boundary layer on a flat plate define the relations:

$$
\begin{equation*}
\frac{V}{V_{\tau w}}=\frac{1}{k} \log \frac{\eta V_{\tau w}}{a v_{w}}, \quad . \quad . \quad \quad . \quad . . \quad . . \quad . \quad . \quad . \tag{II.1}
\end{equation*}
$$

and

$$
\frac{T}{T_{w}}=1-c_{1} \frac{V}{V_{1}}-c_{2} \frac{V^{2}}{V_{1}^{2}}
$$

where

$$
\begin{equation*}
\dot{c}_{1}=1-\frac{T_{t 1}}{T_{w}}, \quad c_{2}=\frac{T_{i 1}}{T_{w}}, \frac{M_{1}^{2}}{M_{1}{ }^{2}+2 /(\gamma-1)} . \tag{II.2}
\end{equation*}
$$

Now $\quad \vartheta=\int_{0}^{\delta} \frac{\rho V}{\rho_{1} V_{1}}\left(1-\frac{V}{V_{1}}\right) d \eta$,
and writing $V / V_{1}=z$ we obtain

$$
\begin{align*}
\frac{\rho}{\rho_{1}} & =\frac{T_{1}}{T}=\frac{T_{1}}{T_{w}} \frac{1}{1-c_{1} z-c_{2} z^{2}}, \tag{II.3}\\
\cdots & \cdots \tag{II.4}\\
\cdots & \ldots \\
\cdots & \ldots \\
\eta & =\exp \left(\begin{array}{llllll}
\left.k z \frac{V_{1}}{V_{\tau w}}\right) \frac{a v_{w}}{V_{\tau w}} . & \cdots & \ldots & \ldots & \ldots & \ldots \\
. & \ldots & \ldots
\end{array}\right.
\end{align*}
$$

Hence

$$
\begin{align*}
\vartheta & =\frac{T_{1}}{T_{w}} \cdot \frac{a v_{w} k V_{1}}{V_{\tau w}{ }^{2}} \int_{0}^{1} \frac{z(1-z)}{1-c_{1} z-c_{2} z^{2}} \exp \left(k \frac{V_{1}}{V_{\tau w}} z\right) d z \\
& =\frac{T_{1}}{T_{w}} \cdot \frac{a v_{w} k V_{1}}{V_{\tau w}{ }^{2}} \cdot \frac{\exp \left(k V_{1} / V_{\tau w}\right)}{\left(k V_{1} / V_{\tau w}\right)^{2}\left(1-c_{1}-c_{2}\right)}\left[1+0\left(V_{\tau w} / V_{1}\right)\right] \\
& =\frac{a v_{w w}}{k V_{1}} \exp \left(k V_{1} / V_{\tau w}\right)\left[1+0\left(V_{\tau w} / V_{1}\right)\right], \cdots \quad \cdots \quad \cdots \tag{II.5}
\end{align*} \cdots \quad \cdots \quad . \quad . \quad .
$$

which is equation (3.1.5).
Similarly

$$
\begin{align*}
\delta^{*} & =\int_{0}^{\delta}\left(1-\frac{\rho V}{\rho_{1} V_{1}}\right) d \eta \\
& =\frac{a v_{w} k V_{1}}{V_{\tau w}{ }^{2}} \int_{0}^{1}\left[1-\frac{\left(1-c_{1}-c_{2}\right) z}{1-c_{1} z-c_{2} z^{2}}\right] \exp \left(k \frac{V_{1}}{V_{\tau w}} z\right) d z \\
& =\frac{a v_{w} k V_{1}}{V_{\tau w}{ }^{2}} \frac{\left(1+c_{2}\right) \exp \left(k V_{1} / V_{\tau w}\right)}{\left(1-c_{1}-c_{2}\right)\left(k V_{1} / V_{\tau w}\right)^{2}}\left[1+O\left(V_{\tau w} / V_{1}\right)\right] \\
& =\frac{a v_{w}}{k V_{1}} \frac{1+c_{2}}{1-c_{1}-c_{2}} \exp \left(k V_{1} / V_{\tau w}\right)\left[1+O\left(V_{\tau w} / V_{1}\right)\right] . \tag{II.6}
\end{align*}
$$

Thus

$$
H=\frac{\delta^{*}}{\vartheta}=\frac{1+c_{2}}{1-c_{1}-c_{2}}\left[1+O\left(V_{\tau w} / V_{1}\right)\right]
$$

In the incompressible case $c_{1}=c_{2}=0$ and $H_{i} \bumpeq 1 \cdot 0$, so that we may write

$$
\begin{align*}
\frac{H}{H_{i}} & =\frac{1+c_{2}}{1-c_{1}-c_{2}}\left[1+O\left(V_{\tau w} / V_{1}\right)\right] \\
& =\left[\frac{T_{w}}{T_{1}}+\frac{\gamma-1}{2} M_{1}^{2}\right]\left[1+O\left(V_{\tau w} / V_{1}\right)\right] \tag{II.7}
\end{align*}
$$

which is equation (3.1.6).
It remains to be shown that the constants C and D used by Squire and Young in the incompressible case can be taken over to compressible flow.

In the incompressible problem we have

$$
\begin{equation*}
\vartheta=\frac{\nu}{V_{1}} C \mathrm{e}^{D_{5}}, \quad . . \quad . \tag{II.8}
\end{equation*}
$$

where

$$
\zeta^{2}=\frac{V_{1}^{2}}{V_{\tau}^{2}}=\frac{\rho V_{1}^{2}}{\tau_{w}}=\frac{2}{C_{f}} ;
$$

and the momentum equation for a flat plate is

Hence

$$
\begin{equation*}
C_{F}=\frac{1}{x} \int_{0}^{x} C_{f} d x=\frac{2 \vartheta}{x} \tag{II.10}
\end{equation*}
$$

Following Squire and Young, we assume that (II.8) is exact, and use (II.9) and (II.10) to transform it into a relation between C_{F} and R_{e} (the Reynolds number based on plate length), lower order terms in ζ being included. In (II.8) we have

$$
\frac{d \vartheta}{d x}=\frac{v}{V_{1}} C D \mathrm{e}^{D \xi} \frac{d \zeta}{d x},
$$

so that (II.9) becomes

$$
\begin{equation*}
\frac{\nu}{V_{1}} C D \mathrm{e}^{D \xi} \frac{d \zeta}{d x}=\frac{1}{\zeta^{2}} \quad \ldots \quad \ldots \quad . \tag{II.11}
\end{equation*}
$$

and hence $\quad \frac{V_{1} x}{\nu}=R_{e}=C \mathrm{e}^{D t}\left(\zeta^{2}-\frac{2}{D} \zeta+\frac{2}{D^{2}}\right)-\frac{2 C}{D^{2}}$,
where the constant of integration has been chosen to give $x=0$ at $\zeta=0$.
Again in (II.8)

$$
\zeta=\frac{1}{D} \log \left(\frac{V_{1} \vartheta}{\nu C}\right)
$$

by (II.10)

$$
\begin{equation*}
=\frac{1}{D} \log \left(\frac{V_{1} x C_{F}}{2 \nu C}\right)=\frac{1}{D} \log \left(\frac{R_{e} C_{F}}{2 C}\right) . \tag{II.13}
\end{equation*}
$$

Hence (İI. 12) becomes

$$
\begin{equation*}
R_{e}=\frac{R_{e} C_{F}}{2}\left\{\left[\frac{1}{D} \log \left(\frac{R_{c} C_{F}}{2 C}\right)\right]^{2}-\frac{2}{D^{2}} \log \left(\frac{R_{c} C_{F}}{2 C}\right)+\frac{2}{D^{2}}\right\}-\frac{2 C}{D^{2}} . \tag{II.14}
\end{equation*}
$$

The constants C and D were chosen by Squire and Young to make the relationship between R_{e} and C_{F} as similar to Prandtl's as possible.

In the compressible case we have

$$
\begin{align*}
& \vartheta=\frac{\nu_{w}}{V_{1}} C \mathrm{e}^{D t}, \quad \cdots \quad \quad \cdots \quad \quad . \quad . \quad . \quad . \quad . \tag{II.15}\\
& \zeta^{2}=\frac{V_{1}^{2}}{V_{\tau w}{ }^{2}}=\frac{\rho_{w} V_{1}^{2}}{\tau_{\mathrm{w}}}=\frac{2}{C_{f w}}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{d \vartheta}{d x}=\frac{1}{\zeta^{2}} \rho_{w}=\frac{C_{f}}{2} . \quad . \tag{II.16}
\end{equation*}
$$

Hence

$$
\begin{equation*}
C_{F}=\frac{1}{x} \int_{0}^{x} C_{f} d x=\frac{2 \theta}{x} \tag{II.17}
\end{equation*}
$$

In place of (II.11) we have

$$
\begin{equation*}
\frac{v_{w}}{V_{1}} \cdot C D \mathrm{e}^{D \zeta} \frac{d \zeta}{d x}=\frac{1}{\zeta^{2}} \frac{\rho_{w}}{\rho_{1}} \ldots \tag{II.18}
\end{equation*}
$$

and hence $\frac{V_{1} x}{\nu_{w}} \frac{\rho_{w}}{\rho_{1}}=R_{e w} \frac{T_{1}}{T_{w}}=C \mathrm{e}^{\nu \zeta}\left(\zeta^{2}-\frac{2}{D} \zeta+\frac{2}{D^{2}}\right)-\frac{2 C}{D^{2}}$.
In place of (II.13) we have

$$
\begin{align*}
\zeta & =\frac{1}{D} \log \left(\frac{V_{1} \vartheta}{v_{w} C}\right) \\
& =\frac{1}{D} \log \left(\frac{V_{1} x C_{F}}{2 v_{w} C}\right)=\frac{1}{D} \log \left(\frac{R_{c w} C_{F w}}{2 C} \cdot \frac{T_{1}}{T_{w}}\right) \tag{II.20}
\end{align*}
$$

Thus $R_{e w} T_{1} / T_{w}$ and $C_{F w}$ in equations (II.19) and (II.20) have exactly replaced R_{e} and C_{F} in equations (II.12) and (II.13) ; and the problem of finding the best C and D for agreement with the extension of Prandtl's formula (in which R_{e} and C_{F} have also been replaced by $R_{e w} T_{1} / T_{w}$ and $C_{F w}$) is the same as in the incompressible case.

APPENDIX III

The Compatibility Equations of the Linearized Characteristics Method in Isentropic, A xially Symmetric Flow

For isentropic, axially symmetric flow Ferri's compatibility equations are ${ }^{18}$: for C_{1}
and for C_{2}

$$
\begin{align*}
& \frac{1}{V_{0}} \frac{d V_{1}}{d x}-\tan \alpha_{0} \frac{d \theta_{1}}{d x} \\
& +\left[\tan \alpha_{0} \frac{\sin \left(\theta_{0}-\alpha_{0}\right)}{\cos \left(\theta_{0}+\alpha_{0}\right)} \frac{1}{y}-\frac{1}{V_{0}}\left(\frac{d V_{0}}{d x}\right)_{(2)} \frac{2 \cos \left(\theta_{0}-\alpha_{0}\right)}{\sin 2 \alpha_{0} \cos \left(\theta_{0}+\alpha_{0}\right)}\right] \theta_{1} \\
& +\left[\frac{1}{V_{0}} \frac{d V_{0}}{d x} \tan ^{2} \alpha_{0}\left(1+\frac{\gamma \div 1}{2 \sin ^{4} \alpha_{0}}\right)\right. \\
& \left.+\frac{1}{V_{0}}\left(\frac{d V_{0}}{d x}\right)_{(2)} \frac{\cos \left(0_{0}-\alpha_{0}\right)}{\cos \left(\theta_{0}+\alpha_{0}\right)} \frac{1}{\cos ^{2} \alpha_{0}}\left(1+\frac{\gamma-1}{2 \sin ^{2} \alpha_{0}}\right)\right] \frac{V_{1}}{V_{0}}=0 \tag{III.1}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{V_{0}} \frac{d V_{1}}{d x}+\tan \alpha_{0} \frac{d \theta_{1}}{d x} \\
& -\left[\tan \alpha_{0} \frac{\sin \left(\theta_{0}+\alpha_{0}\right)}{\cos \left(\theta_{0}-\alpha_{0}\right)} \frac{1}{y}-\frac{1}{V_{0}}\left(\frac{d V_{0}}{d x}\right)_{(1)} \frac{2 \cos \left(\theta_{0}+\alpha_{0}\right)}{\sin 2 \alpha_{0} \cos \left(\theta_{0}-\alpha_{0}\right)}\right] \theta_{1} \\
& +\left[\frac{1}{V_{0}} \frac{d V_{0}}{d x} \tan ^{2} \alpha_{0}\left(1+\frac{\gamma-1}{2 \sin ^{4} \alpha_{0}}\right)\right. \\
& \left.+\frac{1}{V_{0}}\left(\frac{d V_{0}}{d x}\right)_{(1)} \frac{\cos \left(\theta_{0}+\alpha_{0}\right)}{\cos \left(\theta_{0}-\alpha_{0}\right)} \frac{1}{\cos ^{2} \alpha_{0}}\left(1+\frac{\gamma-1}{2 \sin ^{2} \alpha_{0}}\right)\right] \frac{V_{1}}{V_{0}}=0, \tag{III.2}
\end{align*}
$$

where V_{0}, θ_{0} and α_{0} are, respectively, the magnitude and inclination of the velocity vector and the Mach angle in the original flow field, and $\left(V_{0}+V_{1}\right)$ and $\left(\theta_{0}+\theta_{1}\right)$ are the magnitude and direction of the velocity vector in the new flow.

Now writing $V / a_{t}=\tilde{V}$, where a_{t} is the velocity of sound at stagnation conditions, we have from the energy equation

$$
\begin{array}{cccccc}
\frac{1}{\tilde{V}_{0}^{2}}=\frac{\gamma-1}{2}+\sin ^{2} \alpha_{0}, & \ldots & \cdots & \ldots & \ldots & \ldots \\
\ldots \tag{III.3b}\\
\frac{1}{\left(\tilde{V}_{0}+\tilde{V}_{1}\right)^{2}}=\frac{\gamma-1}{2}+\sin ^{2}\left(\alpha_{0}+\alpha_{1}\right), & \therefore & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

hence

$$
\begin{equation*}
\frac{\tilde{V}_{1}}{\tilde{V}_{0}{ }^{3}}=-\alpha_{1} \sin \alpha_{0} \cos \alpha_{0}+0\left(\alpha_{1}^{2}\right) \tag{III.4}
\end{equation*}
$$

Writing

$$
\frac{\gamma-1}{2}+\sin ^{2} \alpha_{0}=\psi
$$

we have

$$
\begin{align*}
\tilde{V}_{0} & =\psi^{-1 / 2}, \\
d \tilde{V}_{0} & =-\frac{1}{2} \psi^{-3 / 2} \sin 2 \alpha_{0} d \alpha_{0}, \\
\tilde{V}_{1} & =-\frac{1}{2} \alpha_{1} \psi^{-3 / 2} \sin 2 \alpha_{0}, \\
d \tilde{V}_{1} & =-\frac{1}{2} \psi^{-3 / 2} \sin 2 \alpha_{0} d \alpha_{1}-\frac{1}{2} \alpha_{1}\left[-\frac{3}{2} \psi^{-5 / 2} \sin ^{2} 2 \alpha_{0}+\psi^{-3 / 2} 2 \cos 2 \alpha_{0}\right] d \alpha_{0}, \\
\frac{\tilde{V}_{1}}{\widetilde{V}_{0}} & =\frac{V_{1}}{V_{0}}=-\frac{1}{2} \alpha_{1} \psi^{-1} \sin 2 \alpha_{0}, \tag{III.5}\\
\ldots & \ldots \tag{III.6}\\
\ldots & \ldots \tag{III.7}\\
\ldots & \ldots \\
\frac{d V_{0}}{V_{0}} & =-\frac{1}{2} \psi^{-1} \sin 2 \alpha_{0} d \alpha_{0}, \quad \ldots \\
& \ldots \\
\ldots & \ldots \\
\frac{d V_{1}}{V_{0}} & =-\frac{1}{2} \psi^{-1} \sin 2 \alpha_{0} d \alpha_{1}-\frac{1}{2} \alpha_{1}\left[-\frac{3}{2} \psi^{-2} \sin ^{2} 2 \alpha_{0}+\psi^{-1} 2 \cos 2 \alpha_{0}\right] d \alpha_{0} .
\end{align*}
$$

Upon substitution of (III.5), (III.6), (III.7) and the relations

$$
\frac{d y}{d x}=\tan \left(\theta_{0} \pm \alpha_{0}\right)
$$

and after considerable reduction, the compatibility equations (III.1), (III.2), become those in the main text, namely
for C_{1}

$$
\begin{equation*}
\frac{d \alpha_{1}}{d y}+D_{1} \frac{d \theta_{1}}{d y}-\left(D_{1} F_{1}+E_{1}\right) \theta_{1}-\left(G_{1} \frac{d \alpha_{0}}{d y}+E_{1}\right) \alpha_{1}=0 \tag{III.8}
\end{equation*}
$$

for C_{2}

$$
\begin{equation*}
\frac{d \alpha_{1}}{d y}-D_{2} \frac{d \theta_{1}}{d y}+\left(D_{2} F_{2}+E_{2}\right) \theta_{1}-\left(G_{2} \frac{d \alpha_{0}}{d y}+E_{2}\right) \alpha_{1}=0 \tag{III.9}
\end{equation*}
$$

where

$$
\begin{aligned}
D_{1} & =D_{2}=\frac{2 \sin ^{2} \alpha_{0}+\gamma-1}{2 \cos ^{2} \alpha_{0}} \\
E_{1} & =\left(\frac{d \alpha_{0}}{d y}\right)_{(2)} \frac{2 \sin \left(\theta_{0}-\alpha_{0}\right)}{\sin 2 \alpha_{0} \sin \left(\theta_{0}+\alpha_{0}\right)}, \quad E_{2}=\left(\frac{d \alpha_{0}}{d y}\right)_{(1)} \frac{2 \sin \left(\theta_{0}+\alpha_{0}\right)}{\sin 2 \alpha_{0} \sin \left(\theta_{0}-\alpha_{0}\right)}, \\
F_{1} & =\frac{\sin \left(\theta_{0}-\alpha_{0}\right)}{\sin \left(\theta_{0}+\alpha_{0}\right)} \frac{1}{y}, \quad F_{2}=\frac{\sin \left(\theta_{0}+\alpha_{0}\right)}{\sin \left(\theta_{0}-\alpha_{0}\right)} \frac{1}{y} \\
G_{1} & =G_{2}=\tan \alpha_{0} \frac{2(\gamma+1)}{2 \sin ^{2} \alpha_{0}+\gamma-1} .
\end{aligned}
$$

α_{1} and θ_{1} can obviously be in degrees, but α_{0} must be in radians.
In applying the method, the coefficients D_{1}, E_{1}, etc., and also the coefficients p_{1}, q_{1}, etc., below, may be evaluated in terms of $\bar{\theta}_{0}, \bar{\alpha}_{0}$, and \bar{y}, the arithmetic means for each strip ; the derivatives in E_{1} and E_{2} can be evaluated by averaging the values of $\Delta \alpha / \Delta y$ on the strips on either side of, and of opposite family to, the strip in question. This last step is consistent with the order of accuracy of the calculations only if the difference in length of adjacent characteristic strips of the same family is $O\left(\Delta y^{2}\right)$: this condition was satisfied in the present case.

It is worth noting that in a field of finite extent considerably less labour is required to evaluate the coefficients immediately in terms of mean values $\bar{\theta}_{0}, \tilde{\alpha}_{0}$ and \bar{y}, than is required to evaluate the coefficients at all the intersection points in the field, and then to calculate mean values of these coefficients on the strips: the accuracy, as predicted by mathematical order arguments, is the same for the two methods.

To proceed from a point A , where $\left(\alpha_{1}, \theta_{1}\right)$ are known, to a point C where (α_{1}, θ_{1}) are unknown, by means of a characteristic strip of the first family, we replace the differential equation (III.8) by the following difference equation :

$$
\begin{align*}
& \left(\alpha_{1 C}-\alpha_{1 A}\right)+D_{1}\left(\theta_{1 c}-\theta_{1 A}\right)-\left(D_{1} F_{1}+E_{1}\right) \cdot \frac{1}{2}\left(\theta_{1 c}+\theta_{1 A}\right) \cdot\left(y_{C}-y_{A}\right) \\
& -\left[\left(\alpha_{0 C}-\alpha_{0 A}\right) G_{1}+E_{1}\left(y_{C}-y_{A}\right)\right] \cdot \frac{1}{2}\left(\alpha_{1 C}+\alpha_{1 A}\right)=0 . \quad \ldots \quad \ldots \tag{III.10}
\end{align*}
$$

This may be written

$$
\begin{aligned}
& \alpha_{1 C}=p_{1} \alpha_{1 A}+q_{1} \theta_{1 A}-r_{1} \theta_{1 C}, \quad . \quad . . \quad . \quad . \quad . . \quad \text {.. (III.11) } \\
& m_{1}=\frac{1}{2}\left[\left(\alpha_{0 c}-\alpha_{0 A}\right) G_{1}+E_{1}\left(y_{c}-y_{A}\right)\right], \\
& n_{1}=\frac{1}{2}\left(D_{1} F_{1}{ }^{\prime \prime}+E_{1}\right)\left(y_{C}-y_{A}\right), \\
& p_{1}=\frac{1+m_{1}}{1-m_{1}}, \\
& q_{1}=\frac{D_{1}+n_{1}}{1-m_{1}}, \\
& r_{1}=\frac{D_{1}-n_{1}}{1-m_{1}},
\end{aligned}
$$

where

Similarly, for a strip $B C$ of a second family characteristic we obtain

$$
\begin{aligned}
\alpha_{1 C} & =p_{2} \alpha_{1 B}-q_{2} \theta_{1 B}+r_{2} \theta_{1 C}, \quad \ldots \quad \quad . \quad . \quad . \quad . \quad . \quad \text { (III.12) } \\
m_{2} & =\frac{1}{2}\left[\left(\alpha_{0 C}-\alpha_{0 B}\right) G_{2}+E_{2}\left(y_{C}-y_{B}\right)\right] \\
n_{2} & =\frac{1}{2}\left(D_{2} F_{2}+E_{2}\right)\left(y_{C}-y_{B}\right) \\
p_{2} & =\frac{1+m_{2}}{1-m_{2}} \\
q_{2} & =\frac{D_{2}+n_{2}}{1-m_{2}} \\
r_{2} & =\frac{D_{2}-n_{2}}{1-m_{2}}
\end{aligned}
$$

where

When $\theta_{1 c}$ is given by the boundary condition (III.11) or (III.12) are used, but for a point within the field the two are solved simultaneously, so that

$$
\begin{equation*}
\theta_{1 C}=\frac{1}{r_{1}+r_{2}}\left[p_{1} \alpha_{1 A}+q_{1} \theta_{1 A}-p_{2} \alpha_{1 B}+q_{2} \theta_{1 B}\right] . \quad . \quad \ldots \quad . . \tag{III.13}
\end{equation*}
$$

An analysis of the above procedure of the type given in Refs. 8 and 18 shows that the error is the larger of

$$
O\left(\alpha_{1}^{2}\right) \text { and } O\left(\alpha_{1} \Delta y^{3}\right),
$$

the former being inherent in the theory of linearized characteristics. In principle the error represented by the second O-term cannot be reduced by iteration or by a more complicated procedure, but only by tightening the mesh.

More particular details of the numerical procedure used in the present case are given in Appendix I.

TABLE 1

Flows Along the Parallel Portion

x_{1}	M_{1}	$-C_{p}$	$-\frac{1}{V_{1}} \frac{d V_{1}}{d x_{1}}$	$\begin{gathered} \vartheta \\ \text { (in.) } \end{gathered}$	δ^{*} (in.)	$\begin{aligned} & \frac{d \vartheta}{d x_{1}} \\ & \text { (in.) } \end{aligned}$	$\frac{d \delta^{*}}{d x_{1}}\left(\begin{array}{c} \text { in.) } \\ \left(y^{2}\right) \end{array}\right.$	C_{f}
			(a) $M_{0}=1 \cdot 2$					
0	$1 \cdot 4116$	$0 \cdot 2484$	0.9071 0.0020 0.0048		$0 \cdot 0048$	$\begin{aligned} & 0.0384 \\ & 0.0348 \end{aligned}$	0.0871	$\begin{aligned} & 0.00344 \\ & 0.00299 \end{aligned}$
$0 \cdot 05$	$1 \cdot 3440$	$0 \cdot 1746$	0.5530	$0 \cdot 0038$	$0 \cdot 0088$		$0 \cdot 0750$	
$0 \cdot 10$	$1 \cdot 3049$	$0 \cdot 1296$	0.34890.2275	$0 \cdot 0055$	$0 \cdot 0124$	0.0323	$0 \cdot 0685$	0.00278
$0 \cdot 15$	$1 \cdot 2801$	$0 \cdot 1001$		$\begin{aligned} & 0.0071 \\ & 0.0085 \end{aligned}$	0.0157	$0 \cdot 0303$	0.0638	0.00264
$0 \cdot 20$	$1 \cdot 2463$	$0 \cdot 0809$	$\begin{aligned} & 0 \cdot 2275 \\ & 0 \cdot 1539 \end{aligned}$		$0 \cdot 0189$	$0 \cdot 0286$	0.0603	$0 \cdot 00255$
$0 \cdot 40$	1-2336	0.0428	$\begin{aligned} & 0.0699 \\ & 0.0303 \end{aligned}$	0.0139	0.0302	$0 \cdot 0256$	0.0534	0.00232
$0 \cdot 60$	$1 \cdot 2187$	$0 \cdot 0240$		0.0188	$0 \cdot 0403$	0.0233	$0 \cdot 0489$	$0 \cdot 00220$
$0 \cdot 80$	$1 \cdot 2118$	0.0152	0.0154	$0 \cdot 0233$	$0 \cdot 0498$	0.0219	$0 \cdot 0463$	$0 \cdot 00212$
$1 \cdot 20$	$1 \cdot 2060$	$0 \cdot 0077$	$0 \cdot 0055$	0.0317	$0 \cdot 0676$	$0 \cdot 0203$	$0 \cdot 0429$	0.00202
$1 \cdot 60$	$1 \cdot 2036$	$0 \cdot 0046$	$0 \cdot 0026$	0.0397	$0 \cdot 0843$	$0 \cdot 0193$	$0 \cdot 0409$	0.00193
$2 \cdot 00$	1.2024	0.0031	$0 \cdot 0014$	$0 \cdot 0472$	0. 1003	$0 \cdot 0187$	$0 \cdot 0395$	$0 \cdot 00187$
			(b) $M_{0}=1 \cdot 4$			0.0342	0.0878	
0	1.5822	0. 1686	0.4382	$0 \cdot 0018$	$0 \cdot 0049$			$0 \cdot 00328$
$0 \cdot 05$	1.5394	0. 1323	0.30960.2242	$0 \cdot 0034$	$0 \cdot 0089$	0.0304	$0 \cdot 0748$	$0 \cdot 00284$
$0 \cdot 10$	1.5099	$0 \cdot 1061$		0.00490.0063	$0 \cdot 0125$	$0 \cdot 0286$	$0 \cdot 0691$	$0 \cdot 00264$
$0 \cdot 15$	1.4890	0.0869	0.2242 0.1659		0.0158	$0 \cdot 0272$	$0 \cdot 0649$	$0 \cdot 00251$
$0 \cdot 20$	1.4736	$0 \cdot 0725$	0.1254	0.0076	$0 \cdot 0190$	$0 \cdot 0261$	$0 \cdot 0620$	0.00241
$0 \cdot 40$	1.4397	0.0399	$\begin{aligned} & 0.0554 \\ & 0.0278 \\ & 0.0153 \end{aligned}$	$\begin{aligned} & 0 \cdot 0126 \\ & 0 \cdot 0171 \\ & 0.0213 \end{aligned}$	$\begin{aligned} & 0.0306 \\ & 0.0412 \end{aligned}$	$\begin{aligned} & 0 \cdot 0234 \\ & 0 \cdot 0217 \\ & 0 \cdot 0205 \end{aligned}$	$\begin{aligned} & 0.0549 \\ & 0.0510 \\ & 0.0484 \end{aligned}$	$\begin{aligned} & 0.00220 \\ & 0.00207 \\ & 0.00193 \end{aligned}$
$0 \cdot 60$	1.4238	$0 \cdot 0241$						
$0 \cdot 80$	1.4155	$0 \cdot 0157$			$0 \cdot 0511$			
$1 \cdot 20$	$1 \cdot 4079$	$0 \cdot 0081$	$\begin{aligned} & 0.0058 \\ & 0 \cdot 0028 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 0.0291 \\ & 0.0366 \\ & 0.0437 \end{aligned}$	$\begin{aligned} & 0 \cdot 0697 \\ & 0 \cdot 0874 \\ & 0.1043 \end{aligned}$	$\begin{aligned} & 0.0190 \\ & 0.0181 \\ & 0.0175 \end{aligned}$	$\begin{aligned} & 0.0451 \\ & 0 \cdot 0431 \\ & 0.0416 \end{aligned}$	$\begin{aligned} & 0.00188 \\ & 0.00181 \\ & 0.00175 \end{aligned}$
$1 \cdot 60$	$1 \cdot 4048$	$0 \cdot 0049$						
$2 \cdot 00$	$1 \cdot 4032$	$0 \cdot 0033$						
$\begin{aligned} & 0 \\ & 0 \cdot 05 \\ & 0 \cdot 10 \\ & 0 \cdot 15 \\ & 0 \cdot 20 \end{aligned}$	$\begin{aligned} & 1 \cdot 7720 \\ & 1 \cdot 7381 \\ & 1 \cdot 7126 \\ & 1 \cdot 6934 \\ & 1 \cdot 6788 \end{aligned}$	$\begin{aligned} & 0.1272 \\ & 0.1044 \\ & 0.0865 \\ & 0.0727 \\ & 0.0619 \end{aligned}$	$\begin{aligned} & 0 \cdot 2787 \\ & 0 \cdot 2107 \\ & 0 \cdot 1613 \\ & 0 \cdot 1251 \\ & 0 \cdot 0984 \end{aligned}$	c) $M_{0}=1 \cdot 6$		$0 \cdot 0317$	$0 \cdot 0918$	$0 \cdot 00312$
				$\begin{aligned} & 0.0017 \\ & 0.0032 \end{aligned}$	$0 \cdot 0050$			
					$0 \cdot 0092$	$0 \cdot 0277$	$0 \cdot 0775$	
				0.00450.0058	0.0129	$\begin{aligned} & 0.0261 \\ & 0.0248 \end{aligned}$	$\begin{aligned} & 0.0715 \\ & 0.0671 \end{aligned}$	0.00269 0.00249
					0.0164			$\begin{aligned} & 0.00249 \\ & 0.00237 \end{aligned}$
				$0 \cdot 0070$	0.0197	0.0239	$0 \cdot 0642$	$0 \cdot 00228$
$0 \cdot 40$	1.6449	0.0361	$\begin{aligned} & 0.0431 \\ & 0.0241 \\ & 0.0143 \end{aligned}$	$\begin{aligned} & 0.0115 \\ & 0.0157 \\ & 0.0196 \end{aligned}$	$\begin{aligned} & 0.0317 \\ & 0.0427 \\ & 0.0532 \end{aligned}$	$\begin{aligned} & 0.0215 \\ & 0.0201 \\ & 0.0191 \end{aligned}$	$\begin{aligned} & 0 \cdot 0571 \\ & 0 \cdot 0533 \\ & 0.0508 \end{aligned}$	$\begin{aligned} & 0 \cdot 00207 \\ & 0 \cdot 00195 \\ & 0 \cdot 00187 \end{aligned}$
$0 \cdot 60$	$1 \cdot 6285$	$0 \cdot 0231$						
$0 \cdot 80$	1-6193	$0 \cdot 0157$						
$1 \cdot 20$	$1 \cdot 6101$	$0 \cdot 0083$	$0 \cdot 0058$	$0 \cdot 0270$	0.0728	$0 \cdot 0178$	$0 \cdot 0475$	$0 \cdot 00177$
$1 \cdot 60$	1-6062	$0 \cdot 0051$	$0 \cdot 0029$	$0 \cdot 0339$	$0 \cdot 0913$	$0 \cdot 0170$	$0 \cdot 0454$	0.00170
$0 \cdot 20$	$1 \cdot 6041$	$0 \cdot 0034$	$0 \cdot 0016$	$0 \cdot 0406$	$0 \cdot 1092$	0.0164	$0 \cdot 0439$	$0 \cdot 00164$

TABLE 2
Flows Along the Afterbodies

x_{2}	M_{1}	$-C_{p}$	$\frac{1}{V_{1}} \frac{d V_{1}}{d x_{2}}$	$\stackrel{\vartheta}{\vartheta}(\mathrm{in} .)$	$\begin{gathered} \delta^{*} \\ (\mathrm{inl} .) \end{gathered}$		$\frac{d \delta^{*}}{d x_{2}}$	C_{s}	$\Delta C_{p} \dagger$
			(a) $t=0 \cdot 1, M_{0}=1 \cdot 2$						
0	1.2000	0	0.2850	-0.0472	$0 \cdot 1002$	-0.0130	-0.0025	$0 \cdot 00187$	-0.0003
$0 \cdot 054$	$1 \cdot 2204$	$0 \cdot 0262$	$0 \cdot 2007$	$0 \cdot 0470$	$0 \cdot 1008$	$+0.0031$	+0.0248	$0 \cdot 00186$	
$0 \cdot 108$	$1 \cdot 2350$	$0 \cdot 0446$	$0 \cdot 1437$	$0 \cdot 0475$	0.1029	0.0153	0.0467	0.00185	$+0.0034$
0.162	$1 \cdot 2458$	$0 \cdot 0581$	$0 \cdot 1042$	$0 \cdot 0486$	0.1058	$0 \cdot 0256$	$0 \cdot 0661$	$0 \cdot 00184$	
0.216	1.2537	$0 \cdot 0679$	0.0758	0.0503	0.1099	0.0354	$0 \cdot 0853$	0.00183	$0 \cdot 0042$
$0 \cdot 324$	$1 \cdot 2634$	0.0798	$+0.0320$	$0 \cdot 0552$	$0 \cdot 1214$	$0 \cdot 0576$	0.1326	$0 \cdot 00179$	$0 \cdot 0044$
$0 \cdot 432$	$1 \cdot 2653$	$0 \cdot 0821$	-0.0112	$0 \cdot 0631$	0.1389	$0 \cdot 0905$	$0 \cdot 1978$	$0 \cdot 00175$	0.0046
$0 \cdot 540$	$1 \cdot 2591$	$0 \cdot 0745$	-0.0601	$0 \cdot 0756$	$0 \cdot 1658$	$0 \cdot 1483$	$0 \cdot 3157$	$0 \cdot 00170$	$0 \cdot 0059$
$0 \cdot 648$	$1 \cdot 2427$	$0 \cdot 0542$	-0.1293	$0 \cdot 0974$	$0 \cdot 2117$	0.2711	0.5636	0.00163	$0 \cdot 0101$
			(b) $t=0 \cdot 1, M_{0}=1 \cdot 4$						$0 \cdot 0020$
0	$1 \cdot 4000$	0	$0 \cdot 2105$	0.0437	0.1041	--0.0006	0.0238	$0 \cdot 00175$	
$0 \cdot 054$	1.4189	$0 \cdot 0196$	$0 \cdot 1534$	$0 \cdot 0440$	$0 \cdot 1059$	$+0.0102$	$0 \cdot 0436$	$0 \cdot 00175$	$0 \cdot 0035$
$0 \cdot 108$	1.4335	$0 \cdot 0337$	$0 \cdot 1188$	0.0448	0. 1087	$0 \cdot 0186$	$0 \cdot 0607$	0.00173	
0.162	1.4452	0.0452	$0 \cdot 0960$	$0 \cdot 0460$	0.1124	0.0262	0.0772	$0 \cdot 00172$	
$0 \cdot 216$	1.4545	$0 \cdot 0543$	0.0732	$0 \cdot 0476$	$0 \cdot 1171$	0.0346	0.0955	$0 \cdot 00171$	$0 \cdot 0038$
$0 \cdot 324$	1-4671	$0 \cdot 0663$	0.0379	$0 \cdot 0523$	$0 \cdot 1297$	$0 \cdot 0540$	$0 \cdot 1400$	$0 \cdot 00167$	$0 \cdot 0040$
$0 \cdot 432$	$1 \cdot 4719$	$0 \cdot 0709$	+0.0034	. 0.0596	$0 \cdot 1482$	0.0831	$0 \cdot 2073$	$0 \cdot 00164$	0.0043
$0 \cdot 540$	$1 \cdot 4682$	0.0673	-0.0363	0.0710	$0 \cdot 1761$	$0 \cdot 1340$	$0 \cdot 3243$	$0 \cdot 00159$	0.0053
$0 \cdot 648$	$1 \cdot 4547$	$0 \cdot 0545$	-0.0852	$0 \cdot 0905$	$0 \cdot 2225$	0. 2393	$0 \cdot 5652$	$0 \cdot 00153$	$0 \cdot 0087$
			(c) $t=0 \cdot 1, M_{0}=1 \cdot 6$						$0 \cdot 0028$
0	$1 \cdot 6000$	0	$0 \cdot 1592$	0.0406	0. 1089	$0 \cdot 0067$	0.0429	$0 \cdot 00165$	
0.054	1.6189	$0 \cdot 0154$	$0 \cdot 1283$	$0 \cdot 0411$	$0 \cdot 1116$	$0 \cdot 0137$	$0 \cdot 0582$	$0 \cdot 00163$	
$0 \cdot 108$	$1 \cdot 6344$	$0 \cdot 0279$	0. 1036	$0 \cdot 0421$	$0 \cdot 1152$	0.0203	$0 \cdot 0734$	$0 \cdot 00162$	0.0036
$0 \cdot 162$	1-6472	$0 \cdot 0378$	$0 \cdot 0850$	0.0433	$0 \cdot 1196$	$0 \cdot 0268$	$0 \cdot 0895$	0.00161	
$0 \cdot 216$	1.6579	$0 \cdot 0461$	$0 \cdot 0691$	$0 \cdot 0450$	$0 \cdot 1249$	$0 \cdot 0339$	$0 \cdot 1073$	0.00160	$0 \cdot 0036$
$0 \cdot 324$	$1 \cdot 6733$	$0 \cdot 0577$	0.0410	0.0495	$0 \cdot 1388$	0.0512	$0 \cdot 1523$	0.00157	$0 \cdot 0037$
$0 \cdot 432$	1.6808	$0 \cdot 0634$	$+0.0117$	$0 \cdot 0564$	$0 \cdot 1587$	0.0775	$0 \cdot 2211$	0.00153	0.0041
$0 \cdot 540$	1.6794	$0 \cdot 0624$	-0.0238	0.0669	0.1882	0.1237	$0 \cdot 3407$	0.00148	$0 \cdot 0050$
0.648	$1 \cdot 6666$	$0 \cdot 0527$	-0.0676	$0 \cdot 0850$	$0 \cdot 2367$	$0 \cdot 2189$	$0 \cdot 5858$	0.00143	$0 \cdot 0078$
			(d) $t=0.1414, M_{0}=1 \cdot 2$						
0	$1 \cdot 2000$		$0 \cdot 4226$	$0 \cdot 0472$	$0 \cdot 1002$	-0.0372	-0.0418	$0 \cdot 00187$	$-0 \cdot 0071$
$0 \cdot 054$	$1 \cdot 2305$	$0 \cdot 0389$	0.3026	$0 \cdot 0459$	$0 \cdot 0990$	--0.0154	-0.0058	0.00186	
$0 \cdot 108$	$1 \cdot 2537$	0.0679	$0 \cdot 2320$	$0 \cdot 0454$	$0 \cdot 0994$	-0.0138	$+0.0188$	0.00186	$+0.0030$
0.162	1-2722	0.0905	$0 \cdot 1839$	0.0457	$0 \cdot 1009$	+0.0096	0.0393	0.00185	
$0 \cdot 214$	$1 \cdot 2869$	0. 1082	0-1404	$0 \cdot 0465$	$0 \cdot 1036$	$0 \cdot 0204$	0.0598	0.00184	0.0055
$0 \cdot 324$	$1 \cdot 3071$	$0 \cdot 1321$	$0 \cdot 0747$	$0 \cdot 0498$	$0 \cdot 1123$	$0 \cdot 0424$	$0 \cdot 1043$	$0 \cdot 00181$	0.0067
0.432	$1 \cdot 3153$	$0 \cdot 1417$	+0.0115	$0 \cdot 0559$	$0 \cdot 1268$	0.0733	$0 \cdot 1677$	$0 \cdot 00177$	$0 \cdot 0076$
0.540	$1 \cdot 3104$	$0 \cdot 1360$	-0.0662	$0 \cdot 0664$	$0 \cdot 1501$	$0 \cdot 1277$	$0 \cdot 2783$	$0 \cdot 00172$	$0 \cdot 0099$
0.648	1-2881	$0 \cdot 1096$	-0.1789	$0 \cdot 0858$	$0 \cdot 1913$	0.2457	$0 \cdot 5141$	0.00165	0.0172

$\dagger \Delta C_{p}$ is the increment in pressure coefficient due to the boundary-layer displacement effect.

TABLE 2-continued
Flows Along the Afterbodies

x_{2}	M_{1}	$-C_{p}$	$\frac{1}{V_{2}} \frac{d V_{1}}{d x_{2}}$.	$\begin{gathered} \vartheta \\ \text { (in.) } \end{gathered}$	δ^{*} (in.)	$\frac{d \vartheta}{d x_{2}}$	$\frac{d \delta^{*}}{d x_{2}}$	C_{f}	ΔC_{p}
			(e) $t=0 \cdot 1414, M_{0}=1 \cdot 4$						
0	$1 \cdot 4000$	0	$0 \cdot 2809$	$0 \cdot 0437$	$0 \cdot 1041$	-0.0144	-0.0007	$0 \cdot 00175$	-0.0001
$0 \cdot 054$	$1 \cdot 4275$	0.0278	$0 \cdot 2337$	$0 \cdot 0432$	$0 \cdot 1046$	-0.0041	$+0.0191$	0.00175	
$0 \cdot 108$	$1 \cdot 4506$	$0 \cdot 0505$	0. 1897	$0 \cdot 0432$	$0 \cdot 1061$	+0.0054	0.0380	$0 \cdot 00174$	$+0.0038$
$0 \cdot 162$	$1 \cdot 4700$	$0 \cdot 0691$	0. 1545	$0 \cdot 0438$	$0 \cdot 1086$	$0 \cdot 0140$	0.0357	0.00173	
$0 \cdot 216$	$1 \cdot 4863$	$0 \cdot 0843$	0. 1279	$0 \cdot 0447$	$0 \cdot 1121$	$0 \cdot 0221$	$0 \cdot 0738$	$0 \cdot 00171$	$0 \cdot 0052$
$0 \cdot 324$	1.5105	0. 1066	$0 \cdot 0790$	$0 \cdot 0481$	$0 \cdot 1223$	$0 \cdot 0410$	$0 \cdot 1170$	$0 \cdot 00168$	$0 \cdot 0060$
0.432	$1 \cdot 5236$	$0 \cdot 1183$	+0.0296	$0 \cdot 0539$	$0 \cdot 1381$	$0 \cdot 0682$	$0 \cdot 1801$	$0 \cdot 00165$	$0 \cdot 0069$
$0 \cdot 540$	$1 \cdot 5238$	0.1185	-0.0312	$0 \cdot 0635$	0.1627	$0 \cdot 1154$	$0 \cdot 2890$	$0 \cdot 00160$	$0 \cdot 0088$
$0 \cdot 648$	$1 \cdot 5067$	0.1031	-0.1175	$0 \cdot 0807$	$0 \cdot 2047$	$0 \cdot 2154$	$0 \cdot 5152$	$0 \cdot 00154$	$0 \cdot 0145$
			(f) $t=0.1414, M_{0}=1.6$						
0	$1 \cdot 6000$	0	$0 \cdot 2286$	$0 \cdot 0406$	$0 \cdot 1089$	-0.0053	$0 \cdot 0218$	$0 \cdot 00165$	$0 \cdot 0020$
$0 \cdot 054$	$1 \cdot 6275$	0.0223	0.1898	0.0405	$0 \cdot 1105$	+0.0027.	$0 \cdot 0387$	$0 \cdot 00164$	
$0 \cdot 108$	$1 \cdot 6514$	$0 \cdot 0411$	$0 \cdot 1617$	$0 \cdot 0409$	$0 \cdot 1131$	$0 \cdot 0097$	$0 \cdot 0547$	$0 \cdot 00163$	0.0045
$0 \cdot 162$	1.6723	$0 \cdot 0570$	0. 1385	$0 \cdot 0416$	$0 \cdot 1165$	0.0164	$0 \cdot 0712$	$0 \cdot 00161$	
$0 \cdot 216$	1-6903	$0 \cdot 0705$	0-1169	$0 \cdot 0427$	$0 \cdot 1208$	$0 \cdot 0235$	$0 \cdot 0890$	$0 \cdot 00160$	$0 \cdot 0051$
$0 \cdot 324$	1-7188	0.0910	$0 \cdot 0782$	$0 \cdot 0461$	$0 \cdot 1326$	$0 \cdot 0402$	0. 1327	$0 \cdot 00157$	$0 \cdot 0057$
0.432	$1 \cdot 7362$	$0 \cdot 1031$	$+0.0378$	$0 \cdot 0516$	0. 1502	$0 \cdot 0646$	0. 1975	$0 \cdot 00153$	$0 \cdot 0065$
$0 \cdot 540$	$1 \cdot 7404$	$0 \cdot 1060$	-0.0119	$0 \cdot 0606$	0. 1768	0-1070	$0 \cdot 3085$	$0 \cdot 00149$	0.0082
$0 \cdot 648$	1-7269	$0 \cdot 0966$	--0.0815	$0 \cdot 0763$	$0 \cdot 2209$	0.1952	$0 \cdot 5351$	$0 \cdot 00144$	$0 \cdot 0127$
			(g) $t=0 \cdot 2, M_{0}=1.2$						
0	$1 \cdot 2000$	0	$0 \cdot 5855$	$0 \cdot 0472$	$0 \cdot 1002$	[-0.0626	-0.0814	$0 \cdot 00187$	-0.0195
$0 \cdot 054$	$1 \cdot 2442$	$0 \cdot 0561$	$0 \cdot 4513$	$0 \cdot 0446$	$0 \cdot 0970$	-0.0365	-0.0387	$0 \cdot 00187$	
$0 \cdot 108$	$1 \cdot 2802$	$0 \cdot 1001$	$0 \cdot 3562$	$0 \cdot 0431$	0.0958	-0.0187	-0.0080	0.00186	-0.0019
0.162	$1 \cdot 3102$	$0 \cdot 1358$	0. 2888	$0 \cdot 0425$	$0 \cdot 0961$	-0.0056	+0.0158	0.00186	
0.216	$1 \cdot 3356$	$0 \cdot 1651$	0. 2362	0.0425	0.0975	+0.0055	0.0370	$0 \cdot 00185$	+0.0052
$0 \cdot 324$	$1 \cdot 3740$	$0 \cdot 2080$	0. 1482	0.0442	$0 \cdot 1038$	$0 \cdot 0272$	$0 \cdot 0810$	$0 \cdot 00182$	$0 \cdot 0090$
$0 \cdot 432$	$1 \cdot 3957$	$0 \cdot 2315$	$+0.0606$	$0 \cdot 0486$	$0 \cdot 1155$	$0 \cdot 0556$	$0 \cdot 1402$	$0 \cdot 00178$	$0 \cdot 0118$
$0 \cdot 540$	$1 \cdot 3979$	$0 \cdot 2339$	-0.0457	$0 \cdot 0569$	$0 \cdot 1354$	0. 1040	$0 \cdot 2404$	$0 \cdot 00173$	$0 \cdot 0160$
$0 \cdot 648$	$1 \cdot 3736$	$0 \cdot 2076$	-0.1990	$0 \cdot 0731$	0.1714	$0 \cdot 2097$	$0 \cdot 4538$	$0 \cdot 00166$	$0 \cdot 0281$
			(h) $t=0.2, M_{0}=1.4$						
0	$1 \cdot 4000$	0	$0 \cdot 4142$	$0 \cdot 0437$	$0 \cdot 1041$	-0.0330	-0.0291	$0 \cdot 00175$	-0.0048
$0 \cdot 054$	$1 \cdot 4401$	$0 \cdot 0402$	0.3364	$0 \cdot 0423$	$0 \cdot 1033$	-0.0183	-0.0027	0.00175	
$0 \cdot 108$	$1 \cdot 4748$	$0 \cdot 0736$	$0 \cdot 2857$	$0 \cdot 0416$	0. 1037	-0.0077	+0.0181	0.00174	+0.0015
$0 \cdot 162$	$1 \cdot 5056$	$0 \cdot 1021$	$0 \cdot 2468$	$0 \cdot 0415$	0.1052	$+0.0013$	0.0371	0.00173	
0.216	1.5328	$0 \cdot 1264$	$0 \cdot 2091$	$0 \cdot 0418$	0. 1077	. $0 \cdot 0101$	$0 \cdot 0563$	$0 \cdot 00172$	$0 \cdot 0056$
$0 \cdot 324$	$1 \cdot 5767$	$0 \cdot 1640$	$0 \cdot 1433$	$0 \cdot 0438{ }^{\circ}$	$0 \cdot 1159$	$0 \cdot 0287$	$0 \cdot 0993$	$0 \cdot 00169$	$0 \cdot 0083$
$0 \cdot 432$	$1 \cdot 6053$	$0 \cdot 1875$	+0.0771	$0 \cdot 0482$	0.1297	$0 \cdot 0537$	$0 \cdot 1590$	$0 \cdot 00165$	$0 \cdot 0105$
$0 \cdot 540$	$1 \cdot 6156$	0. 1956	-0.0342	$0 \cdot 0560$	0. 1517	$0 \cdot 0959$	$0 \cdot 2590$	0.00160	0.0139
0.648	1-6002	0.1833	-0.1211	$0 \cdot 0706$	0. 1894	$0 \cdot 1857$	$0 \cdot 4650$	0.00154	$0 \cdot 0230$

TABLE 2-continued
Flows Along the Afterbodies

x_{2}	M_{1}	$-C_{p}$	$\frac{1}{V_{1}} \frac{d V_{1}}{d x_{2}}$	$\stackrel{\vartheta}{(\mathrm{in} .)}$	$\begin{gathered} \delta^{*} \\ \text { (in.) } \end{gathered}$	$\frac{\frac{d \vartheta}{d x_{2}}}{(\text { in. }}$	$\frac{\frac{d \delta^{*}}{d x_{2}}}{(\text { in. }}$	C_{f}	ΔC_{p}
			(i) $t=0 \cdot 2, M_{0}=1 \cdot 6$						
0	$1 \cdot 6000$	0	$0 \cdot 3222$	$0 \cdot 0406$	$0 \cdot 1089$	-0.0176	$0 \cdot 0036$	$0 \cdot 00165$	$0 \cdot 0005$
0.054	$1 \cdot 6397$	$0 \cdot 0320$	$0 \cdot 2763$	0.0399	0.1096	-0.0082	$0 \cdot 0230$	$0 \cdot 00164$	
$0 \cdot 108$	1.6756	$0 \cdot 0595$	0.2425	$0 \cdot 0397$	$0 \cdot 1114$	--0.0005	$0 \cdot 0409$	0.00163	$0 \cdot 0039$
0. 162	1.7083	$0 \cdot 0835$	$0 \cdot 2134$	$0 \cdot 0399$	$0 \cdot 1141$	+0.0067	$0 \cdot 0587$	$0 \cdot 00161$	
0.216	$1 \cdot 7377$	$0 \cdot 1042$	$0 \cdot 1860$	$0 \cdot 0404$	$0 \cdot 1177$	0.0140	$0 \cdot 0773$	0.00160	$0 \cdot 0061$
$0 \cdot 324$	$1 \cdot 7874$	$0 \cdot 1372$	$0 \cdot 1359$	$0 \cdot 0428$	$0 \cdot 1283$	$0 \cdot 0302$	$0 \cdot 1212$	0.00157	$0 \cdot 0078$
0.432	1.8227	$0 \cdot 1593$	$0 \cdot 0823$	$0 \cdot 0472$	$0 \cdot 1445$	$0 \cdot 0529$	$0 \cdot 1837$	$0 \cdot 00153$	$0 \cdot 0097$
$0 \cdot 540$	1.8396	0. 1696	$0 \cdot 0165$	$0 \cdot 0547$	$0 \cdot 1694$	$0 \cdot 0913$	$0 \cdot 2877$	$0 \cdot 00149$	$0 \cdot 0126$
$0 \cdot 648$	1.8308	$0 \cdot 1643$	-0.0741	$0 \cdot 0683$	$0 \cdot 2104$	$0 \cdot 1705$	$0 \cdot 4966$	0.00143	0.0196

TABLE 3

Afterbody Wave Drag Coefficients

$C_{D}=$ Wave drag coefficient in inviscid flow, based on maximum cross-section area.
$\Delta C_{D}=$ Change in the wave drag coefficient due to the presence of the boundary layer.

l_{2}	$M_{0}=1 \cdot 2$		$M_{0}=1 \cdot 4$		$M_{0}=1 \cdot 6$	
	$C^{\text {b }}$	- ΔC_{D}	$C^{\text {d }}$	ΔC_{D}	C_{D}	$\triangle C_{B}$
			(a) $t=0 \cdot 1$			
$0 \cdot 108$	$0 \cdot 0008$	-0.0001	$0 \cdot 0006$	-0.0001	$0 \cdot 0005$	-0.0001
$0 \cdot 216$	$0 \cdot 0047$	-0.0003	$0 \cdot 0037$	-0.0003	$0 \cdot 0031$	-0.0003
$0 \cdot 324$	$0 \cdot 0128$	-0.0008	0.0103	-0.0007	$0 \cdot 0088$	-0.0007
0.432	0.0242	-0.0014	0.0199	-0.0013	$0 \cdot 0173$	--0.0013
0.540	0.0369	-0.0022	$0 \cdot 0311$	-0.0021	$0 \cdot 0274$	-0.0020
$0 \cdot 648$	$0 \cdot 0477$	-0.0035	0.0413	-0.0032	$0 \cdot 0371$	-0.0030
			(b) $t=0.1414$			
$0 \cdot 108$	$0 \cdot 0011$	0	$0 \cdot 0008$	-0.0001	$0 \cdot 0007$	-0.0001
$0 \cdot 216$	-0.0074	-0.0003	$0 \cdot 0056$	-0.0004	$0 \cdot 0046$	$-0 \cdot 0004$
$0 \cdot 324$	0.0205	-0.0010	$0 \cdot 0161$	-0.0010	$0 \cdot 0135$	-0.0010
0.432	$0 \cdot 0398$	-0.0020	$0 \cdot 0319$.	-0.0019	$0 \cdot 0271$	-0.0019
0.540	$0 \cdot 0622$	-0.0034	$0 \cdot 0510$	-0.0031	$0 \cdot 0439$	-0.0030
$0 \cdot 648$	$0 \cdot 0828$	-0.0055	$0 \cdot 0695$	-0.0050	$0 \cdot 0609$	$-0 \cdot 0047$
			(c) $t=0.2$			
	$0 \cdot 0017$	$+0 \cdot 0001$	0.0012	0	$0 \cdot 0010$	-0.0001
$0 \cdot 216$	$0 \cdot 0110$	0	$0 \cdot 0083$	-0.0003	$0 \cdot 0067$	-0.0004
$0 \cdot 324$	0.0315	-0.0008	$0 \cdot 0242$	-0.0010	$0 \cdot 0200$	-0.0012
0.432	$0 \cdot 0624$	-0.0023	$0 \cdot 0489$	-0.0023	$0 \cdot 0408$	-0.0024
0.540	$0 \cdot 0999$	-0.0045	$0 \cdot 0797$	-0.0043	0.0673	$-0 \cdot 0042$
$0 \cdot 648$	$0 \cdot 1368$	-0.0079	$0 \cdot 1113$	-0.0071	0.0951	-0.0067

TABLE 4
Total Skin-friction Coefficients
(a) Parallel portion

	Body M_{0}	Flat plate C_{F}	For R_{e} based on distance from nose
1.2	0.00217	0.00204	
1.4	0.00202	0.00190	0.00217
1.6	0.00189	0.00178	0.00203

(b) Parallel portion + afterbody

t	M_{0}	Body C_{F}	Flat plate C_{F}	
			For R_{e} based on distance from nose	For R_{e} based on distance from shoulder
$0 \cdot 1$	1.2	0.00203	$0 \cdot 00196$	0.00206
	$1 \cdot 4$	$0 \cdot 00189$	$0 \cdot 00183$	$0 \cdot 00193$
	1.6	$0 \cdot 00176$	0.00172	0.00179
$0 \cdot 1414$	$1 \cdot 2$	$0 \cdot 00206$	0.00200	0.00210
	$1 \cdot 4$	$0 \cdot 00192$	0.00186	0.00196
	1.6	$0 \cdot 00178$	0.00174	0.00183
$0 \cdot 2$. 1.2	$0 \cdot 00209$	$0 \cdot 00201$	$0 \cdot 00211$
	$1 \cdot 4$	$0 \cdot 00194$	0.00185	0.00197
	$1 \cdot 6$	$0 \cdot 00180$	0.00175	0.00184

Fig. 1. The bodies of revolution.

Fig. 2. Comparison of exact and approximate results for the pressures on a parallel portion.

Fig. 3. Characteristics network for $t=0 \cdot 2, M_{0}=1 \cdot 6$.

Fig. 4. Pressure distributions on the bodies in inviscid flow.
$C_{P_{\text {MIN }}}=\begin{aligned} & \text { COEFFICIENT CORRESPONDING TO MINIMUM PRESSURE } \\ & \text { ON AN AFTERBODY IN INVISCID FLLOW. }\end{aligned}$

Fig. 5. Changes in the afterbody pressure coefficients due to the presence of boundary layers.

(a) $t=0 \cdot 1$

(b) $t=0.1414$

(c) $t=0.2$

Figs. 6a, 6b and 6c. Afterbody pressure distributions with and without the effect of boundary layer.

Fig. 7a. Comparison of linearized and exact solutions.

Fig. 7b. Comparison of linearized and exact solutions.

Fig. 8. Afterbody pressure coefficients plotted according to the similarity law,

Fig. 9. Afterbody drag coefficients plotted according to the similarity law.

Fig. 10a. Displacement and momentum thicknesses for $M_{0}=1 \cdot 2$.

Fig. 10b. Displacement and momentum thicknesses for $M_{0}=1.4$.

Fig. 10c. Displacement and momentum thicknesses for $M_{0}=1 \cdot 6$.

Fig. 11. The effect of Mach number on the displacement and momentum thicknesses ($t=0.1414$).

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1939 Vol. I. Aerodynamics General, Performance, Airscréws, Engines. 50s. (5Is. 9d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64 s . 9 d .)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (51s. 9d.)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63 s . (64 s .9 d .)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 9 d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (49s. $3^{\text {d. }}$)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (8rs. gd.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. gos. (92s. 6d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84 s. ($86 \mathrm{~s} .3^{\text {d. }}$.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. . 84 s. (86s. 3 d.)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. r3os. (r32s. 6d.)
Vol. II. Aircraft, Airscrews, Controls. i30s. (I32s. 6d.)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 130 s (132s. 3d.)
Vol. IV. Stability, Structures, Wind tunnels, Wind Tunnel Technique. I30s. ($\mathrm{I}_{3} 2 \mathrm{~s} .3 \mathrm{~d}$.)
anNuAl reports of the aeronautical research council-
1937 2s. (2s. 2d.) 1938 rs. 6d. (xs. 8d.) 1939-48 3 3s. (3s. $3^{d .}$.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-

$$
\text { April, } 1950-\quad-\quad-\quad-\quad \text { R. \& M. No. } 2600 . \quad 2 s .6 d . \text { (2s. } 8 d .)
$$

AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-r909-January, 1954 - $\quad-\quad$ R. \& M. No. 2570. r5s. (15s. 6d.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

December I, 1936 - June 30, 1939.
R. \& M. No. 1850. July 1, 1939 - June 30, 1945 - R. \& M. No. 1950. July I, 1945 - June 30, $1946 . \quad-\quad$ R. \& M. No. 2050. July r, 1946 - December 31, 1946. January i, 1947 - June 30, 1947 . -
R. \& M. No. 2150.
R. \& M. No. 2250.

1s. 3d. (土s. 5 d.) $^{\text {(}}$
1s. (1s. 2d.)
Is. (Is. 2d.)
is. $3^{d .}$. (1s. $5^{d .}$)
rs. $3^{d .}$. ($\mathrm{ss} .5^{d .}$)

PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCILBetween Nos. 2251-2349. - \quad R. \& M. No. 2350. rs. 9 d. (rs. rid.) Between Nos. 2351-2449. - - R. \& M. No. 2450. 2s. (2s. 2d.) Between Nos. 2451-2549. - - R. \& M. No. 2550. 2s. 6d. (2s. 8d.) Between Nos. 2551-2649. - \quad - R. \& M. No. 2650. 2s. 6d. (2s. 8d.)

Prices in brackets include postage

HER MAJESTY'S STATIONERY OFFICE

[^0]: \dagger R.A.E. Report Aero. 2482, received 1st September, 1953.

[^1]: \dagger Tables of the pressure distribution on cone-cylinders ${ }^{26}$ calculated by the method of characteristics have recently been published; however, the use of these tables in the present case would have required not only a double interpolation and extrapolation (for cone angle and Mach number), but also an awkward numerical differentiation of the results, which would be available only at unequal intervals, in order to obtain the velocity gradients which are required for the boundary-layer problem.

 The modified slender-body theory gives good agreement with the results of Ref. 26 (Fig. 2) and it was felt that the analytic formulae used would lead to greater overall consistency. The comparison of slender-body and exact theory made in Ref. 26 itself is wrong.

[^2]: \dagger The numerical solution of these equations was done by the Computing Section of the Mathematics Division, National Physical Laboratory, under the supervision of Dr. L. Fox. One of the nine flow fields was also calculated at Royal Aircraft Establishment under the author's supervision; the 'deferred approach to the limit' (Appendix I) was not used, but the resulting values of α agreed with the N.P.L. results within $\frac{1}{3}$ per cent of the range in the field,

[^3]: \dagger The exact characteristics calculations were done by Mathematical Services Department, R.A.E., under the supervision of P. Birchall. The technique was that outlined in section 2.2 and Appendix I.

[^4]: \dagger Clearly an alternative form is that $C_{D} l_{2}^{2} / t^{2}$ is a function of l_{2} and $\beta t / l_{2}$ only : this is the form that has been used in Fig. 9.

