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Summary --This paper gives .and applies a method of estimating the stresses caused by root constraint in a two-spar 
swept wing of reinforced monocoque construction where the ribs are parallel to the line of flight. 

The general scheme of the analysis develops the fundamental equations that govern the stresses, strains and displace- 
ments in the separate components~ Then, by comparison of displacements along their inter-sections, equations of 
compatibility are formed. The solution of these equations yields the stress distribution and the distorted shape. In 
deriving the fundamental equations for the skin-stringer combination, use is made of an oblique system of co-ordinates 
and stresses. 

A suggested numerical procedure is given for the evaluation of the stress distribution and distorted shape. It  is found 
convenient to use matrices and the procedure has been so planned that the elements of a matrix are obtained by simple 
operations on the dements of preceding matrices. 

A wing loading condition is also derived which produces zero rib warping, i.e., there is no redistribution of stress at 
the root of the .wing. 

Tests on a cellulose-nitrate model h~tve provided good qualitative confirmation of the theory. 
i 

1. I~4troductiora.--This paper is mainly concerned with the estimation of the stresses caused by 
root constraint in a two-spar swept wing of reinforced monocoqu e construction with discrete 
ribs in the line of flight. The top and bottom surfaces consist of skins reinforced by numerous 
stringer lying parallel to the spars. Caution should be exercised in applying the method developed 
here to a wing with very thick skins and few or no reinforcing elements. In such a case the 
stresses caused by root constraint must be determined by more exact methods. 

Estimation of the stress distribution in reinforced monocoque structures can be broadly 
considered under one of the following three headings, viz., 

(a) Estimation of the overall stress distr ibution over regions far removed from a discontinuity 
(such as an abrupt change of section) 

"(b) Estimation of the stress distribution in the neighbourhood of a discontinuity (i.e.; within 
a range of two or three chords) 

(c) Estimation of the peak stresses at the discontinuity (i.e., within a range of two or three 
times the cross-sectional dimension of a relevant stiffener). 

*R.A.E. Report Stractures 138, received 24th February, 1953. 
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This paper is concerned with the stress distribution in the neighbourhood of a discontinuity 
(i.e.~ (b) above). This stress distribution is usually determined from consideration of a ' shel l  
model '  that  is an  appropriate and, convenient idealisation of the basic reinforced monocoque 
structure. A theory * has already been developed for flat-sided structures with normal ribs, and 
the theory presented here for skew ribs is aspecial  extension. 

Wittr ick 2, Hemp 3 and Mansfield ~ have produced theories for the behaviour of swept wings 
with ribs in the line of flight over regions far removed from a discontinuity (i.e., (a) above). 
They have shown that  skewness of the ribs produces a coupling between the curvature and 
twisting of the wing box when it is under bending or torsion ; and tha t  the ribs contribute to the 
flexural and torsional stiffnesses. These effects are usually small and no allowance is made for 
them in the present theory. 

2. Descriptiora of Structure.--2.1. Basic Reinforced Moraocoque Structure.--The top and bot tom 
surfaces of the two-spar wing of rectangular cross-section, shown in Fig. 1, are constructed 
from thin flat skins reinforced by closely spaced stringers lying parallel to the spars. The ribs 
are discrete and in the line of flight. Both ribs and spars are assumed unable to resist warping 
"out of their planes. 

2.2. i Derivatio~ Of the Shell Model.--In the calculation of the stress distribution in the neigh- 
bourhood of a discor/tinuity account is taken 0nly of the most important  function of the individual 
structural components. The resulting structure with its limited attributes is called a '  shell model.' 

If the cross-sectional area of the stringers is large in relation to that  of the skin then the direct 
load parallel to the stringers is carried almost exclusively by the stringers and a condition of 
almost pure shear exists in the individual skin panels between any two str ingers .  Since the 
stringers are closely spaced a good approximation may be obtained by considering them as 
uniformly distributed over the surface of the skin. A change of shear along the skin-stringer 
combination can only take place at a rib. As i n  the analysis of unswept wing structures, the 
rib and spar webs are assumed to carry shear only and the booms direct load only. 

The above is now applied to the case where ~he cross-sections of the skin and stiffeners are of 
the same order of value.  Account is taken of the contributory direct stiffnesses of the skin by 
corresponding increases in the stiffener cross-sections, which are then usually called ' effective 
cross-sections.' 

2.3. Ass umptiofas.--The following assumptions are made in the analysis, viz., 
(a) The stress-strain relationships are linear 
(b) Buckling is excluded 
(c) The stringers and booms can resist 0nly direct load 
(d) The stringers are so closely spaced that  they may be considered uniformly distributed over 

the surface of the skin 

(e) The skin and spar webs can resist only shear, account being taken of their contributory 
direct stiffnesses by corresponding increases in the stiffener and boom •cross-sections. 
In particular for the skin, a condition of pm'e shear exists between any two stringers in 
the direction of the stringers, irrespective of rib direction 

. ( f )  The ribs cannot resist warping out of their plane and the rib webs can only resist shear. 

A further assumption that, the rib booms are inextensional is made to simplify the computation. 

3. Determination of the Stress Distributiora.--3.1. Analysis.--Full details of the analysis for 
the above shell model are given in Appendix I. The first step in the analysis is to form the 
differential equations of compatibility for the top and bottom skin-stringer combinations, and 
for these i.t has been found convenient to use the oblique system of co-ordinates as described 
by Hemp. a. When the rib booms are considered inextensional the equations of compatibility 



reduce to a set of n simultaneous differential equations of the second order, where n is the number  
of bays in the shell model. All explicit solution of these equat ions can be found when the  rib 
spacings a re  assumed constant  ; and it is shown in-Appendix VII  tha t  this  solution is 

(~k~ + A& + BB)Sl2 
Ck exp {&(y/L)}. k~- Aa~ + 

~(2k-  1)/ 
L = L + ~ cos 

, / ~ = 1  2 1 g  

c~ exp {-- \ U - -  + 

where Tj = Tj(× = L) sin ~ --  2S s cos ~ ~ and is called the oblique-stress resul tant  in 
the skin-stringer combinat ion at the j t h  rib, 

= T~+,(× = 0) sin e -- 2Ss+~ cos 

T s is the direct-stress resul tant  along a stringer in the j t t l  bay of the  skin-stringer 
combination,  

S s shear-stress resul tant  in the j t  h bay of the skin-stringer combinat ion,  

x distance along a stringer, a new origin being chosen on the lef t -hand side 
of each bay, 

L distance between ribs measured along a stringer, 
A = 12 cosc~, 

B = 6('Et* sin~ ~ + 4  cos 2 0 
k ~t 

Ck, ck = arbi t rary constants. 

The ,t~ are the roots of the  quadrat ics 

( 2 ~ k 2  B)~  s in2 = ( 2 k  - -  1) 
2n . 

.~](6B -- A s --  3~]) cos ~ =(2k --  1) - - 0  
2n 

and depend only on the non-dimensional  s tructural  parameters  A and B, the  current  suffix k 
and the  number  of bays. 

The shear-stress resultants S i are then found to be 

A ss= - ~  f . +  6Et* s i n ~  (q's -- Vs-~) 
BL 

C~ exp {x~(y/L)}. L\~. 7 _ A& + ~ ) '  cos 

['2k'q-A,t~+B) (i-')/2 ~ ( 2 k -  1 ) ( j -  1)} 
- -  k,]~ --  A, t~+ cos - 2n 

7 
= ( 2 k -  1)j | 

2n 

J 
3/2 + + , - 

- -  ck exp (--a~(y/L)}. L\z? _ Ax~ + 

("~k=+A,%+B) -('-1)/~ ~(2k --  , ) ( j  --  1)} 
--  \2~ ~ -- A~k q- cos 2n 
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where the V¢ refer to rib displacements.  

az(2k --  1)j 
C O S  - 

2n 



It  should be noted that  the ' oblique-stress resultants ' 7" are continuous at a rib because the 
ribs cannot resist warping out of their plane. Now, the true direct-stress resultant T along a 
stringer is determined from the relationship 

T ----- 7" cosec ~ + 2S cot 0¢ 

and is, in general, discontinuous at a rib. 

It  remains to determine the value of the arbitrary constants C~, cl, and also the Yi. These are 
found from considerations of equilibrium and comparing displacements of the component parts 
of the shell model. In general, this procedure results in a set of 3¢¢ simultaneous equations. 
I t  is shown in Appendix v n I  that  the whole procedure is consistent with the total strain energy 
stored in the shell model being rendered a minimum. 

In Appendix n it is shown that  when the shell model contains simultaneously elementary 
bending and torsion distributions such that  

S' 7- /~t 2 sin ~ - -  ½ ~- , 

where T' and S' are constants referring respectively to the bending and torsion, there is then 
no warping of the ribs. The resultant o f  these stress distributions corresponds to a vector couple 
inclined at an angle ~0 from the stringers (Fig, 1) where 

T' cosec ~{  cosec ~,  A i} 
t a n g o =  S' 2 1 + ~a-~: ( R + A ~  

a n d  where "t"/S' is as given above. The vanishing of the rib warping means of course that  there 
is no redistribution of stress when the wing structure is built in at a rib. There will, however, 
be a redistribution of stress in the vicinity of the applied couple unless it is applied in a manner 
corresponding to the elementary distributions. 

3.2. Numerical Application.--Full details of the numerical procedure for the evaluation of the 
stress distribution and deflections are given in Appendix IV, and a numerical illustrative example 
is given in Appendix V. 

It  can be seen on reference to the aforegoing equations that  tile numerical work involved in 
their evaluation will be considerable. An analysis of the unswept wing usually requires the 
solution of the ' shear lag 5 problem ' presented when the wing is resisting a normal force loading, 
and also requires the separate solution of an ' end constraint 6 problem ' arising when the wing is 
under torsion. The analysis of the swept wing does not, however, appear to permit a comparable 
separation of problems. This, coupled with the loss of orthogonal relations between the functions, 
means that  the numerical work will inevitably be considerable in the corresponding calculations 
for a swept wing. 

In applying tile analysis to a particular structure it is preferable to keep the numerical work 
down to a minimum, and this can only be achieved by restricting the number of bays to be 
investigated. Thus the problem arises whether to replace a given wing structure by 

(a) a shell model of the same overall dimensions with an increased distance between t h e  
equally spaced ribs 

(b) a shorter shell model in which the correct distance is retained between the equally spaced 
ribs 

(¢) a shell model in which the rib spacings are unequal. 

In this paper the first choice has been adopted and good experimental agreement was obtained. 
(The experimental results were obtained from the cellulose-nitrate model described in Appendix 
VI and should be regarded as qualitative verification of the theoretical results.) I t  is possible, 
nevertheless, for wings of other configurations that  a rib nearer the root will apprecia31y influence 
thee stress distribution, 



in  a shorter shell model, viz. (b) above, caution must be exercised so that  the free-end condition 
does not influence the stresses in the neighbourhood of the root. If a large measure of doubt 
exists then it is suggested that  (c) above be chosen. In this case the given wing structure could 
be replaced by a shell model where, say, the first two or three rib spacings are correct and the 
remaining rib spacings are increased so tha t  the free-end condition does not influence the stress 
distribution in tile neighbourhood of the root. The modifications t'o the analysis would be quite 
simple and the only additional numerical work involved would be the numerical solution of 
equations (13), (14) and (15). 

4. Conclusions.--In this paper an analysis has been developed to estimate the stresses due to 
root constraint in a two-spar swept wing of reinforced monocoque construction where the ribs 
are in the line of flight. The analysis yields also the distorted shape of the wing. A detailed 
numerical example has been given. Tests on a cellulose-nitrate model have provided good 
qualitative confirmation of the theory. 
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LIST OF SYMBOLS 

Structural Properties 

Distance between spars measured along a rib 

12 cos c~, and is a non-dimensional structural parameter 

Effective cross-sectional area of front spar boom 

Effective cross-sectional area of rear spar boom 

Distance between top and bottom skins 

6k .('Et*~t sin~ ~ + 4 cos ~ @ and is a non-dimensional structural parameter  



J 
k 

X 

X 

y 

y 

L i s t  OF SYMBoLS--co~tinued 

Co-ordinate system 

Current bay or rib number 
Integer such t h a t 0  < k ~< 

Total number of bays in the shell model 

Rectangular co-ordinate along a stringer a new origin being chosen on 
the left-hand side of each bay 

Obliqu e co-ordinate along a stringer, a new origin being chosen on the 
left-hand side of each bay 

Rectangular co-ordinate normal to a stringer but in the plane of the skin- 
stringer combination; origin at the centre stringer 

Oblique co-ordinate parallel to the ribs and in the plane of the skin- 
stringer combination ; origin at the centre stringer 

Normal co-ordinate with origin midway between top and bottom skin- 
stringer combinations 

]]/fj 
2P F i 

PFt 

St 
Si( ) 

St(-- 

SRi 
S' 

Tt 

Tj 

eX x 

Cxy 
eyy 

Loads and stresses 

Couple applied to and in the plane of the j t h  rib 
End load in the front spar in the j t h  bay 
End load in the rear spar in the j t h  bay 

End load in the front spar at the j t h  rilo 

End load in the rear spar at the 2'th rib 

Shear-stress resultant in the j t h  bay of the skin-stringer combination 
Value of the shear-stress resultant at y = a, i.e., at the rear spar 

Value of the shear-stress resultant at y = - - a ,  i.e., at the front spar 
Shear-stress resuitant in the j t h  bay of the front spar web 
Shear-stress resultant in the j t h  bay of the rear spar web 
Particular value of the shear-stress resultant 
Shear-stress resultant in the j t h  rib 

Direct-stress resultant along a stringer in the j t h  bay of the skin-stringer 
combination 

Oblique-stress resultant in the j t h  bay of the skin-stringer combination 
Particular value of the oblique-stress resultant 

Oblique-stress resultant in the skin-stringer combination at t.he j t h  rib 
z-wise load applied to the j t h  rib 

Strain, s a~d di@Iaceme¢~ts 

Direct strain along a stringer 

Shear strain in the skin-stringer combination 

Direct strain normal to a stringer but in the plane of the skin-stringer 
combination 

6 



exx 

exy 

eyy 

U J 

Uj(a) 
( -  a) 

UFj 
el6R j 

URj 

CIR j 

Vi 

~j 

1¢ i 

~Fj 

Wj 

Z~F j 
ff~R j. 

LIST OF S Y M B O L S - - c o n t i n u e d  

Oblique-strain component along a stringer 

Oblique-strain component in the skin-stringer com: 
bination 

Oblique-strain component parallel to the ribs and in 
the plane of the skin-stringer combination ' 

Displacement along a stringer in the j th  bay 

Value of the displacement at y = a, i.e., at the rear spar 

defined in 
equation (6) 

J 

Value of the displacement at y ---- -- a, i.e., at the front spar 

Displacement along the front spar in the j th  bay 

Displacement along the front spar boom in the j th  bay 

Displacement along the rear spar in the j th  bay 

Displacement along the rear spar boom in the j th  bay 

Displacement along a stringer at the j th  rib 

Displacement along the front spar boom at the 2'th rib 

Displacement along the rear spar boom at the j th  rib 

Oblique-displacement component in the j th  bay, it is parallel to the ribs 
and in the plane of the skin-stringer combination 

Displacement parallel to the rib booms in the j th  rib 

Oblique-displacement component in the skin-stringer combination at 
the j th  rib, this being identical to the displacement of the rib boom 

z - w i s e  

z - w i s e  

z - w i s e  

z - w i s e  

z - w i s e  

z - w i s e  

displacement 

displacement 

displacement 

displacement 

displacement 

displacement 

of the front spar web in the j th  bay 

of the rear spar web in the j th  bay 

of the j th  rib web 

of the front spar web at the j th  rib 

of the rear spar web at the j th  rib 

at the centre of the j t h  rib web 

Elas t ic  constants  

E Young's modulus of elasticity for the structure 

Shear modulus for the structure 

Additional symbols are used ill Appendices IV to VIII but these are defined as they are 
introduced. 
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A P P E N D I X  I 

Determination of the Stress Distribution 

In preparation for forming the equations of compatibility for the wing structure shown i n  
Fig. 1 it is necessary to consider the detailed equations governing the individual behaviours 
of the skin-stringer combination, ribs and spars. I t  is demonstrated in Appendix VII I  that  these 
equations are consistent with the strain energy stored in the structure being rendered a minimum. 

1. Oblique Co-ordinates and Stress Systems for the Skin-Stringer Combination.--It is most 
convenient to use the oblique system of co-ordinates shown in Fig. 2. The rectangular system 
is denoted by italic charactefics and the Oblique system by bold italic characters. 

A transformation from the rectangular to the oblique system is effected by 

x = x +  yc0sc~ t "  . . . . . .  

y = y sin ~ . . . . . . . .  (1) 

Similarly, the 'respective transformations for the displacements are 

U =  U-J- VCOS 0~ t . . . . . . .  

v ---- v sin ~ . . . . . . . .  (2) 

It  is to be noted that  the projected displacements in the x- and ),-wise directions are respectively 

I . , , . . 
V = u c o s  ~ + v . . . . . .  "" (3) 

The oblique and rectangular systems of stress resultants are shown in Fig. 3. The transforma- 
tion from the rectangular to the oblique system is 

T---- T c o s e c ~ + 2 S c o t 0 ~  t 

S = S  . . . . . . . . . . . . .  (4) 
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2. F u n d a m e n t a l  E q u a t i o n s  f o r  the Skirt-Str¢rager Combi r~a t io r t . - - In  what follows attention is 
confined to  cases where the displacements at z -~ ± b are equal and opposite to one another. 

It  is now proposed to develop the fundamental  equations for the top surface skin-stringer 
combination using tile oblique co-ordinates and stress systems just derived. 

The oblique system of stress resultants acting on an elemental portion of skin-stringer com- 
bination are shown in Fig. 4. For equilibrium it is necessary tha t  

~T i aSj. + a-; = 0 . . . . . . . . . . . . . . . . .  (s) 

In deriving the stress, strain and displacement relationships, it is convenient to introduce 
a set of oblique strain components by the strain quadric 

e..x" + e,yxy + e j  ~ = e~xX 2 + e~vxy + eyyy '. 

On substitution from equation (1) it is seen that  
2 

e~y = 2e.. cos ~ + e.y sin c~ ~ 

e,, = e** cos ~ e + e.y sin a cos c~ + eyy sin 2 

(6) 

and it can be shown on using equations (1) to (3) that  these oblique strain components may be 
determined from 

aLl 
e~x 7- 8x 

aU ~V . . . . . . . . . . . .  (7) e , , y -  ay ~x 

aV 
eyy - -  ~y 

I t  is, of course, recognised from the last of equations (6) tha t  evv is the true strain component in 
the y-wise direction. The strains in terms of the stress resultants and referred to the rectangular 
system of axes are 

e~,, - -  ~x - -  E t *  

~u 8v S 

oy 

(8)  

Now, a change of  shear along the skin-stringer combination can only take place at a rib 
(i.e., S is independent of x) and equation (5) may be integrated to give 

dSj  . 
Tj = -  x ~  q- "T:_z . . . . . . .  • . . . . . .  (9) 

where a new origin for x is chosen on the left-hand side of each bay and Tj_I denotes the value 
of the oblique stress resultant in the skin-stringer combination at the  (j -- 1)th rib. I t  follows 
tha t  T must be continuous along a stringer because a rib cannot resist warping out of its plane. 

From equations (4), (6), (7) and (8) it is seen that  

at/,. _ 1 cosec  + 2S; co t  
a x  E t *  

9 



so, on subs t i tu t ing  from equat ion (9) and integrat ing,  it is found tha t  

1 ( × 'dS j  ~ )  
Uy--Et  . ~ ~y cosec ~ + ×'~j_lcosec a -}- 2xSicot  -+- 03"--1 . ,  (10) 

where 0 j_ l  is the  displacement componen}: at the (j -- 1)th rib. Again from equations (4), (6), 
(7) and (8) 

eL/,. a V,. I t 1 { 2 7 j  cot -+- 4S,. cot 0~cos y + 0 x  --  S j s i n ~ + ~  ~ @ 

which, on subs t i tu t ion  from equations (9) and (10) and integrat ing,  yields 

x . 1 ~ x ~d2Sg x 2d¢~_~ 
- cosec ~ + - -  cosec ~ Vj = ff-t S~ sm c~ E t * ,  6 dy 2 2 dy 

dSi 2x'Tj_l dot ~ -}- 2x 2 d y  cot ~ -- -- 4×S~ cos ~. cot 
) 

dO j_, 
- -  x - - d y  + V,'-I . . . . . . . . . . . . . . .  (11) 

where 17~._ 1 denotes the displacement component  at the (j  -- 1)th rib. 

Pu t t ing  x = L in this equation yields 

L 1 ~ z ~ d%. z 2 dL._, ds~ 
- ~  s~ sin ~ e ~ * ,  ~ dy2 cosec ~ + -5- - d y -  cosec ~ + 252 2~ cot 

-- 2LTj_, cot ~ -- 4LSj cos ~ cot o~;-- L dOi-' 
J dy 

= v ; -  v~-i . . . . . . . . . . . . . . . . .  (I2) 
Manipulat ion of equat ions (9) to (12) yields 

d y , + A Z ~ + B  L , + 2  25 , d~ 
- . . . .  B T j  + L 2 - -  - -  A L  B "~j+l dy~ dy2 ;~) + 

d (fj_l - 2f, + Cj+,) . .  = -- 6Et*s in  ~ - y  . . . . . .  (13) 

where A and B are non-dimensional  s t ructural  parameters  defined as 
A = 12 cos ~, 

B = \ - i f7  sin~ ~ + 4cos ~ . 

At  the wing root 0~ and ~0 are zero and the equation appropriate  to (13) is then 

B To+ - - A L  + B  ¢ l : - - 6 E t e s i n  dVt dy~ \ dy 2 d-y ~ d-~ . .  (14) 

Final ly,  at the free end of the wing the direct-stress resul tants  ~,, will be specified and equat ion 
(13) becomes 

dy2 + AZ-dy + B T._~ + 2 2L ~ d~ - -  - - - - B  ~,,_1 dy 2 

. . . .  dy ~ - -  AL ~ + B  ¢ , , -  6Et*'sino:~-y(~,,_~ --217 1 + 17,,) .. (15) 

10 



k = l  

K the rib booms are considered inextensionaithe d~/dy are all zero and it is sk/own in Appendix 
VII  that  the solution to the above fundamental equations (13), (14) and (15) is then 

C, exp {&(y/L) }. \~%- _ A& q -  

= ( 2 / ~ -  1)j (16) 
C O S  2 ¢ 6  " ' 

c~exp {--  &(y/L)} . \X-~_ A~k + 

where C~ and c~ are arbitrary constants and where "Y, has been assumed constant. 
Z~ are determined from the quadratics 

B)~sin~~(2kn2-- 1) k _ -- ~2(6B -- A 2 -- 3~k 2) cos2~(22n -- 0 
1) 

where ;tk < ~._~+,. 

From equation (9) it is seen that  

dS i ( L -  r,_l) 

which, on substitution from equation (16) and integrating, yields 

A T. + 6Et* sin ~ (l?i _ 17~_,) 
Si -- B BL 

{Q2k 2 +AXk + B " ~ ' / ~ ( 2 £  - 1)j 1 Ck exp Z~,(y/L)}. 27---- T;-~ + B,) cos - - - 2 ~  

1 
k = l  

f (&= q- A& q- B'~ -s/= = ( 2 k -  1)j 
- 0. exp ( -  ~ (y /L)} .  Lki-~ - ~ + ; ~ /  c o s  2~ 

( ~  + A~ + ~) -(;-1'~ ~(2k- 1)(j- 1)} 
--  k , ~ -  A~k -/  cos 2n 

where the constants of integration have been determined from equation (12). 

The roots 

. .  (17)  

( is)  

3. Fundamental Equations for the Spar Booms.--The spar booms are additional end load 
carrying members attached along the outer edges of the skin-stringer combination. They are 
massive in comparison with the adjacent stringer. The forces acting on an elemental portion 
of the  rear spar boom are shown in Fig. 5. For equilibrium of this element it is necessary that  

dPR~ _ S ~  + S;(a) . 
dx 

On integration, this .yields 
PR; = x { & ,  + S,(a)} + P ~ , - 1  . . . . . . . . . .  (19)  • o 
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where PRs-~ denotes the end load in the rear spar boom at the ( j  -- 1)th rib. 
similar manner for the front spar boom it is found that 

Proceeding in a 

p~ = .x(sF~- sj( -  ~)} + P~,._, . . . . . . . . . . . . .  (20) 

Now, the. end load in a spar boom is continuous at a rib whereas the direct-stress resultant T 
orthogonal system) in the skin-stringer combination is, in general, discontinuous at a rib. There 
is then a discontinuity of displacement between a spar boom and the adjacent stringer. It is 
therefore necessary to relax the usual condition of continuity of displacement to an average 
requirement such that  

where ORi denotes the displacement along the rear spar boom in the j t h  bay and O~(a) denotes 
the corresponding displacement along the adjacent stringer. From equation (19), it is readily 
seen that 

URJ= I E A R [ 2 ' { S R i + S i ( a ) } + x P R i - 1 ]  + O~j 1 . . . . . . .  (22) 

where AR is the effective cross-sectional area of the rear spar boom (i.e., the nominal boom area 
plus effective skin and spar web area) and 0Ri-1 denotes the displacement at the j -- 1)th rib. 
Integrating equation (22) yields 

;i 1 L ~ 
EAR . . . . . . . .  

and integ<ating equation (10) yields 

f[~]((?()d.~:[~,@{ Lgd~j L2 . } 1  l dy cosec ~ + ~ h - ,  cosec ~ + L ~ S~ cot ~ + L0,._ (24) 
• y=~"  

Substitution of equations (23) and (24) into (21) then yields the compatibility equation between 
the rear spar boom and adjacent stringer. 

Similarly, for the front spar boom it is necessary that 

where UF~ denotes the displacement along the front spar boom in the j t h  bay and O~ (-- a) 
denotes the corresponding, displacement along the adjacent stringer. From equation (20), the 
boom displacement is 

1 
UFi 

- L2 {S~i - EA~. 

On integration this becomes 

S;(- a)} + xPF~_I 1 + O~j_~. D m (26) 

. . . . . .  (27) 
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and integrating equation (10) yields 

L ~ d ~ c o s e c  ~ + Tj_, cosec 
uj(~ a) ,~× = 6 dy 2- 

+L~S, c o t ~ ; + L O j _ , ]  . . . . . . .  .. (28) 
J J ~ t =  - - a  

Substitution of equ~.tions (27) and (28) into (25) then yields the compatability equation between 
the front spar boom and adjacent stringer. 

4. Fundamental Equations for the Ribs and Spar Webs.--The co-ordinate system for and 
forces acting on the j t h  rib are shown in Fig. 6. Since the rib flanges are considered inextensional 
the shhar flow acting on the rib is constant and is denoted by Sj. 

For a pure shear carrying rib the strain equation is 

3 2 + ~z - -  ffi" 

The displacement condition for such a rib is not well defined so, for simplicity, it will be assumed 
that  z~¢ is independent of z. Differen~dation of the s t ra in  equation with respect to z then shows 
that  

Z 
~ ; =  ~ V~, 

since at z = 4- b the rib displacements must conform with those of the skin-stringer combination. 
This, and the strain equation then yield 

- . .  . ( 2 9 )  ~ ; _ Y S J  Z17j+w0j . . . . . . . . . . .  
if{ b 

where woj is the vertical displacement of the rib at y = 0. 

The co-ordinate systems for and the forces acting on the front and rear spar webs in the j t h  
bay are shown in Fig. 7. Agreement of the z-wise displacements wFj and wej with the displace- 
ment @. of the rib show that  the former are also independent of the z co-ordinate. For the rear 
spar web, the strain equation is 

~WRj 3~Rj SRj 
~x q ~z if&" 

Differentiation of this equation with respect to z then shows that  

Z 

q~Rj ~ b URj 

since at z = 4- b the spar web displacements must agree with those of tile spar boom. This, 
and the strain equation then yield 

xSRj 1 Ix ijRjd× + ~Ri_l . . . . . . . . . .  (30) 
wR~-  #tR b 

J o  

where wRj-1 is the z-wise displacement of the spar web at the ( j  -- 1)th rib. Similarly, for the 
f ront  spar web, 

xSF~ 1 Ix U;i + z~Fi_1 . . . . . . . . . . .  (31) 
wFs =- fftF b j o  "" 
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Noting that  

~s(y  = a) = G j  

~ / y  = - a) = ~ ;  
it is easily shown that  

- - LSRs 
Woy - -  Z ~ o j _ l -  

2fftR 

and 

LS~s 1 f l  (uRJ + uF:)u×, .. . . . .  (32) 
[- 2fftF 2b "" 

2afftR S~ j + 2-afft-~F SFj 

+ g~  ( G ;  - u ~ , ) d x  + 7,7 (~; - s~_ , ) .  (33) 

5. Equations of Overall Equi l ibr ium.- -To  complete the formulation it now remains only to 
determine the equations of overall equilibrium for the structure under the system of loading 
shown in Fig. 8. 

The equations of overall equilibrium are obtained most easily by consideration of the equili- 
brium of the j t h  rib. Resolving forces in the z-wise direction it is necessary that  

1 ~Wi . . . .  
SRs + SFi = -- 2-b ,=j " "" • . . . . . . . . .  (34) 

Resolving moments in the plane of the rib, it is found that  

f" s ~ -  s ~ -  1__ S j d y -  1 ~ M,. .. . (3s) 
a --a 2ab ~=s . . . . . .  

These last two equations are independent of the manner of application of tile loads W and M. 
It  will be assumed that  the loads are applied such that  the shear gs in the j t h  rib is given by 

, 8ab . . . . . . . . . .  (36) 

The stress distribution in the immediate vicinity of the applied load will, of course, depend 
upon the precise mode of application. 

A P P E N D I X  II 

Condition for Zero Warping of the Ribs in the Shell Model 

Far from a discontinuity it is ~o be expected that  the stresses in the shell model will settle 
down to those given by the elementary theories and be independent of the rib direction. I t  is of 
particular interest to examine the behaviour of the shell model when it  contains only the 
elementary bending and torsion stresses, " 

!4 



The elementary bending distribution is defined by 

S i = 0  

Ty = T' = a constant 

SRi = SF,. = 0 

AR T , 
-PRj -- {, cosec oc 

A F  T '  c o s e c  P F i -  t* 

(37) 

where it is to be noted that  the boom end loads are such that  equality of strain exists between a 
boom and the adjacent s t r inger . .From equations (10) and (12) it is seen that  the displacement 
components in the skin-stringer combination are 

"f'L 
Oi - -  Et*-- c o s e c  ~ + O s - 1 ,  

V s -  V)-t 2T'L dOj_l 
--  Et* c o t c ~ - - L  dy ' 

and the boom displacements are 

OR~=O~(a) and 0 F j = 0 i ( - -  a ) .  

From equation (33) and using equations (21), (24), (25) and (28) it follows that  

l • - 2 a  i--~ - ~  

and therefore from above, 

L 0s_l 
2a -4  

dO~_~ 2T'L  
+ L - d y  --  Et* 

The solution of this last equation .is 

j T ' L  
0j. T 'y cot ~ - /  cosec 

- -  E t *  - E ~  

~j j T ' L  
--  Et* cot ~ + k s ,  

giving 

o~+ k l ,  

l 
where kl and k2 are arbitrary constants. 

cot a .  

. .  ( 3 s )  

The elementary torsion distribution is defined by 

Sj = S'  = a constant 

r i ---- - -  2S' cos 

- -  SR~. = SF~ = S '  

PR~ = P~j = 0 

. .  (39)  
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From equations (10) and (12) it is seen that  the displacement components in the skin-stringer 
combination are 

V.~"- Vj--1 = S ' ~  sin (~ - -  L d O ] - I  
~t dy 

and the boom displacements are 

= a n d  = 

From equation (33) and using equations (21), (24), (25) and (28) it follows that  

--g 
and therefore from above 

L 0j_  + L dO _, s'L 
2a _~ dy -- /~t 

The solution of this last equation is 

Oj = sin 0~ -- 4a-~- + 

sin 

y + k 3 ,  ) 

giving ..  

L2#t sin0~-b- ~ ; - ] - ~  + k 4 ,  

where k3 and ha ate arbi t rary constants. 

. . . .  (40) 

From equations (38) and (40) it is seen for both the elementary bending and torsion distri- 
butions that  there is a linear warping of the ribs, the magnitude being denoted by the coefficients 
of y in the expressions for Oj. This warping vanishes when the shell model contains simul- 
taneously the elementary bending and torsion distributions such that  

S'  - -  #t  2 s ino~- -~  a d- . . . . . . .  (41) 

The resultant of these stress distributions corresponds to a moment vector inclined at an angle~ 
~p from the centre-stringer (Fig. 1) where 

( } T' cosec ~ cosec ~ (AR -]- An) 
t an  ~o -- S' 2 1 + 2at~;- • . . . . . . .  (42) 

and T'/S' is as given by equation (41). 

The vanishing of the rib warping means of course that  there is no redistribution of stress when 
the wing structure is built in at a rib. There will, however, be a redistribution of stress in the 
vicinity of the applied couple unless it is applied in a manner corresponding to the distributions 
given in equations (37) and (39). 

t The angle F can readily be determined from the paper by Hemp 3. From equations (35), (77) and (101) of that 
paper, the condition for zero warping of the ribs is that 

( 5)  T'  A3a - -  2Aal cos 0~ -- 

S '  A a  - - ,  t~ = t~ , 

where the notation 0f the present paper has been retained excepting A a and Aaa which are defined by equation (33) 
of Hemp's paper. The angle ~o is then determined by sub3tituting this value of T ' / S '  into equation (42) above, 
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A P P E N D I X  III 

Specialisation of the Equations for the Unswept Wing 

Considerable simplifications are afforded for the case of the unswept wing, viz., e = 90 deg. 
Symmetrical properties of the structure can then be used to good advantage, and, furthermore, 
the functions employed in equations (16) and (18) are then orthogonal functions. These equations 
become 

. and 

where 

f ;  = ~ c ;  cosh z~(y/L) cos =(2k. - -  l ) j  

k=~ c /cosh  2~(y/L) 2n 

#t 
s; = E  (% - %-i) 

- 2 C/s inhik(y/L)  

~+12k c/ cosh ~k(y/L) 
sin z~(2k-  1)sin = ( 2 k -  1 ) ( 2 j -  1) 

4n 4n 

(43) 

~k 
f =(2k- l) 6Et* 1 -- cos 2n 

- 7  2 + cos =(2k - 1) 
[. 2n 

The equations are exact for the shell model described in section 2, and it is readily verified 
for ~ = 90 deg that the fundamental equations for the skin-stringer combination agree with those 
developed by the author I in a preceding paper, when the rib booms are considered inextensional. 
In Appendix III of that paper it was demonstrated that these fundamental equations correspond 
to those developed by Williams 5 when the ribs are closely spaced. It therefore follows that 
equations (43) are the finite difference counterparts of the equations used by Williams ~, in his 
shear lag analysis of the unswept wing. Of course, the constants c/and % are zero by virtue of 
the symmetry of the structure and loading. 

For the end constraint problem of the unswept wing under torsion, Williams 5 has shown that 
the chordwise variation of the shear-stress resultants Sj is small enough to be neglected. This 
corresponds to C/ = c/=- 0 in equations (43) and then of course the area of the spar booms 
must include the appropriate effective area of the skin-stringer combination. Proceeding as 
indicated in the body of the report will yield results identical with those of Cox 6. 
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A P P E N D I X  IV 

Numerical Procedure for  Evaluation of the Stress Distribution and Deflections 

It  can be seen on reference to the aforegoing equations that  the numerical work involved in their evaluation will be 
considerable. An analysis of the unswept wing usually requires the solution of the 'shear lag 5 problem' presented when the 
wing is resisting a normal force loading, and also requires the separate solution of an ' end constraint 6 problem' arising when 
the wing is under torsion. The analysis of the swept wing does not, however, appear to permit a comparable separation 
of problems. This coupled with the loss of orthogonal relations between the functions, means that  the numerical work 
will inevitably be considerable in the corresponding calculations for a swept wing. 

The following sets out in detail a suggested numerical procedure for the evaluation of the stress distribution and deflections~ 
I t  has been found convenient to use matrices and the procedure has been so planned that  the elements of a matrix are 
obtained by simple operat ions on the elements of preceding matrices. Having determined the values of the unknown 
constants (viz., the Vi, C~ and ck) these matrices then readily yield the spanwise distribution of stresses and deflections 
at the front and rear spars. 

Appreciable numerical simplification is obtained when the ribs may be considered rigid in shear (viz., #[ = 0o). This 
simplification will be adopted in that  which foalowsl The procedure for ribs of finite shear rigidity is indicated. 

Furthermore; the applied loading has been specialised for W i = M i = O, j ~ n (see Fig. 8) which corresponds to a tip 
force normal to the plane of the wing and a tip couple in the plane of the rib. Alternative systems of loading involve 

:~o only minor modifications to the equations ; all the matrices that  are the coefficients of the C~ and ck remain unchanged. 

The first step is to determine the n roots ,t~ of the quadratics 

- -  ' ~ ( 2 k -  1 )  
(22k ~ _ B) ~ sin~(2k2n 1) _ ,12(6 B _ AS _ 32k 2) cos 2 2n -- 0 . . . . . .  (17) bis 

where Xk < 2~-~+~. These roots will be real and will fall within 

- -  2 V 3 s i n  ~ , - ~ /  < ~, < 2 V 3 s i n  \ - ~ - /  

where it is necessary only to consider the positive roots. With these values it is possible to form the following basic matrices. 

• The direct stress resultants T~ in the skin-stringer combination are given in equation (16) and it will be assumed tha t  
T,  is zero. I t  is convenient to write the values o f  Tj. at g = 4- a in the following matrix form, viz., 

F- 
to(a)  - L ( -  a) T0, . . . . . . . .  To. 1 . . . . . . . .  % , ,  ' 

T,(a) -- T,(-- a) Tn r,2 . . . . . . . .  T,. C, tn t,~ . . . . . . . .  t,. c~ 
= + , . .  ( 4 4 )  

* * • • • • • • • * • , o . o - .  o o . . . . .  . o o o . . . . . . . .  , ° . . . . . .  , . . o , o o . . . . . . . . . . . . . . . .  

T ' ~ - - I ( a )  - -  T , ~ - - I ( - -  a )  T I c - - l ,  1 = r , l - l , 2  . . . . . .  " Y n - l , .  C n  t , ~ _ l , 1  t , ~ _ l , 2  . . . . . .  t , , _ l , l ¢  ' C n 



~0(a) + L ( - a )  

f,(a) + f , ( -  a) 

"L,_,(a) + "r._,(- a) 

To~ T' To. 0 2  . . . . . . . .  

T;z T'~2 . . . . . . . .  T'~. 

. . . .  o o o o o , o *  . . . .  . . , . o o  

T'._,,, T'_,,~ . . . . . .  T'._,,. 

1 1 : C~ 
+ 

l ! ! 

t0z t02 . . . . . . . .  t o .  

~ 1  ' 
t12 . . . . . . . .  tl. 

o o . , o , . . . . . . . .  • • • 6 • • 

t' t' 

q 
Cl I 

i 

c2 [ " 
) 

°°° 1 Cn 

(45) 

"¢D 

The matrix elements are given by 

(h~+ A~ +_B'~ '/~ 
T~.~ = {exp {;~(a/L)} --  exp { - -  ,~,(a/L)}} \~-~ _ A,~ + B , /  

~(2k - 1)j 
COS 

2n 

tj.k = --  {exp {X~(a/L)} --  exp { - -  X~(a/L)}} \ - ~ _  A~, -4- cos 
~ ( 2 k -  1)j 

2n 

(~k2  -1 - A ~ k  _]_ ~_).i/~, 
T}k = {exp {*~(alL)} + exp { - -  &(a/Z)}}  k ~  _ A& + COS 

~ ( 2 k -  1)j 
2n 

t;~ = {exp {~k(a/L)} + exp {-- X~(a/L)}} \-~ _ A2~ + COS 
~ ( 2 k -  1)] 

2n 

Equations (44) and (45) represent the basic matrices from which all following matrices will be derived. 

It is now necessary to express the displacement components Vi of the skin-stringer combination in terms of the CA and 
c~. To this end it is necessary to express the following four quantities in matrix form. The first concerns the shear stress 
resultant , Si, given in equation (18) where the values at y = ± a may be written 

s , (~ )  - s , ( -  a) 

s~(a)  - s , ( -  ~) 

. . . . . .  , . . . . . . .  

s,,(~) - s , , ( -  ~) 

S~, S~ . . . . . .  S~. 

S~ S~ . . . . . .  S~. 

S.~  S .~  . . . . . .  S,,~ 

C1 I 
I 

C2 I 
I + 

Sl l  S12 . . . . . .  $1~ 

$21 $22 . . . . . .  S2n 

, , . o . . . .  . . . . . .  

S~, 1 S.2 . . . . . .  S . .  

e l l  
I 

I 
°°" I 
C. [ 

(46) 

f 



s 

t O  
. 0  

~,here, from equation (44), the  elements are given by  
1 

Sik = - -  t~ (Ty~-- T~_,,~), 

l 

The next  concerns the  displacement  components  0~ ~n the skin-stringer combinat ion  which are given in equat ion (10). 
the aid of equation (9), this m a y  be more convenient ly  expressed as 

0J --  L c ° s e c  ~ { L  4- L 1 4- 4S, cos@ + 0 s _  ~ 
2Et'* . . . . . . . . . . . . . . .  

a n d  the values at  }, = 4- a are wr i t ten  

0~(~) - 0 1 ( -  ~) 

02(~) - 0 2 ( -  a) 

, , , ,  . . . . . . . . .  , 

0.(~) - 0 . ( -  a) 

L cosec 0~ 
2Et*  

Ul l  U12 . . . . . .  U1. 

U~I U2~ . . . . . .  U2,, 

U.~ U,,2 . . . . . .  U . .  

C 1  

C2 

. . °  

C. 

L cosec 
+ 2Et*  

~11 1'$12 . . . . . .  [ J l ~  

U21 1522 ...... U2n 

U n l  Un2 . . . . . .  [ $ n n  

Cl  

C2 

. . °  

. . C~ 

where, from equations (44) and (46), it is found tha t  the elements are given b y  
0 ~  - O;_1,~ = L~ + L - I , ~  + 4Sg~ cos  ~ , 

u i ~ -  uj_l,~ = ti~ + tj._l,~ + 4s~k cos 

where, of course, U0k = u0~ = 0 since this  refers to the root end. 

The integral,  along the j t h  bay~ of the displacement U i in the skin-str inger combina t ion  is given in equations (24) 
(28). Wi th  the aid of equat ion (9), this  m a y  be more convenient ly  expressed as 

ftL 

/ - - U J  d ~  = L 2  c ° s e c  ~ { T j - ] [ - 2 " T ] _ 1  ~ - 6 S j  c o s  0~> - ~  L O ]  1 
6Et*  . . . . . . . . . . . . .  Jo  

1Ill !i12 . . . . . .  111. 

1121 112~ . . . . . .  112. 

11,1 11,, . . . . . .  11., 

C1 

C2: 

o°o 

Co 

+ 
L ~ cosec o~ 

6Et*  

1111 1112 ...... I{.i, , 

1121 1122 . . . . . .  l12n 

° o ° , . o ° ° o ° , , o o 

Unl 11n2 . . . . . .  llnn 

Cl 

C2 

° , ,  

C~ 

and  the values at  y ~ -{ a are wr i t t en  

• ° , , , , o , o  ° , , ,  , o o ° ° , , ,  ° 

L 2 cosec c~ 
6Et  • 

With  

(47) 

(4s) 

and 

(49) 

(sol 



where, from equations (44), (46) and (48), it is seen that  the elements are 

u;~,= r;~ + 2rj_~,~ + 6sj~ cos ~ + 3u~_~,~, 
u;~ = tj~ + 2t~._~,~ + 6s~.k cos ~ 42 3uj_~,~. 

The .fourth quant i ty  to be wr i t t en  in matrix form before it is possible to express the displacements components ~j. in  
terms of the Ck and c~ concerns the spar shears. These are given in equation (35) which with the aid of equation (18) m a y  
be expressed in the following matrix form, viz., 

S R I - - S F 1  

SR~--S~  

• . ° °  . . . . . .  

SR,,--SF, 

-1 
1 

M, 1 I 6Et* sin 
= -- 4ab ' + BL 

° . .  

_lj 
where, from equation (46), the elements are found to be 

Gi~=~ ~ 

[ l cl lF .-.  [i!i i! .... .... ,n 

• . 8". ". ". •o . . . . . . . . .  . . n J - "~,~i Bn2 . . . .  ~;nn 

1 c2 . . (51) 

. . .  

Cn 

H M.  
(1 + H) 2ab 

] 
I 
I 

. . . [+ 
V~ V~ . . . . . .  V~. 

V.~ V.~ . . . . . .  V~,, 

C1 

C2 
t 

I , ° .  

I 

coJ 

V l l  V 1 2  . . . . . .  V ' I ~  

V~i V2z . . . . . .  l¢~n 

. o . , . . . . . . . . . .  

V n l  ! / n 2  . . . . . .  V m  ~ C. 

(s2) 
BL 

12Et* sin c~ 

o ° . . . . . . .  

I t  is to be noted tha t  equation (51) is appropriate only for the applied loading W i = M i = 0, j =/= n. Other systems of applied 
loading modify only the first column matrix on the right-hand side. This is the case for all the following expressions. 

I t  is now possible to express the ~i in terms of the Ck and c~, for from equation (88) 

~i-- f/i_~ Lb I(SRi SFj)-F 1 fzO 
= - a~t--~ ~ - ~ { u ; ( a )  - u ; ( -  ~ ) }  d x  

by virtue of equations (21) and (25) and where it is assumed that  the ribs may be considered rigid in shear (i.e.,/,f = oo). 
Substitution from equations (50) and (51) yields 



where H is a non-dimensional structural parameter defined as 

6 /'E~b',x . 

and i t  has been-assumed that t~ = 7R. The dements of equation (52) are given by 

v;~ I + H  B I + H  

Vjk - -  1 @H%k@ ~ 1 @Huik  " 

When the ribs cannot be considered rigid in shear, the displacement components Vi -- gi-1 could be retained as unknowns 
and be determined along with the Ck, c~ from the final set of simultaneous equations (64) and (65). Alternatively, it is possible- 
at this stage to solve the n simultaneous equations and thereby express the Vi -- ~i-1 in terms of the Ck, c~ and applied 
loading. 

Equation (52) expresses the displacement components Vi in terms of the C~ and c, and it is now necessary to write down 
the complementary equations to equations (46), (48) and (50). This is a necessary preliminary before determining the actual  
values of  the C~ and ck. Complementary to equation (46) is 

sda)  + s d -  a) 

s~(a) + s = ( -  a) 

• . . . .  . ° o o ° . ° , °  

s.(a) + s.( -  a) 

H M. 
= (1 + H i 2ab q- 

l 
° ° °  I 

1 i 
A 

s h  s;~ . . . . . .  s h  

S t ! ! 

° . . . ° ° ° . °  . . . . . .  

s'~ s: ,  . . . . . .  s'~. 

F C1 

[ C~ 

° ° °  

C~ 

+ 

/ ? ! 
$11 $12 . . . . . .  S ln  

! t ! 
$21 S~2 . . . . . .  S~ n 

. . . . . . .  , . . ° . . . 

t t t 
S ~ I  S n 2  . . . . . .  S n n  

Cl 

Ca 

°°° 

C~ 

(53), 

where the elements are determined from equations (45) and (52) so tha t  

1 T' s ;  = v,, - ~ ( r ;  - ,_,,~) , 

, 1 , , 



b~ 
O0 

Complementary  to equat ion (48) is 

-ul(~) + u , ( -  a) 

u2(~) + u 2 ( -  a) 

. ° ° ° ° ° , o , . • ° • • 

u,,(a) + u, , ( -  a) 

L cot ~ H M,, 
Et* "( i  -t- H) ab 

1 

2 

, , °  

7¢ 

L cosec c~ 

+ 2Et* 

0;~ U f 
1 2  . . . .  ~ J l n ,  

~"~ f21 U '  2 2  . . . .  ~ J B n ,  

. . . . . . .  o • • , ° ° 

of.1 u' of.. 
~9 .  ° • • • 

where the elements are de te rmined  from equat ions  (45) and  (53) so tha t  
U;~ --  U;_l,~ ---- 7,.% + T;_l,~ + 4S;~ cos g ,  

. ; -  u;_,.~ = , ;  + ,;_1,~ + 4s;~ cos o~ 
where, of course, U0k = u;~ = 0 since this refers to t h e  root end. 

Finally, the complementary  equat ion to equat ion  (50) is 

f~ {U1(a) +U~(--a) } dx] 

° ° o . ° .  . . . . . . .  ° . . . . .  

L 2 cot ~ H M ,  
Et* (1 + H) 2ab 

1 

3 

2n-- 1 

+ 
L 2 cosec c~ 

6Et* 

Cl I 

C2 I 

• . ,  i 

7 
t[~l a '  ' 1 2  • • ~ [ l n  

11' 11' }/' 21 22 • • 2~ 

a:l  u ; ~ . . u 2  

where the elements are de te rmined  from equat ions (45), (53) and  (54) so tha t  
11;~ = T;k + 2T}_~,k + 6S;~ cos c~ -t- 3U}_i~ , 

~f~,0 = ~% + 2~,'_1,~ + Ss,% cos ~ + 3 , ; _ , , ~ .  

I t  only remMns now to determine the  equat ions for the  spar booms before 
and c~. The end loads in the  spar booms are given in equat ions  (19) and (20) 

PRo - P~o  

i [ ~ R 1  - -  J O F 1  

° . . . . . . . . . .  , 

LP=,,_I - PF,,-1 

n 1 
+ L  

Pol P~2 . . . . . .  Po,, 

P l l  P12 . . . . . .  P . ,  

. . . . . . . . . . . . . . . . . . .  . 

P n - - 1 ,  1 - ~ ) , , - - 1 ,  2 ; "  • • • P i z - - 1 ,  , l  

L cosec 
-t- 2E t .  

I [ J t  t 
U l l  12 . . . .  ['SIn 

I I I 
u 2 1  U22 . . . .  U2 n 

[ ! t f 

Unl  Un2 . . . .  Unn 

7 
Cl 

C 2  

° ° °  

Cn 

(54) 

"C1 
L 2 cosec 

+ 6Et* 

t U t t 
1111 12 • • l l l n  

f t f 
1121 1 1 2 2 . .  l12n 

o ¢ . . o . . • . 

I t f 

Unl  Ltn2 . .  l ln ,  ~ 

¢3 

(55), 
. .  

Cn 

it is possible to solve for the  values of the  C. 
so tha t  

C17 

C2 

° . .  

C,, 

+ L  

Pol Po2 . . . . . .  Po,, 

Pll P12 . . . . . .  Pl,, 

. . . . . . . . . .  ° ° . . .  . . . .  [ 

P,,_,,1 P,,_1,2 . . . .  P,,-1,,,j 

c. 7 
C2 

. . .  

Cn 

(56), 



where, from equations (51), (52) and (53), the elements are found to be given by 

P~1:- Pj_~,1: = s ;  + 2 %  + v;1:, 

p~1: - p ~ _ ~ , ~  = s;~ + %1: + vj~ , 
and 

W~ n--1  P~I Pi~ . . . . . .  P~,, / ( 
= L ) -  b- + L  . 

, , , • • • , • , , • • • , ° , ° . • 

P~,,_~ + P~_~j 1 P' p~_~ p,~_l,. Lc,, j • ? l - - 1 1  i , * ° • * 

where, from equation (46), the elements are found to be given by 
p ; -  p '  - s;1: j - - l ,  t :  - -  

! . 

p ;  - pj_~,1: = ~;1:. 

+ L  
. . . ,  . . . .  . . . . . . . . . . .  

Cl 

82 

. ° °  

C~ 

(s7) 

It is to be noted in the above two equations that P~k = P.~ = P~'1: = p'1: = 0 because no loads are applied to the free end 
of the booms. 

The boom displacements are given in equations (22) and (26), which with the aid of equations (19 and (20) may  be more • 
conveniently expressed as 

2EAR ' l 
L . . . . . . . . . . . . .  (58) 

O~j = 2EA~; (p~; + P~;-d + O~j_~ J 
Hence, these displacements may be written 

0 ~  -- Op~ 2n -- 1 UB~ U,,12 . . . .  U,~,~ C~ [uB~ u,l~. ,  u ~  [ cl 
[ 0 ~  - 0 ~  -4n - 4 U~ ~ U,~ ~ . . . .  laB~,, C~ u ,  ~ u , , ~ .  . u,~ ~. c~ 

. . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  

ORs -- Ou, =2EAR + -2~ j(2n -- j) I + fE-A-R + 2EA~ .(59), 
. . . . . . . . . . . . . . .  . o o  o . . . . . . . . . . .  , o  , , ,  

o .  . . . . . .  
. . . .  * * * , . ,  

. . . . . . . . . . . . . . . .  , .  , . o , * * , . ~ ,  . . . . . . . .  



where it has been assumed that  AF = AR and where from equation (56) the elements are found to be given by 

U B j k  - U B j - - I , k  = "~)jk ~l- -12)j--l,k , 

and 
uBji - -  u~s-~,k = Pi~ + Pj-I,~ , 

OR1 -@ OF1 

. . . . . . .  , , , 

OR; + 0~ 

. . . .  o ° . . . .  

L z W,r 

2EA~ 2b 

2n - -  1 

4n - -  4 

. . . . . .  , . 

j(2n - -  j) 

° ° . . . . . .  

7¢ 2 

L 2 

+ ~  

U;~l U' B 12 . . . .  ~ J B  in 

t t 

. . . . . . . .  , . . . . . . .  

! I ! UB,1 UB ~ . . . .  UB,,, 

C1 

C2 

" " 1 +  L2 
' 2EAR 

C, 

U B  1 1  B 1 2  . . . .  l I B  1 ~  

lff~ 2i U ' B 2 2  . . . .  U B  2 n  

. . . . . . . . .  • . . . .  • . 

UB nl B n2 . . . .  l iB nn 

cl] 
C2 

. ° .  

C n  

(6o} 

where from equation (57) the dements  are found to be given b y  ol 

UBgk - -  U '  ' ~j-l,~ 2'~k + .P' - -  j - - l ,  k .' 

uBi~ uB~_l ,k  p ;  + ' - ' = P ; _ I , ~  • 

I t  is to be noted in equations (59) and (60) that  U~ok = UB0k = U'Bo~ = U£ok = 0 since this refers to the root end. 

To complete the expressions for the spar booms it is now only necessary to express in matr ix  form the integral of the boom 
displacements along each bay. These integrals are given in equations (23) and (27) which with the aid of equations (19) 
and (20) become 

fl U~j dx  --  6EA~ (P~i + 2P~s-~) + LO~s-1 

t 
~ L  L 2 

UFi dx --  6EAR (Pvj + 2PFj_I) + LOFj_I 
,0  J 

(61} 



These integrals m a y  be expressed as 

t L ( u ~ ,  - u~,) d~ 
" I 0 

l 
6EAR + 2-aab 

3n --  1 

9n -- 7 

° , . . . . . . . . . . . . .  ° . . . .  

3n 2 -  1 

I',O 

+ L 3 

6EAR 

11~ 11 l i e  1 2 . .  lIB 1~ 

, , o ° ° . . . . . . . . .  

~[B nl ~I~B n 2" • ~[B .... 

C 1  

C.. 

, ° ,  

C~ 

Z 3 
+ 

6EAte 

where  the elements are determined from equat ions (56) and  (59) so tha t  

IIBj~ = Pik + 2Pj_l,k + 3OB~_l,k , 

UB~k = Pgk + 2p~-l,k + 3"UBj_I,k , 

l i B  1 1  l i b  1 2  • • l i B  I n  

l ib  21 UB 22 • • ~IB 2~ 

. . . . .  o , . . . .  o ° 

L I B  n l  L I B  n 2  • • l i B  n n  

C l  

C 2 .  

j 
(62), 



and 

-L  

l 0  ( u R 1  - ~ -  ~ ' ] F  1 ) ~ X  

° . • . . o o . . . . . .  . . 

- L  

J0 (U~ + UF;)d× 

L 3 W .  

- -  6EAR 2b 

3n - -  1 

9n - -  7 

. . . . . . . . . . . . .  ° • . . . . . . .  

3j(2n - -  j -k 1) -- (3n -k 1) 

1 
3n ~ -  1 

tO 
"-.1 

L S 

+ 6EAR 

! I l 

I f ! 

C 1  

Ca 

. . o  

C. 

L B .  

+ 6EAR 

t t 1 . 1 :  
L I B  11  l l B l a "  • B i n  

U '  11' ' Bgl B2a" -lIBan 

! I ~  / ! 
] / B  ~1  B n a  • • U B  n n  

C l  

C2 

. ° °  

• o 

C. 

(63) 

where the  e l ements  are determined from equat ions  (57) and (60) so tha t  

t t lI~j~ = P3k + 2Pj_I,~ + 3O~j 1 k 

t ! g 2 '  u~=pj~+  Pil~+3uBjl~ 



I t  is now possible to determine the  C~ and  c~ by  solving the 2n simultaneous equations presented b y  the  relationships. 
of equations (21) and (25). From equat ions  (50), (55), (62) and (63) it is seen tha t  these 2 n  s imultaneous equat ions a re  

"r l l  r12 . . . .  V., 

-P~l -P22 . . . .  F2. 

. . . .  ° . . . .  , o , , 

• * ° ° ° ° . . , . . . .  

C1 

C~ 

c, 

. , .  

C. 

+ 
I 711 Y12 . . . .  71n 

7~1 722 . . . .  72n 

° . . . . . .  . . o . . 

Yil Yj~ .... Yj~ 

Ynl Y.2 .... Y.n 

C l  

' C2]  

° ° °  

C~ 

- - H  

3 n - -  1 

9n --  7 

* • . ° . ° , . . , . . . . . . . . . . . . .  

3j(2n -- j + 1) --  (3n + 1) 

. , . • , . . . . . . . . . . . . . .  . . . . 

3n ~ -  1 

(64),  

where D is a non-dimensional s t ructural  pa ramete r  defined as 

D=(L*% 
\ A R j  sin 

and the elements are given by 

r j ~  = u j ,  - D U . j ,  , 

7j~ = uik - -  D U B j k  , 

with the remaining n equations 

F 

! 

! 

. . . . .  . . ° ° ° . . o 

t 

r~.~ r}~ . . . .  rs, , 

. ,  . . . . .  . ~ , , , .  

r;',~ r,',~ . . . .  r;',. 

t [-7~ ~i~ . . . .  yL [ r~l r;2 . . . .  7~ .  

° ° ° - °  , . . . . . . .  

'J .... 'i 
L 7.1  7 .2  . . . .  7~.. 

F Cl 

C 2 

c,. 

.° 

~ n  

i_ 

W ~ t  =D~- 

3 n  - -  1 

9n -- 7 

° . ° . ° o  . . . . . . . .  ° ,  . . . . . .  o 

3j(2~- j + I) - (3n + I) 

. . . . . . . . . . . . . . . . . . .  ° . ° ° 

3n ~- 1 

A H  M .  

(1 + H )  4ab 

1 

3 

. . . .  ° . 

2 j -  1 
. ( 6 5 }  



where  the  elements  are given by  

l I I 

y j ~  = l l j k  - -  D I l B j  k . 

With  these values of the CA and ck the  spanwise dis t r ibut ion of stresses and  displacements at the  front  and rear spars 
m a y  be obta ined by  simple mat r ix  multiplication.  The chordwise distr ibutions of such as the resul tants  "ri and  S~ are ob ta ined  
b y  evaluat ing equations (16) and (18) for various values of (y/L). 

A P P E N D I X  V 

Numerical Illustrative Example 

The numerical  i l lustrative example  is based on the  swept wing s t ructure  shown in Fig. 9. This wing has a sweepback 
of 45 deg and has five bays. The loading cases of t ip force no rma l  to the  plane of the  wing and tip couple in the  plane of the  
rib will be invest igated where W5 = 100 lb and M5 ----- 1,000 in. lb. The following values of the non-dimensional  s t ructural  
parameters  were taken,  viz., 

A = 12 c o s ~ - - - - 8 - 5 ,  

B = 6 (Et*  sins ~ + 4 cos 2 a'~ = 26 
\ yt J 

6 (Et*',~ sin c~ = 0-17 
H = \ tRa/ 

(L t*~  sin a = 2 .8  
D = \ A R /  

a n d  the  ribs are considered stiff enough to be taken  as rigid in shear. 

As s ta ted  earlier, the numerical  work is inevi tably  considerable for the  swept  wing. This necessitates working to a 
fairly large number  of significant figures so as to ensure results t ha t  are not  influenced by  loss of figures due to rounding  off 
errors and possible ill-conditioning. The following calculations were unde r t aken  on a s tandard  t en -bank  electric calculat ing 
mact;ine. Of course, OllCe the values of the  constants  CA and cA have  been obta ined it  is not  necessary to re ta in  all these 
significant figures.- 

The roots tk (k ---- 1, 2, 3, 4 and 5) are de te rmined  from the  three  quadra t ic  equations 

 (2k - l )  
( 2 ~  2 _ B) 2 sins ~(2k --  1) ~k~(6B --  A 2 - -  3 ~ )  cos ~ - -  0 . . . . . .  (17)bis 

2n 2n " 



g 

~ o r k =  1 , 2 a n d 3 .  

[&]  = 

Only the positive roots are considered and these are arranged in order of increasing magnitude so that  

0-880 387 296 

2.418 837 187 

3-605 551 27 

4.548 936 43 

5.187 010 61 

[r; l = 

I t i s  now possible to form the first four matrices given in equations (44)and (45). They are 

I 2.331 120 22 15.271 709 87 58.526 180 2 169.792 534 7 348.915 585 7 
2.954 391 93 19-340 046 02 0 --325"453 134 --1,100"721 44 
3"349 010 72 --21"906 466 7 --488'001 247 --557"960 323 3,105.842 84 
3.242 460 48 --145-260 471 6 0 5,599.876 6 2  --7,484"990 42 
2.271 618 94 --266-225 666 4069.037 41 --15,533.916 20 13,052.859 38 

--2.331 120 22 --15-271 709 87 --58.526 180 2 --169"792 534 7 --348.915 585 
--1"663 695 667 --4"166 344 67 0 30.604 556 9 100,040 525 
- - i .062  008 74 1.016 641 24 7-019 067 66 4.933 993 74 --25"655 267 6 
--0"579 017 943 1.452 247 134 0 --4"656 626 18 5-619 360 04 
--0.228 432 866 0"573 377 563 --0"841 799 527 1.214 706 94 --0"890 635 098 J 

3.071 501 50 15.402 114 343 0 348.921 317 
3-892 728 99 19-505 189 --1,100"739 522 / 
4.412 681 68 --22.093 524 3,105.893 86 / 
4.272 2 9 0 2 6  --146.500 843 --7,485.113 38 
2.993 102 17 --268.498 953 13,053.073 8 

E t . l  = 

( r ; )  = 

3.071 501 50 15.402 114 348.921 317 
2.192 097 90 4.201 920 --100.042 169 

[~'~]----- 1.399 310 69 --1-025 322 25.655 689 1 
0.762 918 388 - -1 .464 647 --5.619 45236 
0.300 984 860 - -0 .578 273 0-890 649 730 

21 58. 560 169-804 313 3 
67 0 --325.- 475 710 
9 --488.286 102 --557. 999 029 
2 0 5,600. 265 09  

4,071. 412 58 -- 15,534.993 79 

21 58. 560 343 0 169.804 313 
88 0 --30.606 680 0 
28 -- 7.023 164 82 -- 4.934 336 02 
80 0 4.656 949 22 
604 O. 842 290 900 -- 1.214 791 21 

and these are the basic matrices from which all subsequent matrices are derived by successive addition and multiplication 
of the elements. Including the final set of simultaneous equations there are 32 of these matrices. 



The simultaneous equations for the determination of the C~ and ck are given by  equations (64) and (65). For the five 
bay  structure under consideration there will be ten of these simultaneous equations and the coefficients for. the left-hand 
.side are eventually found to be 

152.672 235 6 --557-988 969 4,490.600 80 --9,317.816 65 6,796.349 09 

470.950 334 --1,716:223 076 12,552.007 07 --31,266.189 2 15,545.857 03 

790.625 966 --3,517.547 84 17,020.854 88 --50,607.534 4 39,822.975 6 

1,073.842 5 6 3  --6,961.570 249 28,200.140 7 --45,659.949 7 21,015-025 1 

1,262.172 432 --11,580.717 O1 69,336.973 2 --161,540-098 9 103,218.605 7 

,:....L 

--59-594 649 3 --82"053 729 7 --178"305 450 1 

--157.002 850 9 --151"204 591 6 --219"069 306 

--222.304 690 --144-419 694 8 --163.084 500 5 

--259.443 469 --126"357 642 2 --158-542 107 7 

--274-457 657 --118"440 058 1 --165"340 991 1 

--376"013 430 --645.584 450 

--300.165 226 --343"402 897 

--251.209 211 --417.812 714 

--278"058 098 --406.434 134 

--274"268 999 --408"410 312 

Er/ l = 

31.311 422 9 106"518 443 1 297"442"633 530"510 42 632.647 953 

106"966 424 7 349.375 305 227"047 469 --1,547"538 34 --3,228"694 98 

199"970 831 6 216.062 075 --3,384.440 90 --2,441"459 12 8,294.348 69 

301"362 303 --1,248-998 448 --2,798.025 37 23,081"582 8 --21,928.042 5 

393.203 716 --4,340"930 08 27,314"627 6 --65,258-009 4 41,966"956 4 

1 h 

24-302 383 9 54.695 054 4 135.618 456 0 302.476 766 533.894 048 

61.079 721 4 90.324 817 9 143.994 854 0 197.405 769 0 215.491 945 

82.256 007 2 75.020 527 4 91.991 546 6 156.754 303 2 291.645 519 

91.770 994 7 58.979 109 5 90.920 840 3 181..091 957 4 276-507 444 

93.426 255 1 53.508 003 1 97.091 495 6 175.943 648 6 277.859 645 



Hence the ten simultaneous equations are 

1. 071 155 935 

2-907 423 251 

[Y',.I~] [C.~] -I- [~9,,] [ck] = 4. 284 623 738 

5. 202 757 397 

5. 661 824 226 

and 

13" 634 782 61 

37" 008 695 65 

54" 539 130 43 

66" 226 086 95 

72" 069 565 21 

Ms 

W 5  - -  

O. 023 786 272 52 

0.071 358 817 56 

O. 118 931 362 6 

O. 166 503 907 6 

0.214 076 452 7 

M~. 

These equations were solved by the method of pivotal condensation, the pivots being chosen 
such that the loss of leading figures was reduced to a minimum. The values of the C~, ck were 
then found to be 

C 1  z 

C2 : -  

Ca : 

Ca : 

C,5 : 

C 1 : 

C 2 : 

C 3 : 

C4 : 

C 5 : 

W~ = 100 lb 

M~ = 0 

14.i32 3 

1. 145 41 

O. 199 292 

O. 062 274 

O. 031 955 

47.835 

--21.367 

10. 999 4 

- -4 .1129  

O. 833 45 

W s = 0  

M5 = 1,000 in. lb 

3.601 0 

0. 329 65 

0. 058 592 

0. 018 635 8 

0. 009 607 2 

--11.741 7 

6. 047 5 

--4.  495 5 

1.966 55 

--0"441 35 

With these values of the C1~, cI~ it is possible to obtain the complete stress distribution and 
displacement pattern throughout the entire shell model. The chordwise distributions are obtained 
by substituting these values into the expressions such as equations (16) and (18), while the 
spanwlse" distributions at the front and rear spars may be obtained by evaluating the appropriate 
matrices 44 to 63. These distributions are shown plotted in Figs. 10 to 21. Panoramic views 
of the direct stresses along the stringers and spar booms are given in Fig. 22 which shows clearly 

t h e  build up of stress towards the rear spar at the root. 

32 



I t  is of interest to calculate the direction ~ of the vector couple tha t  gives zero warping of the 
ribs together with the resulting stresses. From equation (41) and Fig. 9 it is soon found tha t  

T' 
1- 26 

S ' - -  
and then from equation (42) tha t  

= 49 deg, 30 min. 
When the vector couple is of magnitude 1,000 in. lb it is easy to determine that  the shear Stress is 

S' _ 1,000 cos ~ = _ 71 lb/in. 2 
t 8abt sin 

and the. direct stress in the skin-stringer combination and booms is 

_ cosec ~ = 76 lb/in. ~ 
t* 

A P P E N D I X  VI 

Tests or~ a Cellulose-Nitrate Model Swept  Wing  

To obtain some confirmation of the theoretical results the cellulose-nitrate model shown i n  
Fig. 23 was constructed and then tested in the rig shown in Fig. 24. 

The model was made from cellulose-nitrate primarily because of the simplicity and speed of 
construction. I t  served to establish a rapid qualitative confirmation of the theoretical results. 
This confirmation cannot be regarded quanti tat ively because of the following reasons, viz., 

(a) the test conditions were not controlled with respect to temperatur e and humidi ty  

(b) it is difficult to obtain precise values of the elastic constants 

(c) there is change of elastic properties subsequent to glueing 

(d) the cellulose-nitrate model does not correspond precisely to the swept wing chosen for 
the numerical example (compare Figs. 9 and 22). 

The root of the model was filled .with a har~i wood and then securely clamped between two 
massive steel plates. In this way a really rigid root end fitting was obtained. Another hard 
wood block was fitted to the tip so tha t  the various loads could be applied through a pin. 

The stringers and booms were laminated from 0. 125-in. thick sheet and separate experiments 
on test coupons indicated that  the following are representative values of the elastic constants, v i z . ,  

Esh~ot = 3.6 X 105 lb/in. 2, 

Est,.ingot = 2" 8 X 105 lb/in. 2, 

Eboom = 2" 8 X 105 lb/in. 2, 

Poisson's ratio = 0.4. 

The strain gauge results were converted to stresses by multiplyif~g by  the appropriate value of 
the elastic constant and these stresses are shown plotted in Figs. 10, 12, 13, 14, 16, 18, 19 and 20. 
The direct stresses refer to the skin outer fibres while the shear stresses refer to the skin middle 
fibres and the two sets of experimental results on each graph correspond to reversed loadings. 
Full details Of the tests are given in a separate paper 8. 

aa 
C 



Agreement is quite good between the theoretical and experimental results. The model has a 
slightly lower flexural rigidity than that  taken for the numerical example, this difference is the 
most prominent when comparing the deflections for tip shear loading in Fig. 15. There are, of 
course, essential differences in the character of the stress distribution at the t ip--especially 
for the case of the tip couple in the plane of the rib. On the model the tip is effectively'  built in ' 
whereas for the numerical example the tip is in a free condition. As the couple is applied through 
the rib, the free end condition involves a local stress diffusion problem until  the spar booms are 
carrying their proper complement of load. 

Readings of the spar deflectionswere taken at each rib station and these are shown plotted in 
Figs. 15 and 21. 

A P P E N D I X  VII 

Solution of the Fundamental Equations for the Skin-Stringer Combination 
when the Rib Flanges are lnextensional 

When the rib flanges are inextensional, equations (13), (14) and (15) become 

and 

AL 4- B ¢1 = O, B To + L2 d 2 , d 
d y 2 d y ~ dy  

d I~ 4- A L ~ 4- B L ~ 4- 2 2 L 2 - - - -  B L +  L2 d" 
• - dy2 d y  ~ 

( L  ~ d ~ d ) 
dy--~ + AL ~ + B ~',~-2 4- 

when T,; is assumed constant. 

----ALG+B 0 

- - - - B  T~ ~ = - - B T ,  dy2 

I t  is readily observed that  the particular integrat of the above set of simultaneous differential 
equations is 

Tj = T, for T,, constant, 
and it is necessary only to determine the complementary function. 

Now, it is assumed that  a constitutent of the complementary function is e ~I~/L/ where X is a 
constant. The condition of consistency for the aforegoing equations then becomes 

222 -- B 4 ~ -- A4 + B 0 . . . .  ~0 0 

45 4- A2 4- B 2(22 ~ -- B) 25 -- A4 4 - B  . . . .  0 0 

0 42 4 - A 4 4 - B  2 ( 2 4 2 - B )  . . . .  0 0 = A ~ ( ~ ) = 0  

. , . . . . . . . .  , ° . . . .  , . . . , ° . . . ° . . . . .  ° ° . . . . . . .  . . . . . . . . . . . .  ° . . . ° , . . . ° , . . . , . . 

0 0 0 . . . .  2 ~ 4 - A 4  + B  2(22 t - B  

which is an n × n determinant. The relationship between'successive determinants is found to be 
A,~+2(4) -- 2(242 -- B)A,,+I(~) + (42 -- A2 4- B)(42 + A~ 2 + B)A,~(~) = O, 

and this finite difference equation has the solution 

~ ( x )  = { 2 z  ~ - B + x (3~  ~ + A 2 - 0B )1 /2 }  ,~ + { 2 ~  _ B - -  2 ( a  ~ + A ~ - -  ~ B ) ~ / 2 } - =  0 .  

This is an expansion of the condition of consistency which may be rewritten 

{(222-  B) 4- 2(322 + A2--6B)~/2} '~- {(242 -- B) -- ~(312 4- A2--6B)~/2}'exp{i~(2k_ 1)}=-0 
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for k integer and i = 1 / - -  1. Using de Moivre's theorem, 
{(2;~ 2 -  B) + ~(3~P+ A ~ - - 6 B )  ~/~} - - { ( 2  ~ 2 -  B ) -  ~(3~ ~ + A ~ --  6B)~/2}exp{ i~(  2 k -  1)/n} = 0  

where k = 1, 2, 3 , . , . .  n. Thus the condition of consistency in product  form becomes 

a.(X) = 1I 2,t~ ~ -- B) sin z(2k 1) A 2 ~(2k 1) = 0 k=l 2n =J= I~(6B --  --  3 ~ )  ~/~ cos 2n 

where either the posit ive or the negat ive sign is re tained throughout  the complete product.  
The significance of this  is t ha t  it is not  ye t  possible to dist inguish between the 1~th and ~,_~+~th 
roots. Thus the roots m a y  be determined from the quadrat ics  

~ ( 2 ~ -  1) 
(2'~ ~ _ B) ~ sin~ ~(2k --  1) ~2(6B -- A ~ -- 3 ~  ~) cos ~ - -  --  0 

2n 2n 

and t hey  fall wi thin " 21/3 sin c¢ \ fit / < ~ < 21/3 sin ~ \ - j / - /  . 

Consider now the difference equations arising from (13), (14) and (15). They  are 

(2~k2 __ B ) . r 0  ~_ (~k 2 __ A ~  k -{- B) 'F1  x 0,  

(,~k = + AZ~ + B)'rj_l + 2(2Zk 2 - -  B)Tj + (Z~ = - -  A~k + B ) ' ~ j + l  = 0 
and 

( ~  + Aa~ - /B)¢, ,_2 + 2(2)th ~ -- B)'T,,_~ = 0. 

Using the  subst i tu t ion ~(2k -- 1) 

(2~? - B) = {(&~ + A ~  + B)(~? -- A& + B)} '/~ cos 2n 

from above, the solution of these difference equations is readi ly found to be 

(-)~ \ ~ - - A & + _ .  cos 2n " 

or since the roots Xk and ~-k+l cannot  as ye t  be distinguished, this  m a y  be more convenient ly  

wr i t ten  
( '~2 + A ~  + B )  i/~ ~(2k --  1)j 

L- = + eos 

By inspection, it  is found tha t  this la t ter  solution is applicable only when ;~ < ~t,_~+l. 

Final ly,  the complete solution to the  fundamenta l  equations (13), (14) and (15) m a y  therefore 
be wri t ten  

e x p  _ + 

~ ( 2 k -  1)y 
L = T , , +  ~ cos- 2~ 

k = l  

c, exp {--  ~k(y/L)} \~ _ Aa,  + 

where Ck and c~ are a rb i t ra ry  constants.  

When  the rib booms are extensional it is necessary to solve a set of s imultaneous differential 
equations each of four th  order. 
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APPENDIX VIII 

That the Equations of Compatibility are Consistent with the 
Strain Energy being Rendered a Minimum 

It  is now the purpose to demonstrate by using the Calculus of Variations that  the aforegoing 
procedure is consistent with the total strain energy stored in the structure being rendered a 
minimum. 

The total strain energy stored in the skin-stringer combination forming the top and bottom 
surfaces of the shell model is 

;f ,  I 1 Us = E L 1 L J=~ Sj ~ + ~ Ti 'dx dysin c~. 
- - ' ~  0 

On substitution from equations (4) and (9) and performing the integration with respect to x 
this becomes 

;= ,  , ~ s?  + ~ \ dr / cosec' ~ + LL_, '  cosec' 

- L'L_I ds; dS; 
cosec' ~ + 4LS? cots ~ - -  2L~S; 2y  cot ~ cosec 

3 7  

-[- 4LS~7"g_1 cot ~cosec @ / d y  s i n s .  

The stress resultants "Tg and S i are related by virtue of equation (9). Thus, when considering 
an arbitrary variation of Us it is necessary to impose the restraint 

UU = jfl 20j(y) f ~ 7 L T j -  "~j--1 dy 

where 05(y ) is an undetermined function wt{ich cannot as yet be associated with its interpretation 
as a displacement component. An arbitrary variation of the strain energy stored in the skin- 
stringer combination can eventually be written 

f ° { A Us + A Uu : E 2L 1 258 d~Sj dS i cosec c~ 
J=~ o - Sj OSj. sin ~ q- ~ 3 dy 2 

+ 2LL_~ ~L 1 cosec ~ + L' d L ,  f '  dS,. ~L- ,  cosec 

+ 8LSj dS~ cot ~ cos c~ q- 4LSj dT"i_ ~ cot ~ + 4LTj_~ dS~ cot @ 
~ t  

+ f f !  ( yL .  dS, ~s, cosec ~ - L,r,, ~s, cosec ~< 
~ - ,  LEt* \ 3 dr 

- 2z'  s t ~s; cot + 250i  ~sj . 
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The total s[rain energy stored in the four spar booms is 

/=1 

On substitution from equations (19) and (20) and performing the .integration with respect to 
x this becomes 

U~ = ~ 1 [L_~ {S~9+S~,(a)+2S~,S~(a)} +LP~-~ ~ +L@~_~ {S~,+ S,(a)}] 
j= I E A -  R 

+ ~ EARLS {S~?+'S?(--a)--2S~S/--a)}+LP~ -?+L,p~'-*{s~-sj(-a)} • 

The shear-stress resultants and boom end loads are related by virtue of equations (19) and (20). 
Thus, when considering an arbitrary variation of U~ it is necessary to impose the restraints 

u ~  ~ = ~ 20~; [P~; - P~_~ - 5 { s ~  + s;(a)}l 
' j = l  

j=l  

where 0~ i and 0Fj are undetermined multipliers which cannot as yet be associated with their 
interpretations as displacements. An arbitrary variation of the strain energy stored in the 
four spar booms can now be written 

AVe + AUuR~= ~ 1 I~_ 3{2SRj&~Rj + 2S/a) 6S/a) + 2SRj6Si(a) + 2Sj(a)6SRj} 

+ 2LPRi-~PRj-~ + L@Ri-~@SRi + ~S/a)} + L2{SRj + S/a)}6PR~_~] 

• j = l  

+ 2LP~j_,~PF~=, + L@~i-,@SFi--6SJ( - a)} + L~{SFj - S/-- a)}6PFj-,] 

j=1 

+ ~ 20~ [~P~ - aP~_, - L 9S~; -- ~Sj(-- a)}]. 
j=l 

The total strain energy stored in the front and rear spar webs in shear is 

(Lbs  ' LbS ; h 

and subjecting this to an arbitrary variation, 

 vw= i (2Lb 2Lb ) ~=~ k ~  S~ ~S~ + ~ s~; ~s~ . 

The total strain energy stored in the ribs ill shear is given by 

2ab - 
U~ = ~ $9 j= l - -~ -  
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where S; is given by equation (36). The appropriate restra{nt on the variation of UR is therefore 

Uv = J=~} 4a ~ (Si+~ --  SJ dy  + 8ab Si 

where V~. is an undetermined multiplier which cannot as yet be associated with its interpretation 
as a displacement component. An arbitrary variation of the rib strain energy can now be written 

j=l ~ -- " 

This completes the formulation of the total strain energy stored in the structure but it does 
remain to impose the further restraints on the arbitrary variations such that  the state of overall 
equilibrium is undisturbed. From equations (34) and (35) these restraints are 

j = l  . , 

where Z~og. and (z~  -- z~.) are undetermined multipliers which as cannot yet be associated with their 
interpretations as deflections. In this last expression it has been found convenient to make a 
substitution from equation (36). Subjecting this to an arbitrary variation 

A UE = E 2bz0oj @SRj.+~ -- aS~g + OSFj_,_~ -- 6S~} 
j=l 

j = l  

The total strain energy stored in the swept wing structure is thus 

U = Us + UB + Uw + U~ 
and it is seen that  an arbitrary variation is 

AU = AUs + AU~ + AU~ + ~Uu~,F + AU,¥ + AU~ + AU,, + AU~ 
which must be zero for the strain energy to be a minimum. 

By the usual arguments of the Calculus of Variations it will be found for the vanishing of the 
variation aSg dy it is necessary tha t  

L__S. sinct_}_ 1 ( L 3 d2Sj L ~ dL cosec c~ + -- - cosec c~ 
~ ~ ~ _  3 dy ~ 2 dy 

+ 4Ls;  cot ~ cos ~ + 2LL_~  cot  ~ L ~ _ f ;  - f;_~ 

and for the variation d'Tg_~ dy it is necessary that  

',,- 2 dy cosec ~ + z < _ ,  cosec ~ + 2tS~ cot ~ + o , _ , .  

These are consistent with equations (10) and (12) and it will be noted that  the undetermined 
multipliers are in fact the displacement components Oj and ~ .  
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Proceeding in like manner, it is found for the vanishing of the variations bP~_,  and bP~_., 
it is respectively necessary that 

OR,-EA~I IL--2 {SR'-+- S'(a)} + LP~'-I] -J- OR~-~ 
and 

OrS--EArl IL~ {sri-- S~(-- a)} + LPr~-~I -I- Ori-~" 

and 

EAR -2 P~J-~ 

<d~, cosec ~ - 5 L - ~  cosec ~ - 
. y = - - c ~  

_ __I_ {st,- st(- ~)} + -ff Pr;-1 + LOF,. -- -- EAr 
It will be found that these last two are respectively identical with equations (21) and (25) when 
substitutions are made from equations (23), (24), (27) and (28). 

The vanishing of the variation ~Sj ~requires that 

2~ ~. 2~ 
( ~ ; -  ~r~) = ~ ~ - % -  1% 

which corresponds to equation (29) and where it is seen that once again the undetermined multi- 
plier corresponds with the displacement difference zvRj -- z~ri. 

Finally, the vanishing of the variations $SRj. and OSFi respectively requires that 

EAR 

and 

b + ff (#R~-I - ~ r ~ - ,  - ~R~ + z~r~) = o 

IL~ L2 1 Lb 1 ( s F ;  - s / -  a)} + ~ Prj-~ - zOr~ + 7i-r SF~ + b(~oj_l -- ~o~) 
EAr 

b (z~Rj_l z~Fj-1 + z~Rj z~rj 0. 
2 

It will be found on substitution from equations (23), (27) and (29) that these last two equations 
correspond with equations (32) and (33). The undetermined multiplier of course corresponds with 
the displacement z~0j. 

It  has therefore been denlonstrated that  the aforegoing procedm-e is consistent with the total 
_strain energy stored in the structure being rendered a minimum. 
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These are identical with equations (22) and (26) and i{ wig be noted that the undetermined 
multipliers are in fact the displacement components 0Ri and 0r~.- 

The vanishing of the variations ~S/a) and dSj-(-- a) respectively requires that 

cosec c~-  -~ L - ,  cosec ¢ -  L~S, cot c~ + L(.I~ ,=o 
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