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Summary.—This paper gives and applies a method of estimating the stresses caused by root constraint in a two-spar
swept wing of reinforced monocoque construction where the ribs are parallel to the line of flight.

The general scheme of the analysis develops the fund amental equations that govern the stresses, strains and displace-
ments in the separate components. Then, by comparison of displacements along their inter-sections, equations of
compatibility are formed. The solution of these equations yields the stress distribution and the distorted shape. In
deriving the fundamental equations for the skin-stringer combination, use is made of an oblique system of co-ordinates
and stresses. : ‘

A suggested numerical procedure is given for the evaluation of the stress distribution and distorted shape. Itis found
convenient to use matrices and the procedure has been so planned that the elements of a matrix are obtained by simple
operations on the elements of preceding matrices.

A wing loading condition is also derived which produces zero rib warping, .e., there is no redistribution of stress at
the root of the wing. .

Tests on a cellulose-nitrate model have provided good qualitative confirmation of the theory.

1. Introduction.—This paper is mainly concerned with the estimation of the stresses caused by
root constraint in a two-spar swept wing of reinforced monocoque construction with discrete
ribs in the line of flight. The top and bottom surfaces consist of skins reinforced by numerous
stringer lying parallel to the spars. Caution should be exercised in applying the method developed
here to a wing with very thick skins and few or no reinforcing elements. In such a case the
stresses caused by root constraint must be determined by more exact methods. '

Estimation of the stress distribution in reinforced monocoque structures can be broadly
considered under one of the following three headings, vez., .
() Estimation of the overall stress distribution over regions far removed from a discontinuity
 (such as an abrupt change of section) ‘ ‘ R
~ (b) Estimation of the stress distribution in the neighbourhood of a discontinuity (i.e., within
a range of two or three chords) '
(c) Estimation of the peak stresses at the discontinuity (z.e., within a range of two or three
times the cross-sectional dimension of a relevant stiffener). .. '

*R.A.E. Report Structures 138, received 24th February, 1953.
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This paper is concerned with the stress distribution in the neighbourhood of a discontinuity
(i.e., (b) above). This stress distribution is usually determined from consideration of a ‘ shell
model * that is 'an appropriate and:convenient idealisation of the basic reinforced monocoque

structure. A theory' has already been developed for flat-sided structures with normal ribs, and
the theory presented here for skew ribs is a special extension.

Wittrick?, Hemp® and Mansfield* have produced theories for the behaviour of swept wings
- with ribs in the line of flight over regions far removed from a discontinuity (i.e., (a) above).

They have shown that skewness of the ribs produces a coupling between the curvature and
twisting of the wing box when it is under bending or torsion ; and that the ribs contribute to the

flexural and torsional stiffnesses. These effects are usually small and no allowance is made for
them in the present theory.

2. Description of Structure.—2.1. Basic Reinforced Monocoque Structure—The top and bottom
surfaces of the two-spar wing of rectangular cross-section, shown in Fig. 1, are constructed
from thin flat skins reinforced by closely spaced stringers lying parallel to the spars. The ribs

are discrete and in the line of flight. Both ribs and spars are assumed unable to resist warping
_ out of their planes.

2.2 Derivation of the Shell Model.—In the calculation of the stress distribution in the neigh-
bourhood of a discontinuity account is taken only of the most important function of the individual
structural components. The resulting structure with its limited attributes is called a ‘ shell model.’

If the cross-sectional area of the stringers is large in relation to that of the skin then the direct
-load parallel to the stringers is carried almost exclusively by the stringers and a condition of
almost pure shear exists in the individual skin panels between any two stringers.  Since the
stringers are closely spaced a good approximation may be obtained by considering them as
uniformly distributed over the surface of the skin. A change of shear along the skin-stringer
combination can only take place at a rib. As.in the analysis of unswept wing structures, the
rib and spar webs are assumed to carry shear only and the booms direct load only.

The above is now applied to the case where the cross-sections of the skin and stiffeners are of
the same order of value.” Account is taken of the contributory direct stiffnesses of the skin by

corresponding increases in the stiffener cross-sections, which are then usually called ‘ effective
cross-sections.’

2.3. Assumptions.—The following assumptions are made in the analysis, viz.,
(a) The stress-strain relationships are linear
b) Buckling is excluded

)

(%) |

(c) The stringers and booms can resist only direct load
)

(d) The stringers are so closely spaced that they may be considered uniformly dlstnbuted over
the surface of the skin

(¢) The skin and spar webs can resist only shear, account being taken of their contributory
direct stiffnesses by corresponding increases in the stiffener and boom ‘cross-sections.
In particular for the skin, a condition of pure shear exists between any two stringers in
the direction of the stringers, irrespective of rib direction

" (f) The ribs cannot resist warping out of their plane and the rib webs can only resist shear.

A further assumption that the rib booms are inextensional is made to simplify the computation.

3. Determination of the Stress Distribution.—3.1. Analysis.—Full details of the analysis for
the above shell model are given in Appendix I. The first step in the analysis is to form the
differential equations of compatibility for the top and bottom skin-stringer combinations, and
for these it has been found convenient to use the oblique system of co-ordinates as described
by Hemp®. When the rib booms are considered inextensional the equations of compatibility
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reduce 1o a set of # simultaneous differential equations of the second order, where # is the number
of bays in the shell model. An explicit solution of these equations can be found when the rib
spacings are assumed constant ; and it is shown in Appendix VII that ‘this solution is

W+ Al 4 BY”
Cy exp {A(y/L) }. <ﬁﬁ%>
1

o R=1 ' : 2%

A2+ Ar, 4+ B\
G €XP {_ A(y[L)}- (/'1:2 t Ali i B)

where T; = T;(x = L) sin a — 25 cos « }

and is called the oblique-stress resultant in

— T,a(x = 0) sin « — 25, coS o the skin-stringer combination at the jth rib,

T, is the direct-stress resultant along a stringer in the jth bay of the skin-stringer

combination,
S; shear-stress resultant in the jth bay of the skin-stringer combination,
x distance along a stringer, a new origin being chosen on the left-hand side
of each bay,
L " distance between ribs measured along a stringer,
A = 12cos «,
Et* ‘
B = 86 (7 sin® « 4 4 cos? oc), "
u
Ci, ¢, = arbitrary constants.
The 4, are the roots of the quadratics

s oy . w2k — 1) n(2k —1) ‘
(22,2 — B)*sin . o =0

and depend only on the non-dimensional structural paramétérs A and B, the current suffix &
and the number of bays.

— 168 — A4* — 34,%) cos®

The shear-stress resultants S; are then found to be

4= 6Et* sin o , - -
Si=—gT+ —5;  ¥V;—= V)
: M4 A+ BN a(2k— 1))
Ck eXp {xk(Y/L)} {(lkz . A}.k + B> Cos 2%
B A cos 72k — 1)(j — 1)
a2 — Ady+ B ' o
x ]
~ &
| A+ Ad + BN w(2k — 1) 1
— Cg eXp {_}”k(Y/L)} {(A’kz . Alk + B) €OS 2% )
(WA AL BN a2k — 1) — 1)
A2 — Ad, + B : 2

where the V]- refer to rib displacements.



It should be noted that the * oblique-stress resultants * T are continuous at a rib because the
ribs cannot resist warping out of their plane. Now, the true direct-stress resultant 7" along a
stringer is determined from the relationship :

T =T cosec o + 2S cot «
and is, in general, discontinuous at a rib.

It remains to determine the value of the arbitrary constants C,, ¢, and also the Vj. These are
found from considerations of equilibrium and comparing displacements of the component parts
of the shell model. In general, this procedure results in a set of 3% simultaneous equations.
It.is shown in Appendix VIII that the whole procedure is consistent with the total strain energy
stored in the shell model being rendered a minimum.

In Appendix II it is shown that when the shell model contains simultaneously elementary
bending and torsion distributions such that '

L L RV CA VAN
ST w2 EEAVYACREY ¢

where T’ and S’ are constants referring respectively to the bending and torsion, there is then
no warping of the ribs. The resultant of these stress distributions corresponds to a vector couple
inclined at an angle y from the stringers (Fig. 1) where
' T’ cosec « COSEC & |

‘and where T'/S’ is as given above. The vanishing of the rib warping means of course that there
is no redistribution of stress when the wing structure is built in at a rib. There will, however,
be a redistribution of stress in the vicinity of the applied couple unless it is applied in a manner
corresponding to the elementary distributions.

3.2. Numerical Application.—Full details of the numerical procedure for the evaluation of the
stress distribution and deflections are given in Appendix 1V, and a numerical illustrative example
is given in Appendix V.

It can be seen on reference to the aforegoing equations that the numerical work involved in
their evaluation will be considerable. An analysis of the unswept wing usually requires the
solution of the ‘ shear lag® problem ’ presented when the wing is resisting a normal force loading,
and also requires the separaie solution of an ‘ end constraint® problem ’ arising when the wing is
under torsion. The analysis of the swept wing does not, however, appear to permit a comparable
separation of problems. This, coupled with the loss of orthogonal relations between the functions,
means that the numerical work will inevitably be considerable in the corresponding calculations
for a swept wing. -

In applying the analysis to a particular structure it is preferable to keep the numerical work
down to a minimum, and this can only be achieved by restricting the number of bays to be
investigated. Thus the problem arises whether to replace a given wing structure by

() a shell model of the same overall dimensions with an increased distance between the-
equally spaced ribs ‘ '

(6) a shorter shell model in which the correct distance is retained between the equally spaced
ribs

(¢) a shell model in which the rib spacings are unequal.

In this paper the first choice has been adopted and good experimental agreement was obtained.
(The experimental results were obtained from the cellulose-nitrate model described in Appendix
VI and should be regarded as qualitative verification of the theoretical results.) It is possible,
nevertheless, for wings of other configurations that a rib nearer the root will appreciably influence
the stress distribution, o '
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LIST OF SYMBOLS—continued
Co-ordinate system

Current béy or rib number
Integer such that 0 < 2 < #
Total number of bays in the shell model

Rectangular co-ordinate along a stringer ; a new. origin being chosen on
the left-hand side of each bay

Oblique co-ordinate along a stringer, a new origin being chosen on the
left-hand side of each bay '

Rectangular co-ordinate normal to a stringer but in the plane of the skin-
stringer combination ; origin at the centre stringer -

Oblique co-ordinate parallel to the ribs and in the plane of the skin-
stringer combination ; origin at the centre stringer

Normal co-ordinate with origin midway between top and bottom skin-
stringer combinations

Loads and stresses

Couple applied to and in the plane of the sth rib

End load in the front spar in the jth bay

End load in the rear spar in the Jth bay

End load in the front spar at the sth rib

End load in the rear spar at the jth rib

Shear-stress resultant in the Jth bay of the skin-stringer combination
Value of the shear-stress resultant at Y = a, L.e, at the rear spar
Value of the shear-stress resultant at Y = — a, i.e., at the front spar
Shear-stress resultant in the Jth bay of the front spar web
Shear-stress resultant in the Jth bay of the rear spar web

Particular value of the shear-stress resultant

Shear-stress resultant in the 7th rib

Direct-stress resultant along a stringer in the jth bay of the skin-stringer
combination

Oblique-stress resultant in the Jth bay of the skin-stringer combination
Particular value of the oblique-stress resultant :
Oblique-stress resultant in the skin-stringer combination at the jth rib
z-wise load applied to the jth rib

Strains and displacements

Direct strain along a stringer
Shear strain in the skin-stringer combination

Direct strain normal to a stringer but in the plane of the skin-stringer
combination '

. 8



LIST OF SYMBOLS—continued

€ Oblique-strain component along a‘stringer ‘]
€y Oblique-strain component in the skin-stringer com- % defined in
bination equation (6)
e, Oblique-strain component parallel to the ribs and in J
the plane of the skin-stringer combination '
U; Displacement along a stringer in the jth bay
U,(a) Value of the displacement at y = a, Ai.e., at the rear spar
U,(— a) Value of the displacement at y = — q, i.e., at the front spar
Up; Displacement along the front spar in the jth bay
Uz, ~ Displacement along the front spar boom in the jth bay
Ug; Displacement along the rear spar in the jth bay
Uy, Displacement along the rear spar boom in the jth bay
U, Displacement along a stringer at the jth rib
O, Displacement along the front spar boom at the jth rib
Uy, Displacement along the rear spar boom at the jth rib
v, Oblique-displacement component in the jth béy, it is parallel to the ribs
and in the plane of the skin-stringer combination
7; Displacement parallel to the rib booms in the jth rib ,
vV, Oblique-displacement component in the skin-stringer combination at
the jth rib, this being identical to the displacement of the rib boom
Wr; z-wise displacement of the front spar web in the jth bay
We; z-wise displacement of the rear spar web in the jth bay
w; . ~ z-wise displacement of the jth rib web .
@By z-wise displacement of the front spar web at the jth rib
Wg;. z-wise displacement of the rear spar web at the jth rib
Wy, z-wise displacement at the centre of the 7th rib web
Elastic constants
E Young’s modulus of elasticity for the structure
u Shear moduhis for the structure

Additional symbols are used in Appendices IV to VIII but these are defined as they are
introduced.
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APPENDIX I
Determination of the Stress Distribution

In preparation for forming the equations of compatibility for the wing structure shown in '
Fig. 1 it is necessary to consider the detailed equations governing the individual behaviours
of the skin-stringer combination, ribs and spars. It is demonstrated in Appendix VIII that these
equations are consistent with the strain energy stored in the structure being rendered a minimum.

1. Obligue Co-ordinates and Stress Systems for the ‘Skin—Szﬁrmger Combination.—It is most
convenient to use the oblique system of co-ordinates shown in F ig. 2. The rectangular system .
is denoted by italic characterics and the oblique system by bold italic characters.

~ A transformation from the rectangular to the oblique system is effected by

= X4 ycos « }

. (1)
Yy =ysina
Similarly, the respective transformations for the displacements are
%= U+ vcos '
, : (2)
v = vsin a

* It is to be noted that the projected displacements in the x- and y-wise directions are respectively

U=u=u-+ vcosg }

V=wucosa-tv

(3)

‘The oblique and rectangular systems of stress resultants are shown in Fig. 8. The transforma-
tion from the rectangular to the oblique system is

T = T cosec o + 28 cot « }

s_s (4)



9. Fundamental Equations for the Skin-Stringer Combination.—In what follows attention is
confined to. cases where the displacements at z = -+ b are equal and opposite to one another.

It is now proposed to develop the fundamental equations for the top surface skin-stringer
combination using the oblique co-ordinates and stress systems just derived.

The oblique system of stress resultants acting on an elemental portion of skin-stringer com-
bination are shown in Fig. 4. For equilibrium it is necessary that '

8T,  oS; ' :
—a;—i—?y’:——o. . . v . . . .. . (5)
In deriving the stress, strain and displacement relationships, it is convenient to introduce

a set of oblique strain components by the strain quadric

et + e,xy + 6,7 = e, X" + e Xy + e,y"
On substitution from equation (1) it is seen that

€ = Cu

e, = 2¢,,C0S & 4 £,,8In « , .. .. .. (6)

— 2 3 P2
e,, = £,,C0S" & - €,, SN A COS & + ¢, 810" «

and it can be shown on using equations (1) to (3) that these oblique strain components may be
determined from

.. — Y |

xx__‘ax

oo v |

= 5 T i . O
oY

eyy:a_);

It is, of course, recognised from the last of equations (6) that e,, is the true strain component in
the y-wise direction. The strains in terms of the stress resultants and referred to the rectangular
system of axes are

_w_ T

® " 9x  Et* o
wm_s O (8)
¥ oy D ox ut

~Now, a change of shear along the skin-stringer combination can only take place at a rib
(ie, Sis independent of x) and equation (5) may be integrated to give

as;, =
Tj-:'_———X;Z—y]—!—Tj_l .. .. .. . .. .. . (9)

where a new origin for x is chosen on the left-hand side of each bay and T,_, denotes the value
of the oblique stress resultant in the skin-stringer combination at-the (j — I)th rib. It follows
that T must be continuous along a stringer because a rib cannot resist warping out of its plane.

From equations (4), (6), (7) and (8) it is seen that
oU; 1
5;’ = (T, cosec o + 25; cot «)

9



so, on substituting from equation (9) and integrating, it is found that

1 x*dS; -
U, T oa ‘cosec a xT, 1cosec o« + 2xS;cot o ) 4+ U,_, . (10)

=B

where U,_, is the displacement component at the (7 — 1)th rib. Again from equations 4), (8),
(7) and (8)

a_y]_|_2 _lSSlno(—f— {ZT COtoc—f—4S COtOﬂCOSO{}

Et*
which, on substitutlon from equations (9) and (10) and integrating, yields
X o 1 x* d°S; x*dT,_,
V,= ;tSjsm o — Eﬁé{ 6 dy* COSec o + 5 ZZT cosec o

+ 2x* -décotoc— 2xT,_ cot o — 4xS; cos a.cot oc}
a0, - |
— X d;l—f—V,-;l, . . e . . . (11)

- where ¥,_; denotes the displacement component at the (7 — 1)th rib.
Putting x = L in this equation yields

L . . 1L [ L3ad%S; L*dT,;_, TAY
ut S;sin o — E*{ s & cosec o + 9 *dj/_ cosec o - 'ZL d—y~ cot o
= A a0,_,
— 2LT; ;cot o — 4LS,cos acot o b— L ﬁ—
=V, —V,_,. e (12)

Manipulation of equations (9) to (12) yields
S 4 . & 2 d .,
< e AL +B> ,1+2<2Ldy—B>T+<L ~AL;§}+B>T
. d = - _
= — 6Et*sin ocg)-, (Vioi—2V, 4 V..) . .. . . (13)

where 4 and B are non-dimensional structural parameters defined as
A = 12cos «,

B = 6(— sin® & 4 4C0520c> .

At the wing root U, and ¥, are zero and the equation approprlate to (13) is then

of ar T, + Lz _ AL S + B = — GEt*ksmocciz (14)
dy* dy? n ay h

Finally, at the free end of the wing the dlrect stress resultants T, will be specified and equation
(13) becomes ,

. A
(Lz =+ AL = “I‘ B) w2 T 2(21'2 ddyz - B>T“—1,

d | Na - . - .
= <L2 ay AL g+ B> T, — 6Et*sin « gyw”_z —o¥,, +¥). (15
10



If the rib booms are considered inextensionalthe d¥/dy are all zero and it is shown in Appendix
VII that the solution to the above fundamental equations (13), (14) and (15) is then

: a2 Ax, 4+ BN
Crexp {(y/L)}. (A‘Z l_L"A—z:TE>

A7+ An, - B\
cpexp {— A(y/L)} 1?2@$§>

where C, and ¢, are arbitrary constants and where T, has been assumed constant. The roots
A, are determined from the quadratics

2k — 1) n(2k — 1)

LT :
(24,* — B)*sin* ( o5 — 22(8B — A* — 34;%) cos? oy = 0o .. (17)
where 4, < A,_pi1-
From equation (9) it is seen that
as;, . = =
L ;i7] =— (T, — Tp.)
which, on substitution from equation (16) and integrating, yields
A= B6Et*sina g .
Sj=— ETn + =55 | (¥, — V)
(/a2 Ad - BY? m(2k — 1)
p {7 : ner
Cke}*p{ k(Y/L)} {(;{kz _ A}'k"l_ B> cos 2%
(W Aa A B\ a2k —1)(j— 1)
\E— Ar,+ B 2n - |
n ]
W (Al BN a2k — 1)
ckexp{ Ak(Y/L)}{ 22— A, + B> cos I
(WAL B\ a@k—1)(—1)
ME— Al + B 21 |

where the constants of integration have been determined from equation (12).

3. Fundamental Equations for the Spar Booms.—The spar booms are additional end load
carrying members attached along the outer edges of the skin-stringer combination. They are
massive in comparison with the adjacent stringer. The forces acting on an elemental portion
- of the rear spar boom are shown in Fig. 5. For equilibrium of this element it is necessary that

aAPr;

e Sk + Sia) .
On integration, this yields . . _
ijj = X{SR] '{" S](ﬂ)} —|— PRj—l . .. .. .. .. . (19)

11



where Pg;_, denotes the end load in the rear spar boom at the (j — 1)th rib. Proceeding in a
similar manner for the front spar boom it is found that ,

Prj=x{Se; = S(— @)} + Peseu . .. . . . 0

Now, the.end load in a spar boom is continuous at a rib whereas the direct-stress resultant T
orthogonal system) in the skin-stringer combination is, in general, discontinuous at a rib. There
is then a discontinuity of displacement between a spar boom and the adjacent stringer. It is
therefore necessary to relax the usual condition of continuity of displacement to an average
requirement such that

fzuwzﬁﬁuj(a)dx N )

where Ug; denotes the displacement along the rear spar boom in the sth bay and U;(a) denotes
the corresponding displacement along the adjacent stringer. From equation (19), it 1s readily
seen that :

1 ~ _ .
UR]‘ == m [—2 {SR]' —{'* SJ(GZ)} + XPRj_1J+ URj—l . . A . (22)

where Ay is the effective cross-sectional area of the rear spar boom (¢.e., the nominal boom area
plus effective skin and spar web area) and U,,_, denotes the displacement at the j — 1)th rib.
Integrating equation (22) yields ' :

L . '
1 JL? L _ -
J Uy, dx = FA [‘g {Se; + Sil@)}+ 5 PRH] + LUR].-“I . (23)

0

and integrating equation (10) yields

L
1 L*dS; L* o : -

U(a)dx = [—- { — — —7coseca + = T,_;coseco - L2 S, cot oc} - LU-_J . (24)
Jn ! Er* 6 dy 2 ! e

Substitution of equations (23) and (24) into (21) then yields the compatibility equation between
the rear spar boom and adjacent stringer. - A

Similarly, for the front spar boom it is necessary that
L L
fup,.dx:juj(—a)dx T (25)
[ ¢

where Up; denotes the displacement along the front spar boom in the jth bay and U,(— a)

denotes the corresponding- displacement along the adjacent stringer. From equation (20), the
boom displacement is » '

1 [« = ~ 4
UFj - Efl_ [E {SF] - Sj(— a)} + XPF]-_IJ “l“ UFj—l' .« .. N (26)
F
On integration this becomes
L I s 7e _ o .
Up;dx = 7, [E {Sp; — Si(— a)} + ?P”—l} +LUp, .. L. . (27)
0



and integrating equation (10) yields

L
% 3 9
J U(— a) dx = [Eflﬁ:{— B g%cosec o -+ % T, cosec «

0

+L%ﬁda}+qu} . . .. .. S . (28)
A ez
Substitution of equations (27) and (28) 1into (25) then yields the compatability equation between
the front spar boom and adjacent stringer.

4. Fundamental Equations for the Ribs and Spar Webs.—The co-ordinate system for and
forces acting on the jth rib are shown in Fig. 6. Since the rib flanges are considered inextensional
the shear flow acting on the rib is constant and is denoted by S;. :

For a pure shear carrying rib the strain equation is
‘ ow, 07, S; '

°%; (R
oy ' 0z pf

The displacement condition for such a rib is not well defined so, for simplicity, it will be assumed
that @, is independent of z. Differentiation of the strain equation with respect to z then shows

that
v,
since at z = - b the rib displacements must conform with those of the skin-stringer combination.

This, and the strain equation then yield

_ S Yo . -
w:%h€w+% e (29)

where @,; is the vertical displacement of the rib at y = 0.

‘l)]. -

SR

The co-ordinate systems for and the forces acting on the front and rear spar webs in the jth
bay are shown in Fig. 7. Agreement of the z-wise displacements wy; and wg; with the displace--
ment @ of the rib show that the former are also independent of the z co-ordinate. For the rear
spar web, the strain equation is :

dwg;  Ug; _ Sg;

ax 2z plg 4
Differentiation of this equation with respect to z then shows that
- Z |
iTp
since at z = -+ b the spar web displacements must agree with those of the Spar boom. This,
and the strain equation then yield

Uy,

Ur

xSz 1[0 _ |
wm:ﬁ—zjumdx—i—wm_l cet s . - . (30)

[

where @yg;_, is the z-wise displacement of the spar web at the (§ — 1)th rib. Similarly, for the
front spar web,

Sy 1[4, |
wF]:ij__Jv UFJ-—|—-'L@F]~_1. . e .. .. « v L] (31)

!lLlJzF b

J 0
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Noting that

@y = a) = We;

@1‘()’ = - “) - Z@FJ'
it is easily shown that
L

_ _ LSe;  LSp. 1 .

Wo; — Wojq = T‘Z;t;] —f—- _2_/,L—t; — QZJO (UR;‘ —’— UF]) dx, . .. ‘\ “ e . - (32)
and

_ - Lb Lb

O = G, S0 g, S

1 L . b .
—l— ZZ J\O (UR] —_ UF]) dX _*“ /;t- (S] - Sj_:l) < e .. .. . (33)

S. Equations of Overall Equilibrium.—To complete the formulation it now remains only to
determine the equations of overall equilibrium for the structure under the system of loading
shown in Fig. 8.

The equations of overall equilibrium are obtained most easily by consideration of the equili-
brium of the jth rib. Resolving forces in the z-wise direction it is necessary that

1

SRJ.+SF'7.:_§6;'=]‘W{. . . .. . .« .. .. .« (34)
Resolving moments in the plane of the rib, it is found that
[ 1 . ,
SRj_SFj_; ’ S].dj/: —’Z—agizj M1: . .« > . . .. « (35)

These last two equations are independent of the manner of application of the loads W and M.
It will be assumed that the loads are applied such that the shear S, in the jth rib is given by

- 1 [ ~ M,
$:%J (Six = S)dy + 2 e 38)

The stress distribution in the immediate vicinity of the applied load will, of course; depend
upon the precise mode of application.

APPENDIX II
Condution for Zevo Warping of the Ribs in the Shell Model

Far from a discontinuity it is to be expected that the stresses in the shell model will settle
down to those given by the elementary theories and be independent of the rib direction. It is of
particular interest to examine the behaviour of the shell model when, it contains only the
clementary bending and torsion stresses, '

14



The elementary bending distribution is defined by

T, = T' = a constant

SRj:SFj:O
~ s L (37)
PR,-:{;;R " cosec «

Ay
. Pry = # T’ cosec «

Py

where it is to be noted that the boom end loads are such that equality of strain exists between a
boom and the adjacent stringer. From equations (10) and (12) it is seen that the displacement
components in the skin-stringer combination are

!

U, = T cosec o + Uj_l ,
V. — V’j_lz%;f cota—Lc%i,

and the boom displacements are
. Ue; = Oy(a) and Ur, = 0y(— a) . ‘
From equation (33) and using equations (21), (24), (25) and (28) it follows that

_ L[~ 71
o T=g | O
and therefore from above,
L= T d0,_, 2T'L
oa | Uri| T L7y = Ex ot
The solution of this last equation is
= Ty JT'L
U;'ZEZ*COt“+*EFeCOSGC“+k1’ )
giving , (38)
= JT'L
V]'Z Et* cot d.—l—kz,
where %, and %, are arbitrary constants.
The elementary torsion distribution is defined by
S; = S’ = a constant )
T, = — 25 cos «
, . . . . ‘e 39
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From equations (10) and (12) it is seen that the displacement components in the skin-stringer
combination are ‘ » '

0 =

: g =1
o . ST a0, ,
vV, —Vv._, = ol sina — L Ty
and the boom displacements are
Up;, = U(a) and U., = 0,(— a).

From equation (33) and using equations (21), (24), (25) and (28) it follows that
= - SLb /1 1 Li- T
Vo= (i 5) 2|0
and therefore from above '
Lls [ de_l_& . S'Lb /1 1
2 [U"—lla tLogy = s Qap <¢R T tF> ‘

The solution of this last equation is

g[S g, SP/L T
U = 2Wsmoc—L}rM 5R+¢F y—}—ka‘_,

giving ' . S .. .. (40)
= S'L . S'’Lb 11 .
Vj%{Z;u‘ sin o + m(g{%—g)}]—f—kh

where %, and %, are arbitrary constants.

- From equations (38) and (40) it is seen for both the elementary bending and torsion distri-
butions that there is a linear warping of the ribs, the magnitude being denoted by the coefficients
of y in the expressions for U,  This warping vanishes when the shell model contains simul-
taneously the elementary bending and torsion distributions such that ‘

T Et*tan o | . 170N/t ¢
§~_—M_ 5 {smoc~—§<;><2e—|—¢;>}. e o (41)

The resultant of these stress distributions corresponds to a moment vector inclined at an anglet
v from the centre-stringer (Fig. 1) where ’ :

S 2
and T’/5" is as given by equation (41).

T’ cose cosec :
tany = — — ”‘{1 M*"-‘(ARJFAF)} e (42)

The vanishing of the rib warping means of course that there is no redistribution of stress when
the wing structure is built in at a rib. There will, however, be a redistribution of stress in the
vicinity of the applied couple unless it is applied in a manner corresponding to the distributions
given in equations (37) and (39).

1 The angle y can readily be determined from the paper by Hemp®. From equations (35), (77) and (101) of that
paper, the condition for zero warping of the ribs is that

b
T <A33 — 244, cos ¢ — ,ut,ﬂ)

) S/ A31 . B} B L‘F bl -
where the notation of the present paper has been retained excepting A and A, which are defined by equation (33)
of Hemp's paper. The angle y is then determined by substituting this value of T'/S" into equation (42) above,
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APPENDIX III

Specialisation of the Equations for the Unswept Wing

Considerable simplifications are afforded for the case of the unswept wing, viz., « = 90 deg.
Symmetrical properties of the structure can then be used to good advantage, and, furthermore,
the functions employed in equations (16) and (18) are then orthogonal functions. These equations
become

-~

_ . C cosh A,(y/L) V4
T,=2 ’ ' oS 72k — 1)]
#=1 ¢ cosh A,(y/L) 2n
-and :
ut ~
S;= 53 (0 — D) - .. (438)
g CWsmh A(yIL)  op — 1) | m(2k — 1)(2 — 1)
> - sin —————— Sin 1 ,
k1 Zk Ck’ cosh Zk(y/L) 4 /]
where <
n(2k — 1) e
.| e I —cos 7,
k ==
ut - (2R — 1)
] 2 - cos oy

The equations are exact for the shell model described in section 2, and it is readily verified
for & = 90 deg that the fundamental equations for the skin-stringer combination agree with those
developed by the author* in a preceding paper, when the rib booms are considered inextensional.
In Appendix ITT of that paper it was demonstrated that these fundamental equations correspond
_ to those developed by Williams® when the ribs are closely spaced. It therefore follows that
equations (43) are the finite difference counterparts of the equations used by Williams?, in his
shear lag analysis of the unswept wing. Of course, the constants ¢, and 9; are zero by virtue of
the symmetry of the structure and loading.

For the end constraint problem of the unswept wing under torsion, Williams® has shown that
the chordwise variation of the shear-stress resultants S; is small enough to be neglected. This
corresponds to C;/ = ¢,” = 0 in equations (43) and then of course the area of the spar booms
must include the appropriate effective area of the skin-stringer combination. Proceeding as
indicated in the body of the report will yield results identical with those of Cox®. ‘
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 APPENDIX IV

Numerical Procedure for Evaluation of the Stress Distribution and Deflections

It can be seen on reference to the aforegoing equations that the numerical work involved in their evaluation will be
considerable. An analysis of the unswept wing usually requires the solution of the ‘shear lag® problem’ presented when the
wing is resisting a normal force loading, and also requires the separate solution of an ‘end constraint® problem ’ arising when
the wing is under torsion. The analysis of the swept wing does not, however, appear to permit a comparable separation
of problems. This coupled with the loss of orthogonal relations between the functions, means that the numerical work
will inevitably be considerable in the corresponding calculations for a swept wing.

The following sets out in detail a suggested numerical procedure for the evaluation of the stress distribution and deflections,
Tt has been found convenient to use matrices and the procedure has been so planned that the elements of a matrix are
obtained by simple operations-on the elements of preceding matrices. Having determined the values of the unknown
constants (viz., the V;, C, and c¢,) these matrices then readily yield the spanwise distribution of stresses and deflections
at the front and rear spars. ‘

Appreciable numerical simplification is obtained when the ribs may be considered rigid in shear (viz., uf = o). This
simplification will be adopted in that which follows. The procedure for ribs of finite shear rigidity is indicated.

Furthermore, the applied loading has been specialised for W;=M; =0, j # n (see Fig. 8) which corresponds to a tip
force normal to the plane of the wing and a tip couple in the plane of the rib. Alternative systems of loading involve
only minor modifications to the equations ; all the matrices that are the coefficients of the C » and ¢, remain unchanged.

The first step is to determine the # roots 4, of the quadratics

(24, — B)? sin2n—(% — 22(6B — A — 32,2) coszf—@%;—l) =0 .. .. (17) bis
where 1, << 4,_,,,. These roots will be real and will fall within
#\1/2 *\1/2
— 24/35sin « ﬁit <lk<2\/35inoc<%—>
3

where it is necessary only to consider the positive roots. With these values it is possible to form the following basic matrices.

_ The direct stress resultants T; in the skin—stringgr combination are given in equation (16) and it will be assumed that
T, is zero. It is convenient to write the Va_dues of T; at y = 4 a in the following matrix form, viz.,

M o= - ] T 7 r T N
o(a) — To( - “) r T01 Toz ........ T()” F Cl tOI toz ........ t(m r C]_
Tl <6l) ‘_ T]_ ( — a) T11 le ........ Tln C2 tll t12 ........ tln 62
Tn_l(d) T-n—l(— d) J Tn—l 1 Tﬂ-—-l Qe s s 0 Tn-1 n J C” -J tn—l, 1 tn—l, Qe o e s 0 tu_]_’ # _| Cu —‘
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Tia) +T(—a) | T Theeeenn.. T, ¢, | £ T t.. 6 |
Tl(cl) —+ 7-1(—— @) T Tigeoeennn. T.. C, t o veennn t. Cy - ,

- + ;.. (45)
Tn—l(“) + -'-n—l('— a) T T:g-l,z ------ Tooin C, t, 11 LRI t1,;—1,n Cy

‘The matrix elements are given by

‘ lkz Alk B 2 7(2k — 1)7
T, = {exp {M(a/L)} — exp {— A,(a/L)}} (17%> cos —(W*)j_ ,

7,2 Al B —i/® n(2k — 1)7
t, = — {exp {A(a/L)} — exp {— A(a/L)}} <):2 —_}— a7, i B> cos._<—_é;7/—)] ,

, 12+ Al 4 BV 2k — 1)j
T), = {exp {4,(a/L)} + exp {— A(a/L)}} (Aiz f A2, i B> cos ELW—)Z ,

| 2.2 L A2 B\ 7* w(2k — 1)4
t, = {exp {Zk(a/L)} -+ exp {— ﬂk(d/L)}} <a’;2 i A}*Z jl__ B> Cc0S _._._( 5 )

Equations (44) and (45) represent the basic matrices from which all following matrices will be derived.

Tt is now necessary to express the displacement components ¥; of the skin-stringer combination in terms of the C, and
¢,. To this end it is necessary to express the following four quantities in matrix form. The first concerns the shear stress

resultant, S;, given in equation (18) where the values at y = 4 a may be written

(S —S—a) | | SuSke..... salleal [sa su..... s | | & |
Se(a) — Sao(— a) Soy Saze oot Sen C, So; Sopeeeenen San Cs :
== -+ (46)

I Sq(a) — S, (— a) | \_ S Spze et S 1l C, | | Sa Spge v vnns Sm || & |
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‘where, from equation (44), the elements are given by

' 1
Sjk = Z_ (Tjk - Tj—],k) ’
k

Sjp = R (T — 1) -

‘The next concerns the displacement components 0, in the skin-stringer combination which are given in equation (10). With

the aid of equation (9), this may be more conveniently expressed as

— L cosec = - -
uj=_(23§5;h“{7j+ij1+45,cosoc}+.uj_1 . . . SE . . (47)

and the values at y = -+ ¢ are written

| O,(a) — Oy(— a) Uy Ua....ty | [c ] R i S
U2(0l) - Uz<— 61) L cosec o U, U,...... Ug,, C, L cosec « Uy L1 PO U,, , Cy (48>
h 2Et* ’ - e _“}_. 2Et* B
U,(a) — 0O,(— a) U, U,...... u,, C, ] . Uy U ..... U | | G0 |

Whére, from equations_ (44) and (46), it is found that the elements are given by
Ujk — U'—l,k =1+ Tj—-l,k + 4'Sjk cos a ,

7

u]'k - Uj__llk - tjk + tj—l,k _|“ 4S]k COS o

where, of course, U,, — Uy, = 0 since this refers to the root end.

The integral, along the jfh bay, of the displacement U; in the skin-stringer combination is given in equations (24) and

(28). With the aid of equation (9), this may be more conveniently expressed as

L
L* = = . _
f U,-dx:?Tiic"‘{rj+zrj_l+65jcosa}+Lu,._1 L )
0 .
and the values at y = 4 4 are written o
[z T i 17 2
f {Ui(a) — Uy(— a)} dx 1wy U, ... u, || C, ( Uy Uggenn. .. Uy, & |
B 0 . - B N
‘ -L
| {Uu(@) — Uy(— )} ax Iteoseeq | Mo Yarooo... Yoo | [ Col  Japeey | o tomeeeeos s, | | o
~ T 8L+ | T GE#* : . (50
i fo {U,(a) — U,(— a)}dx | i U, U,...... um,J ] C”j i Uy Ug.onn.. U, 11 c, ]




1z

where, from equations (44), (46) and (48), it is seen that the elements are
u~k‘= Tjk + Q‘Tj—l,k "|— GSjk COoS & + 3Uj—1,k)

7
Wy = ty -+ 2¢_, , + 6s;cos o 4+ 3u;_y ;.
The fourth quantity to be written in matrix form before it is possible to express the displacements components V,in

terms of the C, and ¢, concerns the spar shears. These are given in equation (35) which with the aid of equation (18) may
be expressed in the following matrix form, v1z., ‘

B T = T T~ . 1 T7~71 T 177
SRl - SFI _‘ 1 - V]_ ’ 611 612. .. .61" Cl 511 512- . 'Sln Cl.
Srz — Ska M, 1 SEt* sin o Vz — Vl Ssi 6‘22- . By, C, So1 Saz- - - +Sop Ca
: =“w| |7 BL + | + (51)
L SR n . SFn 1 ' Vn - Vn—l LGnl enz' o .. Gm@. Cn 1 Suze v - - Sy Cy

where, from equation (46), the elements are found to be

' 1/7LN\1
= —:é(;)}:sjk :

R VoA

Tt is to be noted that equation (51) is appropriate only for the applied loading W; = M; = 0, j 7= n. Other systems of applied.
loading modify only the first column matrix on the right-hand side. This is the case for all the following expressions.

It is now possible to express the ¥, in terms of the C, and ¢,, for from equation (33)

L
- -Lb 1 1
Vi~ V.= — anty 2 (Srj — Srj) + 9% JO{UJ'(&) — U(—a)}dx
by virtue of equations (21) and (25) and where it is assumed that the ribs may be considered rigid in shear (i.e., uf = oo)..

Substitution from equations (50) and (51) yields

V. _ 1] Vi Vio.o... v, | |G Vi V... v | | &

12Et-}‘“‘- Sin & Vz "— Vl . H Mn 1 Vgl sz ...... Vgn C2 V21 sz ...... VZn 02
L “armz| | TN L R %)

V” —_— V”__l 1 an Vnz ...... V?m Cn an VnZ """ V;m Cn




where H is a non-dimensional structural parameter defined as

- 6 JEPEDN .
H = 3 (MR a)sm o

and it has been assumed that #; = #;,. The elements of equation (52) are given by

o oH 1L 1
==yt s (Da

PR SR ¥ € 2 W S
AT FET B\a )1 g

When the ribs cannot be considered rigid in shear, the displacement components ¥, — ¥,_, could be retained as unknowns-
and be determined along with the C,, ¢, from the final set of simultaneous equations (64) and (65). Alternatively, itis possible-

at this stage to solve the # simultaneous equations and thereby express the ¥,
loading.

— V,_, in terms of the C;, ¢, and applied

Equation (52) expresses the displacement components ¥, in terms of the C, and ¢, and it is now necessary to write down

the complementary equations to equations (46), (48) and (50). This is a necessary preliminary before determining the actual.

values of the C, and ¢;. Complementary to equation (46) is

] i 7 17T

[ Su(@) + Si(— a) 1 | Sh S, su ]l c sh
Sy(@) + Sy(— a) 7o |1 St Shen... si ] c St
.............. IERRZEC D I "

Sula) + Su(— @) | 1 i St si 1, Sia

where the elements are determined from equations (45) and (62) so that

7 1 14 !
Sjk = V:‘k - A—( ik Tj—l,k) ’
k

7 1 !
Sip = Vi + :{k(t}k — tiys) -

------

..............

C1

(53):
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Complementary to equation (48) is

Uy(a) -+ Ui(— )| 1 U, U.....ul[c why .. oul || e
Uy(a) + Us(— a) _Lcoota H M, 2 +L cosec o| Un Uzo oo Un i | Ca +Lcosecoc U Ug. .. Up, || Co (54
.............. C B (L4 H)ab) 2EE L] 2 )
LU,,(a) +U,(— a)_ 7| _Uf,l U, .. .U,'m_ LC"_ ‘ Lu,’,l Up. ... u,’m_ | O |
where the elements are determined from equations (45) and (53) so that
U, —U_,,=T) + T, + 4Spcos «,
ujp — Uy, =t + t_,, + 4spcosx
where, of course, U}, = uj, = 0 since this refers to the root end.
Finally, the complementary equation to equation (50) is
. - ] I ] ._ I 1 I 7T
jo {Ul(d)+u1(—“)}dx 1 u;.l uiz- 'uin Cl uil ulll2' 'u{n C1
° ‘
fo {Us(a) +-Us(—a)}dx _ L*cota H M, 3 _{_y cosec o Wy U 2, ) Co +L2 cosec o| 2 ezt Han | Co 55
................... - Bt (14 H)2abp 6ES™ [ BB )
L
[ {Us(a)+U,(—a)}ax | | 2n—1 W, W2, || C, s W) || G
L

| . i 1L i L]
where the elements are determined from equations (45), (53) and (54) so that :
W, =Th + 2T, 1, + 6Sjhcosa+ 3Uj iy,

u}k == t;'k + Zt;—l,k -+ 631{k cos o - 3”1{—1,1? .

It only remains now to determine the equations for the spar booms before it is possible to solve for the values of the C,
and ¢;. The end loads in the spar booms are given in equations (19) and (20) so that

PRO — Ppy ] # | Py Pegp.o..... Py, | Cy Pu Doaeeennn Don Cy
pRl. —_ pFl 1 — H M n—1 P11 Plz ------ Pln C2 ]511 ]512 """ pln Ca
........ G| T ]
PRn—l - PF?i—l \— 1 LPn——l,l Pn-—l, 2;' .. 'Pﬂ—l,n Cn pn—l,l Pn—l,2' .. 'Pn—-l,n Cn




where, from equations (51), (52) and (53), the elements are found to be given by
ij — Pj—l,k - S]{k + 26jk - ij ’ ‘
P — Pimrp = ka -+ 25jk + Vi,

and
D YD, ] T I ’ ’ ’ I ] r ’ ’ ] )
FPRU + Pry { 7 Py Poyooo. .. Py, o rﬁm Poz- v Pon I €1
PR% + pFl. _ :[Y—ﬁ %_1 + L .Pi]_ P]I_2 ...... ‘Pln Cz + L pil Piz ..... p:{ﬂ cg 3 y (57)’
------------- Zb - s a2 . L I T . s e e v s s e s e e ey e . e
Rn—l + PFﬂ IJ 1 __J P:z—l 1 Pn 1,2+ ¢ - '.Pn—l n Cn_l P;,z—l,l P.z’;-—-l,2- . 'Prl;—l,nJ Cy

Where from equation (46), the elements are found to be given by

P;k PJI l,k:Sjk;

lﬁ kT P; LE = S -
It is to be noted in the above two equations that P,, = p,, = P!, = $m = 0 because no loads are applied to the free end
of the booms.

S The boom displacements are given in equations (22) and (26), which with the aid of equations (19 and (20) may be more
conveniently expressed as :

.

. L - — .
URj = ZEAR (PR;‘ -+ PRj—l) + URj—l s
L (58)
UFj:QEA (PF]+PF; 1) +UF] 1 J
Hence, these displacements may be written
— -] ) O — ] T 7 ar N
['URI — U, f_ & 1 ’—UBll Ugio. .. Uy, ’—61 ’—‘-’Bu Ugys. . Uy, C1
3 ’ — : . 4 - .,
Ug, — Up, . an ' U Ugss. ... Us,, Cs Ugy Ugss. . Up o Co
.......... 7.2 1 — HN\NM 12 . 7.2
_ Sl T el 28 ) — ’ .(589)
URj — UFj 2EAR <1 + 1) 2ab | j(2n — ]> +2EAR ................ * 2EAR | ( )
) : . SAEREREEN | KT A EPRR PR e
UR o UFn ' UB nl UB n2e oo o0 UB nn Cn uBnl uB n2e » uB nn ’ Cn»
L J . L _1 L _J L L JL




where it has been assumed that 4 » = Az and where from equation (56) the elements are found to be given by
UBjk - UBj—l,k - ij ‘l‘ Pj—l,k ’

Upjp — Upj 1 = P+ Pi—r,k >

and
U, + U, o — 1 Ul Ups. .. Ui | | G Ubyy Upe....Uhs || G
Oeo + U5 | 4y — 4 Uy Ulos. .. Ubs || Ca Uhy Uhme. . Uhsn || o
.......... L2 W S e e e e e e s LZ I PO L2 e a5 e s s a s s e e
_ _ pramad i ) +9 —1— (60)’
Up; + Up, 2EAr 20 7(2n — j) 2BAR| 2EAr|
LURM _l_ UFn_ L %2 1 —Uénl Uén?.' .. 'Uénr;— _Cﬂ— » Lué;tl ul;nZ' LI uém;_ L Cn—-

& where from equation (57) the elements are found to be given by"
U;?jk - Uéj-—-l,k == P]/'k + P]{——l,k s
Ugjp — Ugj1x = Dip T Pioae -

It is to be noted in equations (59) and (60) that Ugy, = Uge = U'se = Uze = 0 since this refers to the root end.

To complete the expressions for the spar booms it is now only necessary to express in matrix form the integral of the boom.
displacements along each bay. These integrals are given in equations (23) and (27) which with the aid of equations (19)

and (20) become

L
72 - - -

J Uny dx = G—EZe(PRj‘f‘ 2Pp; 1) + LUz

, _
P (10
L L2
, [ Upj dx = 6EA, (Pry + 2Pr;a) + LUz
v o ) J
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These integrals may be expressed as

—

I
| (Ui — Upy) dx

. |
jo (Ugs — Upy) dx

6EAx

................ LS
Lo ~ 6E4,

(

DEEEREY

o e e

L—H\ M,
1+ H) 2ab

..........

uBnZ' ‘uBnn

....................

....................

3n® — 1
- . _
C,
L3
- 6E AR
C.,

where the elements are determined from equations (56) and (59) so that

quk - ij ‘l— ZPj—l,k —i‘ 3U3j~1,k )

Upy = Pp + 2P 1, + 3'”Bj—1,k ,

Upyr Upis. .

Upor MUpoa. .

.........

.........

uB nl 1’lB na -

. uB nn

G

3

Co.

(62)



and

[ U+ Ui | =1
[ (Ues + U dx 9 —7
............... _rw,
[wgruac | 02 g iy

' j: (Ur, + Up,)dx 2 — 1

L i L

e [
6EAx

...............

L*
6EAx

where the elements are determined from equations (57) and (60) so that

' Upy = P+ 2P i+ 3Ul;j~_1,'k )

ut,?jk = P;/Ik + 2_15]{-1,1: -+ 3"1;;’—1,]: .

Gy

(63)



It is now possible to determine the C » and ¢, by solving the 2 simultaneous equations presented by the relationships
of equations (21) and (25). From equations (50), (55), (62) and (63) it is seen that these 2z simultaneous equations are

Fn Iy . Iy, !_Cl ) Y VYize.- Via Fcl . 3n — 1 :
Iy Ty Iy, C, Yar Vaz. oo Vo, Cy : O —7
............. L :D<i_fl é‘[g . (64)
le Ijjz""]wjﬂ Cj Vit Vize -+« Vin G . + @ 3_7(277"‘7‘_’_ 1)—(3%—}—1)
Pnl I,n2""11mt Cn_J Yul Vaze oo eVuy C, 3%’2_1
L 4L L I L R
where D is a non-dimensional structural parameter defined as
Li¥N .
'D = <A—R> sin e
and the elements are given by
I}k = ujk - Dquk ’
Yie = Uy — Dus,-k s
with the remaining » equations
ry ].,{2”'”].,1" C, Y1 '}’12----7£n €y F 3n — 1 - F 1
Iy I'y....Ty || C, Va1 Vaze .- Vin | | Ca Mm —7 3
e e e . e e e s e e e M. e s e et et - AH M. | ------
’ ’ 7| + r ’ ’ =D —ZI/I%L - : o (1 + H) 4612 ; (65)
Iy Theoo 15,01 C; Vi Vizee- Vi || G| 3I2n—74+1) —Bu+1) 27 — 1
]-'1’11 ]—’7,32 F1/m Cn Y )"Izz y;-nj Cy 3n2 — 1 2% - IJ
L L. A L - _ L. m -



where the elements are given by
rj{k = ]{k - Dul;jk s
yj{k = u]{k — Duéjk .
With these values of the C . and ¢, the spanwise distribution of stresses and displacements at the front and rear spars

may be obtained by simple matrix multiplication. The chordwise distributions of such as the resultants T,and S, are obtained
by evaluating equations (16) and (18) for various values of (y/L). ‘

APPENDIX V
- Numerical Illustrative Example

The numerical illustrative examﬁle is based on the swept Wing structure shown in Fig. 9. This wing has a sweepback
of 45 deg and has five bays. The loading cases of tip force normal to the plane of the wing and tip couple in the plane of the

rib will be investigated where W; = 100 1b and M; = 1,000 in. 1b. The following values of the non-dimensional structural
parameters were taken, viz., ' : . ‘

A =12cos a=8-5,
*
B=6<E%sinzoc+4cosza>=26,
) M

Et*
Ulpd

Li*N . .
D:<Z>Slnoc=2°8,

and the ribs are considered stiff enough to be taken as rigid in shear.

H:E’ >sin.oc=0-17,

As stated earlier, the numerical work is inevitably considerable for the swept wing. This necessitates working to a
fairly large number of significant figures so as to ensure results that are not influenced by loss of figures due to rounding oft
errors and possible ill-conditioning. The following calculations were undertaken on a standard ten-bank electric calculating

machine. Of course, once the values of the constants C, and ¢, have been obtained it is not necessary to retain all these
significant figures. - '

The roots 4, (k = 1, 2, 8, 4 and 5) are determined from the three quadratic equations

(ZZkB - B)Z Sinzﬂkzn;l) — lkz(GB — A2 — 3/11@2)' cos? Eﬁz%n:l) =0 .. . .' .. (17)b15



for k= 1,2and 3. Only the positive roots are considered and these are arranged in order of increasing magnitude so that

[ 0-880
2-418
3-605
4-548
| 5-187

[lk] =

387
837
551
936
010

296 7
187 -
27
43
61 |

It is now possible to form the first four matrices given in equations (44) and (45). They are

[T;e] =

(%] =

] =

and these are the basic matrices from which all subsequent matrices are derived by successive addition and multiplication
of the elements. Including the final set of simultaneous equations there are 32 of these matrices.

[ 2-33112022
2-954 391 93
3:349 010 72
3-242 460 48
2-271 618 94

[ —2-331 120 22
—1-663 695 667
—1-062 008 74

—0-579 017 943
| —0-298 432 866

[ 3-071 501 50
3-892 728 99
4-412681 68 -
4-272 290.26
2-993 102 17

" 3-071 501 50
- 2-192 097 90
1-399 310 69
0-762 918 388
0-300 984 860

15
19
—21

—15-
— 4. s
-016 641 24
-452 247 134
0-

1
1

15-
19-
—99.
—146-
—268-

15-

4.
-025 322 28
-464 647 80

—1
—1

—0-

-271 709 87
-340 046 02
906 466 7

—145-
—266-

260 4716
225 666

271709 87
166 344 67

573 377 563

402 114 21
505 189 67
093 524 9
500 843 2
498 953

402 114 21
201 920 88

578 273 604

58-526 180 2
0
—488-001 247
0
4069-037 41

—58-526 180 2
0
7-019 067 66
0
—0-841 799 527

58-560 343 0
0
—488-286 102
0
4,071-412 58

58-560 343 0
0
—7-023 164 82
0
0-842 290 9500

169-792 534 7
—325-453 134
—557-960 323
5,599-876 62.

—15,533-916 20

—169-792 534 7
30-604 556 9
- 4-933 993 74
—4-656 626 18
1-214 706 94

169-804 313 3
—325-475 710
—557-999 029
5,600-265 09

—15,534-993 79

169-804 313
—30-606 680 0
—4-934 336 02
4-656 949 22
- —1-214 791 21

348-915 585 ]
—1,100-721 44
3,105-842 84
—7,484-990 42

13,052-859 38 ]

—348-915 585
100-040 525
—25-655 267 6

5-619 360 04
—0-890 635 098 |

348-921 317 7
—1,100-739 522
3,105-893 86
—7,485-113 38
13,053-073 8

348-921 317 ]
—100-042 169
25-655 689 1
—5-619 452 36
0-890 649 730 |
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The simultaneous equations for the determination of the C, and ¢, are given by equations (64) and (65). For the five
bay structure under consideration there will be ten of these simultaneous equations and the coefficients for. the left-hand
side are eventually found to be

5080031

152-6722356  —557-988 969 4,490-600 80 —9,317-816 65 6,796-349 09
| © 470-950334  —1,716:223 076 12,552-007 07 —31,266-189 2 15,545-857 03
T, = 790-625 966  —3,517-547 84 17,020-854 88 —50,607-534 4 39,822-9756 |,
1,073-842563 © —6,961-570 249 98,200+ 140 7 —45,659-949 7 21,015-025 1
| 1,262-172 432 —11,580-717 01 69,336-973 2 —161,540-098 9 103,218-605 7
T 59-5946493  —82.0537297  —178-305 450 1 —376-013 430 645584 450 ]
—157-0028509 —151-204 591 6 —219-069 306 —300- 165 226 343402 897
[y = | —222-304690  —144-419 6948 —163-084 500 5 —9251-209 211 —417-812714 |,
_950-443469  —126-357 6422 —158-542 107 7 —978-058 098 —406-434 134 |-
| —9274-457657  —118-440 058 1 —165-340 991 1 —274-268 999 —408-410 312
T 31-3114229  106-518 443 1 297 - 442633 530-510 42 632-647 953
106-966 4247  849-375 305 997047 469 —1,547-538 34 —-3,298-694 98
[T = 199-9708316  216-062 075 —3,384-440 90 —2,441-459 12 8,204-34869 |,
301-362303  —1,248-998 448 —2,798-025 37 23,081-582 8 —21,928-042 5
| 393-203716  —4,340-930 08 97,314-627 6 —65,258-009 4 41,966-956 4 |
" 24-3023839 54695 054 4 135-618 456 0 302- 476 766 533894 048 7
61-079 721 4 90-324 817 9 143-994 854 0 197405 769 0 215-491 945
[yl = 82-256 007 2 75-020 527 4 91-991 546 6 156754 303 2 291-645 519
91-770 994 7 58-979 109 5 90-920 840 3 181-091 957 4 976-507 444
| 934262551 53 97-091 495 6 175-943 648 6 977859 645




Hence the ten simultaneous equations are

[ 1-071 155 935 7
2-907 423 251

(L [Cal 4 [yialled] = | 4-284623738 | M,
5-202 757 397
L 5-661 824 226 |

and
[ 13-634 78261 7] [ 0-023 786 272 52 7
37-008 695 65 0-071 358 817 56
[IOIC] -+ [yfillen] = | 54-53913043 | W, — | 0-118 931 3628 M.
66226 086 95 0-166 503 907 6
| 7206956521 | | 0-214 076 452 7

These equations were solved by the method of pivotal condensation, the pivots being chosen
such that the loss of leading figures was reduced to a minimum. The valués of the € 5 Cp WETE
then found to be :

W,=1001b | W, =0

M, =0 M, = 1,000 in. b
C, = 14-1323 - 3-601 0
C, = 1-145 41 0-329 65
Cy = 0-199 292 0-058 592
C, — 0-062 274 0-018 635 8
Cy — 0-031 955 0-009 607 2
6 = | 47-835 —11-7417
6 = | —21-367 6-047 5
6 — 10999 4 —4-4955
6 = | —4-1129 1-966 55
o — 0-833 45 —0-441 35

With these values of the C,, ¢, it is possible to obtain the complete stress distribution and
displacement pattern throughout the entire shell model. The chordwise distributions are obtained
by substituting these values into the expressions such as equations (16) and (18), while the
spanwise distributions at the front and rear spars may be obtained by evaluating the appropriate
matrices 44 to 63. These distributions are shown plotted in Figs. 10 to 21. Panoramic views
of the direct stresses along the stringers and spar booms are given in Fig. 22 which shows clearly

“the build up of stress towards the rear spar at the root.
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Tt is of interest to calculate the direction y of the vector couple that gives zero warping of the
ribs together with the resulting stresses. From equation (41) and Fig. 9 it is soon found that

T/
| o= 1-26
and then from equation (42) that
' p = 49 deg, 30 min.

When the vector couple is of magnitude 1,000 in. 1b it is easy to determine that the shear stress is
S” 1,000 cos p . ‘
t  Sabtsina 71 Ibfin.

and the. direct stress in the skin-stringer combination and booms is

T'coseee (%) (%) @‘) cosec & = 76 lbfin.”

APPENDIX VI
Tests on a Cellulose-Nitrate Model Swept Wing

To obtain some confirmation of the theoretical results the cellulose-nitrate model shown in’
Fig. 23 was constructed and then tested in the rig shown in Fig. 24.

The model was made from cellulose-nitrate primarily because of the simplicity and speed of
construction. It served to establish a rapid qualitative confirmation of the theoretical results.
This confirmation cannot be regarded quantitatively because of the following reasons, wiz.,

(a) the test conditions were not controlled with respect to temperature and humidity
(b) it is difficult to obtain precise values of the elastic constants

(c) there is change of elastic properties subsequent to glueing
)

(d) the cellulose-nitrate model does not correspond precisely to the swept wing chosen for
the numerical example (compare Figs. 9 and 22). :

The root of the model was filled with a hard wood and then securely clamped between two
massive steel plates. In this way a really rigid root end fitting was obtained. Another hard
wood block was fitted to the tip so that the various loads could be applied through a pin.

The stringers and booms were laminated from 0-125-in. thick sheet and separate experiments
on test coupons indicated that the following are representative values of the elastic constants, vez., -
E g = 3-6 x 10° Ib/in.?,
Eringer = 2°8 X 10°1b/in.?,
Erpoom = 2°8 x 10° Ibfin.?,
Poisson’s ratio = 0-4.

The strain gauge results were converted to stresses by multiplying by the appropriate value of
the elastic constant and these stresses are shown plotted in Figs. 10, 12, 13, 14, 16, 18, 19 and 20.
The direct stresses refer to the skin outer fibres while the shear stresses refer to the skin middle
fibres and the two sets of experimental results on each graph correspond to reversed loadings.

Full details of the tests are given in a separate paper®. :
33
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Agreement is quite good between the theoretical and experimental results. The model has a
slightly lower flexural rigidity than that taken for the numerical example, this difference is the
most prominent when comparing the deflections for tip shear loading in Fig. 15. There are, of
course, essential differences in the character of the stress distribution at the tip—especially
for the case of the tip couple in the plane of the rib. On the model the tip is effectively ‘ built in’
whereas for the numerical example the tip is in a free condition. As the couple is applied through
the rib, the free end condition involves a local stress diffusion problem until the spar booms are
carrying their proper complement of load.

~_ Readings of the spar deflections. were taken at each rib station and these are shown plotted in
Figs. 15 and 21. : :

APPENDIX VII

Solution of the Fundamental Equations for the Skin-Stringer Combination
when the Rib Flanges are Inextensional

When the rib flanges are inextensional, equations (13), (14) and (15) become
d* a. o d -
2 2 = —
<2L iy B> T+ (L iy — AL gt B) T, =0,

a2 d . _ 2d2 - d? d
(gt argg+e) T r2(m G p) T (- AL 1 ) om0

and
l 2 Z n—2 Z 2 K 1 n

when T, is assumed constant.

It is readily observed that the particular integral of the above set of simultaneous differential
equations is '
T,- = T, for T, constant,
and it is necessary only to determine the complementary function.

Now, it is assumed that a constitutent of the complementary function is e¥ where 1 is a
constant. The condition of consistency for the aforegoing equations then becomes

2% — B 22— AL LB 0 0 0

B4 AL+ B 22 — B) A— AL +B.... 0 0
0 B4 AL+ B 22 —B) ... 0o 0 =4,() =0
0 0 0 ...+ A2+ B 22 — B)

which is an # X # determinant. The relationship between successive determinants is found to be
Apia(A) — 2(20* — B)4,,1,(2) + (A* — A4 + B)(A* + A2* 4 B)4,(3) =0,
and this finite difference equation has the solution |
4,() ={22* — B 4 2(32* + A* — 6B)Y*}» + {22 — B — A(34% + A® — 6By /=0 .
This is an expansion of the condition of consistency which may be rewritten
{(24* — B) 4 2(32* + A* — 6B)/*}* — {(24* — B) — A(342 ++ A* — 6B)Y*}" exp {in(2k — 1)} =0
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for k integer and ¢ = 4/ — 1. Using de Moivre’s theorem, ,
{(22* — B) + A(34* + A* — 8B)"*} — {(24* — B) — 2(34* + 4* — 6B)/*} exp {in(2k — 1)/n} =0
where £ = 1, 2, 3, ....#n Thus the condition of consistency in product form becomes
| 2(2k — 1)
2n
where either the positive or the negative sign is retained throughout the complete product.

The significance of this is that it is not yet possible to distinguish between the A,th and A,_,.«th
roots. Thus the roots may be determined from the quadratics '

n(2k — 1)
2n

+ 7,(6B — A* — 81,3)Y? cos ”izi‘—l—)} =0,

— o 2 ___ 1
4,(4) = o [(ZAk B) sin o

n(2k —1)
2n

(22, — B)* sin® — 2}(6B — A* — 34) cos? =0

¥\ 1/2

| e . [E /BN
and they fall within — 24/3 sin « <——t < A < 24/3 sin @ (T) .
Iz 2

Consider now the difference equations arising from (13), (14) and (15). They are
@212 — B)T, + (b2 — Ad, + BT, =0,
(A + Aiy 4+ BT+ 20202 — B)T; + (4* — Ak + B)T,;.=0

and _ -
(22 + A2y + B)T, o 4 2(24' — B)T,.. = 0.

“Using the substitution

90— B) = {(ht - Aty + B)st — Ay + B)Pcos "l

o2n

from above, the solution of these difference equations is readily found to be

= (M4 A+ BY” 72k — 1)j
T.=(—) ()L,f Sy B> cos on

J
or since the roots 4, and A, ,,, cannot as yet be distinguished, this may be more conveniently
written
= M+ A2 i — 1)y
7 T]- _ kZ —l" 3 —l— B coS ﬂ(zk 1)]
A — Al + B 2n
By inspection, it is found that this latter solution is applicable only when 4, < 4,_g41.

.

Finally, the complete solution to the fundamental equations (13), (14) and (15) may therefore
be writtén ‘

a2+ Ad + BY”
oesp Gy} (B4 )

o x(2k — 1)
Tj = Tﬂ + kzl SFE_(_——JJ

2n

. 2k - Ad, - B\
¢y exp {— A(y/L)} (ZZZ i AAI,: i B)

where C, and ¢, are arbitrary constants.

When the rib booms are extensional it is necessary to solve a set of simultaneous differential
equations each of fourth order.
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APPENDIX VIII

That the Equations of Compatibility are Consistent with the
Strain Energy being Rendeved a Minimum

It is now the purpose to demonstrate by using the Calculus of Variations that the aforegoing
procedure is consistent with the total strain energy stored in the structure being rendered a
minimum. :

The total strain energy stored in the skin-stringer combination forming the top and bottom
surfaces of the shell model is

a L
o L ., 1 . .
US —JZ:IJ {/}SJ —I—ﬁf Tj CZX} dYSIHOL.
—a 0

On substitution from equations (4) and (9) and performing the integration with respect to x
this becomes ' ,

n ¢ L . 8/ ; 2 -~

— L*F,_, % cosec’ a - 415, cot? oo — 2L2S; %% cot a cosec o

+ 4LS,T,_, cot & cosec oc}] dy sin « .

The stress resultants T, and S, are related by virtue of equation (9). Thus, when considering
an arbitrary variation of Uy it is necessary to impose the restraint

o [0 S, = =
Uy=3 J 2Uj(y)<L ZJ+Tj—Tj_1>dy
j=1 a Y

where U,(y) is an undetermined function which cannot as yet be associated with its interpretation
as a displacement component. An arbitrary variation of the strain energy stored in the skin-
stringer combination can eventually be written ' '

[ 1 s,
AUs + AUy —jglj [M S, 6S; sin o + Et"“{ T3 dy 4S; cosec «
+ 2LT,_, oT,_, cosec o -+ L? %1 85; cosec o, — L* 6% 6T,_, cosec o

+ 8LS; 65, cot wcos a -+ 4LS, 67}_1‘ cot o 4+ 4LT, 45, cot oc}
dU] o) . = — -]
+2( —L W(SSJ- +U; 6T, — U, 6T,_; ‘dy

+ 3

j=1

1 /21°4dS, =
[ﬁ ey 27 8S; cosec o0 — L*T, , 85, cosec o
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The total strain energy stored in the four spar booms is

L
Pei  Pof
U — Pr;* —F—’):Zx.
’ ,.=1J0 <EAR+EAF

On substitution from equations (19) and (20) and performing the integration with respect to
x this becomes

IR

Us = ,-:1 EfélR I:%s {Skt 4 S/(@) + 25&;Sila) } + LPpj "+ L*Pr; s {Se;+ S,-(a)}}

o 1 PL° ‘ ~ ~ :
+ J.El ﬂi?,— {SF:‘Z 4 SH—a) — 2Sr;Si(— @)} + LEr;a + L* Prja{Srj—Si(— “)}:!-

The shear-stress resultants and boom end loads are related by virtue of equations (19) and (20).
Thus, when considéring an arbitrary variation of Uy it is necessary to impose the restraints

UUR,F = ]2::1 ZURj [PR]' — PRj—l — L{SRj -+ Sj(a)}:l

+ jél 201«"1 [ij - PFj—l _ L{SFj - SJ’(— “)}]

where U, and Uy, are undetermined multipliers which cannot as yet be associated with their
interpretations as displacements. An arbitrary variation of the strain energy stored in the
four spar booms can now be written :

= 1 [L? - '
= R .

+ 2LPRj—15PRj—1 + LzPRj—l{aSRj + 55;‘(“)} + L2{SRj + SJ‘(“)}(SPRJ‘—-{I

n 1 [L
+ 3 54 [~3— (057, 8S5;+ 25(— @) S,(—a) — 251;05,(—a) — 25,(— ) 6S;}

-+ 2LPF;;’~1 5151:]',—1 -+ LzPFj—l{ést - 55}(— “)} + LZ{SFJ' - SJ‘(— d)}apr—l:I
-+ jél ZBR;‘ [5PR;' __‘SPR;'A — L {aSRj =+ 651‘(‘1)}]

+]_§120n [6D; — 0Py, s — L {8Ss; — 0S,(— a)}] -

The total strain energy stored in the front and rear spar webs in shear is

e (5 125
j=1 Hig pty

and subjecting this to an arbitrary variation,

« 2Lb 2Lb
AUy = jE <~_ Sgj 8Sg; + —7 Sr; ast) .

, =1 ‘LLtR ‘utF
The total strain energy stored in the ribs in shear is given by
1 2 b -
UR - E ﬁ: SJZ
j=1 i
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where S",- is given by equation (36). The appropriate restraint on the variation of U & is therefore
R T M, .

where ¥, is an undetermined multiplier which cannot as yet be associated with its interpretation
as a displacement component. An arbitrary variation of the rib strain energy can now be written

7 4@6 = = " —_ 1 ¢ —

‘This completes the formulation of the total strain energy stored in the structure but it does
remain to impose the further restraints on the arbitrary variations such that the state of overall
equilibrium is undisturbed. From equations (34) and (35) these restraints are

n - W
U, = P> waoj {SRJ'+1 — SR;’ + SFj+1' — SF_/‘ — 27)]}
j=1 :

n _ - : » — M.
+ = b(ij — ij) SRj+1 — SRj — SFj»}—l + SFj — 25]' —
j=1 , 4ﬂb

where @y; and (,; — @p;) are undetermined multipliers which as cannot yet be associated with their
interpretations as deflections. In this last expression it has been found convenient to make a
substitution from equation (36). Subjecting this to an arbitrary variation '

AUE _ ]gl 267@0] {(SSRj—i-l I 6S]€j + (SSF]'_|_1 I 6SF]}

—l—élb(ze')m — ;) {8Skjs1 — Sy — 0Spy4s + 65k, — 205,}.

The total strain energy stored in the swept wing structure is thus
U:Us‘f“ UB_|— UW“I“UR
and it is seen that an arbitrary variation is
AU = AUs + AUy + AUy + 4Uy o + AUy + AUg + AU, + 4T,
which must be zero for the strain energy to be a minimum.

By the usual arguments of the Calculus of Variations it will be found for the ?anishing of the
variation f dS; dy it is necessary that

j—1

ay

3 g2C. 2
/:%Sﬁinoc—# ! { Iid—“-g—]cosec:oc—{—%d cosec a

Et¥| " 3 dy?

l [V,
I
'_<|
|
\

+ 4LS; cot a cos o - ZLTJ-_I cot oc} — L

Sy

~<
T
L

and for the variation ’ 6T,_, dy it is necessary that
IS0 4 y

~ 1 [ I%4s, _ 1. ¢
U = Et—{— 5 d_yj cosec o + LT, , cosec o -+ 2LSJ~. cot oc} +U,_,.

These are consistent with equations (10) and (12) and it will be noted that the undetermined
multipliers are in fact the displacement components Ujand ¥,. -
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Proceeding in like manner, it is found for the vanishing of the variations 6Py;_, and 8Psi_y
it is respectively necessary that ’
— 1 L2 — ~
Ur; = FA, [_2 {Sr; + Sil@)} + LPRj—l} + Ugjs
and : ' .
1 [L* ~ .
4.2 {Se; — Si{— @)} 4 LPpjr | + Ura.
These are identical with equations (22) and (26) and it will_be noted that the undetermined
multipliers are in fact the displacement components Ug; and Uy;. -

The vanishing of the variations 45;(a) and 5S;(— a) respectively requires that

2

1 fras, o D'y L 10
[Et*{S dy cosec o — T,_, cosec « LSjAcot m}+LUj}y=a

1 [r S L3 _
= T EA, [g {SR'J' + Si(@)} + ?PR'j-l} + LUy;
and
1 {Iﬁ {dS,- ‘ 1? = } -]
1= 1% osec o — = T, cosec a« — L*S; cot a + LU,
{Eﬁf 3 |dy 9 Tt ! T, .
1 L3 L2 - —
=" LA, [—3‘ {Se; — Sil—a)} +75 PFj—l} -+ LU;;-

It will be found that these last two are respectively identical with equations (21) and (25) when
substitutions are made from equations (23), (24), (27) and (28).

The vanishing of the variation 85, requires that
2 2a 5

_ _ a =
(g; — Wp;) = ﬁsj 7y V;

which corresponds to equation (29) and where it is seen that once again the undetermined multi-
plier corresponds with the displacement difference wg; — Wr;-

Finally, the vanishing of the variations 6S,; and §Sy; respectively requires that

L |Le L* 5 _Lb _ }
EA, [§ {Sk; + Sila)} + 3 PR]'_l} — LUg; + !—w; Sgr; + b(@oj_n — @oy)
o ] ] _
+ g(ij—l — Wpj_1 — Wgj + w}:j) =0
and
1L L2 _ - Lb ) )
EA, [g {SF]' — Si(—a)} + D) PF}'—l} — LUz; + ;—Z;S,vj 4 b(@ g1 — @o;)

b

- E (Z@Rj—l - @Fj—l -+ Z"_/Rj - ZEFj = 0.

It will be found on substitution from equations (23), (27) and (29) that these last two equations
correspond with equations (32) and (33). The undetermined multiplier of course corresponds with
the displacement @;.

It has therefore been demonstrated that the aforegoing procedure is consistent with the total
strain energy stored in the structure being rendered a minimum. '
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